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ABSTRACT

We propose a method for autonomously learning an object-centric representation of
a continuous and high-dimensional environment that is suitable for planning. Such
representations can immediately be transferred between tasks that share the same
types of objects, resulting in agents that require fewer samples to learn a model of
a new task. We first demonstrate our approach on a 2D crafting domain consisting
of numerous objects where the agent learns a compact, lifted representation that
generalises across objects. We then apply it to a series of Minecraft tasks to learn
object-centric representations and object types—directly from pixel data—that can
be leveraged to solve new tasks quickly. The resulting learned representations
enable the use of a task-level planner, resulting in an agent capable of transferring
learned representations to form complex, long-term plans.

1 INTRODUCTION

Model-based methods are a promising approach to improving sample efficiency in reinforcement
learning (RL). However, they require the agent to either learn a highly detailed model—which is
infeasible for sufficiently complex problems (Ho et al., 2019)—or to build a compact, high-level
model that abstracts away unimportant details while retaining only the information required to plan.
This raises the question of how best to build such an abstract model. While recent advances have
shown how to learn models of complex environments, they lack theoretical guarantees and require
millions of sample interactions (Schrittwieser et al., 2020; Hafner et al., 2021). Fortunately, recent
work has shown how to learn an abstraction of a task that is provably suitable for planning with a
given set of skills (Konidaris et al., 2018). However, these representations are highly task-specific
and must be relearned for any new task, or even any small change to an existing task. This makes
them fatally impractical, especially for agents that must solve multiple complex tasks.

We extend these methods by incorporating additional structure—namely, that the world consists of
objects, and that similar objects are common amongst tasks. For example, when we play video games
we solve the game quickly by leveraging our existing knowledge of objects and their affordances,
such as doors and ladders which occur across multiple levels (Dubey et al., 2018). Similarly,
robot manipulation tasks often use the same robot and a similar set of physical objects in different
configurations. This can substantially improve learning efficiency, because an object-centric model
can be reused wherever that same object appears (within the same task, or across different tasks) and
can also be generalised across objects that behave similarly—object types.

We assume that the agent is able to individuate the objects in its environment, and propose a framework
for building portable object-centric abstractions given only the data collected by executing high-level
skills. These abstractions specify both the abstract object attributes that support high-level planning,
and an object-relative lifted transition model that can be instantiated in a new task. This reduces the
number of samples required to learn a new task by allowing the agent to avoid relearning the dynamics
of previously seen object types. We make the following contributions: under the assumption that
the agent can individuate objects in its environment, we develop a framework for building portable,
object-centric abstractions, and for estimating object types, given only the data collected by executing
high-level skills. We also show how to integrate problem-specific information to instantiate these
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representations in a new task. This reduces the samples required to learn a new task by allowing the
agent to avoid relearning the dynamics of previously seen objects.

We demonstrate our approach on a Blocks World domain and a 2D crafting domain, and then apply
it to a series of Minecraft tasks where an agent autonomously learns an abstract representation of a
high-dimensional task from raw pixel input. In particular, we use the probabilistic planning domain
definition language (PPDDL) (Younes & Littman, 2004) to represent our learned abstraction, which
allows for the use of existing task-level planners. Our results show that an agent can leverage these
portable abstractions to learn a representation of new Minecraft tasks using a diminishing number of
samples, allowing it to quickly construct plans composed of hundreds of low-level actions.1

2 BACKGROUND

We assume that tasks are modelled as semi-Markov decision processesM = 〈S,O, T ,R〉 where
(i) S is the state space; (ii) O(s) is the set of temporally extended actions known as options available
at state s; (iii) T describes the transition dynamics, specifying the probability of arriving in state s′
after option o is executed from s; and (iv)R specifies the reward for reaching state s′ after executing
option o in state s. An option o is defined by the tuple 〈Io, πo;βo〉, where Io is the initiation set
specifying the states where the option can be executed, πo is the option policy which specifies the
action to execute, and βo the probability of the option terminating in each state (Sutton et al., 1999).

We adopt the object-centric formulation from Ugur & Piater (2015): in a task with n objects, the state
is represented by the set {fa, f1, f2, . . . , fn}, where fa is a vector of the agent’s features and fi is a
vector of features particular to object i. Note that the feature vector describing each object can itself
be arbitrarily complex, such as an image or voxel grid—in one of our domains we use pixels.

Our state space representation assumes that individual objects have already been factored into their
constituent low-level attributes. Practically, this means that the agent is aware that the world consists
of objects, but is unaware of what the objects are, or whether multiple instantiations of the same
object are present. It is also easy to see that different tasks will have differing numbers of objects
with potentially arbitrary ordering; any learned abstract representation should be agnostic to this.

2.1 STATE ABSTRACTIONS FOR PLANNING

We intend to learn an abstract representation suitable for planning. Prior work has shown that a sound
and complete abstract representation must necessarily be able to estimate the set of initiating and
terminating states for each option (Konidaris et al., 2018). In classical planning, this corresponds to
the precondition and effect of each high-level action operator (McDermott et al., 1998).

The precondition is defined as Pre(o) = Pr(s ∈ Io), which is a probabilistic classifier that expresses
the probability that option o can be executed at state s. Similarly, the effect or image represents the
distribution of states an agent may find itself in after executing an option from states drawn from
some starting distribution (Konidaris et al., 2018). Since the precondition is a probabilistic classifier
and the effect is a density estimator, they can be learned directly from option execution data.

We can use preconditions and effects to evaluate the probability of a sequence of options—a plan—
executing successfully. Given an initial state distribution, the precondition is used to evaluate the
probability that the first option can execute, and the effects are used to determine the resulting state
distribution. We can apply the same logic to the subsequent options to compute the probability of the
entire plan executing successfully. It follows that these representations are sufficient for evaluating
the probability of successfully executing any plan (Konidaris et al., 2018).

Partitioned Options For large or continuous state spaces, estimating Pr(s′ | s, o) is difficult
because the worst case requires learning a distribution conditioned on every state. However, if we
assume that terminating states are independent of starting states, we can make the simplification
Pr(s′ | s, o) = Pr(s′ | o). These subgoal options (Precup, 2000) are not overly restrictive, since
they refer to options that drive an agent to some set of states with high reliability. Nonetheless,
many options are not subgoal. It is often possible, however, to partition an option’s initiation set

1More results and videos can be found at: https://sites.google.com/view/mine-pddl
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into a finite number of subsets, so that it is approximately subgoal when executed from any of the
individual subsets. That is, we partition an option o’s start states into finite regions C such that
Pr(s′ | s, o, c) ≈ Pr(s′ | o, c), c ∈ C (Konidaris et al., 2018).

Factors We adopt the frame assumption—an assumption implicit in classical planning—which
states that aspects of the world not explicitly affected by an agent’s action remain the same (Pasula
et al., 2004). Prior work leverages this to learn a factored or STRIPS-like (Fikes & Nilsson, 1971)
representation by computing the option’s mask: the state variables explicitly changed by the option
(Konidaris et al., 2018). In our formulation, the state space is already factorised into its constituent
objects, so computing the mask amounts to determining which objects are affected by a given option.

3 LEARNING OBJECT-CENTRIC REPRESENTATIONS

Although prior work (Konidaris et al., 2018) allows an agent to autonomously learn an abstract
representation supporting fast task-level planning, that representation lacks generalisability—since
the symbols are distributions over states in the current task, they cannot be reused in new ones. This
approach can be fatally expensive in complex domains, where learning an abstract model may be
as hard as solving a task from scratch, and is therefore pointless if we only want to solve a single
task. However, an agent able to reuse aspects of its learned representation can amortise the cost of
learning over many interactions, accelerating learning in later tasks. The key question is what forms
of representation support transfer in this way.

We now introduce an object-centric generalisation of a learned symbolic representation that admits
transfer in tasks when the state space representation consists of features centred on objects in the
environment. This is common in robotics, where each object is often isolated from the environment
and represented as a point cloud or subsequently a voxelised occupancy grid. Our approach builds on
a significant amount of machinery, involving clustering, feature selection, classification and density
estimation. We summarise our proposed approach in Figure 1 and provide a high-level description in
the remainder of this section, but provide pseudocode and specific practical details in the appendix.

Step 1: Par-
tition options
into subgoal
options

Step 2:
Generate

propositional
forward model

Step 3:
Merge objects

into types

Step 4: Lift
abstractions

based on
object type

Step 5:
Instantiate ab-
stractions for
current task

Figure 1: Learning lifted representations from data. Red nodes represent problem-specific representa-
tions, while green nodes are abstractions that can be transferred between tasks.

3.1 GENERATING A PROPOSITIONAL MODEL (STEPS 1–2) (AS IN KONIDARIS ET AL., 2018)

The agent begins by collecting transition data using an exploration policy. The first step is to partition
the options into approximately subgoal options. For each option o and empirical sets of initial and
terminating states Ĩo and β̃o, the agent partitions Ĩo into a number of disjoint subsets, such that for
each subset K ⊆ Ĩo, we have Pr(s′ | si, o) = Pr(s′ | sj , o)∀si, sj ∈ K, s′ ∈ β̃o. In other words, the
effect distribution of the option is identical, independent of the state in K from which it was executed.
In practice, this can be approximated by first clustering state transition samples based on terminating
states, and then assigning each cluster to a partition. Finally, pairs of partitions whose initiating states
overlap are merged to handle probabilistic effects (Konidaris et al., 2018).

The agent next learns a precondition classifier for each approximately partitioned option. For each
partition, the initiating states are used as positive examples, and all other states are treated as negative
ones. A feature selection procedure next determines which objects are relevant to the precondition,
and a classifier is fit using only those objects. A density estimator is used to estimate the effect
distribution for each partitioned option; the agent learns distributions over only the objects affected
by the option. Together these effect distributions form our propositional PPDDL vocabulary V .

To construct a PPDDL representation for each partitioned option, we must specify both the precondi-
tion and effects using the state distributions (propositions) in V . The effects are directly specified
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using these distributions, and so pose no problem. However, the estimated precondition is a clas-
sifier rather than a state distribution. The agent must therefore iterate through all possible effect
distributions to compute whether the skill can be executed there. To do so, we denote P as some
set of propositions in V , and G(s;P) as the probability that a low-level state s is drawn from the
conjunction of propositions in P . Then, for an option with learned classifier Îo, we can represent
the precondition with every P ∈ ℘(V) such that

∫
S Îo(s)G(s;P)ds > 0, where ℘(V) denotes the

powerset of V . In other words, the agent considers every combination of effect state distributions
and draws samples from their conjunction. If these samples are classified as positive by Îo, then
the conjunction of P is used to represent the precondition. The preconditions and effects are now
specified using distributions over state variables, where each distribution is a proposition—this is our
PPDDL representation, which is sound and complete for planning.

3.2 GENERATING A LIFTED, TYPED MODEL (STEPS 3–4)

At this point the agent has learned an abstract, but task-specific, representation. Unfortunately there
is no opportunity for transfer (both within the task and between different tasks), because each object
is treated as unique. To overcome this, we now propose a method for estimating object types using
the PPDDL preconditions and effects learned in the previous section.

Definition 1. Assume that option o has been partitioned into n subgoal options o(1), . . . , o(n).
Object i’s profile under option o is denoted by the set

Profile(i, o) =
{
{Preo(1)i , Eo(1)i }, . . . , {Preo(n)i , Eo(n)i }

}
,

where Preo(k)i is the distribution over object i’s states present in the precondition for partition k, and
Eo(k)i is object i’s effect distribution. Note that these preconditions and effects can be null.

Definition 2. Two objects i and j are option-equivalent if, for a given option o, Profile(i, o) =
Profile(j, o). Furthermore, two objects are equivalent if they are option-equivalent for every o in O.

The above definition implies that objects are equivalent if one object can be substituted for another
while preserving every operator’s abstract preconditions and effects. Such objects can be grouped
into the same object type, since they are functionally indistinguishable for the purposes of planning.
In practice, however, we can use a weaker condition to construct object types. Since an object-centric
skill will usually modify only the object being acted upon, and because we have subgoal options, we
can take a similar approach to Ugur & Piater (2015) and group objects by effects only:

Definition 3. Assume that option o has been partitioned into n subgoal options o(1), . . . , o(n).
Object i’s effect profile under option o is denoted by the set

EffectProfile(i, o) =
{
Eo(1)i , . . . , Eo(n)i

}
,

where Eo(k)i is object i’s effect distribution. Two objects i and j are effect-equivalent if
EffectProfile(i, o) = EffectProfile(j, o) for every o in O.

The notion of effect equivalence was first proposed by Şahin et al. (2007). Such an approach assumes
that an object’s type depends on both the intrisic properties of the object itself, as well as the agent’s
endowed behaviours (Chemero, 2003). However, this definition does not account for preconditions,
nor does it consider interactions involving multiple objects. The latter issue is also present in
frameworks such as object-oriented MDPs(Diuk et al., 2008), where the dynamics are described by
pairwise object interactions (and one of those objects is the agent). Nonetheless, the approach will
prove sufficient for our purposes, and we leave a more complete definition to future work.

By computing effect profiles using the propositional representation, the agent can determine whether
objects i and j are similar (using an appropriate measure of distribution similarity) and, if so, merge
them into the same object type. Propositions representing distributions over individual objects can
now be replaced with predicates that are parameterised by types. For example, consider a domain
with three objects—two identical doors and a block—and an agent with a single option to open a door.
Since the option can affect both of the doors, it would first be partitioned into two subgoal options
(one for each door). Given this, the effect profile for the first and second doors would be {open1,∅}
and {∅,open2} respectively. The effect profile for the block, which cannot be acted upon, would
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simply be {∅,∅}. By noting that the sets representing the doors’ effects are equal, the agent can
merge the two door objects into a single type and replace the open1 and open2 propositions with a
single open predicate parameterised by objects of type door.

3.3 PROBLEM-SPECIFIC INSTANTIATION (STEP 5)

If the task dynamics are completely described by the state of each object, as is the case in object-
oriented MDPs (Diuk et al., 2008), then our typed representation is sufficient for planning. However,
in many domains the object-centric state space is not Markov. For example, in a task where only
a particular key opens a particular door, the state of the objects alone is insufficient to describe
dynamics—the identities of the key and door are necessary too. A common strategy in this case
is to augment an ego- or object-centric state space with problem-specific, allocentric information
to preserve the Markov property (Konidaris et al., 2012; James et al., 2020). We denote X as the
space of problem-specific state variables. S remains the original object-centric state space. The
above complication does not negate the benefit of learning transferable abstract representations,
as our existing operators learned in S can be augmented with propositions over X on a per-task
basis. In general, local information relative to individual objects will transfer between tasks, but
problem-specific information, such as an object’s global location, must be relearned each time.

For a given partioned option, the agent repeats the partitioning procedure, but this time using only
problem-specific state data. This forms n partitioned options that are subgoal in both S and X .
Denote κi and λi for i ∈ {1, . . . , n} as the sets of start and end states for each of these newly
partitioned options. The agent can now ground the operator by appending each κi and λi to the
precondition and effect, treating each κi and λi as problem-specific propositions. Finally, these
problem-specific propositions must be linked with the grounded objects being acted upon. The agent
therefore adds a precondition predicate conditioned on the identity of the grounded objects, where
objects’ identities are simply their respective index in the state vector.

4 EXPERIMENTS

We first demonstrate our framework on the classic Blocks World domain (Section 4.1). While the
high-level operators and predicates describing the domain are usually given, we show how such
a representation can be learned autonomously from scratch. In Section 4.2, we apply our method
to a 2D crafting environment (Andreas et al., 2017) consisting of over 20 objects, where an agent
learns a representation that generalises across objects and can be used to solve hierarchical tasks. We
then demonstrate that our method scales to significantly harder problems by applying it to a high-
dimensional Minecraft task (Section 4.3). Finally, we investigate the transferability of the learned
abstractions by transferring them to additional procedurally generated Minecraft tasks (Section 4.4).
Owing to space constraints, we defer the exact implementation and domain details to the appendix.

4.1 LEARNING A REPRESENTATION OF BLOCKS WORLD

Blocks World consists of several blocks which can be stacked on top of one another by an agent
(hand). The agent possesses options that allow it to pick up a block (Pick), put a block back on the
table (Put), and stack one block on another (Stack). Blocks cannot be picked up if they are covered
or if the hand is occupied, and can only be put down or stacked if already gripped. We consider the
task consisting of three blocks A, B and C, where each block is described by whether there is nothing,
another block, or a table directly above or below it. This allows us to determine whether a given block
is on a table, on another block, or in the hand, and similarly whether another block has been stacked
upon it. The hand is characterised by a Boolean indicating whether it is holding a block. Thus a state
is described by {fH , fA, fB , fC}, corresponding to the hand and blocks’ features respectively.

Generating a Propositional Model (Steps 1–2) Using the approach outlined in Section 3.1, the
agent partitions the options using transition data collected from the environment. This results in
a total of 30 partitioned options. It then fits a classifier to each partition’s initiation states, and a
density estimator to its terminating states. Finally, the agent generates a propositional PDDL using
these learned preconditions and effects. The full PDDL (learned entirely from data), as well as an
illustration of a learned propositional operator, is provided in the appendix.
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Generating a Lifted Typed Model (Steps 3–4) Using the effects from the propositional represen-
tation, the agent determines that objects A, B and C all possess the same effect profiles for all options
and so can be grouped into a single type, while the hand belongs to its own type. The agent can
now lift its representation by replacing the learned propositions with predicates parameterised by
the above types. For example, after generating the model, there are three propositions: AOnTable,
BOnTable, and COnTable. Since these are distributions over objects determined to be the same
type, the agent can replace them all with a single predicate OnTable(X), which accepts block
objects. As a result, the agent can reduce the number of operators from 30 to 6, resulting in a more
compact representation with a smaller branching factor. Figure 2 illustrates a lifted operator for
picking any block X off any block Y, while the full parameterised PDDL is listed in the appendix.

(a) symbol 4 (b) symbol 5 (c) symbol 2

(d) symbol 0 (e) symbol 3 (f) symbol 1

(:action Pick-partition-10
:parameters (?w - type0 ?x - type1

?y - type1)
:precondition (and (symbol_4 ?w)

(symbol_5 ?x) (symbol_2 ?y))
:effect (and (symbol_0 ?y) (symbol_3 ?x)
(symbol_1 ?w) (not (symbol_2 ?y))
(not (symbol_4 ?w)) (not (symbol_5 ?x)))
)

Figure 2: The learned lifted operator for a Pick action describing picking a block off another. In
order to pick up block Y, it must be on block X which itself is on the table, and the hand must be
empty. As a result, the hand is not empty, Y is now in the hand, and X is on the table and clear.
type0 refers to the “hand” type, while type1 refers to the “block” type.

4.2 LEARNING A REPRESENTATION OF A CRAFTING TASK

To demonstrate the applicability of our approach to tasks with a large number of objects, we extend
the domain proposed by Andreas et al. (2017), where an agent is required to collect objects and craft
them to create new ones. The domain consists of a 12× 12 grid containing multiple objects, such as
wood, grass, iron, rock, water and gold, as well as three workshops. Other items such as bridges can
be crafted using collected objects, but only if the agent is standing near the appropriate workshop.
The state of each object is characterised by whether it is on the grid (present), has been picked up
by the agent (picked) or does not yet exist (non-existent); the state of the world is given by
the state of each object (of which there are 23), as well as the agent’s egocentric view. The agent is
given four skills: WalkTo, Pickup, Place and Craft—an object can only be picked up when
the agent is adjacent to it, and any particular item can only be crafted if the agent has picked up the
correct “ingredients”. Furthermore, the gold object is separated by water and can only be accessed
once the agent has placed a bridge, which must first be crafted. To solve the task, the agent is required
to construct a gold arrow, which involves collecting wood and iron to create a bridge, then collecting
the gold, crafting a stick out of wood, and then finally crafting the arrow using the stick and gold.
The optimal plan consists of 15 option executions, a portion of which is illustrated by Figure 3a.

Generating a Propositional Model (Steps 1–2) The agent executes options uniformly at random
to collect 20 episodes’ worth of transition data. The partitioning procedure results in 20 WalkTo
options, 17 Pickup options, 1 Place option and 3 CraftOptions. For each partitioned option,
the agent estimates the preconditions and effects, which are then used to construct a propositional
PDDL consisting of 192 action operators.

Generating a Lifted, Typed Model (Steps 3–4) Using the effects from the propositional represen-
tation, the agent next groups objects into types based on their effect profiles. Since our approach to
estimating types depends on the agent’s actions, we do not recover the ground truth types such as
grass and iron. Instead we discover six types: type0 represents the agent, while type1 represents
objects that can be picked up and used in crafting other objects. type2 represents objects which
can be picked up but are not used in crafting. This occurs only because the agent does not observe
particular objects being used in this manner during the 20 episodes. The three workshops that cannot
be manipulated form type3, while type4 are those objects that can be crafted. Finally, type5
represents the bridge, which is the only object that can be placed.
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Problem-Specific Instantiation (Step 5) Since the learned representation is object-centric, it can
be reused for different configurations of the domain, with varying numbers of objects. Unlike the
Blocks World domain, however, the identities of the objects here are important. For example, the
bridge can only be crafted at workshop2, and so the workshops cannot be treated interchangeably.
To overcome this, the agent is required to ground the learned operators in the current task using
the object identities (which can be determined using the option masks). An example of a learned,
grounded operator is given by Figure 3. For any new task, the agent need only determine the identity
and type of each object, which can then be combined with the learned operator to create a PDDL
representation suitable for planning. Finally, we apply the miniGPT planner (Bonet & Geffner, 2005)
which uses the learned representation to discover an optimal plan. More results, types and associated
objects, and visualised operators are provided in the appendix.

4
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1 7

5
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9

4 Pickup wood

7 Place  bridge

8 WalkTo gold

9 Pickup gold

5 WalkTo workshop1

6 Craft  bridge

1 WalkTo iron

2 Pickup iron

3 WalkTo wood

(a)

symbol_41 symbol_33

symbol_4symbol_0

(:action walk-partition-19
:parameters (?a - type0 ?b - type1 ?c - type5)
:precondition (and (symbol_0 ?a) (symbol_4 ?b)

(symbol_41 ?c) (= (id ?b) 1))
:effect (and (symbol_33 ?a)(not (symbol_0 ?a)))
)

(b)

Figure 3: (a) Simplified illustration of the domain. Here, the agent executes a series of options that
involves crafting a bridge to allow it to collect the gold. The full domain consists of 23 objects
(excluding the agent). (b) An operator for walking to the gold. To execute, the agent must be standing
in front of empty space (symbol 0), the gold must be present (symbol 4) and the bridge placed
(symbol 41). As a result, the agent finds itself in front of the gold (symbol 33). The red symbol
is the only predicate that must be relearned in any new configuration.

4.3 LEARNING A REPRESENTATION OF A MINECRAFT TASK

In the above examples, objects are represented using pre-specified features; however, our approach
is capable of scaling beyond this simple case and learning these features from pixels. We now
demonstrate this in a complex Minecraft task (Johnson et al., 2016) consisting of five rooms with
various items positioned throughout. Rooms are connected with either regular doors which can be
opened by direct interaction, or puzzle doors requiring the agent to pull a lever to open. The world is
described by the state of each of the objects (given directly by each object’s appearance as a 600×800
RGB image), the agent’s view, and current inventory. To simplify learning, we downscale images and
applying PCA (Pearson, 1901) to a greyscaled version, preserving the top 40 principal components.

The agent is given high-level skills, such as ToggleDoor and WalkToItem. Execution is
stochastic—opening doors occasionally fails, and the navigation skills are noisy in their execu-
tion. To solve the task, an agent must first collect the pickaxe, use it to break the gold and redstone
blocks, and collect the resulting items. It must then navigate to the crafting table, where it uses the
collected items to first craft gold ingots and subsequently a clock. Finally, it must navigate to the
chest and open it to complete the task. This requires a long-horizon, hierarchical plan—the shortest
plan that solves the task consists of 28 options constituting hundreds of low-level continuous actions.

Generating a Propositional Model (Steps 1–2) The agent first learns a model using the method
outlined in Section 3.1. The agent partitions options using DBSCAN (Ester et al., 1996) to cluster
option data based on terminating states. For each partitioned option, it then fits an SVM (Cortes
& Vapnik, 1995) with Platt scaling (Platt, 1999) to estimate the preconditions, and a kernel density
estimator (Rosenblatt, 1956) for effects, which are then used to construct the propositional PPDDL.

Generating a Lifted, Typed Model (Steps 3–4) Using the effects from the propositional represen-
tation, the agent next groups objects into types based on their effect profiles. This is made easier
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because certain objects are not affected by all options. For example, the chest cannot be toggled,
while a door can, and thus it is immediately clear that they are not of the same type. Having deter-
mined the types, the agent replaces all similar propositions (where similarity is measured using the
KL-divergence) with a single predicate parameterised by an object of that type.

Problem-Specific Instantiation (Step 5) The agent now has a representation whose operators can
be transferred between tasks. However, a complication arises because the object-centric state space is
not Markov. For example, a state where all the doors are closed and the agent is in front of the first
door is indistinguishable from a state where the agent is in front of the second door. As described in
Section 3.3, the agent must ground the representations in the current task by incorporating additional
problem-specific state variables to preserve the Markov property. These state variables are fixed
across the family of MDPs; in this case, they are the agent’s xyz-location.

For each partitioned option, the agent again uses DBSCAN to cluster end states X to form partitioned
subgoal options in both S and X . Each of these clusters in X is a problem-specific proposition, which
can be added to the learned operators to ground the problem. Figure 4 illustrates a learned operator
for opening a particular door, where the problem-specific symbol has been tied to the door being
opened in this manner. Without modifying the operator’s parameter, it would be possible to open any
door at that location. The final plan discovered by the agent is illustrated by Figure 14 in Appendix K.

(a) symbol 37 (b) symbol 9 (c) psymbol 24

(d) symbol 64 (e) symbol 65

(:action Toggle-Door-partition-1a
:parameters (?w - type0 ?x - type1)
:precondition (and (notfailed)

(symbol_37 ?w) (symbol_9 ?x)
(= (id ?x) 1) (psymbol_24))

:effect (and (symbol_64 ?x)
(symbol_65 ?w) (not (symbol_9 ?x))
(not (symbol_37 ?w)))

)

(f) A learned typed PDDL operator for one
partition of the Toggle-Door option. The
predicates underlined in red must be re-
learned for each new task, while the rest of
the operator can be safely transferred.

Figure 4: To open a particular door, the agent must be standing in front of a closed door (symbol 37)
at a particular location (psymbol 24), and the door must be closed (symbol 9). The effect of
the skill is that the agent finds itself in front of an open door (symbol 64) and the door is open
(symbol 65). type0 and type1 refer to the “agent” and “door” classes, while id is a fluent
specifying the identity of the grounded door object, and is linked to the problem-specific symbol
underlined in red.

4.4 INTER-TASK TRANSFER IN MINECRAFT

We next investigate transferring operators between five procedurally generated tasks, where each task
differs in the location of the objects and doors; the agent cannot thus simply use a plan found in one
task to solve another. For a given task, the agent transfers all operators learned from previous tasks,
and continues to collect samples using uniform random exploration until it produces a model which
predicts that the optimal plan can be executed. Figure 5 shows the number of operators transferred
between tasks, and the number of samples required to learn a model of a new task.

The minimum number of samples required to learn a model for a new task is bounded by the
exploration strategy, since we must discover all problem-specific symbols to complete the model.
Figure 5b shows that the number of samples required to learn a model decreases over time towards
this lower bound. Inter-task transfer could be further improved by leveraging the agent’s existing
knowledge to perform non-uniform exploration, but we leave this to future work.

5 RELATED WORK

Model-based RL methods have previously been applied to pixel-based domains. For example, Kaiser
et al. (2020) and Hafner et al. (2021) learn a forward model in a latent space, while Eysenbach et al.
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Figure 5: Results of learning and transferring high-level abstractions between tasks. We report the
mean and standard deviation averaged over 80 runs with random task orderings.

(2019) computes a planning graph over the buffer of observed states, and Srinivas et al. (2018) learn
a goal-directed latent space in which planning can occur. However, all of these approaches require
hundreds of thousands of samples, which cannot feasibly be collected using the Malmo platform. By
contrast, we are able to construct an abstract model using very little data.

Our method is an extension of the framework proposed by Konidaris et al. (2018), which does not
allow for the learned representations to be transferred between tasks. James et al. (2020) learn an
agent-centric PPDDL representation which can be transferred between tasks, but the operators have
no notion of objects or types, limiting generalisability. As such, the method scales poorly with
an increase in the number of objects, since their representations must be learned from scratch. In
contrast, by assuming the existence of objects, we are able to learn and transfer representations across
tasks that share similar types of objects.

There has been work autonomously learning parameterised, transferable representations of skills
from raw data. Ugur & Piater (2015) learn object-centric PDDL representations for robotic object
manipulation tasks. Similarly to our work, they estimate object types by clustering objects based on
how actions affect their states, but the object features are specified prior to learning, and discrete
relations between object properties are given. Furthermore, certain predicates are manually inserted
to generate a sound representation. Asai (2019) learns object-centric abstractions directly from pixels,
but the representations are encoded implicitly and cannot be transformed into a language that can
be used by existing planners. This limitation is removed by Asai & Muise (2020), who propose an
approach to extract PDDL representations from image-based transitions. However, their framework
does not provide soundness guarantees, nor does it consider stochastic dynamics. By contrast, we are
able to learn object-centric representations, along with the object types and the abstract high-level
dynamics model, directly from raw data in a form that can be used by off-the-shelf planners.

6 CONCLUSION

We have introduced a method for learning high-level, object-centric representations that can be used
by task-level planners. In particular, we have demonstrated how to learn the type system, predicates,
and high-level operators all from pixel data. Our representation generalises across objects and can be
transferred to new tasks. Although we have injected structure by assuming the existence of objects,
this reflects the nature of many environments: fields such as computer vision assume that the world
consists of objects, while there is evidence to suggest that infants do the same (Spelke, 1990). This
allows us to convert complex, high-dimensional environments to abstract representations that serve as
input to task-level planners. Our approach provides an avenue for solving sparse-reward, long-term
planning problems—such as the MineRL competition (Guss et al., 2019)— that are beyond the reach
of current approaches.
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A ENUMERATING SUBGOAL OPTIONS FOR THE BLOCKS WORLD DOMAIN

Given the description of the Blocks World domain in the main text, we must partition the given
options (Pick, Put and Stack) so that they adhere to the subgoal condition. When there are three
blocks in the environment, we see that there are 30 partitioned options, which are described in the
table below:

Option # partitions Description of start
states

Description of end
states

PickOffTable(X) 3 X is on the table, X is
clear, and the hand is
empty.

X is grasped in the
hand.

PickOffSingleBlock(X, Y) 6 X is on block Y which
is on the table, X is
clear, and the hand is
empty.

X is grasped in the
hand and Y is clear
and on the table.

PickOffDoubleBlock(X, Y) 6 X is on block Y which
is on another block, X
is clear, and the hand
is empty.

X is grasped in the
hand and Y is clear
and on another block.

StackOnSingleBlock(X, Y) 6 X is in the hand, and
Y is clear and on the
table.

X is on block Y which
is on the table, and
the hand is empty.

StackOnDoubleBlock(X, Y) 6 X is in the hand, and
Y is clear and on an-
other block.

X is on block Y
which is on another
block, and the hand is
empty.

Put(X) 3 X is grasped in the
hand.

X is on the table and
the hand is empty.

Table 1: Descriptions of the different option partitions. The description of start and end states includes
only the relevant information.

B PROPOSITIONAL PDDL DESCRIPTION FOR THE BLOCKS WORLD TASK

Below is the automatically generated propositional PDDL description of the Blocks World do-
main with 3 blocks. In practice, the agent generates this description with arbitrary names for the
propositions, but for readability purposes we have manually renamed them to match their semantics.

(define (domain BlocksWorld)
(:requirements :strips)
(:predicates

(notfailed)
(AInHand)
(HandFull)
(COnBlock)
(BInHand)
(COnTable)
(AOnTable)
(BOnBlock)
(AOnBlock)
(BOnTable)
(CInHand)
(HandEmpty)
(BOnTable_BCovered)
(COnBlock_CCovered)
(AOnBlock_ACovered)
(BOnBlock_BCovered)
(COnTable_CCovered)
(AOnTable_ACovered)

)

12
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(:action Pick_0
:parameters()
:precondition (and (HandEmpty) (AOnTable) (notfailed))
:effect (and (AInHand) (HandFull) (not AOnTable) (not HandEmpty) (not AOnTable)

(not HandEmpty))
)

(:action Pick_1
:parameters()
:precondition (and (HandEmpty) (AOnBlock) (COnBlock_CCovered) (notfailed))
:effect (and (COnBlock) (AInHand) (HandFull) (not AOnBlock) (not HandEmpty)

(not COnBlock_CCovered) (not AOnBlock) (not HandEmpty)
(not COnBlock_CCovered))

)

(:action Pick_2
:parameters()
:precondition (and (HandEmpty) (COnTable_CCovered) (BOnBlock) (notfailed))
:effect (and (BInHand) (COnTable) (HandFull) (not BOnBlock) (not HandEmpty)

(not COnTable_CCovered) (not BOnBlock) (not HandEmpty)
(not COnTable_CCovered))

)

(:action Pick_3
:parameters()
:precondition (and (HandEmpty) (AOnTable_ACovered) (BOnBlock) (notfailed))
:effect (and (BInHand) (AOnTable) (HandFull) (not BOnBlock) (not HandEmpty)

(not AOnTable_ACovered) (not BOnBlock) (not HandEmpty)
(not AOnTable_ACovered))

)

(:action Pick_4
:parameters()
:precondition (and (HandEmpty) (AOnBlock) (BOnBlock_BCovered) (notfailed))
:effect (and (BOnBlock) (AInHand) (HandFull) (not AOnBlock) (not HandEmpty)

(not BOnBlock_BCovered) (not AOnBlock) (not HandEmpty)
(not BOnBlock_BCovered))

)

(:action Pick_5
:parameters()
:precondition (and (HandEmpty) (AOnBlock_ACovered) (BOnBlock) (notfailed))
:effect (and (BInHand) (AOnBlock) (HandFull) (not BOnBlock) (not HandEmpty)

(not AOnBlock_ACovered) (not BOnBlock) (not HandEmpty)
(not AOnBlock_ACovered))

)

(:action Pick_6
:parameters()
:precondition (and (HandEmpty) (AOnBlock) (BOnTable_BCovered) (notfailed))
:effect (and (BOnTable) (AInHand) (HandFull) (not AOnBlock) (not HandEmpty)

(not BOnTable_BCovered) (not AOnBlock) (not HandEmpty)
(not BOnTable_BCovered))

)

(:action Pick_7
:parameters()
:precondition (and (HandEmpty) (BOnTable) (notfailed))
:effect (and (BInHand) (HandFull) (not BOnTable) (not HandEmpty) (not BOnTable)

(not HandEmpty))
)

(:action Pick_8
:parameters()
:precondition (and (HandEmpty) (COnTable) (notfailed))
:effect (and (CInHand) (HandFull) (not COnTable) (not HandEmpty) (not COnTable)

(not HandEmpty))
)

(:action Pick_9
:parameters()
:precondition (and (HandEmpty) (AOnTable_ACovered) (COnBlock) (notfailed))
:effect (and (CInHand) (AOnTable) (HandFull) (not COnBlock) (not HandEmpty)

(not AOnTable_ACovered) (not COnBlock) (not HandEmpty)
(not AOnTable_ACovered))

)

(:action Pick_10
:parameters()
:precondition (and (HandEmpty) (AOnBlock) (COnTable_CCovered) (notfailed))
:effect (and (COnTable) (AInHand) (HandFull) (not AOnBlock) (not HandEmpty)
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(not COnTable_CCovered) (not AOnBlock) (not HandEmpty)
(not COnTable_CCovered))

)

(:action Pick_11
:parameters()
:precondition (and (HandEmpty) (AOnBlock_ACovered) (COnBlock) (notfailed))
:effect (and (CInHand) (AOnBlock) (HandFull) (not COnBlock) (not HandEmpty)

(not AOnBlock_ACovered) (not COnBlock) (not HandEmpty)
(not AOnBlock_ACovered))

)

(:action Pick_12
:parameters()
:precondition (and (HandEmpty) (COnBlock) (BOnTable_BCovered) (notfailed))
:effect (and (BOnTable) (CInHand) (HandFull) (not COnBlock) (not HandEmpty)

(not BOnTable_BCovered) (not COnBlock) (not HandEmpty)
(not BOnTable_BCovered))

)

(:action Pick_13
:parameters()
:precondition (and (HandEmpty) (COnBlock_CCovered) (BOnBlock) (notfailed))
:effect (and (BInHand) (COnBlock) (HandFull) (not BOnBlock) (not HandEmpty)

(not COnBlock_CCovered) (not BOnBlock) (not HandEmpty)
(not COnBlock_CCovered))

)

(:action Pick_14
:parameters()
:precondition (and (HandEmpty) (COnBlock) (BOnBlock_BCovered) (notfailed))
:effect (and (BOnBlock) (CInHand) (HandFull) (not COnBlock) (not HandEmpty)

(not BOnBlock_BCovered) (not COnBlock) (not HandEmpty)
(not BOnBlock_BCovered))

)

(:action Put_15
:parameters()
:precondition (and (HandFull) (AInHand) (notfailed))
:effect (and (AOnTable) (HandEmpty) (not AInHand) (not HandFull) (not AInHand)

(not HandFull))
)

(:action Put_16
:parameters()
:precondition (and (HandFull) (BInHand) (notfailed))
:effect (and (BOnTable) (HandEmpty) (not HandFull) (not BInHand) (not HandFull)

(not BInHand))
)

(:action Put_17
:parameters()
:precondition (and (HandFull) (CInHand) (notfailed))
:effect (and (COnTable) (HandEmpty) (not HandFull) (not CInHand) (not HandFull)

(not CInHand))
)

(:action Stack_18
:parameters()
:precondition (and (HandFull) (CInHand) (BOnTable) (notfailed))
:effect (and (BOnTable_BCovered) (COnBlock) (HandEmpty) (not HandFull)

(not BOnTable) (not CInHand) (not HandFull) (not BOnTable)
(not CInHand))

)

(:action Stack_19
:parameters()
:precondition (and (HandFull) (COnBlock) (BInHand) (notfailed))
:effect (and (BOnBlock) (COnBlock_CCovered) (HandEmpty) (not HandFull)

(not COnBlock) (not BInHand) (not HandFull) (not COnBlock)
(not BInHand))

)

(:action Stack_20
:parameters()
:precondition (and (HandFull) (AOnBlock) (BInHand) (notfailed))
:effect (and (BOnBlock) (AOnBlock_ACovered) (HandEmpty) (not HandFull)

(not BInHand) (not AOnBlock) (not HandFull) (not BInHand)
(not AOnBlock))

)
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(:action Stack_21
:parameters()
:precondition (and (HandFull) (AInHand) (BOnTable) (notfailed))
:effect (and (BOnTable_BCovered) (AOnBlock) (HandEmpty) (not AInHand)

(not HandFull) (not BOnTable) (not AInHand) (not HandFull)
(not BOnTable))

)

(:action Stack_22
:parameters()
:precondition (and (HandFull) (CInHand) (BOnBlock) (notfailed))
:effect (and (BOnBlock_BCovered) (COnBlock) (HandEmpty) (not HandFull)

(not BOnBlock) (not CInHand) (not HandFull) (not BOnBlock)
(not CInHand))

)

(:action Stack_23
:parameters()
:precondition (and (HandFull) (COnTable) (BInHand) (notfailed))
:effect (and (BOnBlock) (COnTable_CCovered) (HandEmpty) (not HandFull)

(not BInHand) (not COnTable) (not HandFull) (not BInHand)
(not COnTable))

)

(:action Stack_24
:parameters()
:precondition (and (HandFull) (AInHand) (COnBlock) (notfailed))
:effect (and (COnBlock_CCovered) (AOnBlock) (HandEmpty) (not AInHand)

(not HandFull) (not COnBlock) (not AInHand) (not HandFull)
(not COnBlock))

)

(:action Stack_25
:parameters()
:precondition (and (HandFull) (AOnTable) (CInHand) (notfailed))
:effect (and (COnBlock) (AOnTable_ACovered) (HandEmpty) (not HandFull)

(not AOnTable) (not CInHand) (not HandFull) (not AOnTable)
(not CInHand))

)

(:action Stack_26
:parameters()
:precondition (and (HandFull) (AInHand) (COnTable) (notfailed))
:effect (and (COnTable_CCovered) (AOnBlock) (HandEmpty) (not AInHand)

(not HandFull) (not COnTable) (not AInHand) (not HandFull)
(not COnTable))

)

(:action Stack_27
:parameters()
:precondition (and (HandFull) (AOnBlock) (CInHand) (notfailed))
:effect (and (COnBlock) (AOnBlock_ACovered) (HandEmpty) (not HandFull)

(not AOnBlock) (not CInHand) (not HandFull) (not AOnBlock)
(not CInHand))

)

(:action Stack_28
:parameters()
:precondition (and (HandFull) (AOnTable) (BInHand) (notfailed))
:effect (and (BOnBlock) (AOnTable_ACovered) (HandEmpty) (not HandFull)

(not BInHand) (not AOnTable) (not HandFull) (not BInHand)
(not AOnTable))

)

(:action Stack_29
:parameters()
:precondition (and (HandFull) (AInHand) (BOnBlock) (notfailed))
:effect (and (BOnBlock_BCovered) (AOnBlock) (HandEmpty) (not AInHand)

(not HandFull) (not BOnBlock) (not AInHand) (not HandFull)
(not BOnBlock))

)
)
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C LIFTED PDDL DESCRIPTION FOR THE BLOCKS WORLD TASK

In contrast, the lifted representation learned below is far more compact. Below we provide the learned
representation for the domain. Again, we manually rename the predicates and types to help with
readability.

(define (domain BlocksWorld)
(:requirements :strips :typing)
(:types hand block)
(:predicates

(BlockInHand ?w - block)
(HandFull ?w - hand)
(BlockOnBlock ?w - block)
(BlockOnTable ?w - block)
(HandEmpty ?w - hand)
(BlockOnTable_BlockCovered ?w - block)
(BlockOnBlock_BlockCovered ?w - block)
(notfailed)

)
(:action Pick-partition-0
:parameters (?w - hand ?x - block)
:precondition (and (notfailed) (HandEmpty ?w) (BlockOnTable ?x))
:effect (and (BlockInHand ?x) (HandFull ?w) (not (BlockOnTable ?x))

(not (HandEmpty ?w)))
)

(:action Pick-partition-1
:parameters (?w - hand ?x - block ?y - block)
:precondition (and (notfailed) (HandEmpty ?w) (BlockOnBlock ?x)

(BlockOnBlock_BlockCovered ?y))
:effect (and (BlockOnBlock ?y) (BlockInHand ?x) (HandFull ?w)

(not (BlockOnBlock ?x)) (not (HandEmpty ?w))
(not (BlockOnBlock_BlockCovered ?y)))

)

(:action Pick-partition-10
:parameters (?w - hand ?x - block ?y - block)
:precondition (and (notfailed) (HandEmpty ?w) (BlockOnTable_BlockCovered ?x)

(BlockOnBlock ?y))
:effect (and (BlockInHand ?y) (BlockOnTable ?x) (HandFull ?w)

(not (BlockOnBlock ?y)) (not (HandEmpty ?w))
(not (BlockOnTable_BlockCovered ?x)))

)

(:action Put-partition-0
:parameters (?w - hand ?x - block)
:precondition (and (notfailed) (HandFull ?w) (BlockInHand ?x))
:effect (and (BlockOnTable ?x) (HandEmpty ?w) (not (BlockInHand ?x))

(not (HandFull ?w)))
)

(:action Stack-partition-0
:parameters (?w - hand ?x - block ?y - block)
:precondition (and (notfailed) (HandFull ?w) (BlockInHand ?x) (BlockOnTable ?y))
:effect (and (BlockOnTable_BlockCovered ?y) (BlockOnBlock ?x) (HandEmpty ?w)

(not (HandFull ?w)) (not (BlockOnTable ?y))
(not (BlockInHand ?x)))

)

(:action Stack-partition-1
:parameters (?w - hand ?x - block ?y - block)
:precondition (and (notfailed) (HandFull ?w) (BlockOnBlock ?x) (BlockInHand ?y))
:effect (and (BlockOnBlock ?y) (BlockOnBlock_BlockCovered ?x) (HandEmpty ?w)

(not (HandFull ?w)) (not (BlockOnBlock ?x))
(not (BlockInHand ?y)))

)

)
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A task might then be specified as follows:

(define (problem stack)
(:domain BlocksWorld)

(:objects hand - Hand
A B C - Block

)
(:init (BlockOnTable A)

(BlockOnTable B)
(BlockOnTable C)
(HandEmpty hand)
(notfailed)

)
(:goal (and (BlockOnBlock A)

(BlockOnBlock_BlockCovered C)
(BlockOnTable_BlockCovered B)))

)

D ILLUSTRATION OF LEARNED OPERATORS

In Figure 6, we illustrate one propositional operator for picking block B off block C, while Figure 7
illustrates the lifted version of the same operator for picking any block X off any block Y.

(a) symbol 10 (b) symbol 15 (c) symbol 6

(d) symbol 3 (e) symbol 4 (f) symbol 1

(:action Pick-partition-10
:parameters()
:precondition (and (symbol_10)

(symbol_15) (symbol_6))
:effect (and (symbol_3) (symbol_4)

(symbol_1) (not symbol_6)
(not symbol_10)
(not symbol_15))

)

(g) Propositional PDDL operator for one of
the Pick option partitions.

Figure 6: The learned propositional operator for a Pick action describing picking B off C. To execute
the action, the hand must be empty (symbol 10), C must be on the table and covered by a block
(symbol 15), and B must be on top of a block and uncovered (symbol 6). After execution, B is
in the hand (symbol 3), C is on the table and clear (symbol 4), and the hand is full (symbol 1).
We visualise each propositional symbol by sampling from it, and randomly sampling the remaining
independent state variables (since each symbol is a distribution over a subset of state variables). The
transparency is due to the averaging over the independent state variables. Note that we must learn
one operator for every pair of blocks.
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(a) symbol 4 (b) symbol 5 (c) symbol 2

(d) symbol 0 (e) symbol 3 (f) symbol 1

(:action Pick-partition-10
:parameters (?w - type0 ?x - type1

?y - type1)
:precondition (and (symbol_4 ?w)

(symbol_5 ?x) (symbol_2 ?y))
:effect (and (symbol_0 ?y) (symbol_3 ?x)
(symbol_1 ?w) (not (symbol_2 ?y))
(not (symbol_4 ?w)) (not (symbol_5 ?x)))
)

(g) Lifted PDDL operator for a Pick action.

Figure 7: The learned lifted operator for a Pick action describing picking a block off another. In
order to pick up block Y, it must be on block X which itself is on the table, and the hand must be
empty. As a result, the hand is not empty, Y is now in the hand, and X is on the table and clear.
type0 refers to the “hand” type, while type1 refers to the “block” type.

E MINECRAFT TASK DETAILS

Our Minecraft tasks are procedurally generated, consisting of five rooms with various items positioned
throughout. Rooms are connected with either regular doors which can be opened by direct interaction,
or puzzle doors which require the agent to pull a lever to open. The world is described by the state
of each of the objects (given directly by each object’s appearance as a 600× 800 RGB image), the
agent’s view, and current inventory. Figure 8 illustrates the state of each object in the world at the
beginning of one of the tasks.

Figure 8: The state of each object in the world at the start of the task. From left to right, the images
represent the agent’s point of view, the four doors, the pickaxe, the chest, and the redstone and gold
blocks. The inventory is not shown here.

The agent is provided with the following high-level skills:

(i) WalkToItem—the agent will approach an item if it is in the same room.
(ii) AttackBlock—the agent will break a block, provided it is near the block and holding

the pickaxe.
(iii) PickupItem—the agent will collect the item if it is standing in front of it.
(iv) WalkToNorthDoor—the agent will approach the northern door in the current room.
(v) WalkToSouthDoor—the agent will approach the southern door in the current room.

(vi) WalkThroughDoor—the agent will walk through a door to the next room, provided the
door is open.

(vii) CraftItem—the agent will create a new item from ingredients in its inventory, provided
it is near the crafting table.

(viii) OpenChest—the agent will open the chest, provided it is standing in front of it and
possesses the clock.

(ix) ToggleDoor—the agent will open or close the door directly in front of it.

Execution is stochastic—opening doors occasionally fails, and the navigation skills are noisy in their
execution.
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F CRAFTING TASK

The Crafting domain consists of a 12× 12 grid containing the following objects:

(i) gold, surrounded by water which can only be accessed once a bridge is laid;

(ii) 4 iron objects;

(iii) 4 grass objects;

(iv) 4 wood objects;

(v) 4 rock objects; and

(vi) 3 workshops.

Furthermore, a stick can be crafted if the agent has picked up a wood object and is near the second
workshop, while a bridge can be crafted if the agent is near the third workshop and possesses wood
and iron. Finally, the agent can complete the task by crafting a gold arrow, which requires it to be
near the first workshop and holding gold and a stick.

The state of each object is characterised by whether it is on the grid (present), has been picked
up by the agent (picked) or does not yet exist (non-existent); the state of the world is given
by the state of each object, as well as the agent’s egocentric view. The agent is given four skills:
WalkTo, Pickup, Place and Craft—an object can only be picked up when the agent is adjacent
to it, and any particular item can only be crafted if the agent has picked up the correct “ingredients”.
Furthermore, the gold object is separated by water and can only be accessed once the agent has placed
a bridge, which must first be crafted. To solve the task, the agent is required to construct a gold arrow,
which involves collecting wood and iron to create a bridge, then collecting the gold, crafting a stick
out of wood, and then finally crafting the arrow using the stick and gold.

G LEARNING A PORTABLE REPRESENTATION FOR MINECRAFT

In this section, we describe the exact details for learning a representation of a Minecraft task.
Pseudocode for the approach (independent of the domain) is provided in Appendix I.

In order to learn a high-level representation, we first apply a series of preprocessing steps to reduce
the dimensionality of the state space. We downscale images to 160 × 120 and then convert the
resulting images to greyscale. We apply principal component analysis (Pearson, 1901) to a batch of
images collected from the different tasks and keep the top 40 principal components. This allows us to
represent each object (except the inventory, which is a one-hot encoded vector of length 5) as a vector
of length 40.

Partitioning We collect data from a task by executing options uniformly at random. We record
state transition data, as well as which options could be executed at each state. We then partition
options using the DBSCAN clustering algorithm (Ester et al., 1996) to cluster the terminating states
of each option into separate effects. This approximately preserves the subgoal property as described
in Section 2 and previous work (Andersen & Konidaris, 2017; Konidaris et al., 2018; Ames et al.,
2018). For each pair of partitioned options, we check whether there is significant overlap in their
initiating states (again using DBSCAN). If the initiating states overlap significantly, the partitions are
merged to account for probabilistic effects.

Preconditions Next, the agent learns a precondition classifier for each of these approximately
partitioned options using an SVM (Cortes & Vapnik, 1995) with Platt scaling (Platt, 1999). We
use states initially collected as negative examples, and data from the actual transitions as positive
examples. We employ a simple feature selection procedure to determine which objects are relevant to
the option’s precondition. We first compute the accuracy of the SVM applied to the object the option
operates on, performing a grid search to find the best hyperparameters for the SVM using 3-fold
cross validation. Then, for every other object in the environment, we compute the SVM’s accuracy
when that object’s features are added to the SVM. Any object that increases the SVM accuracy is
kept. Pseudocode for this procedure is outlined in Figure 9.
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Having determined the relevant objects, we fit a probabilistic SVM to the relevant objects’ data. Note
that we learn a single SVM for a given precondition. Thus if the precondition includes two objects,
then the SVM will learn a classifier over both objects’ features jointly.

1: procedure FEATURESELECTION
2: Given: affected objects Mask , positive start states p, negative start states n, set of objectsM
3: . Fit a classifier over only objects in the mask
4: classifier ← FITCLASSIFIER(start ,negative,mask)
5: initScore ← classifier .score
6: Keep ← ∅
7: for each object ∈M \Mask do
8: classifier ← FITCLASSIFIER(start ,negative,Mask ∪ {object})
9: newScore ← classifier .score

10: if newScore > initScore then
11: . Keep the object if it improves the score
12: Keep ← Keep ∪ {object}
13: end if
14: end for
15: return Mask ∪Keep
16: end procedure

Figure 9: Pseudocode for a simple feature selection procedure.

Effects A kernel density estimator (KDE) (Rosenblatt, 1956) with Gaussian kernel is used to
estimate the effect of each partitioned option. We learn distributions over only the objects affected
by the option, learning one KDE for each object. We use a grid search with 3-fold cross validation
to find the best bandwidth hyperparameter for each estimator. We fit a single KDE to each object
separately, since the state space has already been factored into these objects. Each of these KDEs is
an abstract symbol in our propositional PDDL representation.

Propositional PDDL For each partitioned option, we now have a classifier and set of effect
distributions (propositions). However, to generate the PDDL, the precondition must be specified
in terms of these propositions. We use the same approach as Konidaris et al. (2018) to generate
the PDDL: for all combinations of valid effect distributions, we test whether data sampled from
their conjunction is evaluated positively by our classifiers. If they are, then that combination of
distributions serves as the precondition of the high-level operator. This procedure is described in
Figure 10.

Type Inference To determine the type of each object, we first assume that they all belong to their
own type. For each object, we compute its effect profile by extracting the effect propositions that
occur under each option. Figure 11 illustrates this process.

For each pair of objects, we then determine whether the effect profiles are similar. This task is made
easier because certain objects do not undergo effects with certain options. For example, the gold
block cannot be toggled, while a door can. Thus it is easy to see that they are not of the same type. To
determine whether two distributions are similar, we simply check whether the KL-divergence is less
than a certain threshold. Having determined the types, we can simply replace all similar propositions
with a predicate parameterised by an object of that type, as described by Figure 12.
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1: procedure BUILDPPDDLOPERATOR
2: Given: precondition classifier classifier , current effect effect , all effects Effects
3: Operators ← ∅
4: Symbols ← ∅
5: for each candidate ∈ ℘(Effects) do . For all possible effect combinations
6: samples ← SAMPLE(candidate) . Sample from the distributions
7: prob ← PREDICT(classifier , sample) . Query the classifier with the data
8: if prob > 0 then
9: if prob = 1 then

10: . Construct the new operator with the existing effects
11: operator ← {candidate, effect}
12: else
13: . Add a probabilistic failure case

14: newEffect ←
{
fail,with probability (1− prob)
effect ,with probability prob

15: operator ← {candidate,newEffect}
16: end if
17: Operators ← Operators ∪ {operator}
18: Symbols ← Symbols ∪ {candidate} ∪ {effect}
19: end if
20: end for
21: return Operators ,Symbols
22: end procedure

Figure 10: Pseudocode for constructing propositional PPDDL operators.

1: procedure COMPUTEEFFECTS
2: Given: object i , option o, PPDDL operators Operators
3: . Get only the operators that model option o
4: Operators ← {operator | ∀operator ∈ Operators ,REFERSTO(operator , o)}
5: Effects ← ∅
6: for each {·, effect} ∈ Operators do
7: . Extract the effect propositions that refer to distributions over object i
8: OperatorEffect ← {prop | ∀prop ∈ effect ,REFERSTO(prop, i)}
9: Effects ← Effects ∪ {OperatorEffect}

10: end for
11: return Effects
12: end procedure

Figure 11: Pseudocode for computing the effect distributions under an option for a given object.

Problem-Specific Instantiation Finally, we again use DBSCAN to partition our subgoal options,
but this time using problem-specific state variables. Each of these clusters is then added to our
representation as a problem-specific proposition. To ground the operators, we add the start and
end clusters (problem-specific propositions) to the precondition and effects of the PPDDL operator.
We also record the grounded object that appears in the parameter list of each operator, and add a
precondition predicate (fluent) to ensure that only those particular objects can be modified. Without
this final step, the agent would, for example, believe it can open any door while standing in front of a
door at a particular location. We have thus linked the particular door to a particular location in the
domain.
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1: procedure MERGE
2: Given: objectsM, type T , PPDDL operators Operators , propositions Propositions
3: . Find the first object matching the type
4: archetype ← ∅
5: for each object ∈M do
6: if ISTYPE(object ,T ) then
7: archetype ← object
8: break
9: end if

10: end for
11: . Remove propositions with objects of type T that are not the archetype
12: Removed ← {prop | ∀prop ∈ Propositions , ISTYPE(prop,T ),

¬REFERSTO(prop, archetype)}
13: . Keep operators that do not contain the removed propositions
14: Operators ← {op | ∀op ∈ Operators ,Removed ∩ op = ∅}
15: return Operators , Propositions \ Removed
16: end procedure

Figure 12: Pseudocode for lifting propositions to typed predicates.

H LEARNING A REPRESENTATION FOR THE CRAFTING DOMAIN

To learn a representation for the Crafting domain, we use the exact same procedures described in the
previous section. However, we use the following hyperparameters:

(i) Partitioning was achieved using DBSCAN with ε = 0.1.

(ii) Preconditions were learned using an SVM with C = 4.

(iii) The kernel density estimators used for the effects had bandwidth parameter 0.001.

I PSEUDOCODE

Below we present pseudocode describing our approach to building a typed, object-centric PPDDL
representation for an arbitrary domain. Some subroutines used in the pseudocode below are outlined
in the previous section.

1: procedure LEARNREPRESENTATION
2: Given: T state-option transitions D = {(si, xi, oi, s′i, x′i) | 0 ≤ i ≤ T}, set of objectsM
3: . Partition options into subgoal options
4: SubgoalOptions ← ∅
5: for each o ∈ O do
6: I ← {s | (s, ·, o, ·, ·) ∈ D} . Set of initial states for option o
7: β ← {s′ | (·, ·, o, s′, ·) ∈ D} . Set of terminating states for option o
8: for all K ⊆ I such that Pr(s′ | si, o) = Pr(s′ | sj , o)∀si, sj ∈ I, s′ ∈ β do
9: P ← {o,K, {s′ | ∀s ∈ K, (s, ·, o, s′, ·) ∈ D}} . Start and end states for a partition

10: SubgoalOptions ← SubgoalOptions ∪ {P}
11: end for
12: end for
13: . Estimate preconditions and effects
14: Preconditions ,Effects ← ∅
15: for each {·, start , end} ∈ SubgoalOptions do
16: mask ← COMPUTEMASK(start , end) . List the objects that change state
17: negative ← S \ start
18: features ← FEATURESELECTION(mask , start ,negative)
19: classifier ← FITCLASSIFIER(start ,negative, features)
20: Preconditions ← Preconditions ∪ {classifier}
21: estimator ← FITESTIMATOR(mask , end) . Fit over only objects that change
22: Effects ← Effects ∪ {estimator}
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23: end for
24: . Build propositional PPDDL
25: Operators ,Propositions ← ∅
26: for each precondition, effect ∈ (Preconditions × Effects) do
27: op, symbols ← BUILDPPDDLOPERATOR(precondition, effect ,Effects)
28: Operators ← Operators ∪ {op}
29: Propositions ← Propositions ∪ symbols
30: end for
31: . Infer object types
32: EffProfile ← ∅
33: for each object m do
34: for each o ∈ O do
35: EffProfile(m, o)← COMPUTEEFFECTS(m, o,Operators)
36: end for
37: end for
38: Types ← {K | EffProfile(mi, o) ≈ EffProfile(mj , o)∀o ∈ O,mi,mj ∈ K,K ⊆M}
39: . Generate typed PPDDL
40: TypedOperators ,Predicates ← ∅
41: for each type ∈ Types do
42: . Replace propositions and operators over objects of same type with lifted versions
43: ops , predicates ← MERGE(M, type,Operators ,Propositions)
44: TypedOperators ← TypedOperators ∪ ops
45: Predicates ← Predicates ∪ predicates
46: end for
47: . Instantiate typed PPDDL in new task
48: for each {o, start , end} ∈ SubgoalOptions do
49: IX ← {x | ∀s ∈ start , s′ ∈ end , (s, x, o, s′, ·) ∈ D}
50: βX ← {x′ | ∀s ∈ start , s′ ∈ end , x ∈ IX , (s, x, o, s′, x′) ∈ D}
51: for all κ ⊆ IX such that Pr(x′ | xi, o) = Pr(x′ | xj , o)∀xi, xj ∈ IX , x′ ∈ βX do
52: λ← {x′ | ∀s ∈ start , s′ ∈ end , x ∈ κ, (s, x, o, s′, x′) ∈ D}
53: Predicates ← Predicates ∪ {κ} ∪ {λ} . Add problem-specific symbols
54: mask ← COMPUTEMASK(start , end) . Computes the affected objects
55: . Link problem-specific symbols in precondition and effect to the affected objects
56: TypedOperators ← GROUND(TypedOperators , κ, λ,mask)
57: end for
58: end for
59: return TypedOperators ,Predicates
60: end procedure

23



Published as a conference paper at ICLR 2022

J ADDITIONAL RESULTS FOR THE CRAFTING DOMAIN

Based on their effects, each object was grouped into one of the six types below:

Type Objects Remark
type0 agent The agent
type1 gold0, iron2, iron3, wood0,

wood1, wood2, wood3
Objects that were picked up and
used to craft new items

type2 iron0, iron1, grass0,
grass1, grass2, grass3,
rock0, rock1, rock2, rock3

Objects that were picked up but
never used in crafting

type3 workshop0, workshop1,
workshop2

Objects that cannot be modified

type4 stick, goldarrow Objects that can be created but not
picked up

type5 bridge Objects that can be placed

Table 2: The various objects in the domain along with their learned type.

symbol_27 symbol_25

symbol_25 symbol_30 symbol_21

symbol_51 symbol_21

(:action craft-partition-5-184-0
:parameters (?a - type0 ?b - type1 ?c - type4 ?d - type4)
:precondition (and (symbol_27 ?a) (symbol_51 ?b) (symbol_25 ?c)

(symbol_21 ?d) (= (id ?a) 0) (= (id ?b) 1) (= (id ?c) 21)
(= (id ?d) 23))

:effect (and (symbol_25 ?d) (symbol_21 ?c) (symbol_30 ?b)
(not (symbol_21 ?d)) (not (symbol_25 ?c)) (not (symbol_51 ?b)))

)

Figure 13: A learned typed PDDL operator for the Craft skill, which states that, in order to craft a
gold arrow, the agent must be in front of a particular workshop (symbol 27), and be in possession of
the gold (symbol 51) and stick (symbol 25), but not the gold arrow (symbol 21). As a result,
the agent finds itself in possession of the gold arrow (symbol 25), but loses the gold (symbol 30)
and stick (symbol 21).
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K VISUALISATION OF MINECRAFT PLAN

1
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10
9

17

21
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20
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14

15
2524

16 22

26

23

11
28

12

13
27

29

28 WalkTo chest

4 Toggle door

7 Attack redstone

8 Pickup redstone

9 WalkNorth door

1 WalkTo pickaxe

2 Pickup pickaxe

3 WalkNorth door

5 WalkThrough door

6 WalkTo redstone

13 Toggle door

16 Toggle door

17 WalkThrough door

18 WalkTo gold-block

10 Toggle door

11 WalkThrough door

12 WalkNorth door

14 WalkThrough door

15 WalkNorth door

22 WalkThrough door

25 Craft clock

26 WalkSouth door

27 WalkThrough door

19 Attack gold-block

20 Pickup gold-block

21 WalkSouth door

23 WalkTo crafting-table

24 Craft gold-ingot

29 Open chest

Figure 14: Path traced by the agent executing different options while solving the first task.
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L VISUALISING OPERATORS FOR MINECRAFT

Here we illustrate some learned operators for the Minecraft tasks. To see all predicates and operators,
please see the following URL: https://sites.google.com/view/mine-pddl.

(a)
symbol 13

(b) symbol 4 (c)
symbol 55

(d)
psymbol 8

(e)
symbol 58

(f)
symbol 59

(:action Open-Chest-partition-0
:parameters (?w - type0 ?x - type6

?y - type9)
:precondition (and (notfailed)

(symbol_13 ?w) (symbol_4 ?x)
(symbol_55 ?y) (psymbol_8))

:effect (and (symbol_58 ?x) (symbol_59 ?w)
(not (symbol_4 ?x))
(not (symbol_13 ?w)))

)

(g) A learned typed PDDL operator for the
Open-Chest skill. The predicate underlined in
red indicates a problem-specific symbol that must
be relearned for each new task, while the rest of
the operator can be safely transferred.

Figure 15: Our approach learns that, in order to open a chest, the agent must be standing in front of
a chest (symbol 13), the chest must be closed (symbol 4), the inventory must contain a clock
(symbol 55) and the agent must be standing at a certain location (psymbol 8). The result is that
the agent finds itself in front of an open chest (symbol 58) and the chest is open (symbol 59).
type0 refers to the “agent” type, type6 the “chest” type and type9 the “inventory” type.

(a)
symbol 46

(b)
psymbol 0

(c)
symbol 11

(d)
psymbol 1

(:action Walk-to-partition-0-2a
:parameters (?w - type0)
:precondition (and (notfailed) (symbol_46 ?w)

(psymbol_0))
:effect (and (symbol_11 ?w) (psymbol_1)

(not (symbol_46 ?w)) (not (psymbol_0)))
)

(e) Typed PDDL operator for a partition of the
Walk-To option. The predicate underlined in red indi-
cates a problem-specific symbol that must be relearned
for each new task, while the rest of the operator can be
safely transferred.

Figure 16: Abstract operator that models the agent walking to the crafting table. In order to do so, the
agent must be standing in the middle of a room (symbol 46) at a particular location (psymbol 0).
As a result, the agent finds itself in front of the crafting table (symbol 1) at a particular location
(psymbol 1).
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(a)
symbol 38

(b)
symbol 64

(c)
psymbol 24

(d)
symbol 50

(e)
psymbol 12

(:action Through-Door-partition-3-207a
:parameters (?w - type0 ?x - type1)
:precondition (and (notfailed)

(symbol_38 ?w) (symbol_64 ?x)
(= (id ?x) 1) (psymbol_24))

:effect (and (symbol_50 ?w)
(not (symbol_38 ?w)) (psymbol_12)
(not (psymbol_24)))

)

(f) Typed PDDL operator for a partition of the
Through-Door option. The predicate under-
lined in red indicates a problem-specific symbol
that must be relearned for each new task, while the
rest of the operator can be safely transferred.

Figure 17: Abstract operator that models the agent walking through a door. In order to do so, the agent
must be standing in front of an open door (symbol 38) at a particular location (psymbol 24),
and the door must be open (symbol 64). As a result, the agent finds itself in the middle of a room
(symbol 50) at a particular location (psymbol 12).

(a)
symbol 15

(b) symbol 2 (c)
psymbol 17

(d)
symbol 19

(e)
symbol 20

(:action Attack-partition-0-76a
:parameters (?w - type0 ?x - type7)
:precondition (and (notfailed)

(symbol_15 ?w) (symbol_2 ?x)
(psymbol_17))

:effect (and (symbol_19 ?x) (symbol_20 ?w)
(not (symbol_2 ?x))
(not (symbol_15 ?w)))

)

(f) Typed PDDL operator for a partition of the
Attack option. The predicate underlined in red
indicates a problem-specific symbol that must be
relearned for each new task, while the rest of the
operator can be safely transferred.

Figure 18: Abstract operator that models the agent attacking an object. In order to do so, the agent
must be standing in front of a gold block (symbol 15) at a particular location (psymbol 17),
and the gold block must be whole (symbol 2). As a result, the agent finds itself in front of a
disintegrated block (symbol 20), and the gold block is disintegrated (symbol 19).
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M EXAMPLES OF FAILURE CASES

Below are some examples of errors that occur when constructing our abstract representation. Since
there are several phases involving clustering, classification and density estimation, we can expect
various learning errors to occur throughout. These errors could have numerous causes, such as
insufficient data or suboptimal hyperparameters.

M.1 PARTITIONING ERRORS

(a) Set of start states for one partition of the
Attack option.

(b) Set of end states for one partition of the
Attack option.

(c) Set of start states for another partition of
the Attack option.

(d) Set of end states for another partition of
the Attack option.

Figure 19: In the above example, the partitioning procedure has generated two partitioned options
for breaking the gold block, where there should only be one. They are functionally equivalent, but
because of the strange shadows on the left of the image patch and the subsequent PCA representation,
the clustering algorithm has produced one extra partition.

(a) Set of start states for one partition of the
ToggleDoor option.

(b) Set of end states for one partition of the
ToggleDoor option.

(c) Set of start states for another partition of
the ToggleDoor option.

(d) Set of end states for another partition of
the ToggleDoor option.

Figure 20: In this example, the partitioning has clustered noisy samples into an additional partition
of the ToggleDoor option. While the top row shows the case where the state of the door changes
from open to closed, the bottom row is a relatively useless noisy operator. We will subsequently learn
a precondition and effect for this partition, but it likely will not be used by the planner.
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M.2 PRECONDITION/FEATURE SELECTION ERRORS

(a) The precondition for attacking the gold
block. The top image represents the agent’s
view (in front of the block), while the bottom
image is the state of the block (unbroken).

(b) The precondition for walking to a closed
door. The top image represents the agent’s
view (in a room), while the bottom image is
the state of the door (closed) and the state of
the inventory.

Figure 21: In the left example, the classifier predicts that the gold block can be broken when the agent
is in front of it. However, this is not quite correct, since the agent must also have the pickaxe to break
the block. In this case, the issue occurs because the data only included states where the agent reached
the gold block with the pickaxe. Therefore, the agent did not observe states where it was in front of
the block without the pickaxe, and thus concluded that the pickaxe is irrelevant to the precondition.
In the right example, the classifier has overfitted to the data and predicts that the agent can only walk
to the door when it has the pickaxe.

M.3 PPDDL CONSTRUCTION ERROR

The quality of the PPDDL operators depends on how accurately the precondition classifiers and effect
estimators are learned. Any error in learning can result in imperfect PPDDL operators, as seen below.

(a)
symbol 56

(b)
symbol 29

(c)
psymbol 1

(d)
symbol 57

(e)
symbol 11

(:action Craft-partition-1-240a
:parameters (?w - type0 ?x - type9)
:precondition (and (notfailed)

(symbol_56 ?w) (symbol_29 ?x)
(psymbol_1))

:effect (probabilistic 0.21
(not (notfailed))

0.79
(and (symbol_57 ?x) (symbol_11 ?w)
(not (symbol_29 ?x))
(not (symbol_56 ?w))))

)

(f) Typed PPDDL operator for a partition of the
Craft option.

Figure 22: Abstract operator that models the agent crafting a gold ingot. In order to do so, the agent
must be standing in front of the crafting table (symbol 56) at a particular location (psymbol 1),
and must have the gold block in its inventory (symbol 29). As a result, the agent finds itself in front
of the crafting table (symbol 11) with a gold ingot in its inventory (symbol 57). This option
is deterministic—however, due to estimation errors, the PPDDL operator predicts that it will only
succeed with probability 0.79.
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M.4 TYPE INFERENCE ERROR

We observe that occasionally the procedure will not discover the correct types. In the example below,
instead of discovering a single type for all four doors, our approach predicts that one door is different
from the others and is placed in its own class

Type Name Object(s)
0 Agent 0
1 Pickaxe 1
2 Door1 2, 3, 4
3 Door2 5
4 Redstone Block 6
5 Gold Block 7
6 Chest 8
7 Inventory 9

Table 3: A grouping of objects into types. Note that one of the doors is allocated its own type.
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