
RMPs for Safe Impedance Control in Contact-Rich Manipulation

Seiji Shaw, Ben Abbatematteo, and George Konidaris
{sshaw4, babbatem,gdk}@cs.brown.edu

Abstract— Variable impedance control in operation-space is
a promising approach to learning contact-rich manipulation
behaviors. One of the main challenges with this approach is
producing a manipulation behavior that ensures the safety
of the arm and the environment. Such behavior is typically
implemented via a reward function that penalizes unsafe actions
(e.g. obstacle collision, joint limit extension), but that approach
is not always effective and does not result in behaviors that
can be reused in slightly different environments. We show how
to combine Riemannian Motion Policies, a class of policies
that dynamically generate motion in the presence of safety and
collision constraints, with variable impedance operation-space
control to learn safer contact-rich manipulation behaviors.

I. INTRODUCTION

Learning autonomous contact-rich manipulation behavior
is a critical challenge for robotics; indeed, the very purpose
of a robot is often to make contact with the environment
in order to manipulate it. However, contact-rich behavior is
challenging—robots must be able to reason about sudden
constraints when contacting target objects and model the
unknown dynamics of the objects they are manipulating, all
the while respecting joint limit and collision constraints.

To address these issues, Martin-Martin et al. [1] discuss
the advantages of formulating the task in the robot’s end-
effector space. They propose the use of variable impedance
control in end-effector space (VICES), which defines the
robot’s actions in terms of displacements and compliance of
the end-effector. The VICES commands are then translated
back as lower-level torque commands to the joints in the
arm by an operational-space impedance controller (OSC).
When training an agent using reinforcement learning, the
policy is trained to output actions in the VICES action-
space, directly controlling end-effector behavior, and thus
can manage the discontinuous mode-changes made at contact
using the compliance component of the space.

While the VICES modality serves as a useful layer of
abstraction for learning and transfer, the agent loses the
ability to reason about the configuration of the rest of its arm
in relation to the environment. This can lead to routine hy-
perextension and collisions during and after training, which
are undesirable and potentially dangerous. The problem of
safe variable impedance control has therefore not yet been
solved robustly [2].

In this paper, we study the problem of safely learn-
ing contact-rich manipulation behavior. We present RMP-
VICES, a principled way to incorporate well-defined col-
lision and joint-limit avoidance behavior into the robot’s

Department of Computer Science, Brown University, Providence RI

(a) Traj-follow. env. (b) Door-open. env. (c) Block-push. env.

Fig. 1: Instances of task environments with randomly-
generated obstacles (red spheres).

control system prior to the start of learning. We leverage
Riemannian motion policies (RMPs), which allow a user
to specify different behaviors in more convenient ‘task’
manifolds and then synthesize them [3], [4]. Most impor-
tantly, RMPs have a mechanism (the Riemannian metric of
these task manifolds) for designating the priority of these
behaviors, which can vary based on the current position and
velocity of the arm. We reformulate the VICES impedance
controller as an attraction-type Riemannian motion policy,
and synthesize it with pre-defined obstacle avoidance and a
joint limit behavior [4].

We verify the efficacy of our approach by demonstrating
that RMP-VICES is comparably performant to state-of-the-
art learning-based manipulation algorithms while largely
preventing unsafe behavior. We do so by training a 7DOF
Kinova Jaco 2 on three different simulated domains and ana-
lyzing the frequency and severity of collision and joint limit
events that occur over the course of learning. Afterwards, we
run the trained agents in the same domains with randomly-
placed obstacles to evaluate RMP-VICES’s ability to adapt
to obstacles not present in training. RMP-VICES reduces the
number of collision by up to ∼ 50% and joint limit events by
up to ∼ 90% in all of these domains with only a moderate
impact on task performance.

II. BACKGROUND

A. Reinforcement Learning

A Markov Decision process M is given by a tuple
(S,A,R, T , γ). An agent receives scalar reward rt for taking
action a ∈ A in state s ∈ S according to R(s, a). The
state evolves according to the transition function T (s, a);
in our setting S and A are continuous spaces. The goal of
reinforcement learning is to find a policy π which maximizes

the expected discounted return

max
θ

E
M,πθ

[∑
t

γtrt

]
, (1)

where γ is a discount factor. Policy search methods are a
family of algorithms that search directly over a space of
parameterized policies.

B. Variable Impedance Control in End-Effector Space

VICES enables agents to use end-effector space (SE(3))
and compliance of the end-effector as the action space of
the agent. More formally, VICES defines an action a =
(∆x, kppos, k

p
ori) ∈ A = SE(3) × R3 × R3, where kppos and

kpori are vector representations of stiffness matrices in an
impedance controller.

In a single timestep, ∆x is composed with the current end-
effector position to produce desired setpoints pdes and Rdes.
The corresponding joint torques τ are then computed using
Khatib’s formulation of operation space control [5], [6]:

τ =JTpos[Λ
pos[kppos(pdes − p)− kposv v]]+

JTori[Λ
ori[er(Rdes, R)− koriv ω]],

(2)

where Jpos and Jori are the Jacobians associated with the FK
map to end-effector position p and orientation R, Λpos and
Λori the corresponding end-effector inertia matrices, and v
and ω the velocity and angular velocity of the end-effector.
We compute damping matrices kposv and koriv so that the
system is critically damped relative to given kppos and kpori
as chosen by the agent. er is an error on SO(3) that can be
used for impedance controllers [7]; see section III-B.

The greatest strength and weakness of VICES is that the
control signal (actions) a and states are restricted to the
end-effector space, SE(3). While this means that the agent
will learn policies that can be transferred from one robot
to another using SE(3) as a layer of abstraction, the policy
is not able to reason about its joint states (and by proxy,
the pose of the robot’s links) that lead to its end-effector
configuration to avoid collision.

C. Riemannian Motion Policies

The Riemannian motion policies framework (RMPs) is
a mathematical formalism that decomposes complex robot
motion behavior into individual behaviors specified in more
interpretable task spaces [3]. RMPs enable the controllers
to be expressed in their appropriate task spaces and then
manage the transforms and flow of control between those
spaces to the robot’s configuration space, which is where
control must ultimately occur. Additionally, they allow us
to blend multiple such controllers to, for example, reach to
a point (an attractive controller between the robot’s end-
effector and a target location) while avoiding obstacles (a
repulsive or dissipative controller between the robot’s arm
and obstacles in its 3D environment).

RMPs are organized in a tree-like structure—the RMP-
Tree—where the root represents the robot’s configuration
manifold Q, and every node represents a task manifold

(e.g. SE(3)). The edges of the tree represent maps from the
positions in the parent task space to the child task space (for
an example, see Fig. 2). Here, we denote a parent space as
M and the ith child space as Ni. We will write the map
from M to Ni as φi.

Individual component behaviors to be synthesized are
represented by maps from position and velocities to forces
at the leaf nodes. If N is a leaf task-space, we notate
the behavior map as f(x, ẋ). The priority of each of these
behaviors is specified by a positive-semidefinite tensor that
resembles the Riemannian metric of these task manifolds,
which can vary based upon the position and velocity in that
task space. We denote this metric as M(x, ẋ) ∈ Rn×n, where
n = dimN , and x ∈ N .

RMP-trees are evaluated in two phases: pushforward and
pullback. In pushforward, the current state of the arm (q, q̇)
is propagated through the tree to compute the state in each
child manifold. In pullback, forces fi are evaluated at each
child manifold and then synthesized back to compute the
joint accelerations q̈ at that timestep.

1) Pushforward: LetM be a parent space, and let Ni be
one of its child spaces, and let x, ẋ be a computed position
and velocity in M. In pushforward, the corresponding po-
sition y and velocity ẏ in N are computed as y = φi(x)
and ẏ = Jφi ẋ respectively, where Jφi is the Jacobian of
task-mapping φi.

2) Pullback: After pushforward is complete, we have
position and velocity in each of the leaf task manifolds.
We then must evaluate each policy fi and propagate the
force signal back to the configuration manifold. Given parent
manifold M and child leaf manifold Ni, with position yi
and velocity ẏi in Ni we first evaluate ÿi = fi(yi, ẏi) to find
the corresponding leaf’s acceleration, and Mi(yi, ẏi) to find
the Riemannian-metric priority tensor. We then compute the
corresponding acceleration ẍ and metric M inM as follows:

ẍ =
n∑
i=1

JTφi(ÿi −Mi(yi, ẏi)J̇φi ẋ),

M =
n∑
i=1

JTφiMi(yi, ẏi)Jφi .

We then recursively pullback from the leaf nodes to the root
node and find the joint accelerations by computing q̈ = M†f ,
where M† is the Moore-Penrose pseudo-inverse of M . This
process solves the least-squares problem that trades off policy
outputs with respect to each metric Mi.

D. Related Work on RMPs

RMPs build on many earlier methods that decompose be-
havior into a number of different task spaces. Nakamura et al.
[8], Sentis et al. [9], and Coelho and Grupen [10] all propose
similar frameworks that decompose the robot task space in
recursively-defined nullspaces. RMPs are formulated in a
way that subsume these methods.

RMPs have been used primarily to guide robot arms
through free space in a variety of reaching and manipulation-
based tasks [11], [12], [13], [14], [15]. However, none

of them perform contact-rich manipulation by training an
agent whose actions are translated into attraction-type be-
havior in the RMP-tree itself. While not addressing contact-
manipulation problems, Li et al. [11] introduces RMP2, a
framework that allows an agent to learn with RMPs to
accomplish 2D reaching tasks safely using state-of-the-art
deep RL methods.

E. Related Work on Safe End-Effector Variable Impedance
Control

An alternative approach to RMPs is to compute safety
sets, and ensure that the policy stays within those bounds.
Wabersich and Zeilinger [16] propose a general formulation
of a learning problem where these bounds can be computed.
Once the safety set is known, a method such as control
barrier functions [17], [18] can be used to ensure that the
policy stays within that set (termed forward set-invariance).
However, finding these safety sets is computationally expen-
sive, while RMPs can be constructed from known obstacle
pose data at runtime without any prior computing other than
setting up the tree. While these methods are compelling
due to their formal safety guarantees, we have yet to see
them applied for safety of an impedance-control scheme in
learning to solve contact-rich manipulation tasks.

Many have discussed formulations of impedance control
to ensure Lyapunov stability. Khader et al. [19] constrain the
stiffness parameters of the action space to ensure that their
controller is Lyapunov-stable, and thus resilient to pertur-
bations and unexpected behavior. Others prove Lyapunov-
stability for more general formulations of learning prob-
lems [20], [21]. Lyapunov-stability guarantees a convergence
property of the system showing that the system state must be
contained in smaller regions of the space as dynamics evolve
in accordance to the Lyapunov function. However, since
Lyapunov-stability discusses convergence and not safety-
set forward-invariance, these methods are not evaluated for
safety using the same metrics used here.

III. RMP-VICES

A naive operational-space controller (e.g. as in VICES
[6]) fails to reason about collision with the environment
and violation of the arm’s joint limits. We propose RMP-
VICES, an operational-space controller which translates
SE(3) impedance commands from a learned policy to low
level torques that accounts for the geometry of the config-
uration space and surrounding environment. We formalize
variable-impedance control as an attractor-type RMP, and
fuse it with repulsion-type RMPs based at points sampled
from the robot’s arm. The resulting controller blends the
desired policy control with collision avoidance behavior in
training and in deployment.

In this paper, we assume perfect knowledge of the robot
arm dynamics and the pose and geometry of all obstacles in
the environment, but neither object nor contact dynamics.
The goal of RMP-VICES is to solve manipulation tasks
with comparable performance to VICES but with fewer

obstacle collisions and joint-limit extensions over training
and deployment.

A. Tree Structure

The forward-kinematics (FK) map to the last link of the
arm is used to compute the pose of the end-effector in
SE(3). We then perform a selection mapping to decompose
SE(3) into R3 and SO(3), and define the variable impedance
behavior in those spaces. We perform an identity map from
the robot’s configuration space to itself, where we define the
joint-limiting behavior as shown in Cheng et al. [4] and was
tuned via experimental validation.

For the purpose of collision avoidance, we sample control
points on the links of the arm, and define distance spaces
to each obstacle. Since we conducted training with a 7DOF
arm, we need seven different FK maps from the configuration
space to SE(3) for the pose of each individual link of the
arm. From each of the sampled control points, we compute
a selection map to R3 and then a distance map to R for
each obstacle, and define collision-avoidance behavior there.
A schematic of the RMP-tree can be seen in Fig. 2.

Q joint limit avoidance Q R3 R collision

SE(3) R3 R collision

R3 SO(3)

R collision R3var. imp. attractor SO(3)var. imp. attractor

φ7,∗
φ6,∗

φ1,∗ d1

dk

ep,∗
dn,∗

id

Fig. 2: The RMP-tree structure used for RMP-VICES.
φ1, ..., φ7 denote FK maps from Q to each link of the
arm, where VICES sits in SE(3). The rest of the RMP-
tree is made up to control points sampled from the link
meshes, which are mapped to the shortest-distance space
each obstacle (d1, ..., dn act as signed-distance functions)
where collision avoidance is defined. The selection map from
SE(3) to R3 has been omitted.

B. Impedance Control as Attractor-type RMPs

We formulate impedance controllers as RMP leaves in the
R3 and SO(3) task spaces. Both of these controllers are
formulated as attraction-type policies [3].

Let x ∈ R3 be a position of the end-effector in free
space and ẋ be its associated velocity as computed by the
pushforward operation. Let xg ∈ R3 be a desired position.
Then the motion behavior is formulated as a spring-damper
attractor-type policy in R3:

f(x, ẋ) = kp(x− xg)− kd(ẋ), (3)

with the associated metric being the identity matrix I . The
diagonal matrices kposp and kposd specify the stiffness of this
controller and are set by the trained policy at every timestep.

The attractor in SO(3) is written in a very similar way
to the RMP above, except we also must account for the
non-Euclidean topology of SO(3) in the error term. Let
r ∈ SO(3) and ω be the end-effector’s current orientation
and angular velocity, and rg be the desired orientation.
We represent r, rg ∈ SO(3) as rotation matrices, i.e. r =
[rx, ry, rz] and rg = [rgx, rgy, rgz]. We then use the same
error term on SO(3) from VICES:

er(r, rg) =
1

2
(rx × rxg + ry × ryg + rz × rzg) . (4)

This error is equivalent to the sine of the angle to rotate r
to rg about a single axis [7]. We then define the impedance
controller using this error:

f(r, ω) = korip · er(r, rg)− korid · ω, (5)

where kp, kd are the stiffness and damping coefficients
respectively. As before, the metric associated with this
attraction-type policy is the identity I .

It is important to note that removing the obstacle-
avoidance and joint-limit policies from the RMP-tree reduces
the controller to VICES [3], [1].

C. Collision Avoidance RMPs

For both types of obstacles, we use the signed-distance
function to map the position of the control point sampled
on the arm to the distance space between the point and the
obstacle. We define the Riemannian metric m(x, ẋ) ∈ R of
this 1-dimensional space to be the following expression:

m(x, ẋ) =
(max{ẋ, 0})2

x4
(6)

This metric was derived via experimental validation. As
described in [3], the collision policy will only activate and
strengthen if the control point is moving towards the obstacle.
For both planar and spherical collision-avoidance behaviors,
we do not provide a repulsive signal but a damping term
(f(x, ẋ) = ηẋ, for some damping coefficient η). As Bylard
et al. in [22] observe, using only the Riemannian metric and
a dissipation function to reduce the movement towards the
obstacle to generate collision-avoidance behavior reduces the
likelihood of the arm to trap itself in local-minima.

D. Integrating Policy Actions in the RMP-VICES Controller

In an MDP formulation of a manipulation task, our state
space will always be a superset of SE(3) × Sobj , where
SE(3) is the space of end-effector pose and Sobj is the
space of states of the manipulated object. An action will
be a tuple (∆x, kposp , korip) ∈ SE(3)×R3×R3, where ∆x is
a displacement in SE(3) for the next goal pose and kposp

and korip are the stiffness coefficients for the impedance
controllers (kd is computed so the impedance controllers
are critically-damped). The policy π will be sampled in
pushforward and used to update kposp , korip , kposd , korid , and
rg , and xg in eqs. 3 and 5 in the RMP-tree on every timestep.

After the pullback stage of the RMP, we obtain a cor-
responding joint acceleration q̈ given by the synthesis of
the end-effector impedance control and collision avoidance
behavior. To convert q̈ into joint torques, we multiply by the
inertia matrix of the arm in joint space and compensate for
gravity and Coriolis forces.

IV. EXPERIMENTS

We test and verify the efficacy of RMP-VICES on the
trajectory-following and door-opening domains constructed
in Martin-Martin et al. [1] and an additional block pushing
domain we developed. In each simulated domain, we first
train VICES and RMP-VICES in an environment with no
additional obstacles to evaluate any negative impact the
RMP-tree has on learning efficiency. We also record the force
of all collisions of the arm with objects in the workspace to
understand the severity of collisions events using VICES and
RMP-VICES. Collision and joint-limit events incur a penalty
in the reward function and termination of the episode (but an
ablation on these two properties showed that they were not
essential for effective training). Afterwards, we perform 100
rollouts with the learned policy in each domain with two
randomly placed spherical obstacles and record the force
of any collision events to verify the adaptability of each
algorithm to obstructions not seen during training.

All simulated experiments were conducted in Robosuite
[23]. The agent was given a stochastic policy parameterized
by two fully-connected layers of 64 nodes with tanh activa-
tions and optimized using PPO, as done in VICES. Our PPO
implementation is based on the code written for OpenAI’s
SpinningUp [24]. In each domain, each episode was given a
length of 1024 steps, with 4096 steps per epoch. The policy
network was initialized with random weights (10 seeds) and
was trained for 367 epochs (1.6× 106 training steps).

A. Environments

1) Trajectory-Following: We randomly place four via
points in the workspace, and specify an order in which
the robot end-effector must traverse through them. As in
VICES, the state of the agent is represented by the pose
and the velocity of the end-effector, the position of each via-
point, and whether each via-point has been checked. For the
rollouts after training, we randomly generate two spherical
obstacles with a radius of 5 cm in the bounding volume
that is used to generate the via-points. We ensure that no
obstacles overlap with a via-point so that the task still has a
guaranteed solution.

2) Door-Opening: The RMP-tree is initialized with two
plane collision avoidance policies to avoid the panel of the
door and the surface of the table. For the rollouts after
training, we generate two spherical obstacles in a bounding
volume placed at a distance of front of the door to ensure
that it can still swing open for task completion.

3) Block-Pushing: We construct a domain where the robot
must push a block across a table to a goal position. The
state includes the end-effector’s pose and distance to the
block as well as the distance between the block and the goal

position. The reward function gives a small shaped reward
that depends on the distance between the end-effector and
the goal, and a larger shaped reward between the cube and
the goal:

rmain(dh2c, dc2g) =rh2c ∗ (1− tanh (20dh2c))+

rc2g ∗ (1− tanh (20dc2g)),
(7)

where dh2c, dc2g are the distance form the hand to the cube,
and distance from the cube to the goal respectively. rh2c and
rc2g are the maximum rewards made to provide incentive for
the agent to bring the end-effector to the cube, and the cube
to the goal, respectively.

V
IC

E
S

R
M

P-
V

IC
E

S

Fig. 3: Regularly-timed stills of a single rollout of VICES
(top) and RMP-VICES (bottom) after training is complete.

(a) Door-open. (b) Block-push.

(c) Traj-follow. (d) Door-open. (e) Block-push.

Fig. 4: Severity of collision events in training (a,b), and in
environments with randomly generated obstacles (c-e).

V. RESULTS

A. Safety During Training

In the trajectory-following task, RMP-VICES has far
fewer joint-limit events than VICES (Fig. 5c) throughout
training. Furthermore, RMP-VICES learns more sample-
efficiently than just VICES alone (Fig. 5a). Since violating a
joint limit causes episode termination, RMP-VICES has ac-
cess to more viable data earlier in training, which accelerates
the agent’s ability to learn the task.

In the door-opening task, we see that while RMP-VICES
avoids collision better than VICES (figs. 5e, 4a), the agent
trained with RMP-VICES learns with worse overall perfor-
mance (Fig. 5d). However, RMP-VICES is significantly safer

in guiding the robot away from collision avoidance behavior.
After reviewing several rollouts of each policy (Fig. 3), we
see that the policy learns a behavior that keeps the robot’s
pose largely the same with the elbow pointing straight up,
which the RMP-VICES joint-limit and collision-avoidance
policy represses. As a result, the RMP-VICES controller
first pitches the elbow downward, and then opens the door.
Since we give a dense reward that increases with door angle,
the RMP-VICES agent obtained a lower average reward in
VICES. However, the RMP-VICES policy is a safer behavior
than the one learned by VICES alone, since the VICES
behavior is prone to collision with the door (Fig. 3). This
problem can be addressed with better tuning of the joint-
limit policy or by learning the Riemannian metric [11].

In the block-pushing task, we see that RMP-VICES starts
with better joint-limiting performance at the beginning of
training figs. 5h 5i. While VICES performs slightly better
than RMP-VICES in efficacy of learning, RMP-VICES is
much more performant in collision avoidance throughout
training.

B. Deployment in Environments with Generated Obstacles

For each experiment, we choose the best performing seeds
from the VICES and RMP-VICES agent from each domain,
and played through 100 episodes with randomly-generated
spherical obstacles in the environment. The size and location
of the bounding volumes used for each domain were chosen
as areas where the arm would frequently pass through to
the solve the task. Table I gives an aggregation of the
performance of VICES and RMP-VICES from this set of
experiments. See Fig. 1 in the for visualizations of all three
environments for a single rollout instance.

Relative to performance in training, we see a drop in
performance in all tasks. This makes intuitive sense because
neither the VICES nor RMP-VICES policies experienced
these obstacles before training. RMP-VICES, in all tasks,
collides less frequently than VICES. While we do see a slight
drop in performance in average reward, it is important to note
that the success of the agent must be measured by its efficacy
its ability to remain safe while completing the task.

Task Avg. Reward Coll. Joint Lim.

VICES
Traj-follow. 7864± 1.167× 104 56 44
Door-open. 1703± 1.948× 103 61 36
Block-push. 1755± 2.256× 103 93 0

RMP-VICES
Traj-follow. 6847± 3.723× 103 25 22
Door-open. 1051± 6.96× 102 5 11
Block-push. 1740.± 8.54× 102 19 0

TABLE I: Results from rollouts with randomly-generated
obstacles. As collision or passing a joint limit triggers the
episode to end, the maximum number of collision and joint
events for a single domain for a single agent is 100.

It is clear that the agent trained on RMP-VICES exploits
the geometric prior given by the collision-avoidance RMPs
for more safe behavior. An agent trained with VICES alone
has no obvious way to incorporate this information, and the

(a) Traj-follow., performance (b) Trajectory-follow., collisions (c) Trajectory-follow., joint limits

(d) Door-opening, performance (e) Door-opening, collisions (f) Door-opening, joint limits

(g) Block-pushing, performance (h) Block-pushing, collisions (i) Block-pushing, joint limits

Fig. 5: Average reward, collision, and joint limit performance of VICES and RMP-VICES over the course of training on
the trajectory-following (5a,5b,5c), door-opening (5d,5e,5f), and block-pushing domains (5d,5e,5f). When integrating the
average curves for joint limits and collision avoidance behaviors, we see that RMP-VICES outperforms VICES in every
domain. Percent decrease in collision and joint limit rates, respectively: trajectory-following: N/A%, 90.5%; door-opening:
39.8%, 90.7%; block-pushing: 54.6%, 93.2%.

arm moves through the space blindly without adjusting its
trajectory to avoid the new obstacles in its path.

Furthermore, we see that RMP-VICES reduces the impact
of collision between the arm and its surrounding environ-
ment. Here, we see that RMP-VICES in these domains
exhibits a sharper distribution about 0N (Fig. 4).

VI. CONCLUSION

We have presented RMP-VICES, a geometry-aware
operational-space controller for contact-rich manipulation.
Our formulation synthesizes learned impedance control in
SE(3) with predefined collision and joint limit avoidance
behaviors, yielding a safer framework for reinforcement
learning of manipulation skills. Our evaluation shows re-
duced frequency of collision and joint limit violation on the
majority of tasks studied, especially early in learning. The
main drawbacks of our proposed approach are the intensive
tuning efforts required to weight leaf policies appropriately
in the RMP-tree. Our framework also lacks Lyapunov or
control barrier-certificates that guarantee stability or safety
set invariance, respectively. Future work is warranted to

investigate the design and tuning of provably safety behaviors
and their interaction with policy optimization.

ACKNOWLEDGEMENTS

We thank Roberto Martín-Martín for his incredibly de-
tailed descriptions of the VICES experiments and openness
for all of our inquiries about the work. We also thank Eric
Rosen, Cameron Allen, and Akhil Bagaria for their help in
forming our policy network structure.

This research was supported by NSF CAREER Award
1844960 to Konidaris, and by the ONR under the
PERISCOPE MURI Contract N00014-17-1-2699. Disclo-
sure: George Konidaris is the Chief Roboticist of Realtime
Robotics, a robotics company that produces a specialized
motion planning processor.

REFERENCES

[1] R. Martín-Martín, M. A. Lee, R. Gardner, S. Savarese, J. Bohg, and
A. Garg, “Variable impedance control in end-effector space: An action
space for reinforcement learning in contact-rich tasks,” in Proc. 2019
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2019, pp. 1010–1017.

[2] F. J. Abu-Dakka and M. Saveriano, “Variable impedance control and
learning—a review,” Frontiers in Robotics and AI, p. 177, 2020.

[3] N. D. Ratliff, J. Issac, D. Kappler, S. Birchfield, and D. Fox, “Rie-
mannian motion policies,” arXiv preprint arXiv:1801.02854, 2018.

[4] C.-A. Cheng, M. Mukadam, J. Issac, S. Birchfield, D. Fox, B. Boots,
and N. Ratliff, “Rmpflow: A geometric framework for generation of
multitask motion policies,” IEEE Transactions on Automation Science
and Engineering, vol. 18, no. 3, pp. 968–987, 2021.

[5] O. Khatib, “Inertial properties in robotic manipulation: An object-level
framework,” The International Journal of Robotics Research, vol. 14,
no. 1, pp. 19–36, 1995.

[6] ——, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Journal on
Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[7] J. Luh, M. Walker, and R. Paul, “Resolved-acceleration control of
mechanical manipulators,” IEEE Transactions on Automatic Control,
vol. 25, no. 3, pp. 468–474, 1980.

[8] Y. Nakamura, H. Hanafusa, and T. Yoshikawa, “Task-priority based
redundancy control of robot manipulators,” The International Journal
of Robotics Research, vol. 6, no. 2, pp. 3–15, 1987.

[9] L. Sentis and O. Khatib, “Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives,” International Journal of
Humanoid Robotics, vol. 2, no. 04, pp. 505–518, 2005.

[10] J. A. Coelho Jr and R. A. Grupen, “A control basis for learning
multifingered grasps,” Journal of Robotic Systems, vol. 14, no. 7, pp.
545–557, 1997.

[11] A. Li, C.-A. Cheng, M. A. Rana, M. Xie, K. Van Wyk, N. Ratliff, and
B. Boots, “RMP2: A Structured Composable Policy Class for Robot
Learning,” in Proc. Robotics: Science and Systems, Virtual, July 2021.

[12] M. Mukadam, C.-A. Cheng, D. Fox, B. Boots, and N. Ratliff, “Rie-
mannian motion policy fusion through learnable lyapunov function
reshaping,” in Proc. Conference on Robot Learning, ser. Proc. Machine
Learning Research, L. P. Kaelbling, D. Kragic, and K. Sugiura, Eds.,
vol. 100. PMLR, 30 Oct–01 Nov 2020, pp. 204–219.

[13] M. A. Lee, C. Florensa, J. Tremblay, N. Ratliff, A. Garg, F. Ramos,
and D. Fox, “Guided uncertainty-aware policy optimization: Combin-
ing learning and model-based strategies for sample-efficient policy
learning,” in Proc. 2020 IEEE International Conference on Robotics
and Automation, 2020, pp. 7505–7512.

[14] A. Handa, K. Van Wyk, W. Yang, J. Liang, Y. W. Chao, Q. Wan,
S. Birchfield, N. Ratliff, and D. Fox, “Dexpilot: Vision-based teleop-
eration of dexterous robotic hand-arm system,” in Proc. 2020 IEEE
International Conference on Robotics and Automation, 2020, pp.
9164–9170.

[15] D. Kappler, F. Meier, J. Issac, J. Mainprice, C. G. Cifuentes,
M. Wüthrich, V. Berenz, S. Schaal, N. Ratliff, and J. Bohg, “Real-
time perception meets reactive motion generation,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 1864–1871, 2018.

[16] K. P. Wabersich and M. N. Zeilinger, “Linear model predictive
safety certification for learning-based control,” in Proc. 2018 IEEE
Conference on Decision and Control, 2018, pp. 7130–7135.

[17] T. Wei and C. Liu, “Safe control algorithms using energy functions:
A united framework, benchmark, and new directions,” in Proc. 2019
IEEE 58th Conference on Decision and Control, 2019, pp. 238–243.

[18] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end
safe reinforcement learning through barrier functions for safety-critical
continuous control tasks,” in Proc. AAAI Conference on Artificial
Intelligence, vol. 33, no. 01, 2019, pp. 3387–3395.

[19] S. A. Khader, H. Yin, P. Falco, and D. Kragic, “Stability-guaranteed
reinforcement learning for contact-rich manipulation,” IEEE Robotics
and Automation Letters, vol. 6, no. 1, pp. 1–8, 2021.

[20] Y. Chow, O. Nachum, E. Duenez-Guzman, and M. Ghavamzadeh, “A
lyapunov-based approach to safe reinforcement learning,” in Advances
in Neural Information Processing Systems, S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds.,
vol. 31. Curran Associates, Inc., 2018.

[21] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe
model-based reinforcement learning with stability guarantees,” in
Advances in Neural Information Processing Systems, I. Guyon, U. V.
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, Eds., vol. 30. Curran Associates, Inc., 2017.

[22] A. Bylard, R. Bonalli, and M. Pavone, “Composable geometric motion
policies using multi-task pullback bundle dynamical systems,” in Proc.
2021 IEEE International Conference on Robotics and Automation,
2021, pp. 7464–7470.

[23] Y. Zhu, J. Wong, A. Mandlekar, and R. Martín-Martín, “robosuite: A
modular simulation framework and benchmark for robot learning,” in
arXiv preprint arXiv:2009.12293, 2020.

[24] J. Achiam, “Spinning Up in Deep Reinforcement Learning,” 2018.

