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Carleson embedding on tri-tree and on tri-disc
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Zorin-Kranich

Abstract. We prove multi-parameter dyadic embedding theorem for Hardy operator
on the multi-tree. We also show that for a large class of Dirichlet spaces in bi-disc and
tri-disc this proves the embedding theorem of those Dirichlet spaces of holomorphic
function on bi- and tri-disc. We completely describe the Carleson measures for such
embeddings. The result below generalizes embedding result of [AMPVZ] from bi-
tree to tri-tree and from Carleson–Chang condition to Carleson box condition. One
of our embedding description is similar to Carleson–Chang–Fefferman condition and
involves dyadic open sets. On the other hand, the unusual feature is that embedding
on bi-tree and tri-tree turned out to be equivalent to one box Carleson condition. This
is in striking difference to works of Chang–Fefferman and well known Carleson quilt
counterexample. Finally, we explain the obstacle that prevents us from proving our
results on poly-discs of dimension four and higher.

1. Introduction and the main result

The present article treats a two weight problem on multi-parameter paraproduct operators.
Singular bi-parameter and multi-parameter operators enjoyed and continue to enjoy much
attention, see [RF,RF1,RF2], [P], [JLJ], [JLJ2] [BP]. They are notoriously difficult. Two
weight problems for singular integrals were studied in a series of papers by Nazarov, Treil,
and Volberg on dyadic singular operators and in a series of papers by Lacey, Shen, Sawyer,
and Uriarte-Tuero on the Hilbert transform, see [NTV99], [NTV08], [LSSUT], [La], and
the references therein. Another example is a recent paper by Iosevich, Krause, Sawyer,
Taylor, and Uriarte-Tuero [IKSTUT] on the two weight problem for the spherical maximal
operator motivated by Falconer’s distance set problem.

Classically, an estimate of paraproduct tri-linear forms [GT] is based on T1 theorem of
David and Journé. The theory of Carleson measures (or classical BMO theory) is involved.
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It is well known [ChF1, ChF2, JLJ, JLJ2] that in the multi-parameter setting all these
results and concepts of Carleson measure, BMO, John–Nirenberg inequality, Calderón–
Zygmund decomposition are much more delicate. Paper [MPTT1] develops a completely
new approach to prove natural tri-linear bi-parameter estimates on bi-parameter paraproducts,
especially outside of Banach range. In [MPTT1] Journé’s lemma [JLJ2] was used, but
the approach did not generalize to multi-parameter paraproduct forms. This issue was
resolved in [MPTT2], where a simplified method was used to address the multi-parameter
paraproducts.

We consider here bi-parameter and tri-parameter paraproducts and reveal the obstacle
to treat the dimension 4 objects. Our paraproducts are only dyadic ones, and we estim-
ate them only in L2. But we consider a two weight problem. One weight is arbitrary and
the other one is dictated by the problem from complex analysis in the poly-disc (our ori-
ginal motivation). This other weight has the product structure because of this original
motivation. We are able to give the necessary and sufficient condition for the two weight
boundedness of such multi-parameter paraproducts in two and three parameter case (and
of course in one parameter case).

Three remarks are in order: a) the general two weight problem even for two parameter
paraproducts seems to not having a simple necessary and sufficient criterion at all (unlike
a one parameter case of dyadic paraproducts, whose solution is basically due to Eric Saw-
yer); so it is a “miracle” that the full solution exists when one measure is arbitrary, and
another one has a product structure; b) this solution continues to amaze us because it seem-
ingly goes against a famous Carleson counterexample in the theory of Chang–Fefferman
product BMO; c) it is also amazing that problem about holomorphic functions in the poly-
disc can be reduced to dyadic problems having nothing to do with complex analysis, the
information–in many cases–is not getting lost.

1.1. Background. A geometric problem and two weight estimates

To wet the appetite consider first the following very simple geometric problem. We are
given a collection of non-negative numbers {αI }I ∈D(I0) enumerated by the family D of
dyadic subintervals of unit interval I0 = [0, 1]. We wish to find an assignment I → EI ,
I ∈ D, of measurable sets in such a way that

(1) sets EI are pairwise disjoint;
(2) EI ⊂ I;
(3) m(EI ) = αI .

There is an obvious necessary condition:

(1.1) ∀J ∈ D(I0)
∑

I ∈D(J)

αI ≤ m(J) .

A simple and very well-known elementary construction shows that (1.1) is not only neces-
sary but also sufficient. Moreover, such a condition (called Carleson packing condition
with constant C = 1) is necessary and sufficient if I0 is a unit cube in Rd rather than
unit interval, and when D means the collection of all dyadic sub-cubes of the unit cube.
Lebesgue measure m can be replaced here by any finite Borel measure without point
masses.
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Now let us make the problem harder. We just mentioned that replacing dyadic intervals
dyadic cubes D represents a simple problem. But what if we augment the collection of
sets? It is very natural and useful, see e.g. [BP] and [TH], to consider the collection of
dyadic rectangles Dk = D × · · · × D k times, k ≥ 2. It is much harder to prove that the
condition

(1.2) ∀S ⊂ D2
∑

I×J ∈S

αI×J ≤ µ(∪I×J ∈S I × J)

for finite Borel measure without point masses is sufficient for the existence of the assign-
ment I × J → EI×J , for all dyadic rectangles I × J of measurable sets in such a way that

(1) sets EI×J are pairwise disjoint;
(2) EI×J ⊂ I × J;
(3) µ(EI×J ) = αI×J .

Obviously (1.2) is necessary for the existence of such measurable assignment. However,
several non-trivial proofs exists. The methods range from geometric ones, see Barron–
Pipher [BP], to convex analysis/functional analysis, Hänninen [TH], using a result of Dor
[Do]. Here k = 2, but this is not essential, the same result holds for dyadic rectangles in
all dimensions.

Moreover, Hänninen [TH] proved that dyadic rectangles can be replaced by arbitrary
collection of Borel sets.

Definition 1.1. (Carleson coefficients in the generality of a collection of Borel sets). Let
µ be a locally finite Borel measure on Rd . Let S be a countable collection of Borel sets.
A family {αS}S∈S of non-negative reals is Carleson (with the constant C = 1) if we have

(1.3)
∑

S∈S,S⊂Ω

αS ≤ µ(Ω)

for every union Ω of sets of the collection S.

Hänninen proved that the disjoint measurable assignment exists if and only if sequence
{αS}s∈S satisfies this general Carleson packing condition, that can be also written as

(1.4) ∀S′ ⊂ S
∑
S∈S′

αS ≤ µ(∪S∈S′S)

Now we would like to indicate the connection of the above mentioned “combinatorial”
problems to two-weight embedding theorems that have another (equivalent) disguise: two
weight paraproduct estimates.

We start again with the simple 1-dimensional dyadic case. We fix the canonical bijec-
tion between intervals of D(I0) and dyadic tree T , whose vertices we will still call I, and
I0 = [0,1] is the root of T . We fix a measure µ on I0, it will be one of our two weights. The
second weight lives on T and it is just a sequence of non-negative numbers enumerated by
vertices (=dyadic intervals): w := {wI }I ∈T .
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The two-weighted problem is to find necessary and sufficient conditions on (w, µ) to
have

(1.5)
∑
I ∈T

wI · (

∫
I

f dµ)2 ≤ C
∫

f 2dµ

Let us show what it has in common with the previously considered geometric question.
Notice that there is an obvious necessary condition for (1.5) to hold: just plug f = 1J ,
J ∈ D, to obtain:

(1.6) ∀J ∈ D
∑

I ∈D(J)

wI · µ(I)2 ≤ Cµ(J) .

We can now use the assignment mentioned above for αI := wIµ(I )
2

C . We will get disjoint
{EI }I ∈D . As a next step one can use that the dyadic maximal function with respect to any
µ is bounded in L2(I0, µ). This will finish the proof that (1.6) is also sufficient for (1.5)
embedding. The fact that (1.6) is necessary and sufficient for the embedding (1.5) is called
Carleson–Sawyer theorem. Carleson proved it in the 60’s and used in his interpolation
and famous corona results. Sawyer’s generalization appeared in the 80’s. Both results are
fundamental in the dyadic approach to the theory of Calderón–Zygmund operators.

Two (or multi) parameter paraproducts require a solution of a much more involved
two-weight problem. We fix a measure µ on [0,1]2, it will be one of our two weights. The
second weight lives on T2 and it is just a sequence of non-negative numbers enumerated
by vertices (=dyadic rectangles): w := {wI×J }I ,J ∈T .

The two-weighted problem is to find necessary and sufficient conditions on (w, µ) to
have

(1.7)
∑
I ,J ∈T

wI×J · (

∫
I×J

f dµ)2 ≤ C
∫
[0,1]2

f 2dµ

Bi-tree T2 is a rooted graph with vertices being dyadic rectangles, and the root being
I0 × I0 = [0, 1]2. It is a much more complicated graph than simple T , in particular, it
has cycles. However, again there are simple necessary condition for (1.7). We get one
by plugging f = 1I1×J1 , I1, J1 ∈ D. But Carleson gave an example of weight w on T2

such that even with µ = m2, Lebesgue measure on the plane, this necessary condition is
not sufficient. But there is a stronger necessary condition. Choose now f = 1∪∞

k=1Ik×Jk
.

In other words choose a subset S′ ⊂ D(I0) × D(I0), consider Ω = ∪R′∈S′R′, and choose
f = 1Ω to plug into (1.7). Then we immediately and trivially get the following necessary
for embedding (1.7) condition (called Carleson–Chang packing condition):

(1.8) ∀S′ ⊂ D(I0) × D(I0)
∑

R⊂∪R′∈S′R
′

wR · (µ(R))2 ≤ Cµ(∪R′∈S′R′) .

Again, the assignment of disjoint ER,R ∈ D(I0) ×D(I0), is the first step, but the second
step breaks down: strong maximal (even dyadic strong maximal) operator with respect to



Carleson embedding on tri-tree and on tri-disc 5

µ is rarely bounded in L2(µ). But maybe one does not need maximal operators to prove
embedding as above?

This is what we know about (1.7) and its analogs for tri-tree and higher multi-trees.
(1) A. S.-Y. Chang [Ch] proved that if µ = m2 (or µ = md) then necessary condition

(1.8) is sufficient and this holds for any w on T2 (and correspondingly Td).
(2) For any µ such that strong dyadic maximal function is bounded in L2(µ) (1.8) is

sufficient and this holds for any w on T2 (and correspondingly Td if we consider
measure µ on [0,1]d).

(3) Moreover, if (1.8) is sufficient for the embedding (1.7) with arbitrary w (maybe
with a different constant), then µ is such that strong dyadic maximal function is
bounded in L2(µ). This holds in any dimension d.

(4) The study of strong maximal function with respect to measure was initiated by
R. Fefferman in [RF3], [RF4]. It is worth mentioning that for d = 1 the dyadic
maximal function with respect to any µ is bounded in L2(µ), but for d ≥ 2 the
strong dyadic maximal function with respect to µ can be unbounded in L2(µ).

(5) If the situation with strong dyadic maximal function were the same for d = 1 and
d > 1, the results of [BP], [TH] mentioned above, would show that (1.8) gives
necessary and sufficient condition for (1.7). But we know that in general (1.8) is
not equivalent to (1.7), see [MPV].

(6) There exists w such that (1.8) does not hold, but the following simplified version
does hold:

(1.9) ∀I1 × J1 ∈ D(I0) × D(I0)
∑

R⊂I1×J1

wR · (µ(R))2 ≤ Cµ(I1 × J1) .

(7) Such an example exists even with µ = m2 (Carleson [Car], Tao [Tao]).
(8) There exists (w, µ) such that (1.8) does hold, but the following more complicated

(but obviously necessary for embedding (1.7), just plug f = 1F into (1.7)) condi-
tion does not hold:

(1.10) ∀F ⊂ [0,1]2 ∀S′ ⊂ D(I0) ×D(I0)
∑

R⊂∪R′∈S′R
′

wR · (µ(R∩ F))2 ≤Cµ(F) .

(9) The latter example has w having only values 1 and 0, and moreover the support of
w is a connected subgraph of T2.

(10) In general the necessary and sufficient condition for (1.7) are unknown.
(11) The case w ≡ 1 is interesting and has interesting applications to complex analysis.
(12) Whatever is µ, for the case w ≡ 1 for T2 and T3 we can give simple necessary

and sufficient condition for the embedding (1.7) to hold
(13) We conjecture that the same answer holds for Td , d ≥ 4, but we cannot prove

this.
(14) Our answer for the case w ≡ 1 for T2 and T3 is counterintuitive. At the first glance

it seems to contradict Carleson’s example. Of course it does not. The answer is that



6 P. Mozolyako, G. Psaromiligkos, A. Volberg and P. Zorin-Kranich

the embedding (1.7) holds if an only if (we give it for d = 2, the same answer with
obvious changes holds for d = 3, and this is the main result of the current article):

(1.11) ∀I1 × J1 ∈ D(I0) × D(I0)
∑

R⊂I1×J1

(µ(R))2 ≤ C0µ(I1 × J1) .

Of course constant C in (1.7) can be calculated by C0 in (1.11), but it is a non-
linear relationship.

1.2. Background. Embedding from L2(m2) to `2(T 2, {β2
R}), where {R} are dyadic

rectangles

Everywhere below the angular brackets 〈·〉S mean the average over the set S, the measure,
if not indicated otherwise, is Lebesgue measure.

Lennart Carleson showed in [Car] that the natural generalization, using a “box” con-
dition, from the one parameter case (disc) to the bi-parameter case (bi-disc) of his embed-
ding theorem does not work. Sun-Yang A. Chang in [Ch] found the necessary and sufficient
condition for the validity of the Carleson embedding for bi-harmonic extensions into the
bi-disc.

The discrete versions of these results can be motivated by considering a bi-parameter
dyadic paraproduct. For a dyadic rectangle R = I × J ⊆ [0, 1]2 denote by hR(x, y) =
hI (x)hJ (y) an associated L2 normalized Haar function. The simplest example of a bi-
parameter dyadic paraproduct is the operator

Πbϕ :=
∑
R

〈ϕ〉R(b, hR)hR .

The paraproduct Πb is a bounded operator on L2 with respect to the Lebesgue measure m
on [0,1]2 if and only if we have

(1.12)
∑
R

〈ϕ〉2R β
2
R ≤ C

∫
ϕ2dm2,

where βR := (b,hR) are Haar coefficients of the function b. In analogy to the one-parameter
Carleson embedding one could ask whether (1.12) is equivalent to the “box” condition

(1.13)
∑
R⊆R0

β2
R ≤ C ′m2(R0)

for every dyadic rectangle R0 ⊆ [0, 1]2. A counterexample showing that (1.13) does not
imply (1.12) was constructed by Carleson [Car,Tao].

It was observed by Chang [Ch] (in a continuous setting) that (1.12) is equivalent to the
bi-parameter Carleson (or Carleson–Chang) condition

(1.14)
∑
R⊂Ω

β2
R ≤ C ′m2(Ω) ,
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where the constant C ′ is uniform for all subsets Ω ⊆ [0,1]2 that are finite unions of dyadic
rectangles. This necessary and sufficient condition was later used by Chang and Feffer-
man [ChF1] to characterize the dual of the Hardy space on the bi-disc H1(D2). The same
embedding result holds in dimension d > 2, from L2(md) to `2(Td, {β2

R}).

1.3. Terminology and notation

We begin with order-theoretic conventions.

Definition 1.2. A finite tree T is a finite partially ordered set such that, for everyω ∈ T , the
set {α ∈ T : α ≥ ω} is totally ordered (we allow trees to have several maximal elements).

An d-treeTd is a cartesian product of d (possibly different) finite trees with the product
order.

A subset U (resp. D) of a partially ordered set T is called an up-set (resp. down-set)
if, for every α ∈ U and β ∈ T with α ≤ β (resp. β ≤ α), we also have β ∈ U (resp. β ∈ D).

The Hardy operator on an d-tree Td is defined by

(1.15) Iφ(γ) :=
∑
γ′≥γ

φ(γ′) for any φ : Td → R.

In the one-parameter case d = 1 we denote it by I, and in the two-parameter case d = 2 by
I. The adjoint I∗ of the Hardy operator I is given by the formula

(1.16) I∗ψ(γ) =
∑
γ′≤γ

ψ(γ′).

Definition 1.3. Let µ, w be positive functions on Td . The box constant is the smallest
number [w, µ]Box such that

(1.17) Eβ[µ] :=
∑
α≤β

w(α)(I∗µ(α))2 ≤ [w, µ]Box
∑
α≤β

µ(α), ∀β ∈ Td .

The Carleson constant is the smallest number [w, µ]C such that

(1.18)
∑
α∈D

w(α)(I∗µ(α))2 ≤ [w, µ]C µ(D), ∀D ⊂ Td down-set.

The hereditary Carleson constant (or restricted energy condition constant or REC con-
stant) is the smallest constant [w, µ]HC such that

(1.19) E[µ1E ] =
∑
α∈T d

w(α)(I∗(µ1E )(α))2 ≤ [w, µ]HC µ(E), ∀E ⊂ Td .

The Carleson embedding constant is the smallest constant [w, µ]CE such that the adjoint
embedding

(1.20)
∑
α∈T d

w(α)|I∗(ψµ)(α)|2 ≤ [w, µ]CE

∑
ω∈T d

|ψ(ω)|2µ(ω)

holds for all functions ψ on Td .

For positive numbers A, B, we write A . B if A ≤ CB with an absolute constant C,
that in particular does not depend on the tree or multi-tree or the weights w, µ.
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1.4. Main result

The inequalities

(1.21) [w, µ]Box ≤ [w, µ]C ≤ [w, µ]HC ≤ [w, µ]CE

are obvious. The converse inequalities for 1-trees were proved in [NTV99]. For 2-trees, in
the case w ≡ 1, the converse inequality

[1, µ]CE . [1, µ]C

was proved in [AMPS]. In [AMPVZ], it was proved that, more generally,

[w, µ]CE . [w, µ]Box

for weights w of tensor product form on 2-trees. In this article, we extend this result to
3-trees.

Theorem 1.4. Let µ : T3 → [0,∞). Let w : T3 → [0,∞) be of tensor product form. Then
the reverses of the inequalities in (1.21) also hold:

[w, µ]CE . [w, µ]HC . [w, µ]C . [w, µ]Box .

Theorem 1.4 will follow from conditional results on d-trees, namely Theorem 6.3 and
Theorem 7.3.

1.5. The methods

The methods of proving this main result of ours are mostly by potential theory and some
combinatorics. But this potential theory is very far from the classical one. It is a poten-
tial theory on graphs with cycles, in particular, there will be no maximum principle for
potentials considered below. This is the main difficulty and the main attraction of what
follows.

2. Holomorphic function spaces in poly-disc

Another way to interpret the Hardy inequality (or more precisely, its weighted version, see
below) is to consider its connection to certain problems in the theory of Hilbert spaces of
analytic functions on the (poly-)disc. It was actually this connections that motivated the
study of this inequality in [ARSW] and [AMPS].

We start with some additional notation. Given an integer d ≥ 1 and s = (s1, . . . ,sd) ∈ Rd

we consider a Hilbert space Hs(D
d) of analytic functions on the poly-disc Dd with the

norm
‖ f ‖2

Hs (Dd )
:=

∑
n1 ,...,nd ≥0

| f̂ (n1, . . . ,nd)|2(n1 + 1)s1 · · · · · (nd + 1)sd ,

where

f (z) =
∑

n1 ,...,nd ≥0
f̂ (n1, . . . ,nd)z

n1
1 · · · · · z

nd

d
, z = (z1, . . . , zd) ∈ Dd .
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Observe, that, clearly

(2.1) H®s(D
d) =

d⊗
j=1
Hsj (D).

In particular, the choice s = (0, . . . ,0) gives a classical Hardy space on the poly-disc, on
the other hand s = (1, . . . ,1) corresponds to the Dirichlet space.

2.1. Embedding (Carleson) measures on poly-disc

A measure ν on Dd is called a Carleson measure forHs , if there exists a constant Cν such
that

(2.2)
∫
Dd

| f (z)|2 dν(z) ≤ Cν ‖ f ‖2
Hs (Dd )

,

or, in other words, the embedding Id : Hs(D
d) → L2(Dd, dν) is bounded.

For brevity we concentrate below on the case d = 2, indicating the changes necessary
for other d. Consider first the case of s = (1,1).

Given a holomorphic function f (z1, z2) =
∑

m,n≥0 amnzm1 zn2 on D2 we let

‖ f ‖2
D(D2)

=
∑

m,n≥0
|amn |

2(m + 1)(n + 1),

this norm can also be written as follows

‖ f ‖2
D(D2)

=
1
π2

∫
D2
|∂z1 ,z2 f (z1, z2)|

2 dz1 dz2 +
1

2π2

∫
T

∫
D
|∂z1 f (z1, eit )|2 dz1 dt+

1
2π2

∫
D

∫
T
|∂z2 f (eit, eis)|2 ds dz2 +

1
4π2

∫
T

∫
T
| f (eis, eit )|2 ds dt =

‖ f ‖2∗ + other terms,

where ‖ f ‖∗ is a semi-norm which is invariant under biholomorphisms of the bidisc. In
what follows however we use an equivalent norm, arising from the representationD(D2) =

D(D) ⊗ D(D) (this particular choice will be justified in few lines). For f ∈ Hol(D) let

(2.3) ‖ f ‖2D :=
1
π

∫
D
| f ′ |2(z) dz + C0 | f (0)|2,

where C0 > 0 is a constant to be chosen shortly. It is classical fact that the Dirichlet space
on the unit disc is a Reproducing Kernel Hilbert Space ([ARSW]), and, consequently,
D(D2) is one as well. The reproducing kernel Kz, z ∈ D2 (generated by ‖ · ‖D) is

(2.4) Kz(w) =

(
C1 + log

1
1 − z̄1w1

) (
C1 + log

1
1 − z̄2w2

)
, z, w ∈ D2

(so it is a product of reproducing kernels for D(D) in respective variables), and C1 > 0 is
a constant depending on C0.
The definition of norm in (2.3) implies that Kz enjoys the following important property

(2.5) <Kz(w) ∼ |Kz(w)|, z, w ∈ D2,
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if we take C1 (re. C0) to be large enough
Let µ,w : Td → R+. We define a weighted Hardy operator to be

Iw f (α) :=
∑
β≥α

f (β)w(β).

We call (µ,w) a trace pair for the weighted Hardy inequality, if

(2.6)
∫
T d

(Iw f )2dµ .
∫
T d

f 2 dw

for any f : Td → R+, i.e the operator Iw : L2(Td,dw) → L2(Td,dµ) is bounded. The dual
version is

(2.7)
∫
T d

(I∗(ϕµ))2 dw ≤
∫
T d

ϕ2 dµ

for any ϕ : Td → R+, where
I∗ϕ(β) :=

∑
α≤β

ϕ(α).

It turns out that trace pairs for the weighted Hardy inequality and Carleson measures
for Hs are closely related. Below we give a brief overview of this relationship. We gloss
over most of the technical parts of this short exposition, for more details see [ARSW]
and [AMPS, Section 2], where it was presented for d = 1, s = s1 ∈ (0,1] and d = 2, s = 1
respectively.

We start by assuming that s ∈ (0, 1]d (so that Hs(D
d) is a weighted Dirichlet space

on the poly-disc), and that supp ν ⊂ rDd for some r < 1 (the latter is just a convenience
assumption that allows us to make the corresponding graphs to be finite, no estimate below
will depend on r , or on the depth of the graph).

It is well known thatHsj (D), 1 ≤ j ≤ d, is a reproducing kernel Hilbert space (RKHS)
with kernel Ksj satisfying (possibly after a suitable change of norm)

|Ksj |(zj, ζj) � |1 − zj ζ̄j |sj−1, 0 < sj < 1

|Ksj |(zj, ζj) � log |1 − zj ζ̄j |−1, sj = 1.

(2.8)

Moreover it is not hard to verify that

(2.9) <Ks � |Ks |,0 < s ≤ 1 .

However, the case s = 0 is a special case as

(2.10) Poisson kernel is not equivalent to the absolute value of Cauchy kernel .

It follows immediately thatH®s(Dd) is a reproducing kernel Hilbert space as well, and

K®s(z, ζ) =
d∏
j=1

Ksj (zj, ζj), z, ζ ∈ Dd .
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Going back to the Carleson embedding we see that Id :H®s(Dd) → L2(Dd,dν) is bounded
if and only if its adjoint Θ is bounded as well. Let us compute its action on a function
g ∈ L2(Dd, dν)

(Θg)(z) = 〈Θg,K®s(z, ·)〉H®s (D) = 〈g,K®s(z, ·)〉L2()Dd ,dν =

∫
Dd

g(ζ)K®s(z, ζ) dν(ζ).

Hence, for Θ to be bounded it must satisfy

‖g‖2
L2(Dd ,dν)

& ‖Θg‖H®s (Dd ) = 〈g,Θg〉L2(Dd ,dν) =

∫
D2d

g(z)g(ζ)K®s(z, ζ) dν(z) dν(ζ).

(2.11)

If inequality (2.11) holds then trivially the following holds:

‖g‖2
L2(Dd ,dν)

&

∫
D2d

g(z)g(ζ)K®s(z, ζ) dν(z) dν(ζ), g ≥ 0 .(2.12)

If we would know that the real part of the coordinate reproducing kernel is comparable
to its absolute value, we deduce that Θ is bounded, if and only if

(2.13)
∫
D2d

g(z)g(ζ)|K®s(z, ζ)| dν(z) dν(ζ) . ‖g‖
2
L2(Dd ,dν)

for any positive g on Dd .
In fact, (2.11) implies (2.12), and we can take the real part of both sides of (2.12),

putting real part on kernel. Now if to know that

(2.14) <K®s(z, ζ) = <
d∏
j=1

Ksj (zj, ζj) � |
d∏
j=1

Ksj (zj, ζj)| = |K®s(z, ζ)|, z, ζ ∈ Dd,

we would deduce (2.11)⇒(2.13). The only thing we need for this implication is the above
pointwise equivalence (2.14). On the other hand, the implication (2.13)⇒(2.11) obviously
always holds.

We conclude that in the presence of pointwise equivalence (2.14) we have (2.11)≡(2.13).

However, equivalence (2.14)–ultimately important for us to prove equivalence of dyadic
and analytic embeddings (see below)–has limitations. First of all it is false even for 1D case
d = 1 if s = 0, see (2.10). That makes the case s = 0 quite special. It is well known that for
1D case embedding measures for Poisson and Cauchy kernels on L2(T) are the same. This
is rather simple, but should be consider as “a miracle". Already in 2D situation the fact that
embedding measures for Poisson Pz1 Pz2 and Cauchy K®0(z, ζ) = (1 − z1 ζ̄1)

−1(1 − z2 ζ̄2)
−1

kernels on L2(T2) are the same is a subtle fact that will be considered in [MTV] separately.
Another interesting distinction of the case s = 0 is again about (2.10). The reader will

see, that for s > 0 we will characterize the embedding in terms of simple box (rectangular)
test. As it is well known from the works of Chang, Fefferman and Carleson [Ch], [RF],
[Car], [Tao], such characterization is not possible for Poisson embedding of L2(Td) if
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d ≥ 2. We would wish to attribute this phenomena to the fact that Poisson kernel has a
special shape.

Let q(α) is the Whitney rectangle described at the beginning of Section 2.4 below. Let

P(α, β) := sup
z∈q(α),ζ ∈q(β)

P(z, ζ) .

See the definition of w®0 below in (2.22).
In the language of the tree Td , the fact that Poisson kernel has a special shape means

that the following inequality is false in general.

(2.15) Iw®01(α ∨ β) . P(α, β),

This finishes the discussion of ®s = ®0, which corresponds to the Hardy space in the
poly-disc. Now let ®s = (sj) and 0 < sj ≤ 1.

2.2. Unweighted Dirichlet space in poly-disc

We first consider the case when all sj = 1. For brevity we assume d = 2. For unweighted
Dirichlet space this is not a restriction of generality as we will see soon. The reproducing
kernel K®1(z, ζ) = log(1 − z1 ζ̄1) log(1 − z2 ζ̄2) = K1(z1, ζ1)K1(z2, ζ2). The first idea is to see
that our inequality (2.11) (equivalent to embedding):

(2.16)
∫
D2

g(z)g(ζ)K®1(z, ζ) dν(z) dν(ζ) ≤ A‖g‖2
L2(D2 ,dν)

implies that for every C ≥ 0 we have

(2.17)
∫
D2

g(z)g(ζ)(C + K1(z1, ζ1))(C + K1(z2, ζ2)) dν(z) dν(ζ) ≤ B(C)‖g‖2
L2(D2 ,dν)

To deduce the latter inequality from (2.16) one should open the brackets and consider
4 terms in the LHS. The term with K1(z1, ζ1))K1(z2, ζ2) is . ‖g‖2L2(D2 ,dν)

by (2.16). The

term with C2
∫
D2 g(z)g(ζ)dν(z) dν(ζ) obviously is . ‖g‖2

L2(D2 ,dν)
by Hölder inequality.

Consider one of mixed terms (they are treated symmetrically):

C
∫
D2

g(z)g(ζ)K1(z1, ζ1) dν(z) dν(ζ) =: CI,

skip C, and, using disintegration theorem and pushing forward of ν to the first coordinate
(we call that push forward ν1), we write I as follows

I =
∫
D

G(z1)G(ζ1)K1(z1, ζ1)) dν1(z1) dν1(ζ1),

where G(w) :=
∫
g(w,u)dνw(u) and dνw(u) are slicing measures: ν(E) =

∫
νw(E)dν1(w).
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Push forward measure ν1 onD is obviously a Carleson measure for 1D Dirichlet space,
if ν is a Carleson measure for Dirichlet space in 2D. Therefore,∫

D
G(z1)G(ζ1)K1(z1, ζ1)) dν1(z1) dν1(ζ1) ≤ B

∫
D
|G1(z1)|

2 dν1(z1) ≤

B
∫
D

( ∫
D
|g(z1, z2)| dνz1 (z2)

)2
dν1(z1) ≤ B′

∫
D2
|g(z1, z2)|

2 dνz1 (z2)dν1(z1) ≤

B′
∫
D2
|g(z1, z2)|

2 dν(z) .

We deduced (2.17) from (2.16) by the use of the disintegration theorem and slicing
measures. Notice that the nature of the kernel did not play any role. We could have done
this with any dimension d and any kernel K®s instead of K®1.

The fact that we worked with precisely K®1 is crucial. In fact, values of 1 − zζ̄, z, ζ ∈ D
K1 are obviously in the right half-plane. Hence, as =K1 is the argument of log 1

1−z ζ̄ , we
have

(2.18) |=K1(z, ζ)| ≤ π/2.

Hence, by adding sufficiently large constant C > 0 to K1(z, ζ) we achieve a) |<(C +
K1)| >> |=(C + K1)|, b) |<(Cd + K®1(z, ζ))| ≥ c<(Πd

j=1(C + K1)(zj, ζj))) for any dimen-
sion d, it is enough to choose C =C(d) large positive number. The latter inequality implies
that

(2.19) <Πd
j=1(C + K1(zj, ζj)) � |Πd

j=1(C + K1(zj, ζj))| .

Therefore, for ®s = ®1 by modifying the kernel we can achieve (2.14) without changing
the class of Carleson measures. This is shown by (2.17). This means that without changing
the set of embedding measures we can equivalently replace inequality (2.11) by (2.13).
This reasoning works for ®s = ®1 and any dimension d.

2.3. Weighted Dirichlet space in poly-disc

Now ®s = (sj)dj=1,0 < sj ≤ 1, but ®s , ®1. We are unable to repeat the trick that was successful
in the previous section. In fact, for Ks = (1 − zζ̄)s−1 with 0 < s < 1 (2.18) does not hold,
the imaginary part will not be bounded, and so the previous reasoning with adding a large
constant to each kernel of each variable does not work.

However, to reduce the analytic embedding (2.11) to dyadic embedding on multi-tree
we seem to really need to show that (2.11) implies (2.13) (the converse implication being
always trivial).

Here we have only partial results, namely for the case when

(2.20) 1 − ε(d) ≤ sj ≤ 1

for ε(d) sufficiently close to 0.
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We just notice that 1 − zζ̄ lies in the right half-plane if z, ζ ∈ D, and so (1 − zζ̄)ε lies
in the cone Cε = {u + iv,u ≥ 0, |v | ≤ u · tan πε}. Therefore, for every sj ∈ (1 − ε,1),

|=Ksj (zj, ζj)| ≤ tan πε · <Ksj (zj, ζj) .

This implies that if ε is sufficiently small (depending on the dimension d) then (2.14)
holds, which, as we have already explained gives us the equivalence of (2.11) and (2.13).

From (2.13) we will now proceed to conclude that dyadic embedding holds. Then we
will explain why dyadic embedding implies (2.13), thus closing the circular argument.

2.4. From the embedding of analytic functions in the poly-disc to dyadic
multi-parameter embedding

Consider a fixed dyadic latticeD on T. By this we mean the following. For any dyadic arc
I on T symbol Q(I) denotes a Carleson box

Q(I) := {z = reiθ ∈ D : θ ∈ I,1 − |I | ≤ r ≤ 1} .

by q(I) we understand its top half:

q(I) := {z = reiθ ∈ D : θ ∈ I,1 − |I | ≤ r ≤ 1 −
|I |
2
} .

Sets q(I) form a classical Whitney decomposition of D into dyadic Carleson half-boxes.
This Whitney decomposition corresponds to a chosen dyadic lattice. Clearly there is

a one-to-one correspondence between these half boxes and the vertices of a dyadic tree T
just because vertices of T and dyadic intervals ofD are in one-to-one correspondence. So
each half box has an address α, which is a vertex of T , so we can write

q((α) = q(I) .

We can choose a fixed dyadic lattice for each coordinate tori T. Consequently the Whitney
decomposition ofDd generated by Cartesian products of the respective coordinate decom-
positions can be encoded by vertices of Td , i.e. each (multi-) half box q corresponds to a
point αq ∈ Td , and vice-versa, each α ∈ Td has a unique counterpart q(α), where now α
is a multi-index corresponding to the vertex of Td .

The reader should keep it in mind when we will consider boxes constructed by random
choice of dyadic lattices ω := (D1, . . . ,Dd). Notice that the collections ω := (D1, . . . ,Dd)

of dyadic lattices form a natural measure space provided with probability measure: (Ω,P).
For future purposes notice that given a point z in poly-disc Dd , and a random multi-lattice
ω, we will call the address of the box that contains z by symbol αω(z) (any fixed z is
contained in an open box almost surely, and, thus, the address is uniquely defined by z and
ω). The box should be called q(αω(z)). Often we skip ω.

As a result we can define a family canonical mapΛ =Λω : Meas+(Dd)→ Meas+(Td)

given by

(2.21) Λν(α) = ν(q(α)).
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Similarly, given a function g ∈ L2(Dd, dν) we write

Λg(α) :=
1

ν(q(α))

∫
q(α)

g(z) dν(z).

A vertex α ∈ Td corresponds to a rectangle R(α) = I1 × · · · × Id . Let ®s = (s1, . . . , sd),
0 < si ≤ 1, i = 1, . . . , d. Put

(2.22) w®s(α) = |I1 |
s1−1 · · · · · |Id |sd−1 .

This is the weight on Td that is associated to the embedding theorem on Td . This
theorem corresponds to the embedding theorem of classHs on Dd .

Define a random kernel as follows. Fixω ∈Ω and (z, ζ) ∈D2d , in dyadic multi-latticeω
find αω, βω such that z ∈ q(αω), ζ ∈ q(βω). Up to measure zero ofω, z, ζ lie in correspond-
ing open boxes, hence, the boxes are uniquely defined, and so αω, βω are well-defined.
Then consider

kω(z, ζ) := (Iw®s1)(αω(z) ∨ βω(ζ)) .
where α ∨ β is the least common ancestor of α and β in geometry of Td . In particular, for
®s = ®1, multi-tree kernel Iw®11(α ∨ β) is the number of ancestors that are common for α and
β. If ®s , ®1, the kernel counts the weighted number of ancestors.

An elementary computation gives that independently of ω the following inequality
holds if si , 0, i = 1, . . . , d:

(2.23) kω
®s
(z, ζ) . |K®s |(z, ζ),

The implied constant depends only on d and si , 0, i = 1, . . . , d.

Remark 2.1. If some si vanish, we have “a phase transition" in the kernel, and (2.23)
stops to be true in general. This explains the special role of Hardy spaces on the poly-disc.
If the reader thinks that Chang–Fefferman theory gives the embedding theorem for Hardy
space H2(Dd) (the case si = 0, i = 1, . . . ,d), we should upset the reader by saying that this
is not so. Chang–Fefferman theory gives the characterization of embedding measures in
d-harmonic space h2(Dd). As, obviously, the Hardy space of holomorphic functions in the
poly-disc is such that H2(Dd) ⊂ h2(Dd), the Chang–Fefferman theory gives the sufficient
condition for measure to be an embedding measure for the Hardy class, but whether it is a
necessary condition (we believe it is) is not known outside the classical case d = 1. If the
influential paper [FL] were correct, then its proof can be modified to give this necessity,
but unfortunately the note [V] indicated a counterexample to the reasoning (but not to the
result) of [FL].

The inverse inequality to (2.23) is generally not true due to the difference between
hyperbolic geometry on the unit disc and that of a dyadic tree. However, one can verify
that if one considers the family of dyadic latticesΩ ω = (D1, . . . ,Dd) on Td with a natural
probability measure on this family, then the following holds

∀(z, ζ) ∈ D2d ∃Ω(z, ζ) ⊂ Ω :
a) P(Ω(z, ζ)) ≥ cd > 0,
b) ∀ω ∈ Ω(z, ζ), |K®s |(z, ζ) ≤ Cdkω

®s
(z, ζ) .

(2.24)
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where cd,Cd depend only on dimension d.
Now (2.23), (2.24) give us

(2.25) K®s(z, ζ) � Eωkω
®s

1(z, ζ) .

By Tonelli’s theorem we have

(2.26)
∑
α∈T d

∑
β∈T d

Λg(α)Λg(β)Iw®s1(α ∨ β)Λν(α)Λν(β) =
∫
T d

(I∗(ΛgΛν))2 dw®s,

Given that we fix ω and write for z ∈ Dd, ζ ∈ Dd , we use that k®sω(z, ζ) is constant on
each pair of boxes from multi-lattice ω detected by pair (z, ζ):∫

Dd

∫
Dd

g(z)g(ζ)kω
®s

dν(z)dν(ζ) =∑
q(αω )

∑
q(βω )

Λg(q(αω))Λg(q(αω))Iw®s1(αω ∨ βω)Λν(q(αω))Λν((q(βω)) .

‖Λg‖2
L2(Λν)

≤ ‖g‖2
L2(ν)

,

(2.27)

where constants of equivalence depend only on the dimension. Here we used (2.26) and
the boundedness of operator with kernel Iw®s1(α ∨ β) on graph Td .

Now let us hit (2.27) by expectation in ω and use (2.25). Therefore (2.13) follows from
(2.7) for µ = Λν and w = w®s .

Assume now that (2.13) holds. Fix a measure µ on Td . Fix anyω. Let ν be any measure
on Dd such that Λν = µ. Then∫

Dd

∫
Dd

g(z)g(ζ)kω
®s

dν(z)dν(ζ) . ‖g‖2
L2(ν)

just because of (2.23). Apply this inequality to special non-negative g that assume constant
values on each given box q(αω). We can choose those constants arbitrarily with only
condition that ‖g‖2

L2(ν)
= ‖g‖2

L2(Λν)
< ∞. Then we get (2.7) for µ = Λν and w = w®s .

2.5. Verifying (2.24)

It is enough to verify it for d = 1 because then we can use the product structure of the kernel
|K®s | and the independence of latticesD1, . . . ,Dd . Put D(z, ζ) := |z − ζ | + 1 − |z | + 1 − |ζ |,
it is a sort of distance. Then

Ks(z, ζ) = |1 − zζ̄ |s−1 ≈ D(z, ζ)s−1 .

Now we define the analogous dyadic distance that depends on a dyadic lattice, call lattice
L. DL(z,ζ) is defined as the smallest length of dyadic arc from L that is larger than max(1−
|z |,1 − |ζ |) and contains the shorter arc that has end-points z, ζ .

Then right hand side of (2.24) (for d = 1) is ≈ (DL(z, ζ))s−1 and DL is always ≥ c D,
where c is an absolute constant. Of course we have(

distL(z, ζ)
)s−1
≈ Iws1(α ∨ β) .
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To prove (2.24) (for d = 1) it is enough to prove that

distL(z, ζ) ≤ C D(z, ζ)

for a set of dyadic lattices of a fixed probability. Let the full family of dyadic lattices be
just the rotation of one fixed lattice provided with a natural probability measure dθ/2π.

Let I be a dyadic arc of length 2π · 2−m. Given z, ζ , let us calculate the probability
of being a bad dyadic lattice, where bad means the display inequality above is false with
constant C = 8. Each dyadic lattice has two end-points of first division, four end-points of
the second division, et cetera.

Then the probability for the first division points to be inside I is 2
2π
|I |

= 2 · 2−m (as

we have two such points). The probability for the second division points to be inside I is
4 · 2−m . We continue until we find the m − 4-th division points for which the probability
such a point is in I is almost 2m−4 · 2−m. These are all bad scenarios. Their probability is
at most 1/8.

Hence, the probability none of these points are in I (which we can call a “good” event),
is at least 7/8. But if none of these division points are inside I, we have

DL(z, ζ) ≤ 10D(z, ζ) .

Inequality (2.24) is proved.

Let us formulate the reduction from d-disc to d-tree by a theorem.

Theorem 2.2. Let ®s = (s1, . . . , sd), si ∈ (0,1],i = 1, . . . ,d. And let all si be sufficiently close
to 1: 1 − si ≤ εd , for a certain positive absolute εd and i = 1, . . . , d. Let ν be a measure
in Dd . Then embedding operator id : H®s(Dd) → L2(Dd, ν) is bounded if and only if for
any dyadic multi-lattice ω on Td measure µ = Λν on Td obtained by formula (2.21) and
weight w®s on Td from (2.22) give us the embedding pair on Td in the sense that

(2.28)
∑
α∈T d

(I∗ψµ)2(α)w®s(α) ≤ C
∫
T d

ψ2dµ .

Notice that weight w®s(α) here has a tensor product form:

α = (α1, . . . , αd) ⇒ w®s(α) = us1 (α1) · · · · · usd (αd) .

Remark 2.3. Notice that for ®s = ®1 (Dirichlet space case) integration in (2.26) with respect
to dw®s means just summation over all vertices of Td . For other ®s a natural weight appears
(it weights the vertices), and the summation has to be with respect to this weight. In our
situation of the scaleH®s (of various spaces of analytic functions in poly-disc described at
the beginning of this section), the weight that appears is always the product of weights in
each coordinate. This emphasizes why we especially care about the results with product
weights.

To summarize, the problem of characterizing Carleson measures for the weighted
Dirichlet space H®s can be often moved to a discrete medium (for ®s = ®1 can be always
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moved to discrete medium, for any dimension d), and after that this problem interpreted
(without any loss of information) as the problem of characterizing a trace pair (µ, w®s).
For instance we will see, that (2.7) is equivalent to a single box condition (since w®s has a
product structure) ∑

β≤α

(I∗Λν)2(β)w®s(β) . I∗Λν(β)

for any β ∈ Td . On the poly-disc this condition transforms to∑
R⊂Q

ν2(T(R))w®s(R) . ν(T(Q)), for any Q,

where Q, R are dyadic rectangles on the (poly-)torus Td , and T(Q) is the usual tent area
above Q. One can also check that this condition is necessary by testing Carleson embed-
ding on appropriate functions.

The argument above fails for a number of reasons, if even one of the parameters sj
becomes zero. However, for the classical Hardy space on the poly-disc one can still make
a connection between Carleson embedding and Hardy inequality, only now we use the
direct embedding (2.6) instead of the dual (2.7), and the roles of µ and w are reversed. It
is done in Section 3.

3. End-point case s = 0

We repeat ourselves: the equivalence (2.14)–ultimately important for us to prove equival-
ence of dyadic and analytic embeddings–has limitations. First of all (2.14) is false even for
the case d = 1 if s = 0, see (2.10). That makes the case s = 0 quite special. It is well known
that for d = 1 case embedding measures for Poisson and Cauchy kernels on L2(T) are the
same. This is rather classical, but should be consider as “a miracle” exactly because (2.14)
fails. Already in 2D situation the fact that embedding measures for Poisson Pz1 Pz2 and
Cauchy K®0(z, ζ) = (1 − z1 ζ̄1)

−1(1 − z2 ζ̄2)
−1 kernels on L2(T2) are the same is a subtle fact

that will be considered in [MTV] separately. It is based on Ferguson–Lacey’s characteriz-
ation of symbols of “little” Hankel operators [FL], [L1].

Another interesting distinction of the case s = 0 is about (2.10). The reader will see,
that for s > 0 we characterize the embedding in terms of simple box (rectangular) test.
As it is well known from the works of Chang, Fefferman and Carleson [Ch], [RF], [Car],
[Tao], such characterization is not possible for Poisson embedding of L2(Td) if d ≥ 2. We
would wish to attribute this phenomena to the fact that Poisson kernel has a special shape.
In our language this means that unlike (2.23) above that holds for s , 0, the same type of
inequality for Poisson kernel

(3.1) Iw®01(α ∨ β) . P(α, β),

is false, where P is a multi-parameter Poisson kernel, P(α, β) := supz∈q(α),ζ ∈q(β) P(z, ζ).
For s = 0 the spaceHs(D

d)=: H2(Dd) is the Hardy space on the poly-disc. The embed-
ding Id : H2(Dd) → L2(Dd, dν) can be still equivalently described as inequality (2.11),
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but cannot be described any longer as inequality (2.13). The reason is that the reprodu-
cing kernel K0(z, ζ) = (1 − zζ̄)−1 does not satisfy anymore the property that its real part is
equivalent to its absolute value.

Still we want to deduce the embedding theorem Id : H2(Dd) → L2(Dd, dν) from
dyadic statement of the type (2.7). Notice that embedding of Hardy space of analytic func-
tions in the poly-disc follows from the Poisson embedding. Also notice that for dimension
d = 1 these two embedding are equivalent, in the sense that the classes of embedding
measures in the disc are the same.

This is absolutely not obvious for d > 1. So below we consider only embedding of
L2(Td) by the means of multi-Poisson kernel. We do not touch upon the question of equi-
valence of this Poisson embedding of L2(Td) and the (Poisson) embedding of H2(Td).
The relation between two embeddings (that of L2(Td) and that of H2(Td)) for d > 1 will
be addressed in [MTV]. It is a really subtle question that requires the extension of [FL].
To our utmost consternation this question has not been addressed in the literature.

To this end we stop to consider the adjoint operator to embedding Id : H2(Dd) →

L2(Dd,dν). Instead we consider this embedding directly, namely, if Pk denotes the Poisson
extension in k-th variable, we write down our embedding as the following inequality

(3.2)
∫
Dd

[P1 . . . Pd f ]2 dν ≤
∫
Td
| f |2 dmd ,

where Td is the torus and md its Lebesgue measure. We emphasize again that this should
hold for any f ∈ L2(Td,md). Let {q(α)}α∈T d be the Whitney decomposition of Dd gener-
ated by Cartesian products of the respective coordinate decompositions. By [Ch] we know
that inequality (3.2) is equivalent to Carleson–Chang condition:

(3.3)
∑

α:q(α)∩Tent(Ω),∅

ν(q(α)) ≤ Cmd(Ω) ∀ open Ω ⊂ Td .

So we wish to deduce the implication (3.3)⇒ (3.2) by using only the dyadic multi-tree
statement that we will formulate now.

Let f : Td → [0,∞) and let md be Lebesgue measure on ∂Td := (∂T)d given by
md(ω) = 2−Nd . Now let Ω be an arbitrary union of elementary cubes ω’s of size 2−N . Call
such sets dyadic open sets. For any α ∈ Td we denote by Rα the dyadic d-subrectangle of
the unit cube that corresponds to α. Let ν : Td → [0,∞) be such that

(3.4)
∑

α:Rα ⊂Ω
(md(Rα))2ν(α) ≤ Cmd(Ω) ∀ dyadic open Ω ⊂ ∂Td .

We consider the inequality on multi-tree Td:

(3.5)
∫
T d

(
I∗( f dmd)

)2
dν ≤ C1

∫
∂T d

f 2 dmd .

Suppose we know that (3.4)⇒ (3.5) (with different constants, but without dependence
on N). We want to use this implication as the only tool to prove implication (3.3)⇒ (3.2).

This requires some work even for the case d = 1. Below is the way to do this reduction
for d = 1,2. General n follows the same steps.
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For an interval I of R, QI denotes Carleson box, TI denotes its upper half. Similarly,
for a rectangle R = I × J in R2, we have QR := QI × QJ and TR := TI × TJ . If I run over
a certain dyadic lattice of intervals, then TI tile the upper half-plane. Similarly, if R run
over dyadic system of rectangles, TR tile C2

+. In the next two subsections I0 always denotes
[−1,1], and let Q0 be always Q[−1,1].

3.1. One dimensional case.

Let P f mean Poisson extension of f . We first consider a 1D case. Let measure ν lie in the
upper half plane, a nonnegative test function f on the real line has support in [−1/2,1/2],
and let measure ν satisfy the following box Carleson condition:

(3.6) ν(QI ) ≤ C1 |I | ∀I .

We want to give a new proof of Carleson embedding:

(3.7)
∫
Q0

[P f ]2 dν ≤ C2

∫
f 2dx,

where C2 depends only on C1.
As we have Harnack inequality for P f we always may assume that ν is a doubling

measure in Poincaré metric of C+.
We wish to prove implication (3.6)⇒ (3.7) by allowing ourselves to use only implic-

ation (3.8)⇒ (3.9), where given a dyadic lattice D, we have

(3.8) ν(QI ) ≤ C1 |I | ∀I ∈ D

(3.9)
∑
J ∈D

〈 f 〉2Jν(TJ ) ≤ C
∫
R

f 2dx .

Here are several notations: as always for a given I, λI means the interval with the
same center, but with length λ |I |. If I is an interval of a dyadic lattice D then I j is its
ancestor such that |I j | = 2j |I |. We denote by cI = xI + iyI the center of TI , and by PI the
Poisson kernel with pole at cI . As PI f is bounded by an absolute constant times the convex
combination of averages 〈 f 〉2k I , k = 0, . . . , log 1

|I | and average 〈 f 〉I0 , we can choose kI
that gives the maximum to 〈 f 〉2k I , k = 0, . . . , log 1

|I | , and then

P f (cI ) = PI f ≤ A1〈 f 〉2kI I + A2〈 f 〉I0 .

Our goal is to give a new way to prove (3.7). Traditionally it is deduced from (3.6) by
interpolation argument. We wish to deduce it using only dyadic L2 estimate. The second
term is trivial to estimate.

To estimate the first term, we will do the following. We consider the probabilistic space
of dyadic lattices built as follows. Divide R into equal intervals of size 2−N , where N is
very large. We do it to have [−1/2,1/2] tiled. Now we can toss the coin and choose which
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pair is united to one dyadic interval of size 2−N+1. These are fathers. Toss the coin again to
choose who are grandfathers. Now for a given interval of size 2−N we have already 4 dif-
ferent grandfathers, each with probability 1/4. We continue this tossing for total number of
N + 4 tossing. For any interval of size 2−N inside [−1/2,1/2] the most senior ancestor will
contain Q0 = [−1/2,1/2]with probability 15/16. We call the collection of such dyadic lat-
tices Ω (it is a finite family of lattices). All dyadic lattices in Ω have the equal probability,
and we just renormalize the probability to have P(Ω) = 1.

The thus obtained random dyadic lattice will be called D(ω), their probability space
will be called (Ω,P). Now fix ω ∈ Ω (meaning fix one of those lattices), and consider some
small I ∈ D(ω) of size 2−N . We consider cI and find kI as above. Consider 2kI I. It is not
dyadic may be, but it has the same center xI as dyadic I, so consider IkI and IkI+10 and
check whether IkI is inside 3

4 IkI+10. Suppose yes. Then obviously as xI ∈ IkI , we will
have that

2kI I ⊂ IkI+10 .

It is very easy to see that

P
{
IkI is inside

3
4

IkI+10
}
≥ 1/2 .

Thus
P
{
2kI I ⊂ IkI+10

}
≥ 1/2 .

If the event 2kI I ⊂ IkI+10 happened, then we call TI good, we color it red, we color IkI+10

also red, but we take measure ν on TI , color it blue and move this blue mass to TI kI +10 . No
measure then is left in TI . All measure movements are “up”. It never happens that measure
is moved into square QJ , J ∈ D(ω), from outside of QJ . Therefore, new measure satisfies
the same Carleson condition (3.6) for all boxes QJ , where J is in this D(ω).

Otherwise we call TI bad, we color it white. Do nothing else.
Then we look at intervals of size 2−N+1 and repeat all that. We do this for everyD(ω).

Obviously the same TI can be good for some ω and bad for others. We established above
that the probability to be good is at least 1/2.

It may happen that a certain TJ has blue mass (moved from below) and original mass.
If we need to move mass from TJ we color blue and move only original mass, the “new”
mass, the blue mass, which came from below, rests unmoved.

When we finish the procedure we have a new measure, and we color it all blue (many
parts of it are already colored blue), and we call it νb(ω) (it is random, and it also depends
on f ). But it is dyadic Carleson like (3.6) for all boxes QI , I ∈ D(ω).

After this procedure, it may very well happen that for a given D(ω) and J ∈ D(ω), TJ

is colored white, but J is colored red and TJ contains blue mass particles.
For every ω we also have subdomains R (colored red) and W (colored white) of Q0,

W =W(ω) consisting of bad TI , I ∈ D(ω), and R = R(ω), consisting of good TI , I ∈ D(ω).
Now ∫

R

[P f ]2dν .
∑

I ∈D(ω),TI good

〈 f 〉2
I kI +10νb(TI kI +10 ) + 〈 f 〉2I0 |ν |

≤
∑

J ∈D(ω),J red

〈 f 〉2Jνb(TJ ) ≤ C
∫
R

f 2dx,
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This is because we always preserve dyadic box Carleson (3.6) property for νb(ω) in
corresponding D(ω). On the other hand, let us denote by F the union of all I’s in all
dyadic lattices D(ω),ω ∈ Ω, such that 2−N ≤ |I | ≤ 24. Then∫

Ω

∫
R(ω)
[P f ]2dν dP(ω) ≥

1
2

∫
Q0

[P f ]2dν,

because each TI , I ∈ F , will be red at least half of the time (meaning that P{TI is red} ≥
1/2).

3.2. Multi-dimensional case.

Now measure ν is in Qn
0 . We will consider for brevity only the case n = 2. Measure ν

satisfies Chang–Carleson condition. For any open set G ⊂ Q0, consider its tent: TG =
({z, w) ∈ C+ : R(z, w) ⊂ G}, where

R(z, w) := [<z − =z,<z + =z] × [<w − =w,<w + =w] .

Chang–Carleson condition is

(3.10) ν(TG) ≤ C1 |G | ,

where |G | denotes plane Lebesgue measure of G.
As we have Harnack inequality we always may assume that ν is a doubling measure in

the natural metric of C2
+.

This allows us to notice the following. Consider any system of dyadic rectangles.
Choose any finite family of dyadic rectangles R = I × J of this system, we call their union
O “a dyadic open set”. It has a dyadic tent Td

O
. Now, by definition, it is the union of all TQ

for all dyadic Q (of the same system) such that Q ⊂ O.
The doubling property above (which we assume without loss of generality because

of Harnack’s principle) allows us to conclude that if ν has property (3.10) it also has the
following dyadic Chang–Carleson property:

(3.11) ν(Td
O) ≤ C |O | .

Now let P = P1P2 be the bi-Poisson extension. Fix a test function f ≥ 0 supported
in [−1/2, 1/2]2. Consider two dyadic lattices of one variable as before D(ωx), D(ωy),
and consider the system of dyadic rectangles R = I × J, I ∈ D(ωx), J ∈ D(ωy). Call this
systemD(ω), ω := (ωx,ωy). Let cR = (cI ,cJ ), where cI is the center of TI , cJ is the center
of TJ .

Let P1
I be the Poisson kernel with pole at cI , let P2

J be the Poisson kernel with pole
at cJ . Bi-Poisson extension P1

I P2
J is bounded by an absolute constant times the convex

combination of averages 〈 f 〉2k I×2m J , k = 0, . . . , log 1
|I | , m = 0, . . . , log 1

|J | and average
〈 f 〉Q0 , we can choose kI ,mJ that gives the maximum to 〈 f 〉2k I×2m J , k = 0, . . . , log 1

|I | ,
m = 0, . . . , log 1

|J | , and then we have

P f (cI , cJ ) = P1
I P2

J f ≤ A1〈 f 〉2kI I×2m J + A2〈 f 〉Q0 .
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Again we can ensure that

(3.12) P
{
2kI I ⊂ IkI+10,2mJ I ⊂ JmJ+10

}
≥ 1/4 .

Then we just repeat the coloring scheme from subsection 3.1. This time we color the 4D
rectangles TR, R ∈ D(ω) white, if TR is bad, namely, if the event in (3.12) did not happen,
and color it red and call it good if that event does happen. From red TR we scoop all the
measure ν, color its particles blue and move to TR̂ for the ancestor R̂ := IkI+10 × JmJ+10

of R = I × J.
Again we will have that random blue measure ν(ω) satisfies (3.11) as the original

measure ν does. Then we repeat the calculation of subsection 3.1. We should prove the
embedding ∫ ∫

Q0×Q0

[P1P2 f ]2dν ≤ C
∫ ∫

I0×I0

f 2dm2 .

We just repeat the averaging over probability calculation of subsection 3.1.

4. Surrogate maximum principle

From now on our paper is devoted only to the multi-tree case (dyadic n-rectangles case).
We will need to overcome a major difficulty: the potential theory on multi-trees does not
allow maximal principle.

Let µ be a positive function on an d-tree Td Its energy is defined as

E[µ] :=
∫

w(I∗µ)2.

We view the weight w : Td → [0,∞) as fixed, and keep it implicit in the notation. The
energy can be written in terms of the potential

Vµ := I(wI∗µ)

as E[µ] =
∫
T d Vµ dµ. Consider the truncated potential and energy

Vµ
δ := I(1Vµ ≤δwI∗µ), Eδ[µ] :=

∫
T d

Vµ
δ dµ =

∫
{Vµ ≤δ }

w(I∗µ)2.

On a 1-tree, we have the maximum principle

(4.1) Vµ
δ ≤ δ.

It follows that, for any positive function ρ on T , we have∫
T

Vµ
δ dρ =

∫
{Vµ ≤δ }

wI∗µI∗ρ

≤ min(δ |ρ|,E[µ]1/2E[ρ]1/2)

≤ (δ |ρ|)κ(E[µ]E[ρ])(1−κ)/2

(4.2)
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for every κ ∈ (0,1], where

|ρ| :=
∫
T

ρ.

A similar estimate on 2-trees, with a specific κ, was obtained in [AMPVZ]. In this section,
we give a streamlined proof of such an estimate on 2-trees and extend it to 3-trees.

We do not know how to deal with d-trees with d ≥ 4.

If Td = T1 × · · · × Td is an d-tree, then we denote by I1, . . . , In the Hardy operators
acting in the respective coordinates, so that I = I1 · · · In. We use a similar index convention
for operators ∆1, . . . ,∆n.

4.1. 1-trees

Lemma 4.1. Let T be a tree and f ,g : T → [0,∞) be any functions. Then

(I f )(Ig) ≤ I(I f · g + f · Ig).

Proof.

I f (α)Ig(α) ≤ I f (α)Ig(α) + I( f g)(α)

=
∑

α′≥α,α′′≥α

f (α′)g(α′′) +
∑
α′≥α

f (α′)g(α′)

=
∑

α′≥α′′≥α

f (α′)g(α′′) +
∑

α′′≥α′≥α

f (α′)g(α′′)

=
∑
α′′≥α

I f (α′′)g(α′′) +
∑
α′≥α

f (α′)Ig(α′)

= I(I f · g)(α) + I( f · Ig)(α).

Definition 4.2. Given a finite tree T , the set of children of a vertex β ∈ T consists of the
maximal elements of T that are strictly smaller than β:

ch β := max{β′ ∈ T : β′ < β}

A function g : T → R is called superadditive if for every β ∈ T we have

g(β) ≥
∑

β′∈ch(β)

g(β′).

The difference operator is defined by

∆g(β) := g(β) −
∑

β′∈ch(β)

g(β′).

Lemma 4.3 (Partial summation). Let T be a finite tree. For any functions f ,g : T → R,
we have

(4.3)
∑
α∈T

f (α)g(α) =
∑
α′∈T

∆ f (α′)Ig(α′).



Carleson embedding on tri-tree and on tri-disc 25

Proof. By induction on the size of the tree, one can show

f (α) =
∑
α′≤α

∆ f (α′).

It follows that∑
α

f (α)g(α) =
∑

α,α′:α′≤α
∆ f (α′)g(α) =

∑
α′

∆ f (α′)
∑

α:α′≤α
g(α) =

∑
α′∈T

∆ f (α′)Ig(α′).

Lemma 4.4. Let T be a tree and f ,g : T → R. Then

I∗( f g) = I∗(∆ f · Ig) − f (Ig − g).

Proof. For β ∈ T , write ↓β := {α ∈ T | α ≤ β}. This is again a sub-tree, on which we can
apply the partial summation identity (4.3). Hence,

I∗( f g)(β) =
∫
↓β

f g =
∫
↓β
∆ f · I(g1↓β)

For each α ∈ ↓β, we have

I(g1↓β)(α) =
∑

γ:α≤γ≤β
g(γ) =

∑
γ:α≤γ

g(γ) −
∑
γ:β≤γ

g(γ) + g(β) = Ig(α) − Ig(β) + g(β).

Therefore,

I∗( f g)(β) =
∫
↓β
∆ f · (Ig − Ig(β) + g(β))

=

∫
↓β
∆ f · Ig − (Ig(β) − g(β))

∫
↓β
∆ f

= I∗(∆ f · Ig)(β) − (Ig(β) − g(β)) f (β).

Corollary 4.5 (cf. [AMPVZ, Lemma 2.2]). Let T be a tree and f ,g : T → [0,∞) . Then

I∗( f g) ≤ I∗(∆ f · Ig).

4.2. 2-trees

In this section we prove a version of (4.2) on 2-trees that refines [AMPVZ, Lemma 4.1].
Recall that I = I1I2.

Lemma 4.6. Let T2 be a bi-tree and f ,g : T2 → [0,∞) Then

(I f )(Ig) ≤ I(I f · g + I1 f · I2g + I2 f · I1g + f · Ig).

Proof. The linear operators I1, I2 commute and I = I1I2. To each of I1, I2 we can apply
Lemma 4.1. Hence,

(I f )(Ig) = (I1I2 f )(I1I2g)

≤ I1

(
(I1I2 f )(I2g) + (I2 f )(I1I2g)

)
.
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By Lemma 4.1, the sum in the bracket is

= (I2I1 f )(I2g) + (I2 f )(I2I1g)

≤ I2
(
(I2I1 f )(g) + (I1 f )(I2g)

)
+ I2

(
(I2 f )(I1g) + ( f )(I2I1g)

)
.

Hence,

(I f )(Ig) ≤ I1

(
I2

(
(I2I1 f )(g) + (I1 f )(I2g)

)
+ I2

(
(I2 f )(I1g) + ( f )(I2I1g)

) )
= I(I f · g + I1 f · I2g + I2 f · I1g + f · Ig).

The following result will not be used in our current treatment of bi-trees. We include
it to illustrate the relation of Lemma 4.6 with the argument in [AMPVZ].

Corollary 4.7 (cf. [AMPVZ, Theorem 3.1]). Let 0 < δ ≤ λ/4. Let f : T2 → [0,∞) with
supp f ⊆ {I f ≤ δ}. Then

(I f )1I f ≥λ ≤ 4λ−1I
(
I1 f · I2 f

)
.

Proof. Substituting f = g, Lemma 4.6 implies that

(I f )2 ≤ 2I
(
I1 f · I2 f + f · I f

)
.

Using the support condition, this implies

(I f )1I f ≥λ ≤ λ−1(I f )21I f ≥λ

≤ λ−12I
(
I1 f · I2 f + δ f

)
1I f ≥λ

≤ 2λ−1I
(
I1 f · I2 f

)
+ 2δλ−1I f 1I f ≥λ.

Since 2δλ−1 ≤ 1/2, this implies

(I f )1I f ≥λ ≤ 4λ−1I
(
I1 f · I2 f

)
4.2.1. Energy bound.

Lemma 4.8. Let T2 be a 2-tree and f : T2 → [0,∞) a function that is superadditive in
each parameter separately. Let w : T2 → [0,∞) be of tensor product form. Suppose that
supp f ⊆ {I(w f ) ≤ δ}. Then∫

T 2
w f · I1(w1 f ) · I2(w2 f ) · I(w f ) ≤ δ2

∫
T 2
w f 2.

Proof. By the hypothesis, the left-hand side of the conclusion is

≤ δ

∫
T 2
w f · I1(w1 f ) · I2(w2 f )

= δ

∫
T 2
w1 f · I1(w f ) · I2(w2 f )

= δ

∫
T 2
w f · I∗1 (w1 f · I2(w2 f ))

= δ

∫
T 2
w f · I∗1 ( f · I2(w f ))

(4.4)
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By Corollary 4.5, we have

I∗1 ( f · I2(w f )) ≤ I∗1 (∆1 f · I1I2(w f )).

Since {I(w f ) ≤ δ} is an up-set, ∆1 f is supported on this set. Since f is superadditive,
∆1 f ≥ 0. Hence,

(4.5) I∗1 ( f · I2(w f )) ≤ I∗1 (∆1 f · I(w f )) ≤ I∗1 (∆1 f · δ) = δ f .

Inserting (4.5) into (4.4), we obtain the claim.

Lemma 4.9. Let T2 be a 2-tree and f : T2 → [0,∞) a function that is superadditive in
each parameter separately. Let w : T2 → [0,∞) be of tensor product form. Suppose that
supp f ⊆ {I(w f ) ≤ δ}. Then∫

T 2
w(I1w1 f )2(I2w2 f )2 ≤ 4δ2

∫
T 2
w f 2.

Proof. By Lemma 4.1 and commutativity of operations in different coordinates,∫
T 2
w(I1w1 f )2(I2w2 f )2 ≤ 4

∫
T 2
wI1(w1 f · I1(w1 f )) · I2(w2 f · I2(w2 f ))

= 4
∫
T 2

I1(w1 f · I1(w f )) · I2(w2 f · I2(w f ))

= 4
∫
T 2

I∗2 (w1 f · I1(w f )) · I∗1 (w2 f · I2(w f ))

= 4
∫
T 2
wI∗2 ( f · I1(w f )) · I∗1 ( f · I2(w f )).

(4.6)

Using (4.5), we obtain the claim.

The next results improve [AMPVZ, Lemma 4.1].

Lemma 4.10 (Small energy majorization on bi-tree). Let T2 be a 2-tree and f : T2 →

[0,∞) a function that is superadditive in each parameter separately. Let w : T2 → [0,∞)
be of tensor product form. Suppose that supp f ⊆ {I(w f ) ≤ δ}. Let λ ≥ 4δ. Then there
exists ϕ : T2 → [0,∞) such that

a) Iwϕ ≥ Iw f , where Iw f ∈ [λ,2λ],

b)
∫
T 2
wϕ2 ≤ C

δ2

λ2

∫
T 2
w f 2,

where C is an absolute constant.

Proof. Since 2δλ−1 ≤ 1/2, we have

(I f )1I f ≥λ ≤ 4λ−1I
(
I1 f · I2 f

)
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And thus

(I f )1λ≤I f ≤2λ ≤ 4λ−1I
(
I1 f · I2 f

)
1λ≤I f ≤2λ ≤ 4λ−1I

(
I1 f · I2 f · 1I f ≤2λ

)
Put

ϕ := 4λ−1
(
I1 f · I2 f · 1I f ≤2λ

)
Then ϕ does already satisfy condition a) of the statement of the lemma. Now apply Lemma
4.9 to see that condition b) of the statement of the lemma is satisfied as well.

4.2.2. The lack of maximal principle and the capacity of bad sets. In [AMPVZ] we
proved the analogous small energy majorization statement on bi-tree T2 but with δ

λ in the
right hand side of b).

Let us see why we care. Let µ be a measure on ∂T2 and let it potential Vµ ≤ 1 on
supp µ. In the “usual” potential theory the maximal principle would imply that potential
Vµ ≤ 1 everywhere (or at least that Vµ ≤ C with absolute constant C, see [AH]).

This is not true for potential theory on multi-trees. The reader can find the counter-
examples in [AMPVZ].

The natural question arises: given λ >> 1, what is the size of the set {Vµ ≥ λ}. Let
us introduce the usual notion of capacity on T2. Given a set E we consider all ϕ such that
Iϕ ≥ 1 on E and

cap(E) := inf
∫
T 2
ϕ2

where infimum is taken over such ϕ. So one would like to estimate the capacity of the bad
set cap({Vµ > λ}) in terms of λ, if Vµ ≤ 1 on supp µ.

Theorem 4.11. Let us be on T2 and Vµ ≤ 1 on supp µ. Then

cap({Vµ > λ}) ≤
CE[µ]
λ4

for λ ≥ 1, where C is an absolute constant.

Proof. Consider f = I∗µ, δ = 1. If f (α) , 0 then there is β ≤ α such that β ∈ supp µ.
But then by assumption I f (β) = II∗µ(β) = Vµ(β) ≤ 1. By monotonicity of I we have that
I f (α) ≤ 1. Hence

supp f ⊂ {I f ≤ δ = 1},

and we are in the assumptions of small energy majorization Lemma on bi-tree 4.10. We
apply it with data ( f , δ = 1, λ := 2mλ) to get functions ϕm, m = 0,1, . . . such that

Iϕm ≥ I f = Vµ, where Vµ ∈ [2mλ,2m+1λ],

which means that

2−mλ−1Iϕm ≥ 1, where Vµ ∈ [2mλ,2m+1λ],

On the other hand, putting ϕ :=
∑

m 2−mλ−1ϕm, we get firstly

Iϕ ≥ 1, where Vµ ∈ [λ,∞),
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and secondly ∫
ϕ2 ≤

(
λ−1

∑
m

2−m
( ∫

T 2
ϕ2
m

)1/2
)2
≤

C
(
λ−1

∑
m

λ−12−2m(

∫
T 2

f 2)1/2
)2
≤ C ′ λ−4

∫
T 2

f 2

As f = I∗µ,
∫
T 2 f 2 =

∫
T 2 I
∗µI∗µ=

∫
T 2 II

∗µdµ=
∫
T 2V

µdµ= E[µ], which proves theorem.

Remark 4.12. We do not know how precise is the rate λ−4 in Theorem 4.11. We do not
even know whether the sharp rate should be polynomial or exponential. What we do know
(see [AMPVZ]) is that for any large λ there exists a measure µ, such that Vµ ≤ 1 on supp µ
but with positive absolute constant c the following holds

(4.7) cap({Vµ > λ}) ≥ ce−2λ .

4.2.3. Continuation of energy estimates.

Lemma 4.13. Let µ, ρ be positive measures on T2 and δ > 0. Let w : T2 → [0,∞) be of
tensor product form. Then

(4.8)
(∫
V
µ
δ dρ

)4
≤ 28 · δ2Eδ[µ]E[ρ]|ρ|

2.

Proof. Let f := 1Vµ ≤δI∗µ. Then∫
V
µ
δ dρ =

∫
I(w f ) dρ

≤ |ρ|1/2
(∫
(I(w f ))2 dρ

)1/2

by Lemma 4.6,

≤ |ρ|1/2
(
2
∫
I(I1(w f ) · I2(w f ) + (w f ) · I(w f )) dρ

)1/2

= 21/2 |ρ|1/2
(∫

w(I1(w1 f ) · I2(w2 f ) + f · I(w f ))I∗ρ
)1/2

≤ 21/2 |ρ|1/2E[ρ]1/4
(∫

w(I1(w1 f ) · I2(w2 f ) + f · I(w f ))2
)1/4

expanding the square and using Lemma 4.8 and Lemma 4.9,

≤ 21/2 |ρ|1/2E[ρ]1/4
(
7δ2

∫
w f 2

)1/4

= 281/4 |ρ|1/2E[ρ]1/4δ1/2Eδ[µ]
1/4.
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4.3. 3-trees

Similarly to Lemma 4.6, we obtain the following result for 3-trees.

Lemma 4.14. Let T3 be a 3-tree and f ,g : T3 → [0,∞). Then

(I f )(Ig) ≤ I
( ∑
A⊆{1,2,3}

IA f · IAcg
)
,

where IA =
∏

i∈A Ii .

Corollary 4.15. Let 0 < δ ≤ λ/4. Let f : T3 → [0,∞) with supp f ⊆ {I f ≤ δ}. Then

(I f )1λ≤I f ≤2λ ≤ 4λ−1I
( ∑
i∈{1,2,3}

Ii f · I(i) f · 1I f ≤2λ

)
,

where I(i) =
∏

j,i Ij .

Proof. Substituting f = g, Lemma 4.14 implies that

(I f )2 ≤ I
(
2

∑
i∈{1,2,3}

Ii f · I(i) f + 2 f · I f
)
.

Using the support condition, this implies

(I f )1λ≤I f ≤2λ ≤ λ
−1(I f )21λ≤I f ≤2λ

≤ λ−1I
(
2

∑
i∈{1,2,3}

Ii f · I(i) f + 2δ f
)

≤ λ−1I
(
2

∑
i∈{1,2,3}

Ii f · I(i) f
)
+ 2δλ−1I f .

Since 2δλ−1 ≤ 1/2, this implies

(I f )1λ≤I f ≤2λ ≤ 2λ−1I
(
2

∑
i∈{1,2,3}

Ii f · I(i) f
)
1λ≤I f ≤2λ

≤ 2λ−1I
(
2

∑
i∈{1,2,3}

Ii f · I(i) f · 1I f ≤2λ

)
.

4.3.1. Energy bound.

Lemma 4.16. Let f : T3 → [0,∞) be superadditive. Let w : T3 → [0,∞) be a tensor
product. Suppose that supp f ⊆ {I(w f ) ≤ δ}. Then∫

w(I1(w1 f ) · I2I3(w2w3 f ))21I(w f )≤λ ≤ 2δλ
∫

w f 2.
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Proof. By Lemma 4.1, we have∫
w(I1(w1 f ) · I2I3(w2w3 f ))21I(w f )≤λ

≤ 2
∫

wI1(w1 f · I1(w1 f )) · (I2I3(w2w3 f ))21I(w f )≤λ

= 2
∫

I1(w1 f · I1(w f )) · (I2I3(w2w3 f )) · (I2I3(w f ))1I(w f )≤λ

= 2
∫

w1 f · I1(w f ) · I∗1
(
(I2I3(w2w3 f )) · (I2I3(w f ))1I(w f )≤λ

)
.

(4.9)

By Corollary 4.5, we have

I∗1
(
(I2I3(w2w3 f )) · (I2I3(w f ))1I(w f )≤λ

)
≤ I∗1

(
∆1(1I(w f )≤λ · I2I3(w2w3 f )) · I1(I2I3(w f )).

Since {I(w f ) ≤ λ} is an up-set and f is superadditive in the first coordinate, we have
∆1(1I(w f )≤λ · I2I3(w2w3 f )) ≥ 0, and I1(I2I3w f ) = Iw f ≤ λ on the support of the former
function. Hence,

I∗1
(
(I2I3(w2w3 f )) · (I2I3(w f ))1I(w f )≤λ

)
≤ I∗1

(
∆1(1I(w f )≤λ · I2I3(w2w3 f )) · λ

)
= λ1I(w f )≤λ · I2I3(w2w3 f ).

Using this bound, we obtain

(4.9) ≤ 2λ
∫

w1 f · I1(w f ) · I2I3(w2w3 f )

= 2λ
∫

f · I1(w f ) · I2I3(w f )

= 2λ
∫

w f · I∗1 ( f · I2I3(w f )).

As in (4.5), we see that
I∗1 ( f · I2I3(w f )) ≤ δ f .

This implies the conclusion of the lemma.

Compare the next result with Lemma 4.10.

Lemma 4.17 (Small energy majorization on tri-tree). Let T3 be a 3-tree and f : T3 →

[0,∞) a function that is superadditive in each parameter separately. Let w : T3 → [0,∞)
be of tensor product form. Suppose that supp f ⊆ {I(w f ) ≤ δ}. Let λ ≥ 4δ. Then there
exists ϕ : T3 → [0,∞) such that

a) I(wϕ) ≥ I(w f ), where I(w f ) ∈ [λ,2λ],

b)
∫
T 3
wϕ2 ≤ C

δ

λ

∫
T 3
w f 2,

where C is an absolute constant.
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Proof. Since 2δλ−1 ≤ 1/2, we have

(Iw f )1λ≤I f ≤2λ ≤ 2λ−1I
(
2

∑
i∈{1,2,3}

Iiwi f · I(i)w(i) f
)
1λ≤I f ≤2λ

≤ 2λ−1I
(
2

∑
i∈{1,2,3}

Iiwi f · I(i)w(i) f · 1I f ≤2λ

)
.

Put
ϕ := 2λ−1

(
2

∑
i∈{1,2,3}

Iiwi f · I(i)w(i) f · 1I f ≤2λ

)
.

Then we have just seen that a) is satisfied. To prove b) just apply Lemma 4.16.

4.3.2. The lack of maximal principle and the capacity of bad sets. The reader can
compare this subsection with Subsection 4.2.2.

Let µ be a measure on ∂T3 and let it potential Vµ ≤ 1 on supp µ. As we already
mentioned in the “usual” potential theory the maximal principle would imply that potential
Vµ ≤ 1 everywhere (or at least that Vµ ≤ C with absolute constant C, see [AH]).

As we also already mentioned, see Subsection 4.2.2, this is not true for potential theory
on multi-trees.

The natural question arises: given λ >> 1, what is the size of the set {Vµ ≥ λ}. Let
us introduce the usual notion of capacity on T3. Given a set E we consider all ϕ such that
Iϕ ≥ 1 on E and

cap(E) := inf
∫
T 3
ϕ2

where infimum is taken over such ϕ. So one would like to estimate the capacity of the bad
set cap({Vµ > λ}) in terms of λ, if Vµ ≤ 1 on supp µ.

Theorem 4.18. Let us be on T3 and Vµ ≤ 1 on supp µ. Then

cap({Vµ > λ}) ≤
CE[µ]
λ3

for λ ≥ 1, where C is an absolute constant.

Proof. Consider f = I∗µ, δ = 1. If f (α) , 0 then there is β ≤ α such that β ∈ supp µ.
But then by assumption I f (β) = II∗(β) = Vµ(β) ≤ 1. By monotonicity of I we have that
I f (α) ≤ 1. Hence

supp f ⊂ {I f ≤ δ = 1},

and we are in the assumptions of small energy majorization Lemma on tri-tree 4.17. We
apply it with data ( f , δ = 1, λ := 2mλ) to finish the proof in exactly the same manner as
this has been done in Theorem 4.11.

Remark 4.19. We do not know how precise is the rate λ−3 in Theorem 4.18. The lower
bound (4.7) still applies, since the cartesian product of a 2-tree and a singleton is a 3-tree,
but there is a lot of room between the upper and the lower bound.
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4.3.3. Continuation of energy estimates. The next result is a version of (4.2) for 3-trees.
The proof closely follows [AMPVZ, Lemma 4.1].

Lemma 4.20. Let µ, ρ be positive measures on T3 and δ > 0. Let w : T3 → [0,∞) be of
tensor product form. Then

(4.10)
(∫

Vµ
δ dρ

)3
. δEδ[µ]E[ρ]|ρ|.

Proof. Without loss of generality, Eδ[µ] , 0 and ρ . 0. Let λ > 0 be chosen later.
Let f := I∗µ · 1Vµ ≤δ(α). This function is superadditive. Also, I(w f ) = Vµ

δ ≤ Vµ ≤ δ

on supp f , and Eδ[µ] =
∫
w f 2.

For m = 0,1, . . . let

φm := 4(2mλ)−1
( ∑
i∈{1,2,3}

Ii(wi f ) · I(i)(w(i) f ) · 1I(w f )≤2m+1λ

)
.

Then, by Corollary 4.15 with w f in place of f , we have

I(w f ) · 12mλ<I(w f )≤2m+1λ ≤ I(wφm),

and, by Lemma 4.16, we have ∫
wφ2

m .
δ

2mλ

∫
w f 2.

Hence, ∫
Vµ
δ dρ =

∫
{Vµδ ≤λ}

Vµ
δ dρ +

∞∑
m=0

∫
{2mλ<Vµδ ≤2m+1λ}

Vµ
δ dρ

≤ λ |ρ| +

∞∑
m=0

∫
I(wφm) dρ

= λ |ρ| +

∞∑
m=0

∫
wφmI∗ dρ

≤ λ |ρ| +

∞∑
m=0

(∫
wφ2

m

)1/2
E[ρ]1/2

≤ λ |ρ| +

∞∑
m=0

C(δ/(2mλ))1/2Eδ[µ]1/2E[ρ]1/2.

≤ λ |ρ| + C(δ/λ)1/2Eδ[µ]1/2E[ρ]1/2.

Substituting λ = (δEδ[µ]E[ρ])1/3 |ρ|−2/3, we obtain (4.10).

Corollary 4.21. Let µ, ρ be positive measures on T3 and δ > 0. Then

(4.11)
∫

Vµ
δ dρ ≤ C1/2

(4.10)δ
1/2E[µ]1/6 |µ|1/6E[ρ]1/3 |ρ|1/3.
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Proof. By Lemma 4.20 and Theorem 4.23, we have(∫
Vµ
δ dρ

)3
≤ C(4.10)δEδ[µ]E[ρ]|ρ| ≤ C(4.10)δ

(
C(4.10)δE[µ]|µ|

)1/2
E[ρ]|ρ|

4.4. d-trees

We say that a weight w satisfies the surrogate maximum principle if, for some κ > 0,C <∞
and every positive functions µ, ρ : Td → [0,∞) and δ > 0, we have

(4.12)
∫

Vµ
δ dρ ≤ C

(
δ |ρ|

)κ (
Eδ[µ]E[ρ]

) (1−κ)/2
.

When d ∈ {1, 2, 3}, every weight w of tensor product form satisfies the surrogate
maximum principle with κ = 1/n and C independent of w. For d = 1, this follows from
the maximum principle (4.1). For d = 2 this holds by Lemma 4.13, and for d = 3 by
Lemma 4.20. This leads us to the following conjecture.

Conjecture 4.22 (Surrogate maximum principle). Let w : Td→[0,∞) be of tensor product
form. Then w satisfies the surrogate maximum principle with κ = 1/n and C = C(n) inde-
pendent of w.

In what follows, we will work conditionally on the surrogate maximum principle. All
implicit constants are allowed to depend on κ,C in (4.12), but not otherwise on w. In
particular, our results hold unconditionally for w of tensor product form if n ∈ {1,2,3}.

Taking ρ = µ in (4.12), we obtain Lemma 4.23 below.

Lemma 4.23. Let w : Td → [0,∞) be such that the surrogate maximal principle (4.12)
holds. Let µ be a positive measure on Td and δ > 0. Then

(4.13)
∫

Vµ
δ dµ ≤ C

2
1+κ
(4.12)(δ |µ|)

2κ
1+κ E[µ]

1−κ
1+κ .

When using Lemma 4.23, we can also denote 2κ
1+κ by the letter κ again, which proves

(4.12) for d = 1,2,3.

Conjecture 4.24. For all positive integers d

(4.14)
∫

Vµ
δ dµ ≤ Cd(δ |µ|)

2
d+1 E[µ]

d−1
d+1 .

Notice that for d = 1 we have the best possible estimate, it is linear in δ. For d = 2
we proved above the estimate with δ2/3. To our big surprise we managed to improve this
result: in [MPVZ] we have proved the estimate ≤ Cτ(δ |µ|)1−τE[µ]τ for any τ > 0. And we
can prove that the estimate with τ = 0 is false for d = 2, see [MP].

5. Carleson condition implies hereditary Carleson condition

For an arbitrary set E ⊆ Td , let

EE [µ] :=
∫
E

w(I∗µ)2.
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Lemma 5.1. Let w : Td → [0,∞) be such that the surrogate maximal principle (4.12)
holds. Let ν : Td → [0,∞) and

(5.1) E :=
{
Vν > (2C(4.13))

−1/κ E[ν]

|ν |

}
⊆ Td .

Then

(5.2) EE [ν] :=
∑
α∈E

w(α)(I∗ν(α))2 ≥
1
2
E[ν].

Proof. Put δ := (2C(4.13))
−1/κ E[ν]

|ν | . By Lemma 4.23, we have

EE [ν] = E[ν] − Eδ[ν] ≥ E[ν] − C(4.13)(δ |ν |)
κE[ν]1−κ = E[ν]/2,

and the claim follows.

Theorem 5.2. Let w : Td → [0,∞) be such that the surrogate maximal principle (4.12)
holds. Then, for every µ : Td → [0,∞0, we have

[w, µ]HC . [w, µ]Car .

Proof. Without loss of generality [w, µ]Car = 1. Let

(5.3) A := [w, µ]HC = sup
E⊆T d ,µ(E),0

E[µ1E ]
µ(E)

.

Since Td is finite, the constant A is finite, and there exists a maximizer E for (5.3). Let
ν := µ1E and

(5.4) D :=
{
Vν > cA

}
with a small constant c. Then, by Lemma 5.1, we have

ED[ν] ≥
1
2
E[ν] .

Hence, 0 < E[ν] ≤ 2ED[ν] ≤ 2ED[µ] ≤ 2µ(D). In particular, µ(D) , 0.
By definition, we have Vν > cA on D, and therefore

cAµ(D) ≤
∫
D

Vν dµ ≤ E[ν]1/2E[µ1D]1/2 ≤ (2µ(D))1/2(Aµ(D))1/2.

It follows that A . 1.
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6. Hereditary Carleson condition implies Carleson embedding

Theorem 6.1. Let w : Td → [0,∞) be such that the surrogate maximal principle (4.12)
holds. Let µ, ρ be positive measures on Td with

(6.1) [w, µ]HC ≤ 1, [w, ρ]HC ≤ 1.

Then, for some κ′ > 0, we have

(6.2)
∫

Vµ dρ . |µ|1/2−κ
′

|ρ|1/2+κ
′

.

Remark 6.2. This improves upon the estimate∫
Vµ dρ ≤ E[µ]1/2E[ρ]1/2 . |µ|1/2 |ρ|1/2

that is immediate by Cauchy–Schwarz and the Carleson condition.

Proof. Let δ > 0 be chosen later. By (4.12) and (6.1), we obtain∫
Vµ
δ dρ . δκ |µ|(1−κ)/2 |ρ|(1+κ)/2.

Consider the down-set E := {Vµ > δ} ⊂ Td . By the Cauchy–Schwarz inequality and
the Carleson condition, we have∫

(Vµ − Vµ
δ) dρ =

∫
E

wI∗µI∗ρ ≤ EE [µ]1/2EE [ρ]1/2 ≤ µ(E)1/2E[ρ]1/2.

Note that

(6.3) δµ(E) ≤
∫
E

Vµ dµ ≤ E[µ]1/2E[µ1E ]1/2 ≤ E[µ]1/2µ(E)1/2

by definition (1.19) of the hereditary Carleson constant. Hence,

µ(E)1/2 ≤ δ−1E[µ]1/2,

and it follows that ∫
(Vµ − Vµ

δ) dρ ≤ δ
−1E[ρ]1/2E[µ]1/2.

Hence, ∫
Vµ dρ ≤ Cδκ |µ|(1−κ)/2 |ρ|(1+κ)/2 + δ−1 |ρ|1/2 |µ|1/2.

Optimizing in δ, we obtain ∫
Vµ dρ . |µ|

1/2
1+κ |ρ|

1/2+κ
1+κ .

Exactly as in [AMPVZ, Theorem 6.3], we can now prove the following result.
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Theorem 6.3. Let w : Td → [0,∞) be such that the surrogate maximal principle (4.12)
holds. Then, for every µ : Td → [0,∞), we have

[w, µ]CE . [w, µ]HC .

Alternatively, we can argue as follows. Let µ, µ̃ be measures on Td with [w, µ]HC ≤ 1
and [w, µ̃]HC ≤ 1. By Theorem 6.1 and the definition of the hereditary Carleson constant
(1.19), the positive bilinear map

(6.4) (ψ, ψ̃) 7→

∫
w(I∗ψµ)(I∗ψ̃ µ̃)

is bounded on Lp,1(µ) × Lp′,1(µ̃) and on Lp′,1(µ) × Lp,1(µ̃), where 1/p = 1/2 − κ′. By
restricted type interpolation, it follows that the map (6.4) is also bounded on L2(µ) ×
L2(µ̃). Theorem 6.3 arises in the case µ = µ̃, ψ = ψ̃.

7. Box condition implies hereditary Carleson

7.1. Main estimate

Define

VνP(ω) :=
∑

Q:ω≤Q≤P
w(Q)I∗ν(Q),(7.1)

Vµ
ε′,good

(ω) :=
∑

P≥ω:VP (ω)>ε′

(wI∗µ)(P).(7.2)

Lemma 7.1. Let n ≥ 2 and µ : Td→[0,∞). Let w : Td→[0,∞) be such that the surrogate
maximal principle (4.12) holds. Assume that E[µ] ≤ |µ| and

(7.3) Vµ ≥ 1/3 on supp µ.

Then, if ε ′ is small enough, we have∫
Vµ
ε′,good

dµ & |µ|.

Proof of Lemma 7.1. It suffices to show that, for some ε ′ and εn−1, we have

µ{ω ∈ Td | Vµ
ε′,good

(ω) ≥ εn−1} ≥ |µ|/2.

Let ε > 0 be chosen later and define

ε1 := ε, ε2 := εε1/κ
1 , ε3 := εε1/κ

2 , . . .

By Lemma 4.23, we have∫
Vµ
ε j dµ . εκj |µ|

κE[µ]1−κ . εκj

∫
dµ
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for some κ > 0. By Chebyshov’s inequality, it follows that

(7.4) Vµ
ε j (ω) ≤ (εj/ε)

κ/10

for a proportion ≥ (1 − Cεκ) of ω’s. So we only consider ω’s for which (7.4) holds for all
j = 1, . . . ,n − 1. Similarly, we may restrict to those ω’s for which Vµ(ω) . 1.

Let
ε ′ := ε · ε1 · · · εn−1.

For a fixed ω, let

(7.5) U := {Q ≥ ω | VQ(ω) > ε ′}

and

(7.6) Wj := {Q ≥ ω | Vµ(Q) ≤ εj}, 1 ≤ j ≤ n − 1.

For p ∈ Td , write
↑p := {α ∈ Td | α ≥ p}.

For p ∈ ↑ω, let
↓p := {α ∈ Td | ω ≤ α ≤ p}.

IfU *Wn−1, then this means that there exists p <Wn−1 with ↑p ⊆ U. Hence,

Vµ
ε′,good

(ω) ≥
∑
p′∈↑p

wµ(p′) = Vµ(p) ≥ εn−1.

Assume now thatU ⊆Wn−1. In this case, we will cover ↑ω \W1 by boundedly many
sets of the form ↓q with q ∈ ↑ω \ U. This will lead to a contradiction with (7.3), since, by
(7.4) and (7.5), the integral of

f := wI∗µ

is small onW1 and on each such set ↓q.
For a set of coordinates J ⊆ {1, . . . ,n} and a point p ∈ Td , let

↑J p := {q ∈ Td | qj ≥ pj for j ∈ J, qj = pj for j < J}.

Given J ⊆ {1, . . . ,n} with J , ∅ and p ∈ Td , we define a set QJ (p) ⊂ Td as follows. If
|J | = 1, then QJ (p) consists of the (unique) maximal element of ↑J p \ U, if the latter set
is nonempty, and is empty otherwise. If |J | ≥ 2, then QJ (p) is a maximal set of maximal
elements of ↑J p \ Wn−|J |+1 such that the sets ↑Jq \ Wn−|J |+2 are pairwise disjoint for
q ∈ QJ (p).

Then, recursively, let R∅(p) := {p},

RJ (p) := ∪J′⊂J ∪p′∈QJ (p) RJ′(p′),

where the first union runs over all subsets of J with cardinality |J ′ | = |J | − 1.
We claim that, for every p ∈ ↑ω and every J ⊆ {1, . . . ,n} with J , ∅, we have

(7.7)
⋃

p′∈RJ (p)

↓p′ ⊇ ↑J p \Wn−|J |+1,
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where we set Wn := U to simplify notation. We prove (7.7) by induction on |J |. For
|J | = 1, the claim (7.7) obviously holds. Let now J with |J | ≥ 2 be given, and suppose that
(7.7) is known for all proper subsets of J. Let

D :=
⋃

p′∈RJ (p)

↓p′, P := ↑J p \Wn−|J |+1.

By the inductive hypothesis,

(7.8) D ⊇ ↑J′p
′ \Wn−|J |+2

for every p′ ∈ QJ (p) and every J ′ ( J. Suppose that

(7.9) D + P .

Choose a maximal q ∈ P \ D. Since D is a down-set, q is also a maximal element of P.
We claim that

(7.10) (↑Jq ∩ ↑J p′) \Wn−|J |+2 = ∅ for all p′ ∈ QJ (p).

Indeed, suppose for a contradiction that there exists q′ ∈ (↑Jq ∩ ↑J p′) \Wn−|J |+2, and let
q′ be minimal with this property. SinceWn−|J |+2 is an up-set, q′ is also a minimal element
of ↑Jq ∩ ↑J p′. Since q, p′ ∈ ↑J p, q′ is in fact the coordinate-wise maximum of q, p′. Since
q and p′ are distinct maximal elements of P, in fact q′ coincides with p′ in at least one
coordinate, so q′ ∈ ↑J′p′ for some J ′ ( J. Now, (7.8) implies that q′ ∈ D, and, sinceD is
a down-set and q′ ≥ q, also q ∈ D, a contradiction.

Therefore, (7.10) holds. But this contradicts the maximality ofQJ (p). Thus the assump-
tion (7.9) is false, and we obtain (7.7).

Let p ≥ ω. For 2 ≤ |J | ≤ n, we have

1 & Vµ(ω)

≥ Vµ(p)

≥
∑

q∈QJ (p)

∫
↑Jq\Wn−|J |+2

f

≥
∑

q∈QJ (p)

(I f (q) − I( f 1Wn−|J |+2 )(ω))

by definition of q ∈ Wn−|J |+1 and by (7.4),

≥
∑

q∈QJ (p)

(εn−|J |+1 − (εn−|J |+2/ε)
1/2/10)

& |QJ (p)|εn−|J |+1.

It follows that
ε1 · · · εn−1 |R {1,...,n}(ω)| . 1.
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Hence, by (7.7),

Vµ(ω) − Vµ
ε (ω) =

∫
↑ω\W1

f

≤
∑

p′∈R{1, . . . ,n}(ω)

∫
↓p′

f

=
∑

p′∈R{1, . . . ,n}(ω)

Vµ
p′(ω)

≤ ε ′ |R {1,...,n}(ω)|

.
ε ′

ε1 · · · εn−1
= ε .

Therefore, by (7.4),

1/3 ≤ Vµ(ω) = (Vµ(ω) − Vµ
ε (ω)) + Vµ

ε (ω) ≤ Cε + 1/10.

This inequality is false if ε is sufficiently small, contradicting the assumptionU ⊆Wn−1.

7.2. Box condition implies hereditary Carleson

We refer to [AHMV, Lemma 3.1] or [AMPVZ, Lemma 7.1] for the following lemma.

Lemma 7.2 (Balancing lemma). Let ν : Td → [0,∞) with

E[ν] =

∫
Vν dν ≥ A|ν |.

Then there exists a down-set Ẽ ⊂ Td such that for the measure ν̃ := ν1Ẽ we have

Vν̃ ≥
A
3

on Ẽ,

and
E[ν̃] ≥

1
3
E[ν].

The next result contains the last missing inequality in Theorem 1.4.

Theorem 7.3. Let n ≥ 2. Let w : Td→[0,∞) be such that the surrogate maximal principle
(4.12) holds. Then, for every ν : Td → [0,∞), we have

[w, ν]HC . [w, ν]Box .

Proof. By scaling, we may assume [w, ν]Box = 1 without loss of generality. Let A :=
[w, ν]HC . Let E ⊂ T2 be a subset such that µ = ν1E , 0 and E[µ] = A|µ| (such a subset
exists because we assume that Td is finite). By Lemma 7.2, there exists a further subset
Ẽ ⊂ T2 such that µ̃ := µ1Ẽ satisfies

Vµ̃ ≥
A
3
on Ẽ
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and µ̃ , 0. Thus, replacing µ by µ̃, we may assume Vµ ≥ A/3 on supp µ.
By Lemma 7.1 applied with µ/A in place of µ, for sufficiently small ε, θ > 0, we have

(7.11)
∫

Vµ
εA,good

dµ ≥ 2θE[µ].

We claim that, with these values of ε and θ, we have

(7.12) E[µ] ≤
θ

1 − θ

∑
α:θεAI∗µ(α)≤Eα [µ]

w(α)(I∗µ(α))2.

Indeed, suppose that α is such that

θεAI∗µ(α) > Eα[µ] =
∑
ω≤α

µ(ω)Vµ
α(ω), Vµ

α(ω) =
∑

β:ω≤β≤α
w(β)(I∗µ)(β),

where the latter definition is from (7.1). Then we have∑
ω≤α:Vµα (ω)≤εA

µ(ω) = I∗µ(α) −
∑

ω≤α:Vµα (ω)>εA

µ(ω)

≥ I∗µ(α) −
1
εA

∑
ω≤α

Vµ
α(ω)µ(ω)

≥ (1 − θ)I∗µ(α).

It follows that∑
α:θεAI∗µ(α)>Eα [µ]

w(α)(I∗µ(α))2 ≤
∑
α

w(α)I∗µ(α)
1

1 − θ

∑
ω≤α:Vµα (ω)≤εA

µ(ω)

=
1

1 − θ

∑
ω

µ(ω)
∑

α≥ω:Vµα (ω)≤εA

w(α)I∗µ(α)

=
1

1 − θ

∑
ω

µ(ω)(Vµ − Vµ
good,εA

)(ω)

≤
1 − 2θ
1 − θ

E[µ].

This implies the claim (7.12).
By Lemma 4.23 again, and since Vµ ≥ A/4 on supp µ, we also have

(7.13) Ec′A[µ] . (c′A)κ |µ|κE[µ]1−κ . (c′)κE[µ].

Taking c′ sufficiently small and combining (7.13) with (7.12), we obtain

E[µ] .
∑
α∈R

w(α)(I∗µ(α))2, R := {α ∈ Td | θεAI∗µ(α) ≤ Eα[µ],Vµ(α) ≥ c′A}.

For each α ∈ R, we have

θεAI∗µ(α) ≤ Eα[µ] ≤ Eα[ν] ≤ [w, ν]BoxI∗ν(α) = I∗σ(α),
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where σ := ν1F , F := {β ∈ Td | ∃α ∈ R, α ≥ β}. It follows that

(7.14) A2E[µ] . E[σ].

On the other hand, using the definition of A, the fact that Vµ & A on supp σ, and the
Cauchy–Schwarz inequality, we obtain

(7.15) E[σ] ≤ A|σ | .
∫

Vµ dσ ≤ E[µ]1/2E[σ]1/2.

From (7.15), we obtain E[σ] . E[µ], and inserting this into (7.14) gives A . 1.

8. What we cannot prove

The main problem with pushing the results to d-trees, d ≥ 4, lies with Lemma 4.10 and
Lemma 4.17. Let us start with majorization on a simple dyadic tree. All trees below are
big but finite. Let f , g be two non-negative functions on a simple dyadic tree T . As always
I f (v) means summing f (u) “up” from v to root o.

Here is the analog of Lemma 4.10 and Lemma 4.17. The big difference of the lemma
below is that it involves two functions: f , g. This is not the case for Lemma 4.10 and
Lemma 4.17 that involve one function.

Lemma 8.1. Let supp f ⊂ {Ig ≤ δ}. Let g be a superadditive function. There exists ϕ :
T → R+ such that

(8.1) a) Iϕ(ω) ≥ I f (ω) ∀ω ∈ ∂T : Ig(ω) ∈ [λ,2λ]

(8.2) b)
∫
T

ϕ2 ≤ C
δ

λ

∫
T

f 2.

Proof. Put
ϕ = λ−1I f · g · 1Ig≤4λ ,

and see [AMPVZ].

Now let us see what happens on bi-tree T2. As before I f (v)means summing f (u) “up”
over all ancestors of v from v to root o. Notice that now a vertex may have two parents.

Conjecture 8.2. Let supp f ⊂ {Ig ≤ δ}. Let g be a function superadditive in its both
variables separately . There exists ϕ : T2 → R+ such that

(8.3) a) Iϕ(ω) ≥ I f (ω) ∀ω ∈ ∂T2 : Ig(ω) ∈ [λ,2λ]

(8.4) b)
∫
T 2
ϕ2 ≤ C

( δ
λ

)τ ∫
T 2

f 2

with some positive τ.
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By analogy with the previous section one may think that given f ,g on T2, such that

(8.5) supp f ⊂ {Ig ≤ δ}

and having g (super)additive on T2, one constructs ϕ as in Lemma 8.1 by formula

ϕ = λ−1I f · g · 1Ig≤4λ .

However this is false.
What is true is the following: let supp f ⊂ {Ig ≤ δ} and let λ ≥ 10δ, ϕ := λ−1(I1 f ·

I2g + I1g · I2 f + g · I f ). Then

(8.6) I(1Ig≤2λ · ϕ) ≥ I f , where Ig ∈ [λ,2λ] .

So a) from the previous lemma can be generalized to bi-tree with the following formula
for ϕ:

(8.7) ϕ = λ−1(I1 f · I2g + I1g · I2 f + g · I f ) · 1Ig≤2λ.

The main difficulty in generalizing Lemma 8.1 to bi-trees is that we cannot prove b) of
this lemma for the case of bi-tree. This is because we have no good estimate of

∫
T 2 (I f )2g2

via
∫
T 2 f 2 for g that is separately superadditive in both variables.
Notice that this hurdle is removed if f = g because then

I(λ−1gI f ) = I(λ−1 f I f ) ≤
δ

λ
I f ≤

1
10
I f ,

and we have another ϕ for majorization: ϕ̃ := cλ−1(2I1 f · I2 f ), where c = 10
9 . In fact from

(8.6) it now follows that

(8.8) I(1I f ≤2λ · ϕ̃) ≥ I f , where I f ∈ [λ,2λ] .

The analog of inequality b) of Lemma 8.1 ≡ (8.2) on bi-tree now follows from Lemma
4.9.

For tri-tree we do not have the analog of Lemma 8.1 with two functions f ,g, as we do
not have it even on bi-tree.

But similarly to (8.7) we can put

ϕ = λ−1(I1 f · I23g + I2 f · I13g + I3 f · I12g+

I1g f · I23 f + I2g · I13 f + I3g · I12 f + gI f ).

(8.9)

Again this function ϕ satisfies

(8.10) I(·1I≤2λ · ϕ) ≥ I f , where Ig ∈ [λ,2λ],

which the analog of a) of Lemma 8.1 (and the analog of (8.6)). However, we cannot prove
the analog of b) of Lemma 8.1 for this function.
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The main difficulty in generalizing Lemma 8.1 to tri-trees is that we cannot prove b) of
this lemma on tri-tree. This misfortune happens by the same reason it happens on bi-tree:
we have no good estimate of

∫
T 3 (I f )2g2 via

∫
T 3 f 2 for g that is separately superadditive

in both variables.
Notice that this hurdle is removed if f = g because then

I(λ−1gI f ) = I(λ−1 f I f ) ≤
δ

λ
I f ≤

1
10

I f ,

and in place of ϕ from (8.9), we have another ϕ for majorization:

ϕ̃ := cλ−1(2I1 f · I23 f + 2I2 f · I13 f + 2I3 f · I12 f ),

where c = 10
9 . In fact from (8.10) it now follows that

(8.11) I(1I f ≤2λ · ϕ̃) ≥ I f , where I f ∈ [λ,2λ] .

The analog of inequality b) of Lemma 8.1 ≡ (8.2) on tri-tree now follows from Lemma
4.16.

8.1. What goes wrong on 4-tree

The reader has the right to ask: you do not know how to estimate
∫
T 2 (I f )2g2 via

∫
T 2 f 2

and you do not know how to estimate
∫
T 3 (I f )2g2 via

∫
T 2 f 2, but you know how to remove

this hurdle in the case f = g. May be one can also remove this hurdle for f = g on d-tree,
d ≥ 4?

Unfortunately, we can see now that the trick does not work for d ≥ 4. Let us notice that
by the analogy with (8.7), (8.9) we can construct ϕ for 4-tree:

ϕ = λ−1(I1 f · I234g + I2 f · I134g + I3 f · I124g + I4 f · I123g+

I1g · I234 f + I2g · I134 f + I3g · I124 f + I4g · I123 f+

I12g · I34 f + I23g · I14 f + I34g · I12 f + I12 f · I34g + I23 f · I14g + I34 f · I12g+

gI f ).

(8.12)

Here I means summation in all 4 variables, the Hardy operator on T4. Let us consider what
happens for the case g = f . We again can absorb the last term gI f = f I f ≤ δ f into the
left hand side because supp f ⊂ {I f ≤ δ}.

But to prove the analog of b) of Lemma 8.1 we would need to know how to estimate
e. g. ∫

T 4
(I12 f · I34 f )2 ≤ C

∫
T 4

f 2 .

We do not know how to achieve such an estimate.
To feel this difficulty better, let us prove Lemma 8.1, where the main point is the

following “weighted” estimate of

(8.13) supp f ⊂ {Ig ≤ δ} ⇒
∫
T

(I f )2g2 ≤ Cδ‖Ig‖∞

∫
T

f 2 for superadditive g .
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8.1.1. The proof of Lemma 8.1 and the explanation where the proof breaks down on
bi-tree. We just repeat the proof from [AMPVZ], but we emphasize why the proof does
not work for very similar estimate of

∫
T 2 (I f )2g2. We are in the assumptions of Lemma

8.1. That is, we are given two functions f ,g on tree T , and

1) supp f ⊂ {Ig ≤ δ},

2) g is a superadditive function.

We need to see why the key estimate (8.13) works on T and will not work on T2 if one
replaces I by I and T by T2 everywhere.

We start with lemma that holds regardless of operator and medium.

Lemma 8.3. Let K be an integral operator with a positive kernel and f ,g positive func-
tions. Then ∫

(K f )2g ≤
(

sup
supp g

KK∗g
) ∫

f 2.

Proof. Without loss of generality f is positive. By duality we have∫
(K f )2g =

∫
f K∗(K f · g) ≤ ‖ f ‖2‖K∗(K f · g)‖2.

We call the operator and its kernel by the same letter K . By the hypothesis Kh(x) =∫
K(x, y)h(y) with a positive kernel K . Hence

‖K∗(K f · g)‖22 =
∫

K∗(K f · g)K∗(K f · g)

=

∫
K(x, y)((I f )(x)g(x))K(x ′, y)((K f )(x ′)g(x ′)) d(x, x ′, y)

≤

∫
1
2
(K f (x)2 + K f (x ′)2)K(x, y)(g(x))K(x ′, y)(g(x ′)) d(x, x ′, y)

=
1
2

∫
K∗((K f )2 · g)K∗(g) +

∫
K∗(g)K∗((K f )2 · g)

=

∫
(KK∗g) · (K f )2 · g

≤

(
sup

supp g
KK∗g

) ∫
(K f )2 · g.

Substituting the second displayed estimate into the first we obtain∫
(K f )2g ≤ ‖ f ‖2

(
sup

supp g
KK∗g

) (∫
(K f )2 · g

)1/2
.

The conclusion follows.

In the preceding lemma operator K could have been either I on T or I on T2, this did
not matter. But in the next lemma, it matters whether we are on T or T2.
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Lemma 8.4. Let T be a finite tree and g, h : T → [0,∞). Assume that g is superadditive
and λ = ‖Ih‖L∞(supp g). Then for every β ∈ T we have

I(gh)(β) =
∑
α≤β

g(α)h(α) ≤ λg(β).

Proof. Without loss of generality we may consider the case when β is the unique maximal
element of T and T = supp g. We induct on the depth of the tree. Let T be given and
suppose that the claim is known for all its branches. Then by the inductive hypothesis and
superadditivity of g we have∑

α≤β

g(α)h(α) = g(β)h(β) +
∑

β′∈ch(β)

∑
α≤β′

g(α)h(α)

≤ g(β)h(β) +
∑

β′∈ch(β)

g(β′) sup
α≤β′

∑
α≤α′≤β′

h(α′)

≤ g(β)h(β) +
∑

β′∈ch(β)

g(β′) sup
α<β

∑
α≤α′<β

h(α′)

≤key g(β)h(β) + g(β) sup
α<β

∑
α≤α′<β

h(α′)

= g(β) sup
α≤β

∑
α≤α′≤β

h(α′).

Remark 8.5. It seems like this claim fails to be true on T2. At least the reasoning fails.
In Conjecture 8.2 we had to assume that g is superadditive in its both variables separately.
This assumption is indispensable for us, because in our applications of such a lemma on
T2 function g on T2 always comes from some function (measure) f additive on T3 in each
of its three variables. Function g is always defined by a simple rule g = Ii f · 1I f ≤t , i = 1
or 2 or 3. But such function g is automatically separately superadditive in each of its two
variables.

But if g is separately superadditive in its both variables then the key estimate in the
above lemma does not work. In fact, instead of having

∑
β′∈ch(β) g(β

′) ≤ g(β) we will have
to write ∑

β′∈ch(β)

g(β′) ≤ 2g(β) .

This seemingly innocuous change leads to accumulation of constant in the above proof.
The above proof breaks down if it cannot keep constant 1 at every stage of induction.

Now we present the proof of Lemma 8.1 by means of Lemma 8.3 and Lemma 8.4. Let
ϕ = 2λ−1I f · g · 1Ig≤4λ. Let ω be such that Ig(ω) ≥ λ. Then f (ω) = 0 and f (γ) = 0 for
all ancestors of ω up to the first γ′ such that Ig(γ′) ≤ δ. Hence, on such ω∑

γ≥ω

I f · g · 1Ig≤4λ =
∑
γ≥ω

I f · g = I f (ω)(λ − δ) ≥
λ

2
I f (ω).

We checked (8.1) of Lemma 8.1.
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To check 8.2 we first apply Lemma 8.3 with

K := I ◦ 1Ig≤δ,

which a composition of multiplication operator and I. Then∫
T

ϕ2 =
4
λ2

∫
T

(I f )2(g1Ig≤4λ)
2 ≤

4
λ2 sup

supp g
KK∗(g21Ig≤4λ)

∫
T

f 2 .

To understand supsupp g KK∗(g21Ig≤4λ) we use Lemma 8.4. By this lemma for any node α

K∗(g21Ig≤4λ)(α) ≤ I∗(g21Ig≤4λ)(α) ≤ 4λg(α) .

Now we are left to estimate Kg = I(1Ig≤δg). But just by definition of I we have

(8.14) I(1Ig≤δg) ≤ δ.

So supsupp g KK∗(g21Ig≤4λ) ≤ 4δλ and we get∫
T

ϕ2 ≤
16δ
λ

∫
f 2 .

Remark 8.6. We already observed one obstacle to prove Conjecture 8.2. We did this in
Remark 8.5. Now let us observe, that even if we would manage to overcome this first
difficulty mention in that remark, we still have another very serious one: the analog of
inequality (8.14) is blatantly false on T2. The following inequality is generically false on
bi-tree:

(8.15) I(1Ig≤δg) ≤ δ.

Remark 8.7. Unfortunately, Conjecture 8.2 on T2 turned out to be false. The counter-
example is built in [MP].
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