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Eigenvalues
Quasianalyticity
Zeros of analytic functions

1. Introduction and main results

Bounding the number of eigenvalues of Schrödinger-type operators is a classical topic 
in spectral theory with many applications in mathematical physics. The situation for 
Schrödinger operators with real-valued potentials has been understood for a long time. 
The qualitative question of whether the operator has finitely or infinitely many eigen-
values depends on whether the potential decays faster or slower than |x|−2 at infinity. 
This qualitative result is accompanied by quantitative upper bounds on the number 
of eigenvalues like, for instance, the celebrated inequalities by Bargman or by Cwikel–
Lieb–Rozenblum. For more details and references we refer to the textbooks [25,26]. All 
these results hold, mutatis mutandis, for discrete Schrödinger operators and for Jacobi 
matrices.

In contrast, the situation for Schrödinger operators with complex-valued potential 
is significantly less understood. Such operators are relevant in applications as well, for 
instance, in the modeling of dissipative phenomena and also as technical tools in the 
study of resonances of Schrödinger operators with real-valued potentials. For further 
information, we refer to [4,7,9,2,21,17,12] and references therein.

The conditions for finiteness or infiniteness of the number of eigenvalues in the case of 
complex-valued potentials are remarkably different from those in the real-valued case. In 
two fundamental papers [23,24], Boris Pavlov showed that in the case of complex-valued 
potentials the number of eigenvalues is finite provided that the potential is bounded by 
C1e−c2|x|1/2 and that this condition is optimal in the sense that for any α < 1/2 there 
is a potential bounded by C ′

1e−c′
2|x|α with an infinite number of eigenvalues. This is in 

striking contrast to the real-valued case. Pavlov’s result concerns continuous Schrödinger 
operators, but, as pointed out in [14] the result is also true for Jacobi matrices.

This settles the qualitative aspect of the question, but leaves open the question of 
finding quantitative upper bounds on the number of eigenvalues, for instance, in terms 
of the constants C1 and c2 in the bound C1e−c2|x|1/2 on the potential. Pavlov’s method 
is intrinsically non-quantitative and cannot provide such a bound. There has been no 
progress on this question in the past fifty years.

The fundamental difference between the self-adjoint case of real-valued potentials and 
the non-selfadjoint case of complex-valued potentials is the lack of a spectral theorem and 
of a variational characterization of eigenvalues in the latter case. Those play a big role 
in obtaining both qualitative and quantitative results on eigenvalues in the self-adjoint 
case. What remains in the non-selfadjoint case are either operator-theoretic tools (as 
used, for instance, in [9,15,16]) or tools from complex analysis (as used, for instance, in 
[5,2,11,8]). The latter typically give more precise results and were also used in Pavlov’s 
original work. The idea is to realize the eigenvalues as zeros of an analytic function 
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(typically a determinant-like quantity), translate bounds on the potential into bounds 
on this analytic function and then to use complex analytic bounds on the number of 
zeros in terms of the controlled quantities.

The simplest situation occurs when the potential decays exponentially. In this case, the 
relevant analytic function has an analytic continuation in a neighborhood of its original 
domain and bounds on the number of zeros can simply be obtained by Jensen’s theo-
rem from complex analysis. This technique was first carried out for complex-potentials 
by Năımark [22]. For recent bounds in this case see, for instance, [10] and references 
therein.

In Pavlov’s case, where the potential decays like C1e−c2|x|1/2 , the relevant analytic 
function does, in general, not have an analytic continuation to a larger set. To deduce 
nevertheless that there are only finitely many zeros, Pavlov uses ideas from analytic 
quasi-analyticity and shows that the function belongs to a Gevrey class and therefore 
cannot have infinitely many zeros.

In order to obtain a quantitative version of Pavlov’s theorem, we therefore need to 
prove bounds on the number of zeros of functions from a Gevrey class. This is an inter-
esting problem in complex analysis and is, in fact, the main result of this paper. We also 
show that, at least in an important special case, our bounds are sharp; see also a recent 
paper on this subject by S. Sodin [27].

Combining Pavlov’s ideas with our results on Gevrey class functions we will be able 
to obtain an explicit bound on the number of eigenvalues in terms of the parameters 
controlling the size and variation of the potential. We carry this out in the setting of 
discrete one-dimensional Schrödinger operators or Jacobi matrices, since this is tech-
nically slightly simpler. In principle, our methods should also work for continuous, 
multi-dimensional Schrödinger operators. They might also be useful in the spectral the-
ory of other non-selfadjoint operators.

1.1. Smooth functions analytic in the unit disc

Consider a class of analytic functions in the unit disc D which are smooth up to 
the boundary. If the class is sufficiently small, then it satisfies the so called (analytic) 
quasianalyticity property: any function from the class with infinitely many zeros vanishes 
identically. More precisely, consider the class of functions f analytic in the unit disc such 
that

|f̂(n)| ≤ e−pn , n ≥ 0,

where

f(z) =
∞∑

n=0
f̂(n)zn, z ∈ D, (1.1)

and {pn} is a sufficiently regular sequence. Then the condition
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∞∑
n=0

pn

1 + n3/2 = ∞ (1.2)

is necessary and sufficient for this class of analytic functions to be quasianalytic in the 
sense mentioned above, see [3] and [20].

Given a function from an analytic quasianalytic class, it is natural to ask for a quan-
titative bound on the number of zeros. Of course, to get a meaningful answer, we have 
to impose a normalization like

|f(0)| ≥ exp(−A) .

In this paper, we deal with an important special case of this question concerning 
analytic quasianalytic Gevrey classes.

In what follows we denote by D(z, r) the disc centered at z ∈ C of radius r > 0, 
D(r) = D(0, r), D = D(1). As usual, m2 denotes planar Lebesgue measure.

We fix β0 > 0 and consider β ∈ [0, β0]. (Thus, we are considering arbitrary β > 0. The 
sole purpose of the parameter β0 is to track the dependence of our constants – in fact, 
they will typically only depend on β0.) We consider the class Aβ of functions f analytic 
in the unit disc and smooth up the boundary determined by restrictions of their Taylor 
coefficients:

|f̂(n)| ≤ a′
f exp[−af · n(1+β)/(2+β)], n ≥ 0, (1.3)

with f̂(n) from (1.1). We consider this class because in our application to the Jacobi ma-
trices we would like to concentrate on the situations which are close to those considered 
by Pavlov and far away from those considered by Năımark.

This class coincides with the Carleman–Gevrey class

CA{(n!)(2+β)/(1+β)}(T ) =
{

f ∈ C∞
A (D) : |f (n)(z)| ≤ bn+1

f (n!)(2+β)/(1+β), n ≥ 0, z ∈ D
}

.

By a theorem of Evsey Dyn’kin, the class Aβ coincides with the class Cβ of the planar 
Cauchy transforms of functions ϕ with support in D(2) \ D such that

|ϕ(z)| ≤ d′
f ρβ(df (|z| − 1)), 1 < |z| < 2, (1.4)

ρβ(x) = exp
(

− 1
x1+β

)
, x > 0,

with df , d′
f depending on af , a′

f and β. For more details, see [6] and Section 6.
It is known (and it follows from the divergence of the corresponding sum (1.2)) that 

the classes Aβ and Cβ are analytic quasianalytic.
In this paper we get an upper bound on the number of zeros of f from such classes in 

the closed unit disc, Nf = card (Zf ∩D), normalized by the condition |f(0)| ≥ exp(−A), 
in terms of A and β.
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We formulate our main theorem first for the special case af � 1, a′
f � 1 in (1.3), 

where the statement is somewhat clearer.

Theorem 1.1. Let f be in Aβ with af � 1, a′
f � 1 or, equivalently, in Cβ with df � 1, 

d′
f � 1 and let |f(0)| ≥ exp(−A) for some A ≥ 1.

(a) If β = 0, then Nf ≤ exp(c
√

A) with some absolute constant c.
(b) If 0 < β ≤ β0, then

Nf ≤

⎧⎪⎪⎨⎪⎪⎩
exp(c

√
A), A ≤ β−2,

A(2/β)+1β(4/β)+2 exp c
β , β−2 ≤ A ≤ β−4,

A(1/β)+1 exp c
β , A ≥ β−4,

for some absolute constant c depending only on β0.

This upper bound has the interesting feature of revealing a certain phase transition. 
We will also show the (almost) sharpness of our bound for β = 0 in Section 4. We expect 
a similar construction to show sharpness also for β > 0.

To formulate the main theorem for the general case we denote

d = a
− 2+β

1+β

f ,

A′ = A + log(a′
f d2).

Theorem 1.2. Let f be in Aβ and let |f(0)| ≥ exp(−A) with A′ ≥ 1.

(a) If β = 0, then Nf ≤ c
d min{A′d, 1} exp(c

√
A′d) for some absolute constant c.

(b) If 0 < β ≤ β0, then

Nf ≤ min
(

cA′(1 + (A′d1+β)
1
β
)
,

⎧⎨⎩cd−(1+β) exp(c
√

A′d), A′ ≤ d−1β−2,

ec/βd−(1+β) max
(

(A′d1+ββ2)
2+β

β , 1
)

, A′ ≥ d−1β−2

)

for some positive c depending only on β0.

The proof of Theorem 1.2 will be given in Subsection 3.7.
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1.2. Non-selfadjoint Jacobi matrices

Our main application of Theorem 1.2 is estimating from above the number of eigenval-
ues of discrete non-symmetric Schrödinger operators, and, more generally, non-symmetric 
complex Jacobi matrices.

We now formulate our results precisely. We consider Jacobi matrices of the form

J =

⎛⎜⎜⎜⎝
b0 c0 0 . . . . . .
a0 b1 c1 0 . . .
0 a1 b2 c2 . . .

. . . 0 a2 b3 . . .

. . . . . . . . . . . . . . .

⎞⎟⎟⎟⎠
with complex sequences (an), (bn) and (cn) satisfying the conditions

lim
n→∞

an = lim
n→∞

cn = 1
2 , lim

n→∞
bn = 0 .

We consider J as an operator in �2(N0). The above conditions on the coefficients imply 
that the essential spectrum of J is [−1, 1] and therefore the spectrum of J in C \ [−1, 1]
consists of isolated points which are eigenvalues of finite algebraic multiplicity.

Let us assume that the sequences (an − 1/2)n≥0, (bn)n≥0, (cn − 1/2)n≥0 are in �1. 
Under this assumption, J − J0 is trace class (where J0 is the matrix with bn = 0 and 
an = cn = 1/2 for all n), and therefore the perturbation determinant (see [13,26,18])

Δ(z) := det
((

J − (z + z−1)/2
)(

J0 − (z + z−1)/2
)−1

)
is well-defined. It is known (see, for instance, [14]) that this function is analytic in the 
unit disc, that Δ(0) = 1, that for any z with |z| < 1 one has Δ(z) = 0 if and only 
if (z + z−1)/2 is an eigenvalue of J , and that the order of the zero coincides with the 
algebraic multiplicity of the corresponding eigenvalue.

To reduce our spectral problem to one in complex analysis, we are first interested in 
the coefficients in the power series expansion of the determinant Δ at the origin. We 
write

Δ(z) =
∞∑

j=0
δjzj ,

with δ0 = 1. The following proposition shows that certain bounds on the coefficients of 
the Jacobi matrix lead to bounds on the Taylor coefficients of Δ.

Proposition 1.3. Assume that for some B, D > 0 and 1/2 ≤ γ ≤ 1,

|2bn| + |4ancn − 1| ≤ De−Bnγ

, n ≥ 0.
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Then

|δj | ≤ D1 exp(−(B/4)jγ), j ≥ 1 ,

where D1 = C1D(1 + B−1/γ) exp
(
C2D(1 + B−2/γ)

)
and C1, C2 are absolute constants.

The proof of this proposition is given in Section 5.
Let NJ be the number of eigenvalues of J in C \ [−1, 1], where eigenvalues are counted 

with their algebraic multiplicity. Given B and D we denote

d = B−1/γ ,

A′ = D(1 + B−2/γ) + log(D(1 + B−1/γ)B−2/γ).

Theorem 1.4. Let 1/2 ≤ γ ≤ γ0 < 1, and let J be a Jacobi matrix such that

|2bn| + |4ancn − 1| ≤ De−Bnγ

, n ≥ 0,

for some B, D > 0. Assume that A′ ≥ 1.

(a) If γ = 1/2, then NJ ≤ c
d exp(c

√
A′d) for some absolute positive constant c.

(b) If 1/2 < γ ≤ γ0, then

NJ ≤ min
(

cA′(1 + (A′ 1−γdγ)1/(2γ−1)),⎧⎨⎩cd− γ
1−γ exp(c

√
A′d), A′ ≤ d−1(2γ − 1)−2,

e
c

2γ−1 d− γ
1−γ max

(
(A′d

γ
1−γ (2γ − 1)2)

1
2γ−1 , 1

)
, A′ ≥ d−1(2γ − 1)−2

)

for some positive c depending only on γ0.

This theorem follows immediately from Theorem 1.2, applied to f = Δ and γ =
(1 +β)/(2 +β), and taking into account the bounds from Proposition 1.3. (More precisely, 
the constant A′ provided by Theorem 1.2 differs from the constant A′ above by some 
absolute constants depending only on β. The fact that these constants can be omitted 
follows as in the proof of Theorem 1.2.)

It is worth singling out the following special case where B = 1. This gives a bound on 
the growth of the number of eigenvalues in the strong coupling limit.

Corollary 1.5. Let 1/2 ≤ γ < 1, and let J be a Jacobi matrix such that

|2bn| + |4ancn − 1| ≤ De−nγ

, n ≥ 0,

for some D ≥ 1.
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(a) If γ = 1/2, then NJ ≤ exp(c
√

D) for some absolute positive constant c.
(b) If 1/2 < γ < 1, then NJ ≤ cγDγ/(2γ−1) for a constant cγ depending only on γ.

For comparison purposes we note that if |2bn| + |4ancn − 1| ≤ De−n, n ≥ 0, then a 
simple application of Jensen’s identity to Δ gives the bound NJ ≤ cD.

We emphasize that, while, at least for β = 0, we prove the sharpness of the bound in 
Theorem 1.1, it is not clear whether the bounds in Theorem 1.4 and Corollary 1.5 are 
sharp. To prove sharpness of these bounds (and even of several more elementary ones in 
the references), and more generally, to construct nonselfadjoint Jacobi matrices that are 
compact perturbation of J0 and that have significantly more eigenvalues than selfadjoint 
Jacobi matrices is a challenging open problem.

1.3. Plan of the paper

In Section 2 we give our first estimate on the number of zeros in analytic quasianalytic 
classes which works for β away from 0. Another estimate using a propagation of smallness 
technique and demonstrating a phase transition is given in Section 3. Theorem 1.2 (and 
its special case, Theorem 1.1) follow from Theorems 2.1, 3.3, and 6.1. Section 4 is devoted 
to the sharpness of our estimate in the case β = 0 in Theorem 1.1. The same construction 
will show the sharpness of Theorem 1.1 for small positive β. The proof of Proposition 1.3
(a Jost type estimate) is contained in Section 5. Finally, in Section 6, for the sake 
of completeness, we give a variant of Dyn’kin construction to establish the equality 
Aβ = Cβ , β ≥ 0.

1.4. Acknowledgment

The authors are grateful to the referee for several useful suggestions.

2. First estimate for β > 0

In this section we present our first method of estimating the number of zeros of 
functions in analytic quasianalytic Carleman classes Cβ . It works only for β > 0, and for 
a large set of parameters β, A it gives results weaker than that in Section 3. In particular, 
it does not allow to see the phase transition of Theorem 1.2, when β becomes very small 
with respect to A. On the other hand, this method is somewhat simpler than that in 
Section 3.

Let 0 < β ≤ β0. Suppose that f ∈ Cβ with df = d, d′
f = 1 (see (1.4)), that is,

|∂̄f(z)| ≤ ρβ(d(|z| − 1)) ,

and that |f(0)| ≥ exp(−A) for some A ≥ 1.
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We first note that f is bounded by a universal constant,

|f(z)| ≤ 2
√

3 , z ∈ D(2) . (2.1)

To see this, we write, using Green’s formula,

f(z) = 1
π

∫
D(2)\D

∂̄f(ζ)
z − ζ

dm2(ζ) .

Thus,

|f(z)| ≤ 1
π

∫
D(2)\D

ρβ(df (|ζ| − 1))
|z − ζ| dm2(ζ) ≤ 1

π

∫
D(2)\D

1
|z − ζ| dm2(ζ)

≤ 1
π

∫
D(

√
3)

1
|ζ| dm2(ζ) = 2

√
3 ,

where we used a simple rearrangement inequality and the fact that D(
√

3) has the same 
area as D(2) \ D.

2.1. ∂̄-balayage

Consider the closed set

K :=
{

z ∈ D(2) \ D : |f(z)| ≤ ρβ(d(|z| − 1))
}

.

Let 0 < ε ≤ 1 and let Ω be the connected component of D(1 + ε) \ K containing the 
origin.

We wish to make f analytic in Ω by only slightly correcting it. To this end we introduce

F := feg (2.2)

in such a way that

∂̄g = − ∂̄f

f

on Ω. Here we have ∂̄g = 0 if ∂̄f = 0 (in particular on the whole unit disc).
Notice that on Ω we have by definition | ∂̄f

f | ≤ 1. So we can find a solution g by the 
formula

g(z) = − 1
π

∫
∂̄f(ζ)
f(ζ)

1
z − ζ

dm2(ζ) .
Ω
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Then we have

|g(z)| ≤ 1
π

∫
Ω

1
|z − ζ| dm2(ζ) ≤ 1

π

∫
D(2)

1
|z − ζ| dm2(ζ) ≤ 1

π

∫
D(2)

1
|ζ| dm2(ζ) = 4

and, hence,

e−4 ≤ |eg| ≤ e4 ,

and

e−4|f | ≤ |F | ≤ e4|f | (2.3)

on D(1 + ε).
From now on we work only with F . It satisfies (2.3), is analytic in Ω ⊃ D, and has 

exactly the same zeros as f in D, see (2.2). Let us list them:

z1, . . . , zN ,

with N = Nf .

2.2. Harmonic measure on Ω

Without loss of generality we can assume that Ω is regular for the Dirichlet problem. 
Otherwise, just extend slightly K (diminish Ω) and all the rest will work.

Consider the following function uΩ on Ω,

uΩ = log |F | +
N∑

k=1

GΩ(zk, ·) ,

where GΩ is the Green’s function for Ω. It is harmonic on Ω since the logarithmic 
singularities of the first term in the right-hand side are compensated by the second one. 
It is bounded from above by a uniform constant on ∂Ω, and, hence, on Ω. Applying the 
mean value theorem in Ω, we obtain that

∫
∂Ω

uΩ(ζ) dωΩ(ζ) = log |F (0)| +
N∑

k=1

GΩ(zk, 0) , (2.4)

where ωΩ denotes the harmonic measure on Ω, evaluated at the point 0 (see, for example, 
[19, Section VII B]). Furthermore,

N∑
GΩ(zk, ζ) = 0, ζ ∈ ∂Ω .
k=1
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Therefore, by (2.4),

∫
∂Ω

log |F (ζ)| dωΩ(ζ) = log |F (0)| +
N∑

k=1

GΩ(zk, 0) ,

and

∫
D(1+ε)∩∂Ω

log 1
|F (ζ)| dωΩ(ζ) +

N∑
k=1

GΩ(zk, 0) ≤ C + A (2.5)

for some absolute constant C.
Indeed, by (2.1) and (2.3), the function |F | is bounded from above by an absolute 

constant and therefore the integral of log |F (ζ)| over ∂Ω \ D(1 + ε) can be majorized by 
some absolute constant C.

We have

|F (ζ)| ≤ e4e−1/(d(|ζ|−1))1+β

, ζ ∈ D(1 + ε) ∩ ∂Ω.

Therefore, (2.5) gives us that∫
D(1+ε)∩∂Ω

dωΩ(ζ)
(|ζ| − 1)1+β

≤ d1+β(4 + C + A) ≤ C1 d1+βA , (2.6)

and

N∑
k=1

GΩ(zk, 0) ≤ 4 + C + A ≤ C1 A , (2.7)

for some absolute constant C1. (Here we used A ≥ 1.)
These estimates will be important to complete the proof. However, first we need to 

establish some simple estimates on the Green’s function in D(1 + ε) and Ω.

2.3. Green’s function of Ω and conclusion

Let us write yet another mean value theorem.

GΩ(z, 0) = GD(1+ε)(z, 0) −
∫

∂Ω\∂D(1+ε)

GD(1+ε)(z, ζ) dωΩ(ζ), z ∈ Ω . (2.8)

In fact, the function w 
→ GD(1+ε)(z, w) −GΩ(z, w) is harmonic in Ω and has the bound-
ary values GD(1+ε)(z, ζ), ζ ∈ ∂Ω; furthermore, GD(1+ε)(z, ζ) = 0, ζ ∈ ∂D(1 + ε).



12 A. Borichev et al. / Advances in Mathematics 397 (2022) 108115
We will now estimate the first term on the right side of (2.8) from below and show 
that it is larger than the second term. Since

GD(1+ε)(z, ζ) = log
∣∣∣ (1 + ε) − zζ̄/(1 + ε)

z − ζ

∣∣∣,
we have

GD(1+ε)(z, 0) = log 1 + ε

|z| ≥ log(1 + ε) ≥ ε

2 , z ∈ D. (2.9)

We claim that

GD(1+ε)(z, ζ) ≤ log 2ε

|ζ| − 1 , z ∈ D, ζ ∈ D(1 + ε) \ D. (2.10)

Indeed, let s ∈ [0, ε) and ζ ∈ ∂D(1 + s), then, by the maximum principle,

sup
z∈D

GD(1+ε)(z, ζ) = sup
z∈T

log
∣∣∣ (1 + ε) − zζ̄/(1 + ε)

1 − zζ̄

∣∣∣ = sup
|w|=s+1

log
∣∣∣ (1 + ε) − w/(1 + ε)

1 − w

∣∣∣.
We compute

∣∣∣ (1 + ε) − w/(1 + ε)
1 − w

∣∣∣2 = 1
(1 + ε)2

(1 + ε)4 − 2(1 + ε)2�w + |w|2
1 − 2�w + |w|2

= 1 + 1
(1 + ε)2

(
(1 + ε)2 − |w|2

) (
(1 + ε)2 − 1

)
1 − 2�w + |w|2 .

Among w ∈ ∂D(1 + s), this is clearly maximized at w = 1 + s, and therefore

sup
z∈D

GD(1+ε)(z, ζ) = log (1 + ε) − (1 + s)/(1 + ε)
s

Bounding (1 + ε) − (1 + s)/(1 + ε) ≤ 2ε for s < ε we obtain (2.10).
By (2.6) and (2.10) we obtain that∫

D(1+ε)∩∂Ω

GD(1+ε)(z, ζ) dωΩ(ζ) ≤ C1Ad1+β sup
0<t<ε

t1+β log 2ε

t
≤ C2Ad1+βε1+β , z ∈ D,

where C2 depends only on β0.
Now we fix

ε = min
{

1,
1

4C2Ad1+β

}1/β

,

and obtain that
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∫
D(1+ε)∩∂Ω

GD(1+ε)(z, ζ) dωΩ(ζ) ≤ ε

4 .

Combining this estimate with (2.9) we now obtain from (2.8) that

GΩ(z, 0) ≥ ε

4 , z ∈ D.

By (2.7) we conclude that Nf ≤ 4C1Aε−1. Thus we have

Theorem 2.1. Let 0 < β ≤ β0, f ∈ Cβ, d′
f = 1, |f(0)| ≥ exp(−A) for some A ≥ 1. Then 

for some positive number c depending only on β0 we have

Nf ≤ cA
(
1 + A1/βd

(1+β)/β
f

)
. (2.11)

If Ad1+β
f ≤ 1, then the estimate (2.11) is optimal. On the other hand, if Ad1+β

f > 1, 
then this estimate becomes bad when β → 0. To improve it we use a more complicated 
argument in the next section.

Remark 2.2. The same proof shows that there are positive numbers c1, c2 such that if 
f ∈ C0, d′

f = 1, |f(0)| ≥ exp(−A) for some A ≥ 1 and Adf ≤ c1 then

Nf ≤ c2A . (2.12)

(Indeed, we can choose ε = 1 in the above proof and c1 = 1/(4C2).) In the next section 
we will also prove a bound valid without restriction on Adf , but for small Adf the above 
bound is better.

3. Propagation of smallness estimates

Let 0 ≤ β ≤ β0. Suppose that f is in Cβ with df = d, d′
f = 1, and that |f(0)| ≥

exp(−A) for some A ≥ 1. In this section, we are going to get an upper bound on the 
number N = Nf of zeros of f in D, in terms of A, d, and β, using a propagation of 
smallness argument applied earlier in a similar way in an analytic non-quasianalytic 
situation in [1].

3.1. Imposing additional assumptions

In the following we will suppose that

N ≥ C ′dA(2+β)/(1+β), (3.1)

for a large positive number C ′ depending only on β0 and set



14 A. Borichev et al. / Advances in Mathematics 397 (2022) 108115
M = 
(N/d)(1+β)/(2+β)�, (3.2)

where 
x� is the integer part of a real number x. Note that assumption (3.1), A ≥ 1 and 
C ′ ≥ 2 imply that N/d ≥ 2 and therefore

1
2(N/d)(1+β)/(2+β) ≤ M ≤ (N/d)(1+β)/(2+β). (3.3)

Furthermore, assume that

C ′d ≥ C3M−1/(1+β), (3.4)

where C3 is a large positive number to be chosen later on, depending only on β0. In 
particular, we choose C3 ≥ C ′ and then dM1/(1+β) ≥ 1.

Our main arguments will require the additional assumptions (3.1) and (3.4). Before 
presenting them, however, we derive some simple bounds when these assumptions fail. 
Indeed, if (3.1) is still in place, but (3.4) fails, then

M <

(
C3

C ′

)1+β

d−(1+β)

and by (3.3) (which uses (3.1)) we see

N ≤ 2(2+β)/(1+β)
(

C3

C ′

)2+β

d−(1+β) . (3.5)

On the other hand, if (3.1) fails, then

N < C ′dA(2+β)/(1+β) . (3.6)

3.2. Beginning of the argument

From now on, our arguments use the assumptions (3.1) and (3.4).
It will also be convenient to assume that

|f | ≤ 1 on D(2) . (3.7)

In view of (2.1) this can be achieved by dividing f by a universal constant (in fact, by 
2
√

3). This does not alter d = df and we may still assume that d′
f = 1. On the other 

hand, A is replaced by A +ln(2
√

3). Since A ≥ 1, we have A +ln(2
√

3) ≤ (1 +ln(2
√

3))A
and therefore the replacement of A only affects the constants, but does not affect the 
form of our bounds. Therefore, in the following without loss of generality we assume 
(3.7).
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We now apply Jensen’s formula (see, for example, [19, Section I]) twice. A first appli-
cation gives immediately

1
2π

2π∫
0

log |f(eit)| dt ≥ −A . (3.8)

We next claim that it also gives

card
(
Zf ∩ D(1 − d−1M−1/(1+β))

)
≤ N/2. (3.9)

Indeed, let z1, . . . , zL be all zeros such that |zi| < 1 −d−1M−1/(1+β). Then by Jensen’s 
formula and (3.7) we have

L

dM1/(1+β) ≤
L∑

i=1
log 1

|zi|
≤ A ≤

( N

C ′d

) 1+β
2+β

.

Hence, by (3.1), (3.2) the following holds:

L ≤
( N

C ′d

) 1+β
2+β

M1/(1+β)d ≤
( N

C ′d

) 1+β
2+β

(N

d

) 1
2+β

d = (C ′)− 1+β
2+β

N

d
· d ≤ N

2 ,

for C ′ ≥ 4. This proves (3.9).
Next, we choose θ ∈ [0, 2π] such that there are (at least) M zeros of f in

Ωθ,M =
{

reiφ : 1 − d−1M−1/(1+β) ≤ r ≤ 1, θ ≤ φ ≤ θ + d−1M−1/(1+β)
}

.

Denote the first M zeros by vj , 1 ≤ j ≤ M . Rotating the disc, we can assume that θ = 0.
Since

f(z) = 1
π

∫
D(2)\D

h(w)
z − w

dm2(w), z ∈ D(2),

with

|h(w)| ≤ ρβ(d(|w| − 1)), w ∈ D(2) \ D,

for every zero v of f in D we have

f(z) = v − z

π

∫
D(2)\D

h(w)
(z − w)(v − w) dm2(w),

and then for 1 ≤ K ≤ M we have
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f(z) =
∏K

j=1(vj − z)
π

∫
D(2)\D

h(w)∏K
j=1(vj − w)

1
z − w

dm2(w).

Furthermore, a rough estimate gives us that

|h(w)|∏K
j=1 |w − vj |

≤ sup
0<x<1

ρβ(xd)x−K , w ∈ D(2) \ D.

Hence, for every 1 ≤ K ≤ M and for all t such that d−1M−1/(1+β) ≤ t ≤ 1 the 
following holds:

|f(eit)| ≤ 4(2t)K sup
0<x<1

ρβ(dx)x−K ≤ 4(2dt)K sup
x>0

ρβ(x)x−K

= 4(2dt)K exp
[ K

1 + β
log K

e(1 + β)

]
.

Minimizing with respect to K we obtain that

|f(eit)| ≤ exp
(
−3(2td)−(1+β)), d−1M−1/(1+β) ≤ t ≤ 1. (3.10)

(Note that (2dt)K exp
[

K
1+β log K

e(1+β)

]
viewed as a function of the real variable K has a 

unique minimum at K = (1 + β)(2dt)−(1+β). By the assumption t ≥ d−1M−1/(1+β), this 
is ≤ 2−(1+β)(1 + β)M < M .)

3.3. Reduction. Small values on an interval

By a fractional linear map, we transform the function f/10 into an analytic function 
g in the lower half-plane that extends C1-smoothly to the whole plane and satisfies the 
estimates

|∂g(z)| ≤ ρβ(�z), |z| ≤ C1d, �z > 0,

|g(z)| ≤ 1
2 , |z| ≤ C1d,

C1d∫
0

log |g(x)|dx ≥ −2Ad, (3.11)

for some positive absolute constant C1. The first estimate here follows immediately from 
the corresponding bound on ∂f , the second one from (2.1) and the third one from (3.8).

Furthermore, (3.10) now reads as

|g(x)| ≤ e− C2
x1+β , x ∈ [M−1/(1+β), C1d], (3.12)
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for some positive C2 depending only on β0.
Set

y0 = C3M−1/(1+β) (3.13)

with a universal constant C3 to be determined.
By (3.12), and (3.4), we have

yβ
0

y0∫
0

log |g(x)|dx ≤ −
{

C2
Cβ

3 −1
β , β > 0,

C2 log C3, β = 0.

Therefore, given a positive absolute constant C4 to be fixed later on, we can choose 
C3 > 1 in such a way that

yβ
0

y0∫
0

log |g(x)|dx ≤ −C4. (3.14)

3.4. Propagation of smallness

Now we apply an iterative procedure similar to that used in [1]. Set

I0 = −
y0∫

0

log |g(x)|dx (3.15)

and define two sequences (γk)k≥1, γk ∈ (0, 1], k ≥ 1, and (Ik)k≥1 in the following 
inductive way. For k ≥ 1 set

− log ρβ(2k−1y0γk) = C5
γkIk−1

2k−1y0
, (3.16)

Ik = Ik−1 − C62k−1y0 log ρβ(2k−1y0γk) = (1 + C5C6γk)Ik−1, (3.17)

for some small positive absolute constant C5 and for some positive absolute constant C6
to be fixed later on.

Equation (3.16) can be rewritten as

(2k−1y0γk)−1−β = C5
γkIk−1

2k−1y0
,

or, equivalently, as

γ2+β
k = 1

k−1 β
. (3.18)
C5(2 y0) Ik−1
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Since the numbers Ik increase, to prove that such γk ∈ (0, 1] exist for every k ≥ 1, we 
need only to check that

1
C5yβ

0 I0
≤ 1 (3.19)

which follows from (3.14) with C4 = 1/C5.
Let us check by induction that

2ny0∫
0

log |g(x)|dx ≤ −In, 0 ≤ n ≤ log2
C1d

2y0
. (3.20)

The base case n = 0 follows from (3.15). If (3.20) holds for n = k − 1, then a simple 
estimate of the Poisson integral together with relation (3.16) shows that for some positive 
absolute constant C5 ∈ (0, 1] we have

log |g(z)| ≤ C5
2k−1y0γk

(2k−1y0)2

2k−1y0∫
0

log |g(x)|dx

≤ log ρβ(2k−1y0γk), z ∈ Tk = [2k−1y0, 2ky0] − i2ky0γk.

Next we consider the rectangle

Uk =
{

z ∈ C : −2ky0γk ≤ �z ≤ 2k−1y0γk, 0 ≤ �z ≤ 2k+1y0
}

and the auxiliary function

gk(z) = g(z) − 1
π

∫
Uk

∂g(ζ)
z − ζ

dm2(ζ).

It is clear that gk is analytic on Uk and bounded by 1. Furthermore, for some positive 
absolute constant C7,

log |gk(z)| ≤ C7 log ρβ(2k−1y0γk), z ∈ Tk ⊂ ∂Uk.

Since γk ≤ 1, a simple geometric argument shows that

ωUk
(x, Tk) ≥ C8 > 0, x ∈ Jk = [2k−1y0, 2ky0],

for some positive absolute constant C8, where ωUk
(x, ·) denotes the harmonic measure 

on Uk, evaluated at the point x. By the ‘theorem on two constants’ (see, for example, 
[19, Section VII B]) we have
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log |gk(x)| ≤ C7C8 log ρβ(2k−1y0γk), x ∈ Jk.

Hence,

log |g(x)| ≤ C6 log ρβ(2k−1y0γk), x ∈ Jk,

for some positive absolute constant C6. Furthermore,

2ky0∫
0

log |g(x)|dx ≤ −Ik−1 + C6 · 2k−1y0 log ρβ(2k−1y0γk) = −Ik.

Thus, (3.20) is proved.

3.5. Estimating the number of zeros. Case β = 0

Relations (3.17) and (3.18) give us that

Ik = Ik−1 +
√

C5C6
√

Ik−1, k ≥ 0.

Therefore,

Ik ≥ Ck2, k ≥ 1,

and hence, by (3.11), (3.13) and (3.20) with n = 
log2(C1d)/(2y0)� we find

(
log2(C1dM)/(2C3)�)2 ≤ 2
C

Ad .

Thus, if (C1dM)/(2C3) ≥ 4, then


log2(C1dM)/(2C3)� ≥ (1/2) log2(C1dM)/(2C3)

and therefore

(log(C1dM)/(2C3))2 ≤ 8(log 2)2

C
Ad .

According to (3.3) this implies

N ≤ 16C2
3

C2
1

1
d

e2
√

8(log 2)2/C
√

Ad .

This is the claimed bound.
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On the other hand, if (C1dM)/(2C3) < 4, then, again by (3.3),

N <
28 C2

3
C2

1

1
d

.

This bound is, up to universal constants, better than the claimed one.
We now recall that so far, we worked under assumptions (3.1) and (3.4). If these fail, 

then we have the bounds (3.5) and (3.6). We claim that both of these bounds are, up 
to universal constants, better than the claimed ones. This is clear for (3.5). For (3.6) it 
follows from the fact that dA2 ≤ (4/e)4 d−1 e

√
Ad.

We summarize our findings as follows

Theorem 3.1. Let f ∈ C0 with d′
f = 1 and |f(0)| ≥ exp(−A) for some A ≥ 1. Then for 

some positive absolute constant c we have

Nf ≤ c

df
exp(c

√
Adf ) .

Remark 3.2. Taking into account Remark 2.2, we obtain the slightly stronger bound

Nf ≤ c

df
min{1, Adf } exp(c

√
Adf ) .

3.6. Estimating the number of zeros. Case β > 0. Phase transition

Set

Rk = Ik(2ky0)β , k ≥ 0.

Relations (3.17) and (3.18) give us that

Rk ≥ Rk−1 + C9R
(1+β)/(2+β)
k−1

with C9 = 2βC
(1+β)/(2+β)
5 C6 > 0. By (3.19), R0 ≥ C−1

5 .
As in the case β = 0, we obtain that

Rk ≥ C10 k2, k ≥ 1,

for some positive C10 depending only on β0. Hence,

Ik ≥ 1
22β0

C10k2y−β
0 , 1 ≤ k ≤ 2β0

β
.

By (3.11), (3.13), and (3.20) with n = min{
2β0
β �, 
log2

C1d
2y0

�} we have

min
(


2β0 �, 
log2
C1d�

)2

Mβ/(1+β) ≤ 21+2β0Cβ
3 Ad .
β 2y0 C10
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We claim that we may assume that

C1d/(2y0) = C1dM1/(1+β)/(2C3) ≥ 4 . (3.21)

Indeed, if this does not hold, we obtain using (3.3) a bound which is of the same form 
as (3.5), up to possibly a different constant.

Assumption (3.21) together with 2β0/β ≥ 2 allows one to simplify the previous bound 
to

C11 min
( 1

β
, log(C12dM1/(1+β))

)2
Mβ/(1+β) ≤ Ad (3.22)

for some positive C11, C12 depending only on β0.
We now distinguish two cases, according to the size of Adβ2. Suppose first that Adβ2 <

1. Note that, by (3.1) and (3.2), if C ′ is chosen sufficiently large, then

C11Mβ/(1+β) ≥ 1 . (3.23)

This together with the assumption Adβ2 < 1 implies that the minimum in (3.22) is 
attained at log(C12dM1/(1+β)) and therefore (3.22) becomes

C11 log2(C12dM1/(1+β))Mβ/(1+β) ≤ Ad .

Using (3.23) again to bound the left side from below, we conclude by (3.2) that

N ≤ C

d1+β
exp(C

√
Ad) (3.24)

for some positive C depending only on β0.
We recall that this bound was derived under the additional assumptions (3.1) and 

(3.4). If one of the restrictions (3.1) and (3.4) does not hold, then we have (3.5) and 
(3.6). The first of these is clearly better than (3.24). To prove this also for (3.6) we use 
the fact that A ≥ 1 and therefore

dA(2+β)/(1+β) = d−(1+β)(Ad)2+βA−β(2+β)/(1+β) ≤ d−(1+β)(Ad)2+β

≤
(

2 + β

2e

)(2+β)/2

d−(1+β) exp(
√

Ad).

Thus, we have shown (3.24) under the sole assumption that Adβ2 < 1.
Next, we discuss the case Adβ2 ≥ 1. We assume first that in addition

log(C12dM1/(1+β)) > 1/β. Then, (3.22) gives us that

C11Mβ/(1+β) ≤ dAβ2 .

By (3.3), we obtain
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N ≤ d(Adβ2)(2+β)/β exp(C/β) (3.25)

for some positive C depending only on β0. On the other hand, if log(C12dM1/(1+β)) ≤
1/β, then, by (3.3) we have

N ≤ d−(1+β) exp(C/β) (3.26)

for some positive C depending only on β0.
To get (3.25) and (3.26) we still have used conditions (3.1) and (3.4). If one of the 

restrictions (3.1) and (3.4) does not hold, we conclude from (3.5) and (3.6), still assuming 
Adβ2 ≥ 1, that

N ≤ max
(

d(Adβ2)(2+β)/β exp(C/β), Cd−(1+β) exp(C/β)
)

for some positive C depending only on β0. Indeed, this is clear for (3.5). In order to show 
that the right side of (3.6) is smaller than the expressions on the right sides of (3.25)
and (3.26), we distinguish according to whether Ad1+ββ2(1+β) ≤ 1 or not.

We summarize our findings in the following theorem. We observe a phase transition
in the estimate of the number of zeros depending on A, d and β.

Theorem 3.3. Let 0 < β ≤ β0, f ∈ Cβ, d′
f = 1, |f(0)| ≥ exp(−A) for some A ≥ 1. Then 

for some positive c depending only on β0, we have

Nf ≤

⎧⎨⎩
c

d1+β
f

exp(c
√

Adf ), A ≤ d−1
f β−2,

max
(

df (Adf β2)
2+β

β e
c
β , cd

−(1+β)
f e

c
β

)
, A ≥ d−1

f β−2.

3.7. Proof of Theorem 1.2

Let f be in Aβ and assume that |f(0)| ≥ exp(−A). According to Theorem 6.1 we have 
f ∈ Cβ with df = Ca

−(2+β)/(1+β)
f = Cd and d′

f = C1a′
f a

−2(2+β)/(1+β)
f = C1a′

f d2. Then 

the function f̃ = f/d′
f satisfies df̃ = df = Cd, d̃′

f̃
= 1 and |f̃(0)| ≥ e−Ã with

Ã = A + log(C1a′
f d2) = A′ + log C1 .

We may assume that C1 ≥ 1 and therefore Ã ≥ A′ ≥ 1. Therefore, Theorems 2.1, 3.1
and 3.3 applied to f̃ imply the conclusion of Theorem 1.2 but with Ã in place of A′. 
If we assume, in addition, that A′ ≥ log C1, then we have Ã ≤ 2A′ and therefore in 
the upper bound we can replace Ã by 2A′. On the other hand, if 1 ≤ A′ < log C1, 
then Ã < 2 log C1 ≤ 2(log C1)A′ and therefore in the upper bound we can replace Ã by 
2(log C1)A′. This proves the theorem.
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4. Sharpness of the estimate on the number of zeros

In this section we show that Theorem 1.1 is sharp in the case β = 0. The same 
construction will show the sharpness of Theorem 1.1 for small positive β. We limit 
ourselves to the case β = 0 because the calculations of general β are exactly the same 
in spirit, but rather technical and cumbersome. Our counterexample gives a clear idea 
how this can be done in general without adding many pages to our article.

Theorem 4.1. Let δ > 0. Given A ≥ A(δ), there exists f ∈ C0 satisfying (1.4) with some 
absolute constants df , d′

f and such that |f(0)| ≥ exp(−A), Nf ≥ exp(A1/2−δ).

Proof. It will be convenient for us to construct first a function g analytic in the right 
half-plane C+ with good estimates on the ∂̄-derivative in the left half-plane C− and such 
that |g(1)| = exp(−A).

Let ε ∈ (0, 1/10) be a small number to be chosen later on. Denote by Π the standard 
strip 

{
x + iy ∈ C : |y| < π

2
}

. We set

h(y) = min
(

1,
ε|y|

log(1/|y|)
)

, y ∈ R,

and consider a domain Ω given by

Ω =
{

x + iy ∈ C : x > −h(y)
}

,

which is slightly bigger than C+.
Let χ : Ω → C+ be the conformal map fixing the points 0, 1, and infinity. Furthermore, 

let B = {log z : z ∈ Ω}. Then we can write

χ = exp ◦ ϕ ◦ log,

where ϕ is a conformal map from the curvilinear strip B onto the standard strip Π
fixing the points 0, ±∞. The strip B at −∞ looks like 

{
x + iy ∈ C : |y| < s(x)

}
, 

s(x) = π
2 + ε

|x| + O(1/x2), |s′(x)| = O(1/x2), x → −∞. By Warschawski’s distortion 
theorems [29] we obtain that

|χ(z)| � e−π
∫ log 1

|z|
0

dx
2s(x) � |z|

(
log 1

|z|
)κ

, z → 0,

and that

|χ′(z)| �
(

log 1
|z|

)κ

, z → 0, (4.1)

where κ = 2ε/π.
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A modified domain. Given a small number xA > 0, set

h∗(y) = max(xA, h(y))

and consider a domain Ω∗ containing Ω,

Ω∗ =
{

x + iy ∈ C : x > −h∗(y)
}

.

Next we consider the outer function g in Ω∗ determined by its absolute values on the 
boundary:

log |g(z)| = − b

|�z| , z ∈ ∂Ω∗,

for some b = b(ε) � 1 to be chosen later on.
Let h(yA) = xA, yA > 0. Set rA = (x2

A +y2
A)1/2. The boundaries of Ω and Ω∗ coincide 

outside of the disc D(rA); inside the disc D(rA) they are different: ∂Ω ∩ D(rA) consists 
of two smooth curves belonging to the set 

{
x + iy ∈ C : x = −h(y)

}
while ∂Ω∗ ∩ D(rA)

is just a vertical interval in C−. Set Γ = ∂Ω ∩ ∂Ω∗. Let ω be harmonic measure on Ω, 
evaluated at point 1.

We want to choose xA in such a way that

−
∫

∂Ω

log |g(z)| dω(z) = A. (4.2)

Notice that ω(∂Ω \ Γ) � yA

(
log 1

yA

)κ. Hence,

−
∫

∂Ω\Γ

log |g(z)| dω(z) � yA

(
log 1

yA

)κ

·
log 1

yA

yA
= o(A), (4.3)

for suitable xA to be chosen later on.
Next, let us require that

−
∫
Γ

log |g(z)| dω(z) � A. (4.4)

This integral is equivalent (see (4.1)) to

1∫
yA

log 1
s

s

(
log 1

s

)κ

ds = 1
2 + κ

(
log 1

yA

)2+κ

.

Finally, we choose xA by the equality
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1∫
yA

log 1
s

s

(
log 1

s

)κ

ds = A.

Then (4.3) and (4.4) are true and (4.2) becomes true if we choose the number b in the 
definition of g appropriately.

Thus, we have

log 1
xA

� A
1
2 −τ ,

with τ = ε/(2(π + ε)).
Since g is outer in Ω, we have

− log |g(1)| = −
∫

∂Ω

log |g(z)| dω(z) = A.

How smooth is g? We claim that g|C+ extends to a function g̃ which is C1-smooth in 
the whole complex plane,

|∂̄g̃(z)| ≤ Ce− C1
|�z| , −1 < �z < 0, (4.5)

for some absolute constants C, C1, and g̃(z) vanishes for �z ≤ −1.
Indeed, consider a smooth function ψ such that ψ(x + iy) = 1 on {x + iy : x ≥

−h∗(y)/2}, ψ(x + iy) = 0 on {x + iy : x ≤ −h∗(y)}, and 0 ≤ ψ ≤ 1 everywhere. We can 
find such ψ with

|∂̄ψ(x + iy)| ≤ C

h∗(y) , x + iy ∈ C. (4.6)

Furthermore, an easy estimate of harmonic measure gives us that

|g(x + iy)| ≤ Ce− C1
h∗(y) , −h∗(y) ≤ x ≤ −h∗(y)/2, (4.7)

with some absolute constants C, C1. Put g̃ := ψ g. Now, property (4.5) follows from (4.6)
and (4.7).
Imposing zeros By a linear fractional transformation, we can transfer g to D and its 
extension g̃ to D(2). Then g belongs to the class C0 and g(0) = e−A. The only problem 
is that our g is an outer function and so has no zeros whatsoever. On the other hand, g
is very small on the arc IA centered at the point 1 ∈ T of length 2yA. In fact,

|g(ζ)| ≤ e
− C

xA ≤ e−C∗eA
1
2 −τ

, ζ ∈ IA,

for some absolute constants C, C∗ > 0.
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For N ≥ 1 to be chosen later on, let the points {xj}N
j=1 divide IA into N equal arcs of 

length 2yA

N . Set �(z) = ΠN
j=1(z −xj), and let L be the Lagrange interpolation polynomial 

that interpolates the function g at the points {xj}N
j=1:

L(z) = �(z)
N∑

j=1

g(xj)
�′(xj)(z − xj) .

To estimate |L(0)| we use the equalities |�(0)/xj | = 1, 1 ≤ j ≤ N , and a lower bound 
for |�′(xj)|:

|�′(xj)| ≥ (2yA/N)N .

Now,

|L(0)| ≤ Ne−C∗eA
1
2 −τ

eN log N eC1NA
1
2 −τ

,

for some absolute constant C1.
Choose

N =
⌊
eA

1
2 −2τ

⌋
.

Then L(0) ≤ e−A/2 for A ≥ A(ε).
Set f = g − L. Then |f(0)| ≥ e−A/2 and f has N zeros in the closed unit disc.
Notice that our argument for estimating L(0) works also for L(z). In the same way 

we obtain that

|L(z)| ≤ N3N e−C∗eA
1
2 −τ

eN log N eC1NA
1
2 −τ

, |z| = 2,

and

|L(z)| ≤ e−A/2, |z| = 2, A ≥ A1(ε).

By the maximum principle, we conclude that

sup
D(2)

|L| ≤ e−A/2, A ≥ A1(ε).

Now consider a cut-off smooth function Ψ equal to 1 in D(3/2) and zero outside D(2)
and put f̃ = g̃ − Ψ L. This function extends f ,

|∂̄f̃(z)| ≤ Ce− C1
|z|−1 , z ∈ D(2) \ D,

for some absolute constants C, C1 > 0, and nf � eA
1
2 −2τ

, A ≥ A1(ε). �
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The results in this section show that, at least for β = 0, we prove the sharpness 
of the bound in Theorem 1.1. As we already mentioned, it is not clear whether this 
optimality carries over to the bounds for eigenvalues of Jacobi matrices in Theorem 1.4
and Corollary 1.5.

5. Application to non-selfadjoint Jacobi matrices

5.1. Proof of Proposition 1.3

The first ingredient in the proof of Proposition 1.3 is the following result, which 
estimates the coefficients δj in terms of the numbers an, bn, and cn. In the self-adjoint 
case it appears, e.g., in Section 10.1 of [28]. The same proof works in the non-selfadjoint 
case, where it appears, e.g., as Theorem 2.3 in [14]. Set

H(N) :=
∞∑

n=N

(
|2bn| + |4ancn − 1|

)
.

Lemma 5.1. For every j ≥ 1,

|δj | ≤ H([j/2])
( ∞∏

n=0
(1 + H(n))

)
,

where [j/2] is the integer part of j/2.

The second ingredient we need is an elementary bound on exponential sums.

Lemma 5.2. Let 1/2 ≤ γ ≤ 1. Then for all B > 0 and N ≥ 0 we have

∞∑
n=N

e−Bnγ ≤ C
(

1 + B−1/γ
(

1 +
(
BNγ

)(1/γ)−1
))

e−BNγ

with an absolute constant C. In particular, for all B > 0, N ≥ 0 and c ∈ (0, 1) we have

∞∑
n=N

e−Bnγ ≤ Cc(1 + B−1/γ)e−cBNγ

,

where Cc depends only on c.

Proof of Lemma 5.2. By monotonicity, we have

∞∑
n=N

e−Bnγ ≤ e−BNγ

+
∞∫

e−Bxγ

dx = e−BNγ

+ 1
γB1/γ

∞∫
e−yy(1/γ)−1 dy .
N BNγ
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We now use the fact that for 0 ≤ α ≤ 1,

∞∫
Y

e−yyα dy ≤ 2e(1 + Y α)e−Y , Y ≥ 0. (5.1)

Indeed, we have

∞∫
Y

e−yyα dy = e−Y Y α + α

∞∫
Y

e−yyα−1 dy

≤ e−Y Y α + αY α−1
∞∫

Y

e−y dy = (1 + αY −1)e−Y Y α ≤ (1 + Y α)e−Y , Y ≥ 1.

Furthermore,

∞∫
Y

e−yyα dy ≤
∞∫

0

e−yyα dy = Γ(α + 1) ≤ 2e(1 + Y α)e−Y , 0 ≤ Y ≤ 1.

Together, these two inequalities prove (5.1).
Applying (5.1) with α = (1/γ) − 1, we obtain

∞∫
BNγ

e−yy(1/γ)−1 dy ≤ 2e
(

1 +
(
BNγ

)(1/γ)−1
)

e−BNγ

and therefore

∞∑
n=N

e−Bnγ ≤ C
(

1 + B−1/γ
(

1 +
(
BNγ

)(1/γ)−1
))

e−BNγ

for some absolute constant C. �
To complete the proof of Proposition 1.3, we combine Lemmas 5.1 and 5.2. Fix 0 <

c < 1. By assumption, we have

H(N) ≤ D
∞∑

n=N

e−Bnγ

, N ≥ 0,

and therefore Lemma 5.2 implies that

H(N) ≤ CcD(1 + B−1/γ)e−cBNγ

, N ≥ 0.
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Moreover, using the estimate log(1 + x) ≤ x we obtain that

log
( ∞∏

n=0
(1 + H(n))

)
=

∞∑
n=0

log(1 + H(n)) ≤
∞∑

n=0
H(n) .

Therefore, from the bound we have just derived, we get

log
( ∞∏

n=0
(1 + H(n))

)
≤ CcD(1 + B−1/γ)

∞∑
n=0

e−cBnγ

.

Applying again Lemma 5.2 we find

log
( ∞∏

n=0
(1 + H(n))

)
≤ C ′

cD(1 + B−2/γ) .

In view of Lemma 5.1 these bounds imply the proposition.

6. Smooth extensions with estimates on ∂̄. Dyn’kin construction

At the beginning of the 1970-s Dyn’kin proposed a general approach of represent-
ing functions in different smoothness classes as traces of asymptotically holomorphic 
functions, that is, functions satisfying some quantitative restrictions on the ∂̄-derivative.

In particular, it follows from the results in [6] that

Aβ = Cβ , β ≥ 0.

Here we give a short proof of (a quantitative version of) the inclusion Aβ ⊂ Cβ . The 
opposite inclusion is not needed in this paper, but we give a proof of it after the proof 
of the theorem.

Theorem 6.1. Let 0 ≤ β ≤ β0 and let f be analytic in the unit disc and satisfy (1.3)
with a′

f = 1. Then f extends to a C1-smooth function with compact support in D(2) (we 
denote this extension by the same symbol f) in such a way that

f(z) = 1
π

∫
D(2)\D

∂̄f(ζ)
z − ζ

dm2(ζ) ,

and

|∂̄f(z)| ≤ d′
f ρβ(df (|z| − 1)), z ∈ D(2) \ D, (6.1)

where
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ρβ(x) = e− 1
x1+β ,

and

df = Ca
− 2+β

1+β

f , d′
f = C1a

−2 2+β
1+β

f ,

with some C, C1 depending only on β0.

Proof. Let

γ =
( af

22+β
· 1 + β

2 + β

)2+β

.

Set

N(0) = 0, N(m) = 2(2+β)mγ, m ≥ 1.

Consider Sm =
∑∞

k≥N(m) f̂(k)zk, the tail of the Taylor series of f .
Let ϕm denote the C1 smooth function equal to 0 on C \ D(1 + 2−m), equal to 1 on 

D(1 + 2−m−1) and such that ∇ϕm has compact support in D(1 + 2−m) \ D(1 + 2−m−1)
and |∂̄ϕm| ≤ C2m, m ≥ 0.

Now define

f =
∞∑

m≥0
ϕm · (Sm − Sm+1). (6.2)

In particular, on the unit circle this sum is just f =
∑

m≥0(Sm − Sm+1). Thus, formula 
(6.2) gives an extension of our original function f to D(2) \D. Furthermore, this extended 
f has compact support in D(2).

Let us estimate the ∂̄-derivative of f . If z belongs to D(1 +2−m) \D(1 + 2−m−1), then 
only one ∂̄ϕk (namely ∂̄ϕm) is not 0. The terms ϕm · (Sm − Sm+1), k �= m, obviously 
give zero contribution to ∂̄f , because Sk − Sk+1 are just analytic polynomials.

Thus, if z ∈ D(1 + 2−m) \ D(1 + 2−m−1), then

|∂̄f(z)| ≤ C2m|Sm(z) − Sm+1(z)|

≤ C2m
∑

2(2+β)mγ≤s<2(2+β)(m+1)γ

e−af s
1+β
2+β (1 + 2−m)s

≤ Cγ2m+(2+β)(m+1) exp
(
−af 2(1+β)mγ

1+β
2+β + 2−m+(2+β)(m+1)γ

)
= Cγ2(3+β)m+2+β exp

(
− 1

2 + β
af γ

1+β
2+β 2(1+β)m

)
.

Thus,
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|∂̄f(z)| ≤ uf e−vf 2(1+β)(m+1)
, z ∈ D(1 + 2−m) \ D(1 + 2−m−1), m ≥ 0,

with

vf = Ca2+β
f , uf = C1a

−(4+2β)/(1+β)
f ,

with some C, C1 depending only on β0. This proves (6.1).
By construction, f has compact support in D(2), and hence, Green’s formula allows 

us to restore f(z) as follows:

f(z) = 1
π

∫
D(2)

∂̄f(ζ)
z − ζ

dm2(ζ) = 1
π

∫
D(2)\D

∂̄f(ζ)
z − ζ

dm2(ζ) .

We are done. �
Remark 6.2. In the opposite direction, if 0 ≤ β ≤ β0 and if f is analytic in the unit disc 
and satisfies (6.1), then it satisfies (1.3) with

af = Cd
− 1+β

2+β

f , a′
f = C1d′

f

with some C, C1 depending only on β0.

Proof. Indeed, in this case, for every 0 < ε < 1 we have

|f̂(n)| =
∣∣∣ 1
2π

∫
∂D

f(z)z−n−1 dz
∣∣∣

=
∣∣∣ 1
2π

∫
∂D(1+ε)

f(z)z−n−1 dz − 1
π

∫
D(1+ε)\D

∂̄f(z)z−n−1 dm2(z)
∣∣∣

≤
Cd′

f

(1 + ε)n
+ 2d′

f ρβ(df ε), n ≥ 0.

On the other hand, we have

|f̂(n)| =
∣∣∣ 1
π

∫
D(2)\D

∂̄f(z)z−n−1 dm2(z)
∣∣∣ ≤ 2d′

f ρβ(2df ).

If nd1+β
f > 1, then we set ε = n−1/(2+β)d

−(1+β)/(2+β)
f < 1 and conclude that

|f̂(n)| ≤ Cd′
f exp

(
−1

2d
−(1+β)/(2+β)
f n(1+β)/(2+β)

)
.

Otherwise, if 0 < n ≤ d
−(1+β)
f , then
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|f̂(n)| ≤ 2d′
f ρβ(2df ) ≤ Cd′

f exp
(

− 1
21+β

d
−(1+β)/(2+β)
f n(1+β)/(2+β)

)
for some absolute constant C. Finally,

|f̂(0)| ≤ Cd′
f . �
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