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Eigenvalues
Quasianalyticity
Zeros of analytic functions

1. Introduction and main results

Bounding the number of eigenvalues of Schrodinger-type operators is a classical topic
in spectral theory with many applications in mathematical physics. The situation for
Schrédinger operators with real-valued potentials has been understood for a long time.
The qualitative question of whether the operator has finitely or infinitely many eigen-
values depends on whether the potential decays faster or slower than |z|=2 at infinity.
This qualitative result is accompanied by quantitative upper bounds on the number
of eigenvalues like, for instance, the celebrated inequalities by Bargman or by Cwikel-
Lieb—Rozenblum. For more details and references we refer to the textbooks [25,26]. All
these results hold, mutatis mutandis, for discrete Schrédinger operators and for Jacobi
matrices.

In contrast, the situation for Schroédinger operators with complex-valued potential
is significantly less understood. Such operators are relevant in applications as well, for
instance, in the modeling of dissipative phenomena and also as technical tools in the
study of resonances of Schrodinger operators with real-valued potentials. For further
information, we refer to [4,7,9,2,21,17,12] and references therein.

The conditions for finiteness or infiniteness of the number of eigenvalues in the case of
complex-valued potentials are remarkably different from those in the real-valued case. In
two fundamental papers [23,24], Boris Pavlov showed that in the case of complex-valued
potentials the number of eigenvalues is finite provided that the potential is bounded by
Cye~<2l71""* and that this condition is optimal in the sense that for any a < 1/2 there
is a potential bounded by Cfe~%#I* with an infinite number of eigenvalues. This is in
striking contrast to the real-valued case. Pavlov’s result concerns continuous Schrédinger
operators, but, as pointed out in [14] the result is also true for Jacobi matrices.

This settles the qualitative aspect of the question, but leaves open the question of
finding quantitative upper bounds on the number of eigenvalues, for instance, in terms
of the constants C7 and ¢ in the bound 016’62‘“”'1/2 on the potential. Pavlov’s method
is intrinsically non-quantitative and cannot provide such a bound. There has been no
progress on this question in the past fifty years.

The fundamental difference between the self-adjoint case of real-valued potentials and
the non-selfadjoint case of complex-valued potentials is the lack of a spectral theorem and
of a variational characterization of eigenvalues in the latter case. Those play a big role
in obtaining both qualitative and quantitative results on eigenvalues in the self-adjoint
case. What remains in the non-selfadjoint case are either operator-theoretic tools (as
used, for instance, in [9,15,16]) or tools from complex analysis (as used, for instance, in
[5,2,11,8]). The latter typically give more precise results and were also used in Pavlov’s
original work. The idea is to realize the eigenvalues as zeros of an analytic function
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(typically a determinant-like quantity), translate bounds on the potential into bounds
on this analytic function and then to use complex analytic bounds on the number of
zeros in terms of the controlled quantities.

The simplest situation occurs when the potential decays exponentially. In this case, the
relevant analytic function has an analytic continuation in a neighborhood of its original
domain and bounds on the number of zeros can simply be obtained by Jensen’s theo-
rem from complex analysis. This technique was first carried out for complex-potentials
by Naimark [22]. For recent bounds in this case see, for instance, [10] and references
therein.

In Pavlov’s case, where the potential decays like Cle*“’Z'm'l/{z, the relevant analytic
function does, in general, not have an analytic continuation to a larger set. To deduce
nevertheless that there are only finitely many zeros, Pavlov uses ideas from analytic
quasi-analyticity and shows that the function belongs to a Gevrey class and therefore
cannot have infinitely many zeros.

In order to obtain a quantitative version of Pavlov’s theorem, we therefore need to
prove bounds on the number of zeros of functions from a Gevrey class. This is an inter-
esting problem in complex analysis and is, in fact, the main result of this paper. We also
show that, at least in an important special case, our bounds are sharp; see also a recent
paper on this subject by S. Sodin [27].

Combining Pavlov’s ideas with our results on Gevrey class functions we will be able
to obtain an explicit bound on the number of eigenvalues in terms of the parameters
controlling the size and variation of the potential. We carry this out in the setting of
discrete one-dimensional Schrodinger operators or Jacobi matrices, since this is tech-
nically slightly simpler. In principle, our methods should also work for continuous,
multi-dimensional Schrédinger operators. They might also be useful in the spectral the-
ory of other non-selfadjoint operators.

1.1. Smooth functions analytic in the unit disc

Consider a class of analytic functions in the unit disc D which are smooth up to
the boundary. If the class is sufficiently small, then it satisfies the so called (analytic)
quasianalyticity property: any function from the class with infinitely many zeros vanishes
identically. More precisely, consider the class of functions f analytic in the unit disc such
that

[f(m)] <e?, m>0,
where
fz)=> fn)z", zeD, (1.1)
n=0

and {p,} is a sufficiently regular sequence. Then the condition
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oo

Pn
Z Trndz ° (1.2)

n=0

is necessary and sufficient for this class of analytic functions to be quasianalytic in the
sense mentioned above, see [3] and [20].

Given a function from an analytic quasianalytic class, it is natural to ask for a quan-
titative bound on the number of zeros. Of course, to get a meaningful answer, we have
to impose a normalization like

|f(0)| > exp(—A) :

In this paper, we deal with an important special case of this question concerning
analytic quasianalytic Gevrey classes.

In what follows we denote by D(z,7) the disc centered at z € C of radius r > 0,
D(r) =D(0,r), D = D(1). As usual, mz denotes planar Lebesgue measure.

We fix 3y > 0 and consider g € [0, fp]. (Thus, we are considering arbitrary S > 0. The
sole purpose of the parameter (j is to track the dependence of our constants — in fact,
they will typically only depend on fy.) We consider the class g of functions f analytic
in the unit disc and smooth up the boundary determined by restrictions of their Taylor
coefficients:

Iy 1 2
|f(n)] < ayexp[—ay - n! +A)/(2+8)) n >0, (1.3)
with ]?(n) from (1.1). We consider this class because in our application to the Jacobi ma-
trices we would like to concentrate on the situations which are close to those considered
by Pavlov and far away from those considered by Naimark.
This class coincides with the Carleman—Gevrey class

CA{(ng)(2+ﬁ)/(1+6)}(qr) :{f € C¥(D): |f(n)(z)| < b?+1(n!)(2+5)/(1+ﬂ), n>0,z¢€ D}.

By a theorem of Evsey Dyn’kin, the class 3 coincides with the class €g of the planar
Cauchy transforms of functions ¢ with support in D(2) \ D such that

()l < dppp(ds(lz] = 1)), 1<z <2, (1.4)
1
pp(x) = GXP<—xl—+ﬁ)a x>0,

with dy, d} depending on ay, a} and S. For more details, see [6] and Section 6.

It is known (and it follows from the divergence of the corresponding sum (1.2)) that
the classes g and €z are analytic quasianalytic.

In this paper we get an upper bound on the number of zeros of f from such classes in
the closed unit disc, N; = card (Z; ND), normalized by the condition |f(0)| > exp(—A),
in terms of A and 8.



A. Borichev et al. / Advances in Mathematics 397 (2022) 108115 5

We formulate our main theorem first for the special case ay < 1, a; < 1 in (1.3),
where the statement is somewhat clearer.

Theorem 1.1. Let f be in Az with ay < 1, a’f = 1 or, equivalently, in g with dy < 1,
dy =<1 and let |f(0)| > exp(—A) for some A > 1.

(a) If 3 =0, then N; < exp(cv/A) with some absolute constant c.
(b) If0 < B < fo, then

exp(eV/A), A< B2,
Ny < { AQ/BFIR(E/B)+2 oxy 5 BP<ALB,
AU/BH expy <, A> B4,

for some absolute constant ¢ depending only on 0.
This upper bound has the interesting feature of revealing a certain phase transition.
We will also show the (almost) sharpness of our bound for 8 = 0 in Section 4. We expect

a similar construction to show sharpness also for 5 > 0.
To formulate the main theorem for the general case we denote

A" = A+log(a}pd?).
Theorem 1.2. Let f be in Az and let | f(0)| > exp(—A) with A’ > 1.

(a) If 6 =0, then Ny < §min{A’d, 1} exp(cv A’d) for some absolute constant c.
(b) If0 < B < fo, then

Ny < min (cA'(l + (A'dHB)Tls),

cd=P) exp(eV/A'd), A <d7p2,
ePa- U max (A8 5 1), Az d g )

for some positive ¢ depending only on [y.

The proof of Theorem 1.2 will be given in Subsection 3.7.
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1.2. Non-selfadjoint Jacobi matrices

Our main application of Theorem 1.2 is estimating from above the number of eigenval-
ues of discrete non-symmetric Schrodinger operators, and, more generally, non-symmetric
complex Jacobi matrices.

We now formulate our results precisely. We consider Jacobi matrices of the form

bo Co 0 .

ag b1 C1 0
J = 0 al bg Co
0 a2 b3

with complex sequences (a,,), (b,) and (c,) satisfying the conditions

lim a, = lim cnzl, lim b, =0.
n—oo n—oo 2 n—oo

We consider J as an operator in £2(Ng). The above conditions on the coefficients imply
that the essential spectrum of J is [—1, 1] and therefore the spectrum of J in C \ [—1, 1]
consists of isolated points which are eigenvalues of finite algebraic multiplicity.

Let us assume that the sequences (an, — 1/2)n>0, (bn)n>0, (¢n — 1/2)p>0 are in £'.
Under this assumption, J — Jy is trace class (where Jy is the matrix with b, = 0 and
an = ¢, = 1/2 for all n), and therefore the perturbation determinant (see [13,26,18])

A@y:da«J—@+z%yagh—@+z*y@‘ﬁ

is well-defined. It is known (see, for instance, [14]) that this function is analytic in the
unit disc, that A(0) = 1, that for any z with |z| < 1 one has A(z) = 0 if and only
if (z + 2z71)/2 is an eigenvalue of J, and that the order of the zero coincides with the
algebraic multiplicity of the corresponding eigenvalue.

To reduce our spectral problem to one in complex analysis, we are first interested in
the coefficients in the power series expansion of the determinant A at the origin. We
write

Az) = Z §;27,
=0

with 6o = 1. The following proposition shows that certain bounds on the coefficients of
the Jacobi matrix lead to bounds on the Taylor coefficients of A.

Proposition 1.3. Assume that for some B,D >0 and 1/2 <~y <1,

12b,| + [4anc, — 1| < De”B"" ) n >0,
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Then
10,1 < Dyexp(=(B/4)j7), i =1,
where Dy = C1D(1 + B~1/7) exp(CgD(l + B_Q/V)) and C1,Cy are absolute constants.
The proof of this proposition is given in Section 5.
Let N be the number of eigenvalues of J in C \ [—1, 1], where eigenvalues are counted

with their algebraic multiplicity. Given B and D we denote

d=B"'",
A=D1+ B~%7) +log(D(1 4+ B~Y7")B~%/),

Theorem 1.4. Let 1/2 < v < vy < 1, and let J be a Jacobi matriz such that
|26y | + |4ancn, — 1| < De™ B n >0,
for some B, D > 0. Assume that A’ > 1.

(a) If y=1/2, then Nj < S exp(cV A'd) for some absolute positive constant c.
(b) If1/2 <y <0, then

Ny < min <CA’(1 + (A/l—vdv)l/(zy—n)’

cd” T exp(cvV/A'd), A <d 2y - 1)_27)
€T max (AT (2 — 1) F1), Az d 2y - 1)

for some positive ¢ depending only on ~q.

This theorem follows immediately from Theorem 1.2, applied to f = A and v =
(148)/(24+8), and taking into account the bounds from Proposition 1.3. (More precisely,
the constant A’ provided by Theorem 1.2 differs from the constant A’ above by some
absolute constants depending only on 3. The fact that these constants can be omitted
follows as in the proof of Theorem 1.2.)

It is worth singling out the following special case where B = 1. This gives a bound on
the growth of the number of eigenvalues in the strong coupling limit.

Corollary 1.5. Let 1/2 <~ < 1, and let J be a Jacobi matriz such that
26| + |4anc, — 1| < De™, n >0,

for some D > 1.
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(a) Ify = 1/2, then Ny < exp(cv/D) for some absolute positive constant c.
(b) If1/2 <y < 1, then Ny < ¢, DY/ 7=Y for a constant ¢, depending only on 7.

For comparison purposes we note that if |2b,| + |4anc, — 1| < De™™, n > 0, then a
simple application of Jensen’s identity to A gives the bound Ny < ¢D.

We emphasize that, while, at least for § = 0, we prove the sharpness of the bound in
Theorem 1.1, it is not clear whether the bounds in Theorem 1.4 and Corollary 1.5 are
sharp. To prove sharpness of these bounds (and even of several more elementary ones in
the references), and more generally, to construct nonselfadjoint Jacobi matrices that are
compact perturbation of Jy and that have significantly more eigenvalues than selfadjoint
Jacobi matrices is a challenging open problem.

1.8. Plan of the paper

In Section 2 we give our first estimate on the number of zeros in analytic quasianalytic
classes which works for 5 away from 0. Another estimate using a propagation of smallness
technique and demonstrating a phase transition is given in Section 3. Theorem 1.2 (and
its special case, Theorem 1.1) follow from Theorems 2.1, 3.3, and 6.1. Section 4 is devoted
to the sharpness of our estimate in the case § = 0 in Theorem 1.1. The same construction
will show the sharpness of Theorem 1.1 for small positive 5. The proof of Proposition 1.3
(a Jost type estimate) is contained in Section 5. Finally, in Section 6, for the sake
of completeness, we give a variant of Dyn’kin construction to establish the equality
As = Cg, 8> 0.

1.4. Acknowledgment
The authors are grateful to the referee for several useful suggestions.
2. First estimate for 3 > 0

In this section we present our first method of estimating the number of zeros of
functions in analytic quasianalytic Carleman classes €. It works only for 8 > 0, and for
a large set of parameters 3, A it gives results weaker than that in Section 3. In particular,
it does not allow to see the phase transition of Theorem 1.2, when 8 becomes very small
with respect to A. On the other hand, this method is somewhat simpler than that in
Section 3.

Let 0 < 8 < fBy. Suppose that f € €5 with dy = d, d'f =1 (see (1.4)), that is,

0f(2)] < pa(d(]z] - 1)),

and that |f(0)] > exp(—A) for some A > 1.
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We first note that f is bounded by a universal constant,
If(2) <2V3, z2eD(2). (2.1)

To see this, we write, using Green’s formula,

ICEEN | O gy ().

s z—C
D(2)\D>

Thus,

2 — (| |2 — (]
D(2)\D (2)\D
<! / Ly ¢)=2V3
- = dm ,
Sa ) Qg
D(v3)

where we used a simple rearrangement inequality and the fact that ID(v/3) has the same
area as D(2) \ D.

2.1. 0-balayage

Consider the closed set

K :={zeD@)\D:|f(2)] < ps(d(lz] - 1))}

Let 0 < e <1 and let © be the connected component of D(1 + ) \ K containing the
origin.
We wish to make f analytic in €2 by only slightly correcting it. To this end we introduce

F = fe9 (2.2)
in such a way that
- of
g = ——
T

on Q. Here we have dg = 0 if 9f = 0 (in particular on the whole unit disc).
Notice that on 2 we have by definition |%| < 1. So we can find a solution g by the
formula

o,
o0) =~ [ S am).

Q
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Then we have

1 1 1 1 1 1
lg(2)| < ;J 7= ¢ dms(C) < ;D(Z) mdmﬂo < ;D({) mdmz(O =4
and, hence,
et < et < et
and
e fI < |F| < etlf] (2.3)
on D(1+¢).

From now on we work only with F. It satisfies (2.3), is analytic in D D, and has
exactly the same zeros as f in D, see (2.2). Let us list them:

Z1y-+-3”N
with N = Ny.
2.2. Harmonic measure on ()

Without loss of generality we can assume that €2 is regular for the Dirichlet problem.
Otherwise, just extend slightly K (diminish Q) and all the rest will work.
Consider the following function ug on €,

N

ug = log |F| + ZGQ(Z%, ),
k=1

where Gq is the Green’s function for €. It is harmonic on 2 since the logarithmic
singularities of the first term in the right-hand side are compensated by the second one.
It is bounded from above by a uniform constant on 92, and, hence, on €. Applying the
mean value theorem in €2, we obtain that

N
[ () dun(c) = 10g F(O)] + 3 Gl 0). (2.4)

90 k=1

where wgq denotes the harmonic measure on (2, evaluated at the point 0 (see, for example,
[19, Section VII B]). Furthermore,

Ga(z, () =0, ¢ €09.

WE

k=1
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Therefore, by (2.4),

N
[ 108 1P(O] deac) = log |[FO) + 3 Gal,0).
o0 k=1
and
/ log |Fz dwa (¢ ZGQ 2,00 < C+ A (2.5)

D (1+£)NoN

for some absolute constant C'.

Indeed, by (2.1) and (2.3), the function |F| is bounded from above by an absolute
constant and therefore the integral of log |F(¢)] over 92\ D(1 + €) can be majorized by
some absolute constant C.

We have

|F(¢)] < ete Y@= e D(14€) N o

Therefore, (2.5) gives us that

dwa(C) 148 1
_ 4 A) < o4, 2.
G |_1)1+B_d (4+C+A)<Cid (2.6)
D(14£)NQ
and
N
D Galzr,0) <4+ C+A<CLA, (2.7)
k=1

for some absolute constant C. (Here we used A > 1.)
These estimates will be important to complete the proof. However, first we need to
establish some simple estimates on the Green’s function in D(1 + ¢) and €.

2.8. Green’s function of Q and conclusion

Let us write yet another mean value theorem.
Ga(z,0) = Gp(i4e)(2,0) — / G (14¢) (2, C) dwa((), 2z €. (2.8)
90\OD (1+¢)

In fact, the function w +— Gp(14¢) (2, w) — Ga(z,w) is harmonic in 2 and has the bound-
ary values Gp(14¢)(2, (), ¢ € 98; furthermore, Gp(14¢)(2,¢) =0, ¢ € ID(1 +¢).
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We will now estimate the first term on the right side of (2.8) from below and show
that it is larger than the second term. Since

(14¢)—2(/(1+¢)

Gp(14¢)(2,¢) = log

z—( ’
we have
Gp(14¢)(2,0) = log 1‘—;6 >log(l+¢) > %, z e D. (2.9)
We claim that
Gp140)(2 ¢) < log |g|2—i1 €D, ¢eD(l+e)\D. (2.10)

Indeed, let s € [0,¢) and ¢ € ID(1 + s), then, by the maximum principle,

1+e)—2(/(1+¢ l14+¢e)—w/(1+¢
Sup GD(1+6)(27C) = sup log ( ) C/—< ) = sup log ( ) /( ) )
zeD 2€T 1—2(¢ lw|=s41 1—w

We compute

(I4+e)—w/(1+e)2 1  (I4+e)*—2(1+e)*Rw+ |w|?
1—w ‘  (1+¢)2 1—2Rw + |wl|?
B 1 (14— |w?) (1+e)?—-1)
_1+(1+€)2 1—2Rw + |wl|? '

Among w € ID(1 + s), this is clearly maximized at w = 1 + s, and therefore

(I+e)—(14+9)/(1+¢)

sup GD(1+5)(27 ¢) = log
zeD
Bounding (1 +¢) — (1+5)/(14¢) < 2¢ for s < € we obtain (2.10).
By (2.6) and (2.10) we obtain that

2

Gp(140)(2,C) dwa(¢) < C1Ad'P sup 7P log 76 < CAdPeP 2 €D,
0

D(14+e)NoQ2 <fse

where Cs depends only on [Sy.
Now we fix

. 1 1/8
E:mm{l’—élchdl*ﬁ} ,

and obtain that
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/ Gp(1+46)(2,C) dwa(() <

D(14¢)NoQ

SO

Combining this estimate with (2.9) we now obtain from (2.8) that

GQ(Z,O) > z e D.

c
4’
By (2.7) we conclude that Ny < 4CyAe~'. Thus we have

Theorem 2.1. Let 0 < 8 < By, f € &g, d’f =1, |f(0)] > exp(—A) for some A > 1. Then
for some positive number ¢ depending only on 5y we have

Np < cA(1+ AYVEHO5), (2.11)

If Ad}ﬂg < 1, then the estimate (2.11) is optimal. On the other hand, if Ad}‘w > 1,
then this estimate becomes bad when 5 — 0. To improve it we use a more complicated
argument in the next section.

Remark 2.2. The same proof shows that there are positive numbers ¢y, co such that if
f €&, dy =1,[f(0)] > exp(—A) for some A > 1 and Ady < c; then

Nt <cA. (2.12)

(Indeed, we can choose e = 1 in the above proof and ¢; = 1/(4C5).) In the next section
we will also prove a bound valid without restriction on Ady, but for small Ad; the above
bound is better.
3. Propagation of smallness estimates

Let 0 < 8 < Bo. Suppose that f is in €z with dy = d, d} = 1, and that [f(0)] >
exp(—A) for some A > 1. In this section, we are going to get an upper bound on the
number N = Ny of zeros of f in D, in terms of A,d, and 3, using a propagation of
smallness argument applied earlier in a similar way in an analytic non-quasianalytic
situation in [1].
3.1. Imposing additional assumptions

In the following we will suppose that

N > C'dAR+A/+8), (3.1)

for a large positive number C’ depending only on fy and set
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M = [(N/d)(+5)/(+6) | (3.2)

where |z is the integer part of a real number x. Note that assumption (3.1), A > 1 and
C’ > 2 imply that N/d > 2 and therefore

%(N/d)(1+/3)/(2+ﬁ) < M < (N/d)(H+5)/+5) (3.3)

Furthermore, assume that

C'd > CsM~YA+8), (3.4)

where Cj3 is a large positive number to be chosen later on, depending only on fFy. In
particular, we choose C3 > C" and then dMY/(1+5) > 1.

Our main arguments will require the additional assumptions (3.1) and (3.4). Before
presenting them, however, we derive some simple bounds when these assumptions fail.
Indeed, if (3.1) is still in place, but (3.4) fails, then

Oy\ 17 »
M<<5) d-(+8)

and by (3.3) (which uses (3.1)) we see

2+
N < 2@+8)/(14) (%) 4—(1+8) (3.5)

On the other hand, if (3.1) fails, then
N < C'dAC+B)/(1+8) | (3.6)
3.2. Beginning of the argument

From now on, our arguments use the assumptions (3.1) and (3.4).
It will also be convenient to assume that

f1<1  onD(2). (3.7)

In view of (2.1) this can be achieved by dividing f by a universal constant (in fact, by
2\/5) This does not alter d = dy and we may still assume that d’f = 1. On the other
hand, A is replaced by A+1n(2v/3). Since A > 1, we have A+1n(2v/3) < (1+1n(2v/3))A
and therefore the replacement of A only affects the constants, but does not affect the

form of our bounds. Therefore, in the following without loss of generality we assume
(3.7).
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We now apply Jensen’s formula (see, for example, [19, Section I]) twice. A first appli-
cation gives immediately

27
i/logu(e“)mt >4 (3.8)
2

0

We next claim that it also gives

card (Z; ND(1 —d ' M~ YHA)) < N/2. (3.9)

Indeed, let 21, ..., z1, be all zeros such that |z;| < 1—d~'M~1/0+8) Then by Jensen’s
formula and (3.7) we have

dMl/(1+5 210g| z =0 (m

Hence, by (3.1), (3.2) the following holds:

1+8
B

e () Fanroens ()

for C' > 4. This proves (3.9).
Next, we choose 0 € [0, 27] such that there are (at least) M zeros of f in

QG,M = {reM) 21— d—lM—l/(1+/3) <r<l, 6 < ¢ <0 +d_1M_1/(1+ﬁ)}-

Denote the first M zeros by v;, 1 < j < M. Rotating the disc, we can assume that 6 = 0.
Since

f(Z)Z% / Mdmz(w), z€D(2),

z—w
D(2)\D
with
|h(w)| < pg(d(jw] — 1)),  weD(2)\D,

for every zero v of f in D we have

=22 M) w),

™

D(2)\D

and then for 1 < K < M we have
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HJK:1(UJ' - 2) h(w) 1

™ K o _w)z—w
]D(Q)\]D H]:l(vj U})

f(z) = dma(w).

Furthermore, a rough estimate gives us that

h
K|(7w)| < sup pp(zd)z™*, w e D(2)\D.
[[i= lw—wv|  o<a<t

Hence, for every 1 < K < M and for all ¢ such that d-1M-1Y/0+8) < ¢ < 1 the
following holds:

A <4205 sup pa(da)a™ < 4(2d0)" sup ps()a "

0<z<1 >0
K K
= 4(2dt)¥ 1 B
(2d0)™ exp]| 75 108 C
Minimizing with respect to K we obtain that
[f(eM)] < exp(=3(2td)~ ), dTtMVOEA < <1 (3.10)

1+
unique minimum at K = (1+ 3)(2dt)~+#). By the assumption ¢t > d~* M ~/0+8)  this
is <2714+ B)M < M.)

(Note that (2dt) exp [L log 6(175_5)} viewed as a function of the real variable K has a

3.8. Reduction. Small values on an interval

By a fractional linear map, we transform the function f/10 into an analytic function
g in the lower half-plane that extends C'-smoothly to the whole plane and satisfies the

estimates

109(2)| < pp(3I2), |z| < Chd, Sz > 0,
1
o<t F<0
Cyd
/ log |g(x)|dx > —2Ad, (3.11)
0

for some positive absolute constant C7. The first estimate here follows immediately from
the corresponding bound on Jf, the second one from (2.1) and the third one from (3.8).
Furthermore, (3.10) now reads as

g(z)| < e 55, g e MY Cyd], (3.12)
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for some positive Cy depending only on fjy.
Set

yo = Cs M~/ (+H) (3.13)

with a universal constant C3 to be determined.
By (3.12), and (3.4), we have

o C,C8-1 8>
yg/loglg(x)ldx<—{ i
/ B

02 log Cg,

Therefore, given a positive absolute constant C4 to be fixed later on, we can choose
C3 > 1 in such a way that

Yo

yg/log lg(x)|dx < —C4. (3.14)
0

3.4. Propagation of smallness

Now we apply an iterative procedure similar to that used in [1]. Set

Yo

Iy = —/log|g(az)\dx (3.15)
0

and define two sequences (vi)k>1, Y& € (0,1], & > 1, and (Iy)g>1 in the following
inductive way. For k > 1 set

_ I _
—log ps (2" o) = Cs et=t, (3.16)
2 Yo
I = Iy—1 — C62* 'y log ps (2" Myoy) = (1 + C5Cevk) Ik—1, (3.17)

for some small positive absolute constant C5 and for some positive absolute constant Cg
to be fixed later on.
Equation (3.16) can be rewritten as

Yidp—1
2k71y0 ’

(2 yoy) P = Cs

or, equivalently, as

1
5 — . 3.18
Tk Cs(2F1y)PI1—4 (3.18)
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Since the numbers I, increase, to prove that such ~; € (0,1] exist for every k > 1, we
need only to check that

1

<1 (3.19)
Csyy Lo
which follows from (3.14) with C4 = 1/Cs.
Let us check by induction that
2”Ly0 C d
/ log |g(z)|dx < —1I,,, 0 <n <log, i (3.20)
0
0

The base case n = 0 follows from (3.15). If (3.20) holds for n = k — 1, then a simple
estimate of the Poisson integral together with relation (3.16) shows that for some positive
absolute constant Cs € (0, 1] we have

Qk—lyo

2" Tyon
loglo(2)| < Co gzt [ loga(o)lds
0

<log pg (2" 'yomk), z € Ty = [2" o, 2%0] — i2%yov.
Next we consider the rectangle
Up = {2 € C: —2Fygy < 3z < 26 My, 0 < Rz < 281yl

and the auxiliary function

a2 = o2) — + [ 2ama(c).

It is clear that gi is analytic on Uy and bounded by 1. Furthermore, for some positive
absolute constant C7,

log |gx(2)] < Crlog ps (2" Lyoyk), z € Ty, C OU.
Since v, < 1, a simple geometric argument shows that
wu, (x,Ty) > Cs > 0, T € J, = [2k_1y0,2ky0],
for some positive absolute constant Cg, where wy, (,-) denotes the harmonic measure

on Uy, evaluated at the point z. By the ‘theorem on two constants’ (see, for example,
[19, Section VII B]) we have
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log lgr(x)| < C7Cslog ps(2*yoy), @ € Jj.
Hence,
log[g(2)| < Colog ps(2*yon), @ € Jy,
for some positive absolute constant Cg. Furthermore,

2Fyo

/ log |g()|dz < —Ix—1 + Cg - 2" yo log ps(2° " yom) = —Ii.

0

Thus, (3.20) is proved.
3.5. Estimating the number of zeros. Case =10
Relations (3.17) and (3.18) give us that
I =TI 14+ C5Cs\/Th—1, k>0.
Therefore,
I, > Ck?, E>1,

and hence, by (3.11), (3.13) and (3.20) with n = |log,(C1d)/(2yo)]| we find

([logy(C1dM)/(2C)])* < ZAd.

Qlw

Thus, if (C1dM)/(2C3) > 4, then
[logy(C1dM)/(2C5)] = (1/2)logy (CrdM) /(2C3)

and therefore

8(log 2)?

(log(C1dM)/(2C5))* < c

Ad.
According to (3.3) this implies
N < 160?? 162\/8(log2)2/cm
- Ctod )
1

This is the claimed bound.

19
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On the other hand, if (C1dM)/(2C5) < 4, then, again by (3.3),

2802 1

ez d

N <

This bound is, up to universal constants, better than the claimed one.

We now recall that so far, we worked under assumptions (3.1) and (3.4). If these fail,
then we have the bounds (3.5) and (3.6). We claim that both of these bounds are, up
to universal constants, better than the claimed ones. This is clear for (3.5). For (3.6) it
follows from the fact that dA2? < (4/e)*d—1eYAd,

We summarize our findings as follows

Theorem 3.1. Let f € &y with dy =1 and [f(0)| > exp(—A) for some A > 1. Then for
some positive absolute constant ¢ we have

Ny < éexp(C\/A—df%
Remark 3.2. Taking into account Remark 2.2, we obtain the slightly stronger bound
Ny < % min{1, Ads} exp(c\/Ady) .
3.60. Estimating the number of zeros. Case B > 0. Phase transition
Set
Ry = I (28y0)?, k> 0.
Relations (3.17) and (3.18) give us that
Ry > Ry + Co R0

with Cy = 28CHA/ A 0~ 0. By (3.19), Ry > C5 L.
As in the case § = 0, we obtain that

Ry > Cok?, k>1,

for some positive C1¢ depending only on Sy. Hence,

Ik_22ﬂ010kyo7 1<k<

By (3.11), (3.13), and (3.20) with n = min{[ 22 |, log, $*¢]} we have

14280 1B
min <L2§ I Uogz Crd ) MPB/O+B) < 200 01003
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We claim that we may assume that
C1d/(2y0) = CLdMY AFR) /(203) > 4. (3.21)

Indeed, if this does not hold, we obtain using (3.3) a bound which is of the same form
as (3.5), up to possibly a different constant.

Assumption (3.21) together with 26,/5 > 2 allows one to simplify the previous bound
to

1 2
Cnmin(g,log(clngl/(Hﬁ))) MP/O+8) < Aq (3.22)

for some positive C11, C12 depending only on .
We now distinguish two cases, according to the size of Ad3?. Suppose first that AdS? <
1. Note that, by (3.1) and (3.2), if C’ is chosen sufficiently large, then

Oy MP/O+B) > 1 | (3.23)

This together with the assumption Ad3? < 1 implies that the minimum in (3.22) is
attained at log(C12d M/ (1+5) and therefore (3.22) becomes

C11 log?(Crad MY TN AP/OFE) < Ad,

Using (3.23) again to bound the left side from below, we conclude by (3.2) that

N < dl%exp(C\/A—d) (3.24)
for some positive C' depending only on fy.

We recall that this bound was derived under the additional assumptions (3.1) and
(3.4). If one of the restrictions (3.1) and (3.4) does not hold, then we have (3.5) and
(3.6). The first of these is clearly better than (3.24). To prove this also for (3.6) we use
the fact that A > 1 and therefore

dACHA/A+B) — g=(+B) (4q)2+P A=FR+E)/A+5) < g=(+8) (Aq)>+5

(2+8)/2
< (2;[3) d=+8) exp(VAd).
e

Thus, we have shown (3.24) under the sole assumption that Adj3? < 1.
Next, we discuss the case AdB? > 1. We assume first that in addition
log(CodMY/(1+5)) > 1/B. Then, (3.22) gives us that

CHMB/(H—B) < dAﬁQ )

By (3.3), we obtain
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N < d(AdB*)TA)/P exp(C/B) (3.25)

for some positive C' depending only on By. On the other hand, if log(CiodM /(1 +8)) <
1/8, then, by (3.3) we have

N < d~ ) exp(C/B) (3.26)

for some positive C' depending only on fy.

To get (3.25) and (3.26) we still have used conditions (3.1) and (3.4). If one of the
restrictions (3.1) and (3.4) does not hold, we conclude from (3.5) and (3.6), still assuming
Adfp? > 1, that

N < max(d(Ad52)<2+ﬁ>/5 exp(C/B), Cd—1+) exp(C/B))

for some positive C' depending only on fy. Indeed, this is clear for (3.5). In order to show
that the right side of (3.6) is smaller than the expressions on the right sides of (3.25)
and (3.26), we distinguish according to whether Ad'*#32(1+8) < 1 or not.

We summarize our findings in the following theorem. We observe a phase transition
in the estimate of the number of zeros depending on A, d and (.

Theorem 3.3. Let 0 < 3 < fy, f € €3, d} =1, [f(0)] > exp(—A) for some A > 1. Then
for some positive ¢ depending only on By, we have

N < ?ﬁrﬁ exp(cy/Ady), A< d;lﬁ’2,
f —_— c _ c
max(dp(Adg82) 5 eF,ca; e, Az dfpR

3.7. Proof of Theorem 1.2

Let f be in Ag and assume that | f(0)| > exp(—A). According to Theorem 6.1 we have
f € €5 with dp = Ca; ™) = Cd and &}, = Crala TP = C1a}d?. Then
the function f = satisfies d; = = , /"= 1and |f > e_~ wit
he function f = f/d} fies df = dy = Cd, d’s = 1 and [ (0 A with

A= A+log(Crad®) = A +1og Cy .

We may assume that C; > 1 and therefore A > A’ > 1. Therefore, Theorems 2.1, 3.1
and 3.3 applied to f imply the conclusion of Theorem 1.2 but with A in place of A’.
If we assume, in addition, that A’ > log C;, then we have A < 24’ and therefore in
the upper bound we can replace A by 2A4’. On the other hand, if 1 < A’ < logCh,
then A < 2logC; < 2(log C1)A’ and therefore in the upper bound we can replace A by
2(log C1)A’. This proves the theorem.
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4. Sharpness of the estimate on the number of zeros

In this section we show that Theorem 1.1 is sharp in the case 8 = 0. The same
construction will show the sharpness of Theorem 1.1 for small positive 5. We limit
ourselves to the case f = 0 because the calculations of general § are exactly the same
in spirit, but rather technical and cumbersome. Our counterexample gives a clear idea
how this can be done in general without adding many pages to our article.

Theorem 4.1. Let § > 0. Given A > A(9), there exists f € €y satisfying (1.4) with some
absolute constants dy, d'y and such that |f(0)| > exp(—A), Ny > exp(A1/?79),

Proof. It will be convenient for us to construct first a function g analytic in the right
half-plane C, with good estimates on the d-derivative in the left half-plane C_ and such
that |g(1)] = exp(—A4).

Let € € (0,1/10) be a small number to be chosen later on. Denote by II the standard
strip {z +iy € C : |y| < 5 }. We set

: elyl
h(y) = mln(l, m), y €R,

and consider a domain €2 given by
Q={z+iyeC:2>—h(y)},

which is slightly bigger than C.
Let x : 2 — C, be the conformal map fixing the points 0, 1, and infinity. Furthermore,
let B={logz:z¢€Q}. Then we can write

X = expo o log,

where ¢ is a conformal map from the curvilinear strip B onto the standard strip II
fixing the points 0, +oo. The strip B at —oo looks like {z + iy € C : |y| < s(=z)},
s(x) = 5 + a7 + O(1/2%), |s'(z)] = O(1/2?), # — —oo. By Warschawski’s distortion
theorems [29] we obtain that

s 14

_ o 1\*
[x(2)] < e ™o 76 = \z|(log—) , z =0,
z

and that
WEI=(log ) 20, (41)
E

where k = 2¢/m.
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A modified domain. Given a small number x4 > 0, set

h.(y) = max(z 4, h(y))

and consider a domain €2, containing 2,
Q.={z+iyeC:2>—h(y)}.

Next we consider the outer function g in €2, determined by its absolute values on the
boundary:

b
10g|9(2)|:—wa z € 0%,

for some b = b(e) < 1 to be chosen later on.

Let h(ya) = x4, ya > 0. Set ra = (24 +y%)"/2. The boundaries of Q and Q, coincide
outside of the disc D(r4); inside the disc D(r4) they are different: 92 ND(r4) consists
of two smooth curves belonging to the set {z + iy € C : z = —h(y)} while 02, ND(r4)
is just a vertical interval in C_. Set I' = 9 N 9N,. Let w be harmonic measure on §2,
evaluated at point 1.

We want to choose x4 in such a way that

- / log |g(2)| das(z) = A. (4.2)
o

Notice that w(9Q\T') < ya (log yiA)H Hence,

1 \x logy—A

~ [ toglg(a)ldte) = (log )" =1 — ofa), (43)
Ya

HO\T

for suitable x4 to be chosen later on.
Next, let us require that

—/log lg(2)| dw(z) < A. (4.4)

r

This integral is equivalent (see (4.1)) to

1
log & 1\# 1 1 \2+%
/ 5 (log 7> ds = (log —) .
] s 24+ kK YA

Yya

Finally, we choose x 4 by the equality
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1

/ 1019';‘1 (log é)ﬁds = A.

YA

Then (4.3) and (4.4) are true and (4.2) becomes true if we choose the number b in the
definition of g appropriately.
Thus, we have

1
log— =< A27 7,
TA

with 7 =¢/(2(7 + €)).
Since g is outer in §2, we have

~loglg(1)| = - [ loglg(a)] da(z) = A
o

How smooth is g? We claim that g|C extends to a function § which is C!'-smooth in
the whole complex plane,

185(2)] < Ce™ 1, —1 < Rz < 0, (4.5)

for some absolute constants C, C1, and §(z) vanishes for Rz < —1.

Indeed, consider a smooth function ¢ such that ¢¥(z +iy) = 1 on {z +iy : z >
—h(y)/2}, Y(x+iy) =0on {x+iy: z < —h.(y)}, and 0 < ¢ < 1 everywhere. We can
find such v with

|0y + iy)| < x+iy e C. (4.6)

ha(y)’

Furthermore, an easy estimate of harmonic measure gives us that
C
lg(z +iy)| < Ce ™, —h,(y) <z < —hy(y)/2, (4.7)

with some absolute constants C, C;. Put g := v g. Now, property (4.5) follows from (4.6)
and (4.7).

Imposing zeros By a linear fractional transformation, we can transfer g to D and its
extension § to D(2). Then g belongs to the class €y and g(0) = e~“. The only problem
is that our g is an outer function and so has no zeros whatsoever. On the other hand, g
is very small on the arc I4 centered at the point 1 € T of length 2y 4. In fact,

1

—T

_ < _ A2
lg(Q)| < e a <e 9T | (€ly,

for some absolute constants C, C, > 0.
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For N > 1 to be chosen later on, let the points {x; }é\le divide I into N equal arcs of
length QyTA Set £(z) = H;-V:l(z —xj), and let L be the Lagrange interpolation polynomial
that interpolates the function g at the points {z;}};:

S e
L(z) = {(2) Z g/(xj)(z — .’L‘j) .

To estimate |L(0)| we use the equalities [¢(0)/x;| =1, 1 < j < N, and a lower bound
for [¢/(z;)|:

1€ (25) = (2ya/N)™.
Now,

1,
|L(0)] < Ne—Cre*” eNlOgNeCINA%#

— )

for some absolute constant C4.
Choose

N = LeAéizTJ

Then L(0) < e=4/2 for A > A(e).
Set f = g — L. Then |f(0)| > e~4/2 and f has N zeros in the closed unit disc.
Notice that our argument for estimating L(0) works also for L(z). In the same way
we obtain that

1_. 1.
|L(z)| < N3Ne=C-e*® NlogN CiNA? , |z| = 2,
and
|L(2)| < e /2, |z =2, A> Ay (e).

By the maximum principle, we conclude that

sup |[L| < e 4/2, A > Aq(e).
D(2)

Now consider a cut-off smooth function ¥ equal to 1 in D(3/2) and zero outside D(2)
and put f = § — ¥ L. This function extends f,

0f(2)| < Ce P, 2 eD(2)\D,

1 o,
for some absolute constants C,Cy > 0, and ny 2 eA? " ,A> Ai(e). O
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The results in this section show that, at least for = 0, we prove the sharpness
of the bound in Theorem 1.1. As we already mentioned, it is not clear whether this
optimality carries over to the bounds for eigenvalues of Jacobi matrices in Theorem 1.4
and Corollary 1.5.

5. Application to non-selfadjoint Jacobi matrices
5.1. Proof of Proposition 1.3

The first ingredient in the proof of Proposition 1.3 is the following result, which
estimates the coefficients J; in terms of the numbers ay, by, and c,. In the self-adjoint
case it appears, e.g., in Section 10.1 of [28]. The same proof works in the non-selfadjoint
case, where it appears, e.g., as Theorem 2.3 in [14]. Set

= Z (126, | + [4anc, — 11).
n=N

Lemma 5.1. For every j > 1,

oo

051 < H (/2D (TT 0+ H )

n=0

where [j/2] is the integer part of j/2.
The second ingredient we need is an elementary bound on exponential sums.

Lemma 5.2. Let 1/2 <~ < 1. Then for all B> 0 and N > 0 we have

o0

S e B <1+ BV (14 (BN) T e BN

with an absolute constant C. In particular, for all B> 0, N >0 and c € (0,1) we have

oo

Z —Bn” < C 1+ B—l/’y)e—cBNW’

where C, depends only on c.

Proof of Lemma 5.2. By monotonicity, we have

00 oo o

Z e~ Bn” < e~ BN” _i_/e—BzW dr — e~ BN” + 11 / e—yy(l/v)—1 dy .
'yB /Y
n=N N BN~
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We now use the fact that for 0 < o <1,

[ee]
/e_yya dy <2e(14+Y*)e Y, Y >0. (5.1)
Y
Indeed, we have
oo oo
/e_yyo‘ dy =e YV + a/e‘yyo‘_l dy
Y Y
o0
<e VY faye! /e_y dy=(1+aY e YY" < (1+Y¥e Y, Y >1.
Y
Furthermore,
oo o0
/e_yya dy < /e_yyo‘ dy=T(a+1)<2(1+Y%e™, 0<Y <1.
Y 0

Together, these two inequalities prove (5.1).
Applying (5.1) with a = (1/7) — 1, we obtain

e Yy gy < 26(1 n (BN»y)(l/’Y)—l)efBNw
BN7
and therefore
Z e B < C<1+B71/’Y<1+ (BNV)(I/W)*1>>67BN7
n=N

for some absolute constant C. 0O

To complete the proof of Proposition 1.3, we combine Lemmas 5.1 and 5.2. Fix 0 <

¢ < 1. By assumption, we have

o0
H(N)<D Z e B N >0,
n=N

and therefore Lemma 5.2 implies that

H(N)<C.D(1+ B~ Y7)e BN N >0.
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Moreover, using the estimate log(1 4+ 2) < 2 we obtain that

([0 ) = St + 1) = 3~ 160
" n=0 n=0
Therefore, from the bound we have just derived, we get
IOg(H(l + H(”))) < C.D(1+ B—l/v) Z o—cBnT
n=0 =

Applying again Lemma 5.2 we find

log(ﬁ(l + H(n))) < C'D(1+ B~2/7).

n=0

In view of Lemma 5.1 these bounds imply the proposition.
6. Smooth extensions with estimates on 8. Dyn’kin construction

At the beginning of the 1970-s Dyn’kin proposed a general approach of represent-
ing functions in different smoothness classes as traces of asymptotically holomorphic
functions, that is, functions satisfying some quantitative restrictions on the d-derivative.

In particular, it follows from the results in [6] that

As = €5, B>0.

Here we give a short proof of (a quantitative version of) the inclusion g C €g. The
opposite inclusion is not needed in this paper, but we give a proof of it after the proof
of the theorem.

Theorem 6.1. Let 0 < 8 < By and let f be analytic in the unit disc and satisfy (1.3)
with a’f = 1. Then f extends to a C'-smooth function with compact support in D(2) (we
denote this extension by the same symbol f) in such a way that

=1 [ L anac),
D(2)\D
and
0f(2)] < dyps(ds(lz] = 1)),  z€D(2)\D, (6.1)

where
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pﬁ(x):e ﬁv

and
df =Ca; , dy = Chray ,
with some C,C} depending only on (.

Proof. Let

7( af 1+5)2+5
Y=\ 253)

Set
N(0) =0, N(m)=2Cmy  m>1.

Consider S,,, = Z;‘;N(m) f(k)2*, the tail of the Taylor series of f.

Let ¢, denote the C! smooth function equal to 0 on C \ D(1 +27™), equal to 1 on
D(1+27™1) and such that V¢, has compact support in D(1+277)\ D(1 4 2-™~1)
and |5<pm| <C2™, m > 0.

Now define

f= Z Pm - (Sm - m+1)~ (6'2)

m>0

In particular, on the unit circle this sum is just f =3, (Sm — Sm1). Thus, formula
(6.2) gives an extension of our original function f to D(2)\D. Furthermore, this extended
f has compact support in D(2).

Let us estimate the d-derivative of f. If z belongs to D(1+2-")\D(1 + 2=™m~1), then
only one dyy (namely O¢,,) is not 0. The terms @y, - (S — Smy1), k # m, obviously
give zero contribution to df, because Sj, — Sy41 are just analytic polynomials.

Thus, if z€ D(1+27™)\ D(1 +2-™1), then

04(2)] < C2715(2) = S (2)
1+8
< cam 3

2(2+8)m Ay L s<2(24+B) (m+1)

(1+27™)°

< Cyam DD gy (g 2HAIMATES | gmmH(ZHB)(m1).,)

— O2B+BIME248 (_ a %2(1+ﬁ)m>_
gl Pl=55 3%

Thus,
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(148) (m+1)

10f(2)] < upes? , 2€DA42"™)\D(1+2-m"1), m>0,
with
’Uf = Ca?+6 s 'U,f = Cla;(4+2ﬁ)/(1+ﬂ) s

with some C, Cy depending only on fy. This proves (6.1).
By construction, f has compact support in D(2), and hence, Green’s formula allows
us to restore f(z) as follows:

o=+ f O () =

s z—C
D(2) D(2)\D

2=
—
Qi
=
o
QU
3
o

We are done. O

Remark 6.2. In the opposite direction, if 0 < 8 < By and if f is analytic in the unit disc
and satisfies (6.1), then it satisfies (1.3) with

with some C', C'; depending only on f.

Proof. Indeed, in this case, for every 0 < € < 1 we have
ol =5 [ 12
n)| = o z)z z
oD

[ et [ st
s
oD(1+¢) D(i+e)\D
!

C f ’
< dron +2dyps(dse),  n=0.

On the other hand, we have

/ af(z)z""1 dmg(z)‘ < 2d};pp(2dy).
D(3)\D

A 1
HOIE
If nd}fﬁ > 1, then we set € = nil/(”ﬁ)d;(l*_ﬁ)/(ﬁm < 1 and conclude that

2 1 _a 2
|f(n)| < Cd/f exp(f§df( +8)/( +5)n(1+5)/(2+5)>'

Otherwise, if 0 < n < d;(HB), then
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N - 2
)| < 2y (2d) < Oy exp(— g d; 7 G109/
for some absolute constant C. Finally,
Fo) <ody. o
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