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Abstract

Suppose that (K, ν) is a valued �eld, f(z) ∈ K[z] is a unitary and irreducible
polynomial and (L, ω) is an extension of valued �elds, where L = K[z]/(f(z)). The
description of these extensions is a classical subject. We deal here with the more
delicate situation where A is a local domain with quotient �eld K dominated by
the valuation ring of ν and f(z) is in A[z], and we want to describe the extensions
ω of ν to A[z]/(f(z)). A motivation is the problem of local uniformization in
positive characteristic: assuming that the valuation ν on A can be uniformized,
when can ω on A[z]/(f(z)) also be uniformized?

In recent years it has appeared that this problem is closely connected to
the description of the structure of the associated graded ring grωA[z]/(f(z)) of
A[z]/(f(z)) for the �ltration de�ned by ω as an extension of the associated graded
ring of A for the �ltration de�ned by ν. In important special cases this description
reduces the extension of local uniformization to embedded resolution of singular-
ities of toric varieties, which is already known. This paper is devoted to this
description. In particular we give an algorithm which in many cases produces a
�nite set of elements of A[z]/(f(z)) whose images in grωA[z]/(f(z)) generate it
as a grνA-algebra as well as the relations between these images. We also work out
the interactions of our method with phenomena which complicate the study of
rami�cation and local uniformization in positive characteristic, such as the non
tameness and the defect of an extension. For a valuation ν of rank one and a sep-
arable extension of valued �elds (K, ν) ⊂ (L, ω) as above our algorithm produces
a generating sequence in a local birational extension A1 of A dominated by ν if
and only if there is no defect. In this case, grωA1[z]/(f(z)) is a �nitely presented
grνA1-module.
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1. Introduction

Given a �eld K and an extension L of K, the study of the problem of extending a valuation
from K to L has a long history motivated in part by its close relation with rami�cation
theory, whether in number theory or in algebraic geometry. It has an incarnation in logic,
the model theory of valued �elds which provides another viewpoint on rami�cation theory.
After fundamental work by E. Artin, H. Hasse, A. Ostrowski and others, S. MacLane
created a method for describing all extensions of a discrete rank one valuation on a �eld
K to a primitive extension K(z), be it algebraic or transcendental. The method is based
on the existence of key polynomials in K[z] which provide successive approximations of a
given extension of the valuation and, by the behavior of their degrees, a measure of its
complexity.

On the side of algebraic geometry, Zariski's approach to resolution of singularities of
algebraic varieties using local uniformization of valuations provides a strong motivation for
the study of valuations on local domains essentially of �nite type over a �eld, which waned
after Hironaka's proof of resolution in characteristic zero but later revived as an approach
to resolution in positive characteristic.

In the 1970's and 1980's appeared (see [35], [34], [15]) the idea that the associated
graded ring grνA of a local domain A with respect to the �ltration of A associated to a
valuation ν of its �eld of fractions centered in A (non negative on A and positive on its
maximal ideal) encoded in a geometric way essential characters of the valuation and could
be used at least in special cases to obtain local uniformization. For example, representatives
in A of the generators of the graded algebra associated to the unique valuation of a one
dimensional integral complex analytic algebra can be used to embed the corresponding
curve in an a�ne space where a single birational toric modi�cation provides an embedded
resolution of singularities (see [15]). It also became apparent that some of MacLane's
essential de�nitions are better understood using associated graded rings.

Somewhat later, MacLane's theory was generalized by Vaquié who extended to all
Krull valuations the construction of sequences of key polynomials, now indexed by totally
ordered sets ( see [38], [39], [40] and section 7 below). He also described the extension
grνK ⊂ grωK[z] of graded rings corresponding to an extension of valuations from ν on
K to ω on K[z], for z algebraic or transcendental over K. It appeared that the images of
MacLane's and Vaquié's key polynomials in the graded algebra grωK[z] were related to its
generation as a grνK-algebra.

In the last three decades or so the problem of describing a generating sequence for a
valuation, which is a set of elements of a ring A whose images in grνA provide a presentation
by generators and relations has become of major interest for the rami�cation theory of
extensions of valued �elds as well as for local uniformization in positive characteristic,
which is still an open problem.

In fact it has become apparent that given an extension (A, ν) ⊂ (B,ω) of valued rings the
extension grνA ⊂ grωB of the associated graded algebras, as well as the similar extensions
obtained after birational extensions of A and B encodes in a comparatively simple lan-
guage, such as the condition of being �nitely generated, essential information about the
rami�cation of the original extension. This concerns especially the defect and the possibil-
ity to uniformize ω on B if we can uniformize ν on A. But we can access this information
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only if we have descriptions by generators and relations of grνA and grωB, or of grωB as
a grνA-algebra. This is the main motivation for this work.1

Here we consider the case where the essence of the di�culty resides: suppose that
(K, ν) is a valued �eld, f(z) ∈ K[z] is a unitary and irreducible polynomial and (L, ω) is
a �nite �eld extension, where L = K[z]/(f(z)). Further suppose that A is a local domain
with quotient �eld K such that ν dominates A and that f(z) is in A[z]. We provide an
algorithm producing the �rst signi�cant part of a generating sequence for extensions of a
valuation ν to A[z]/(f(z)).

The valuations ν and ω also induce �ltrations of K and K[z]/(f(z)) respectively and the
associated graded ring of K[z]/(f(z)) along ω as an extension of the associated graded ring
ofK along ν has been constructed implicitly, in the papers [24], [25] of MacLane for discrete
rank one valuations, and for general valuations by Vaquié in [38], [39], [40]. Further papers
on this topic, and comparison with the method of pseudo convergent sequences (introduced
by Ostrowski in [30, Teil III, � 11] and developed by Kaplansky in [18]) are [2], [29], [33],
[17] and [10]. Finding generating sequences for A[z]/(f(z)) in the case where A is no longer
a �eld but an arbitrary noetherian subring dominated by Rν and with the same �eld of
fractions is much more closely related to resolution of singularities via local uniformization
and correspondingly more di�cult.

This paper is devoted to this problem. We describe the relationship of our method with the
key polynomials of MacLane and Vaquié. We also work out the interactions of our method
of computation with phenomena which complicate the study of rami�cation in positive
characteristic, such as the lack of tameness and the defect of an extension.

We now give more details about the content of this paper:

Let Gν be the value group of ν and Rν be the valuation ring of ν, with maximal ideal mν .
Given a subring A of the �eld of fractions of Rν , the associated graded ring of A along ν
is de�ned as

grν(A) =
⊕
γ∈Gν

Pγ(A)/P+
γ (A)

where

Pγ(A) = {g ∈ A \ {0} | ν(g) > γ} and P+
γ (A) = {g ∈ A \ {0} | ν(g) > γ}.

The ring grν(A) is an algebra over its degree zero subring. It is a domain which is generally
not Noetherian. In this text we shall consider subrings of Rν so that the semigroup SA(ν)
of values of elements of A \ {0} which indexes the homogeneous components of grν(A) is
contained in the positive part of Gν . We shall see more about this semigroup below.

Important invariants of a �nite extension (K, ν) ⊂ (L, ω) of valued �elds are the reduced
rami�cation index and residue degree of ω over ν, which are

e(ω/ν) = [Gω : Gν ] and f(ω/ν) = [Rω/mω : Rν/mν ].

1We think that the problem of constructing generating sequences in a Noetherian local domain A which is
dominated by a valuation ν is very di�cult, and little is known about it in general. The di�culty re�ects
the fact that the structure of the semigroup of values SA(ν) = ν(A \ {0}) is closely related to some of the
birational maps providing embedded local uniformizations of ν and can be extremely complicated. It is well
understood in the case that A has dimension one (see [35], [15]), and for regular local rings of dimension
two ([34], [9], [27]). It is known for certain valuations dominating two dimensional quotient singularities
[12] and for certain valuations dominating three dimensional regular local rings [19].
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Another, very subtle invariant is the defect δ(ω/ν) of the extension, which is a power of the
characteristic p of the residue �eld Rν/mν . The defect and its role in local uniformization
are explained in [20]. We give the de�nition of the defect in (44) below. In the case where
ω is the unique extension of ν to L we have that

[L : K] = e(ω/ν)f(ω/ν)δ(ω/ν). (1)

If A and B are local domains with quotient �elds K and L such that ω dominates B and
B dominates A, we have a graded inclusion of graded domains

grν(A)→ grω(B).

The index of quotient �elds is:

[QF(grω(B)) : QF(grν(A))] = e(ω/ν)f(ω/ν)

by Proposition 3.3 of [3]. The defect seems to disappear, but it manifests itself in mysterious
behavior in the extensions of associated graded rings of injections A′ → B′ of birational
extensions of Noetherian local domains A,B. For instance, if ν has rational rank 1 but is
not discrete, the defect δ(ω/ν) is larger than 1 and A and B are two dimensional excellent
local domains, then grω(B′) is not a �nitely generated grν(A′)-algebra for any regular local
rings A′ → B′ which are dominated by ω and dominate A and B as shown in [6].

The construction of generating sequences is closely related to the problem of local
uniformization. In [7, Theorem 7.1], it is shown how reduction of multiplicity along a rank
1 valuation can be achieved in a defectless extension A→ A[z]/(f(z)). A similar statement
is proven by San Saturnino in [33].

The statement �defectless� means that the rank 1 valuations ν and ω satisfy δ(ω/ν) = 1.
From this assumption, it follows that either ω(z−K) has a largest element, or the limsup of
this set is∞. If the limsup of this set is∞, then in an appropriate extension, the valuation
ω corresponds to a linear factor of f(z), and it is not di�cult to realize a reduction of
multiplicity by blowing up. So assume that ω(z − K) has a largest element γ ∈ Gω. We
then have γ 6∈ Gν . After a birational extension A1 of A and a change of variables of z in
A1[z], we obtain that ω(z) = γ and then after a Cremona transformation involving z, we
obtain a reduction of the multiplicity of the strict transform of f .

In [36] and [37], it is shown how associated graded rings along a valuation can be used to
prove local uniformization, at least when the associated graded rings are �nitely generated
algebras over A/mA. A suitable toric resolution of singularities of the associated graded
ring induces a local uniformization of the given valuation.

The subring of degree zero elements of the graded ring grν(A) is (grν(A))0 = A/Q
where Q is the prime ideal in A of elements of positive value. A generating sequence for ν
on A is an ordered set of elements of A whose classes in grν(A) generate grν(A) as a graded
(grν(A))0-algebra. To be meaningful, a generating sequence should come with a formula
for computing the values of elements of A, and their relations in grν(A). In particular, a
generating sequence should give the structure of grν(A) as a graded (grν(A))0-algebra.

In the case of an inclusion A ⊂ B of domains, and an extension ω of ν to the quotient
�eld of B such that ω has nonnegative value on B, a generating sequence of the extension
is an ordered sequence of elements of B whose classes in grω(B) generate grω(B) as a
grν(A)-algebra. A generating sequence for an extension should come with a formula for
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computing the values of elements of B, relative to the values of elements of A, and give
their relations in grν(B). That is, a generating sequence should give the structure of grω(B)
as a graded grν(A)-algebra.

In this paper, we give a very simple algorithm which allows us to compute a generating
sequence and the structure of grω(A[z]/(f(z)) in many situations. Throughout this paper,
we have the assumption that A is a local domain which contains an algebraically closed
�eld k such that its residue �eld A/mA = k, ν dominates A and the residue �eld of the
valuation ring Rν of ν is Rν/mν = k (ν is a �rational valuation�). This algorithm is derived
in Section 4. The algorithm is valid for an arbitrary extension ω of an arbitrary valuation
ν dominating A (mν ∩A = mA).

A realization of our algorithm produces a subring of grω(Rν [z]/(f(z)) which is the quo-
tient C/I of a graded polynomial ring C over grν(Rν) in either �nitely many or countably
many variables, and a set of generators of the graded prime ideal I of C. Our algorithm
gives an explicit representation of this subring as

grν(Rν)[ϕ1, . . . , ϕk, . . .]/I,

where

I = (ϕn1
1 − c1, ϕ

n2
2 − c2ϕ

j1(2)
1 , . . . , ϕnkk − ckϕ

j1(k)
1 ϕ

j2(k)
2 · · ·ϕjk−1(k)

k−1 , . . .)

with c1, . . . , ck, . . . ∈ grν(Rν) homogeneous elements. The elements ϕi are homogeneous
with strictly increasing values. If our algorithm terminates in a �nite number of steps k,
then elements ϕ1, . . . , ϕk ∈ Rν [z] whose classes are ϕ1, . . . , ϕk form a generating sequence
of Rν [z]/(f(z)) over Rν and we have built up the entire associated graded ring

grν(Rν [z]/(f(z))) = grν(Rν)[ϕ1, . . . , ϕk]/I

where

I = (ϕn1
1 − c1, ϕ

n2
2 − c2ϕ

j1(2)
1 , . . . , ϕnkk − ckϕ

j1(k)
1 ϕ

j2(k)
2 · · ·ϕjk−1(k)

k−1 ).

In this case, we have that grν(Rν [z]/(f(z)) is a �nitely generated and presented grν(Rν)-
module.

When we compare our algorithm to the theory of Vaquié ([38], [39], [40]) in Subsection
7.1, we conclude in Proposition 7.1 that a realization of our algorithm produces the ��rst
simple admissible family� S(1) of an �admissible family� S determining the valuation ω.

In the case of a noetherian local domain A dominated by Rν as above, our algorithm
produces in many situations a �nite sequence of elements of A[z] whose images generate
the grνA-algebra grωA[z]. It does this even in cases where there are in�nitely many key
polynomials. Remarks 8.12 in [37] displays a similar phenomenon of �nite generation in
the presence of an in�nity of key polynomials.

More precisely, if the characteristic p of k does not divide the degree of f , A is a
domain as above and ω is the unique extension of ν to a valuation of the quotient �eld L of
A[z]/((f(z)), then we show in Theorem 5.1 that our algorithm produces a �nite generating
sequence in A[z]/(f(z)). The associated graded ring of A[z]/(f(z)) along ω is then a �nitely
generated and presented module over the associated graded ring of A along ν.

Since the defect δ(ω/ν) is always a power of p, the assumption that p does not divide
the degree of f in Theorem 5.1 and the assumption that ω is the unique extension of ν
forces the defect δ(ω/ν) to be 1 by (1).
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We show that if any of the above assumptions are removed, then the conclusions of
Theorem 5.1 do not hold (Examples of Section 4 and Section 11). For instance, the as-
sumption that Rν [z]/(f(z)) is a �hypersurface singularity� is shown to be necessary for
�nite generation to hold in Example 11.3.

To illustrate the power of Theorem 5.1, we compute in Example 5.2 the associated
graded ring when f(z) is a quadratic polynomial, k has characteristic not equal to 2 and
ω is the unique extension of ν. It has the simple form

grω(A[z]/(f(z)) ∼= grν(A)[ϕ]/(ϕ2 − c)

for some homogeneous c ∈ grν(A). From the classi�cation of associated graded rings of
valuations dominating a two dimensional regular local ring A ([34] and [9])) we see that we
are able to completely calculate the associated graded ring along an extended valuation in
the local rings of two dimensional rational double points, when the extension ω is unique.
In constrast, if ω is not the unique extension of ν, then grω(A[z]/(f(z)) might not be a
�nitely generated grν(A)-module, as shown in Examples 5.2 and 11.4.

In Theorem 8.2, we consider an arbitrary separable extension (with no assumption on
the degree) and assume that A is a Nagata local domain. We show that an extension of
a rank one valuation ν is without defect if and only if there exists a realization of our
algorithm with coe�cients in a birational extension A1 of A which constructs ω, either as
a valuation or a limit valuation. A birational extension A1 of A is a localization of a �nitely
generated A-algebra whose quotient �eld is K and which is dominated by ν.

An example showing that the conclusions of Theorem 8.2 may not hold if ν has rank
larger than one is given in Section 10. In Example 8.3, it is shown that the conclusions of
Theorem 8.2 may not hold if f(z) is not separable over K.

In Section 9 we analyze our algorithm in a rank 1 example with defect from [11] to
motivate the necessary condition of Theorem 8.2. We explicitly show that a generating
sequence does not exist in A1[z] for any birational extension A1 of A which is dominated
by ν, and the valuation ω is not realizable as a limit valuation; that is, ω is not realizable
as a sequence of approximants, only of a collection of approximants indexed by a more
general well ordered set.

In the �nal section, Section 11, we give examples showing that the �nite generation of
extensions of associated graded rings and valuation semigroups ensured by Theorem 5.1
may fail if any of the assumptions of the theorem are removed. The semigroup SA(ν) of
values of ν on A is

SA(ν) = {ν(g) | g ∈ A \ {0}}.

In Example 11.3, it is shown that there exists an extension L of the quotient �eld K of
A of degree prime to p, a valuation ν of K which dominates A and has a unique extension
to L such that if B is the integral closure of A in L, then grω(B) is not a �nitely generated
grν(A)-module and the semigroup SB(ω) is not a �nitely generated SA(ν)-module. In
particular, the conclusions of Theorem 5.1 do not hold for this extension. This example
shows that we must have the condition that B = A[z]/(f(z)) is a �hypersurface singularity�
for the conclusions of Theorem 5.1 to be true.

We make use of the theory of MacLane, [24], [25], which he developed to construct the
extensions of a (rank 1) discrete valuation ν of K to a discrete valuation ω of K[z] or of
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K[z]/(f(z)) for some irreducible unitary polynomial f(z) ∈ K[z]. Our algorithm can be
viewed as a realization of MacLane's method in the context of a general valuation, in a
speci�c, nice form. MacLane's theory is surveyed in Section 3.

We also make use of Vaquié's generalization of MacLane's method in [38], [39], [40] to
construct extensions of general valuations in K[z] and K[z]/(f(z)) in our proof of Theorem
8.2. The essential new concept in Vaquié's work is that of a �limit key polynomial�. He gave
in [40, Exemple 4.1] an example of in�nite sequences of key polynomials due to the non
uniqueness of valuation extension. Vaquié's method is surveyed in Section 7, as well as
a study of its relationship to our algorithm. In the situation of this paper we shall meet
only �nite sequences of limit key polynomials since the number of limit key polynomials
is bounded by the degree of f(z). In Section 6 we collect and derive some results about
Henselizations of rings and valued �elds which we need for the proof of Theorem 8.2.

In this paper, a local ring is a commutative ring with a unique maximal ideal. In
particular, we do not require a local ring to be Noetherian. We will denote the maximal
ideal of a local ring A by mA. The quotient �eld of a domain A will be denoted by QF(A).
We will say that a local ring B dominates a local ring A if A ⊂ B and mB ∩A = mA.

We will denote the natural numbers by N and the positive integers by Z+.

2. Valuations and pseudo valuations

We shall in the sequel consider sequences of valuations which approximate ω. For that
reason we change notations and denote these sequences by V0, V1, . . . as in [24] and [25]. A
general valuation will be denoted by V and the reader may think of ν as V0.

Suppose that V is a valuation on a �eld K. We will denote the valuation ring of V by
RV and its maximal ideal by mV . The value group of V will be denoted by GV .

Suppose that A is a Noetherian local domain with quotient �eld K and A → A1 is
an extension of local domains such that A1 is a domain whose quotient �eld is K and A1

is essentially of �nite type over A (A1 is a localization of a �nitely generated A-algebra).
Then we will say that A→ A1 is a birational extension.

If A is a domain which is contained in RV , then the associated graded ring of A along
V is grV (A) as de�ned in the introduction, The initial form InV (g) of g ∈ A is the class of g
in PV (g)(A)/P+

V (g)(A). The semigroup of V on A has also been de�ned in the introduction.

A pseudo valuation (or semivaluation) V on a domain A is a surjective map V : A →
GV ∪ {∞} where GV is a totally ordered Abelian group and a prime ideal

I(V )∞ = IA(V )∞ = {g ∈ A | V (g) =∞}

of A1 such that V : QF(A/I(V )∞) \ {0} → GV is a valuation.

3. The MacLane theory of key polynomials

Suppose that V is a valuation or a pseudo valuation on a domain A. Following MacLane
in [24] in the case A = K[z], we can de�ne an equivalence ∼ on A de�ned for g, h ∈ A by
g ∼ g in V if V (g − h) > min{V (g), V (h)} or V (g) = V (h) = ∞. We say that g ∈ A is
equivalence divisible by h in V , written h|g in V , if there exists a ∈ A such that g ∼ ah in
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V . An element g is said to be equivalence irreducible in V if g|ab in V implies g|a or g|b
in V .

These conditions can be expressed respectively as the statement that InV (h)) = InV (g) in
grV (A), that InV (h) divides InV (g) in grV (A) and that the ideal generated by InV (g) in
grV (A) is prime.

3.1 MacLane's algorithm

We review MacLane's algorithm [24] to construct the extensions of a valuation V0 of a �eld
K to a valuation or pseudo-valuation of the polynomial ring K[z]. MacLane applied his
method to construct extensions of rank 1 discrete valuations of K to K[z]. This algorithm
has been extended to general valuations by Vaquié [38]. MacLane constructs �augmented
sequences of inductive valuations�

V1, . . . , Vk, . . . (2)

which extend V0 to K[z]. An augmented sequence (2) is constructed from successive in-
ductive valuations

Vk = [Vk−1;Vk(ϕk) = µk] for 1 6 k (3)

of K[z], where ϕk is a �key polynomial� over Vk−1 and µk is a �key value� of ϕk over Vk−1.
We always take ϕ1 = z.

We say that ϕ(z) ∈ K[z] is a key polynomial with key value µ over Vk−1 if

1) ϕ(z) is equivalence irreducible in Vk−1.

2) ϕ(z) is minimal in Vk−1; that is, if ϕ(z) equivalence divides g(z) in Vk−1, then
degz ϕ(z) 6 degz g(z).

3) ϕ(z) is unitary and degz ϕ(z) > 0.

4) µ > Vk−1(ϕ(z)).

Following MacLane ([24, De�nition 6.1]) we also assume

5) degz ϕi(z) > degz ϕi−1(z) for i > 2.

6) ϕi(z) ∼ ϕi−1(z) in Vi−1 is false. Here the equivalence is to be understood for polyno-
mials in K[z].

It follows from [24, Theorem 9.3] that

if ϕ(z) is a key polynomial over Vk−1 then degz ϕk−1(z) divides degz ϕ(z). (4)

The key polynomials ϕk(z) can further be assumed to be homogeneous in Vk−1, which
will be de�ned after (7).

MacLane shows that if V0 is discrete of rank 1, then the extensions of V0 to a valuation
or pseudo valuation of K[z] are the Vk arising from augmented sequences of �nite length
(2) and the limit sequences of augmented sequences of in�nite length (2) which determine
a limit value V∞ on K[z] de�ned by

V∞(g(z)) = lim
k→∞

Vk(g(z)) for g(z) ∈ K[z].

We have that V∞(g(z)) is well de�ned whenever V0 has rank 1, and is a valuation or
pseudo-valuation by the argument of [24, page 10].
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MacLane's method has been extended by Vaquié [38], to eventually construct all ex-
tensions of an arbitrary valuation V0 of K to a valuation or pseudo valuation of K[z]. We
will discuss Vaquié's method in Section 7.

To compute the �k-th stage� value Vk(g(z)) for g(z) ∈ K[z] by MacLane's method, we
consider the unique expansion

g(z) = gm(z)ϕmk (z) + gm−1ϕ
m−1
k (z) + · · ·+ g0 (5)

with gi(z) ∈ K[z], degz gi(z) < degz ϕk(z) for all i and gm(z) 6= 0. Then

Vk(g(z)) = min{Vk−1(gm(z)) +mµk, Vk−1(gm−1(z)) + (m− 1)µk, . . . , Vk−1(g0)(z)}.

This expression su�ces to prove by induction, assuming the existence of a unique expansion
of the coe�cients gi(z) in terms of the polynomials ϕj(z) with j < k, that every g(z) ∈ K[z]
has a unique expansion

g(z) =
∑
j

aj(z)ϕ
m1,j

1 (z)ϕ
m2,j

2 (z) · · ·ϕmk,jk (z) (6)

with aj ∈ K and 0 6 mi,j < degz ϕi+1/degz ϕi for i = 1, . . . , k−1. Recall that degz ϕi+1/degz ϕi
is a positive integer by (4). Then

Vk(g) = min
j
Vk(ajϕ

m1,j

1 ϕ
m2,j

2 · · ·ϕmk,jk ). (7)

If all terms in (6) have the same values in Vk then g is said to be homogeneous in Vk.

We shall often, as we just did, simplify notations by writing g for g(z), etc. when there is

no fear of confusion.

Remark 3.1. If A is a subring of K such that ϕi ∈ A[z] for 1 6 i 6 k and g ∈ A[z], then
the coe�cients aj in (6) are all in A.

The polynomial g, with expansion (5), is minimal in Vk if and only if gm ∈ K and

Vk(g) = Vk(gmϕ
m
k ) (8)

by 2.3 [25] or Theorem 9.3 [24].

By 3.13 of [25] or [24, Theorem 6.5], for k > i,

Vk(ϕi) = Vi(ϕi) and Vk(g) = Vi(g) whenever degz g < degz ϕi+1. (9)

Further, by [24, Theorems 5.1 and 6.4], or [25, 3.11 and 3.12],

For all g ∈ K[z], Vk(g) > Vk−1(g) with equality if and only if ϕk 6 | g in Vk−1. (10)

3.2 MacLane's algorithm in a �nite primitive extension

Suppose f(z) ∈ K[z] is unitary and irreducible. The extensions of V0 to valuations of
K[z]/(f(z)) are the extensions of V0 to pseudo valuations V of K[z] such that I(V )∞ =
(f(z)). MacLane [25] gives an explicit explanation of how his algorithm can be applied to
construct the pseudo valuations V of K[z] which satisfy I(V )∞ = (f(z)) in Section 5 of
[25] (when V0 is discrete of rank 1). Vaquié shows in [39] and [40] how this algorithm can
be extended to arbitrary valuations V0 of K.

Suppose V1, . . . , Vk is an augmented sequence of inductive valuations in K[z]. Expand

f = fmϕ
m
k + · · ·+ f0
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as in (5). De�ne the projection of Vk by proj(Vk) = α− β where α is the largest and β is
the smallest amongst the exponents j for which Vk(f(z)) = Vk(fjϕ

j
k). A k-th approximant

Vk to f(z) over V0 is a k-th stage homogeneous (meaning that the key polynomial ϕi is
homogeneous in Vi−1 for i 6 k) inductive valuation which is an extension of V0 and which
has a positive projection ([25, De�nition 3.3]).

First approximants V1 to f are de�ned as V1 = [V0;V1(ϕ1) = µ1], where ϕ1 = z
and µ1 is chosen so that proj(V1) > 0. MacLane shows in [25, Lemma 3.4] that if Vk
is a k-th approximant to f(z), then so is Vi for i = 1, . . . , k − 1. Further, ϕk|f in Vk−1
and Vk(f(z)) > Vk−1(f(z)) > · · · > V1(f(z)). In [25, Theorem 10.1], MacLane shows
that if V0 is a discrete valuation of rank 1 then every extension of V0 to a valuation of
K[z]/(f(z)) is an augmented sequence of �nite length of approximants V1, . . . , Vk such
that Vk(f(z)) =∞ or a limit of an augmented sequence of approximants of in�nite length
such that V∞(f(z)) =∞. If V0 is not discrete of rank 1, then there is the possibility that
the algorithm will have to be continued to construct a pseudo valuation W of K[z] with
W (f(z)) = ∞. If this last case occurs, then the situation becomes quite complicated, as
we must then extend the family {Vk | k ∈ Z+} to a �simple admissible family� and possibly
make some jumps. This is shown by Vaquié in [38, Theorem 2.5] and is explained in Section
7. An essential point is that for every construction V1, . . . , Vk of approximants to f over V0
by MacLane's algorithm, there exists an extension W of V0 to a pseudo valuation of K[x]
such that I(W )∞ = (f(z)) and W (ϕk) = Vk(ϕk) for all k (This will be deduced from [40,
Theorem 1] in Theorem 3.4).

We will assume now that V0 has rank 1, so we may assume that GV0 is an ordered
subgroup of R. We will now look a little more at the case where we have an in�nite
sequence of approximants, leading to a limit valuation V∞. In this case, there exists k0
such that ϕk = ϕk0 + hk with degz hk < degz ϕk0 for k > k0. Thus for k > k0,

Vk(ϕk) > Vk−1(ϕk) > Vk−1(ϕk−1).

Thus limk→∞ Vk(ϕk) exists, and is either equal to ∞ or an element of R.

Lemma 3.2. Suppose that V0 has rank 1 and V1, . . . , Vk, . . . is an in�nite sequence of
approximants to f over V0. Then the following are equivalent:

1) V∞ = limk→∞ Vk is a pseudo valuation on K[z] (but not a valuation).

2) IK[z](V∞)∞ = (f(z)).

3) limk→∞ Vk(ϕk) =∞.

Proof. We �rst prove 1) implies 3). By assumption, there exists 0 6= h ∈ I(V∞)∞. There
exists k0 such that for k > k0, degz ϕk = degz ϕk0 . Expand

h = hmϕ
m
k0 + hm−1ϕ

m−1
k0

+ · · ·+ h0

with degz hi < degz ϕk0 for all i and hm 6= 0. There exists λ ∈ Z+, 1 6 λ 6 degϕk0 such
that degz z

λhm = degz ϕk0 and so there exists 0 6= α ∈ K such that αzλhm = ϕk0 + ηm
with deg ηm < degϕk0 . This implies that αzλh has an expansion

αzλh = ϕm+1
k0

+ ηmϕ
m
k0 + αzλhm−1ϕ

m−1
k0

+ · · ·+ αzλhm−jϕ
m−j
k0

+ · · ·+ αzλh0

with degz z
λhm−j < 2 degz ϕk0 for all j. Now we can expand each αzλhm−j = ηm−jϕk0 +
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θm−j , with degz ηm−j and degz θm−j less than degz ϕk0 , so that �nally we can expand

αzλh = ϕm+1
k0

+ h′mϕ
m
k0 + · · ·+ h′m+1−jϕ

m+1−j
k0

+ · · ·+ h′0

with degz h
′
m+1−j < degz ϕk0 for all j. Thus, substituting αzλh ∈ I(V∞)∞ for h and

continuing to denote by m the degree of its expansion in ϕk0 , we may assume that hm = 1.
The same argument shows that for k > k0 there exist hi(k) ∈ K[z] for i < m such that

h = ϕmk + hm−1(k)ϕm−1k + · · ·+ h0(k)

with degz hj(k) < degz ϕk. Now by de�nition of Vk we have

Vk(h) 6 mVk(ϕk)

for k > k0, so limk→∞ Vk(ϕk) =∞.

We now prove that 3) implies 2). In the expansion

f = fmϕ
m
k + · · ·+ f0

with degz fi < degz ϕk, we have that at least two distinct terms have the same value

Vk(f(z)) = min
i
{Vk−1(fi) + iVk(ϕk)}.

Thus Vk(f(z)) > Vk(ϕk) for all k, which implies

lim
k→∞

Vk(f(z)) =∞

so that f ∈ I(V∞)∞. Now I(V∞)∞ is a proper principal ideal in K[z] and f is ireducible
in K[z] so I(V∞)∞ = (f(z)).

Finally, 2) implies 1) follows since I(V∞)∞ 6= (0).

We observe that if the equivalent conditions of Lemma 3.2 hold and g ∈ K[z] is such
that f 6 |g, then there exists k such that Vk(g) = V∞(g). This follows since we can �nd
a ϕk such that Vk(ϕk) = V∞(ϕk) > Vk(g). Then, expanding g = gmϕ

m
k + · · · + g0 with

degz gi < degz ϕk, we have that V∞(g) = Vk(g) = Vk(g0).

For the rest of this section, we will assume that V0 has arbitrary rank. MacLane gives the
following explanation of how to �nd all of the extensions of a (k− 1)-st stage approximant
Vk−1 to f over V0 to a k-th stage approximant Vk to f over V0.

We say that e ∈ K[z] is an �equivalence unit� for Vk if there exists an �equivalence-
reciprocal� h ∈ K[z] such that eh ∼ 1 in Vk. It is shown in Section 4 of [25] that e
is an equivalence unit if and only if e is equivalent in Vk to a polynomial g such that
degz g < degz ϕk.

By [25, Theorem 4.2 ], f has an essentially unique (unique up to equivalence in Vk−1)
expression

f ∼ eϕm0
k−1ψ

m1
1 · · ·ψ

mt
t (11)

in Vk−1, with m0 ∈ N and m1, . . . ,mt > 0. Here e is an equivalence unit for Vk−1 and
ψ1, . . . , ψt are homogeneous key polynomials over Vk−1 all not equivalent to ϕk−1 in Vk−1
and not equivalent in Vk−1 to each other. We have that t > 0 since proj(Vk−1) > 0. We
have that ϕk−1 is a homogeneous key polynomial in Vk−1 by [25, Lemma 4.3].
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If f is a homogeneous key polynomial for Vk−1, then Vk = [Vk−1;Vk(f(z)) = ∞] is a
pseudo valuation of K[z] with I(V )∞ = (f(z)).

If f is not a homogeneous key polynomial for Vk−1, then none of the ψi are equal to f ,
and we may de�ne a k-th stage approximant to f over V0 which is an inductive valuation
of Vk−1 by Vk = [Vk−1;Vk(ϕk) = µk] where ϕk is one of the ψi. In the expansion (5) of f ,

f = fmϕ
m
k + · · ·+ f0

µk must be chosen so that proj(Vk) > 0. All k-th stage approximants Vk to f extending
Vk−1 are found by the above procedure.

Let T = R×GV0 . Given α, β ∈ GV0 and q ∈ R, we have the line

D = {(x, γ) ∈ T | qγ + αx+ β = 0}

in T . When q 6= 0, we de�ne the slope of D to be −α
q ∈ GV0 ⊗Z R. Associated to D are

two half spaces of T ,

HD
> = {(x, γ) ∈ T | qγ + αx+ β > 0}

and

HD
6 = {(x, γ) ∈ T | qγ + αx+ β 6 0}.

Given a subset A of T , the convex closure of A is Conv(A) = ∩H where H runs over the
half spaces of T which contain A.

The Newton polygon is constructed as on page 500 of [25] and page 2510 of [40]. These
constructions are equivalent but slightly di�erent. We use the convention of [25]. The
possible values µk can be conveniently found from the Newton polygon N(Vk−1, ϕk). This
is constructed by taking the convex closure in T of

A = {(m− i, δ) | δ > Vk−1(fi), 0 6 i 6 m},

where the union is over i such that fi 6= 0. A segment F of the boundary of Conv(A)
is a subset F of Conv(A) which is de�ned by F = Conv(A) ∩ D where D is a line of T
such that Conv(A) is contained in one of the half spaces HD

> or HD
6 de�ned by D and

F = Conv(A) ∩D contains at least two distinct points.

The slopes µ of the segments of N(Vk−1, ϕk) satisfying µ > Vk−1(ϕk) are the possible
values of ϕk. The polygon composed of those segments of slope µ with µ > Vk−1(ϕk) is
called the principal part of the Newton polygon N(Vk−1, ϕk).

In the proof of Theorem 5.1 of [25], it is shown that for 1 6 i 6 t, the principal polygon
of N(Vk−1, ψi) (from (11)) is

{(x, y) ∈ N(Vk−1, ψi) | x > m−mi}. (12)

Further, m0 is the smallest exponent i such that in the expansion f =
∑
fiϕ

i
k−1 with

degz fi < degz ϕk−1, we have that Vk−1(fiϕ
i
k−1) = Vk−1(f(z)).

Remark 3.3. If the coe�cients of f(z) are all in the valuation ring RV0 of V0, then the
coe�cients of all key polynomials ϕk are also in RV0 , as is established in [25, Theorem 7.1].

The following theorem follows from a criterion of [40].

Theorem 3.4. Suppose that Vk is a k-th approximant to f over V0. Then there exists a
pseudo valuation W of K[z] such that W |K = V0, I(W )∞ = (f(z)), W (g) > Vk(g) for all
g ∈ K[z] and W (ϕi) = Vi(ϕi) for 1 6 i 6 k.
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Proof. As explained in the construction of Vk above, we have that ϕk|f in Vk−1, and there
exists a key polynomial ψ for Vk with ψ not equivalent to ϕk in Vk and such that ψ|f in
Vk. The theorem now follows from [40, Theorem 1].

4. An algorithm to construct generating sequences

Let V0 be a valuation of a �eld K. Suppose that there exists an algebraically closed �eld
k such that k ⊂ RV0 and RV0/mV0

∼= k. Let f(z) ∈ RV0 [z] be an irreducible unitary
polynomial.

In this section we give an inductive construction of a sequence of approximants to f
over V0, so that the key polynomials constructed have a particularly nice form. We will call
the sequence of approximants �a realization of the algorithm of Section 4�. We will prove
the following theorem by induction on the index k.

Theorem 4.1. Suppose that W is a pseudo valuation of K[z] extending V0 such that
I(W )∞ = (f(z)). Then we can construct a sequence of approximants to f over V0

V1, . . . , Vk, . . . , (13)

where

Vi = [Vi−1;Vi(ϕi) = W (ϕi)] (14)

for all i such that the key polynomials ϕi satisfy ϕ1 = z in V0 and

ϕi = ϕ
ni−1

i−1 − ci−1ϕ
j1(i−1)
1 · · ·ϕji−2(i−1)

i−2 (15)

in Vi−1 for 2 6 i 6 k with ci−1 ∈ RV0 , ni−1 = [GVi−1 : GVi−2 ] and 0 6 jl(m) < nl for all
l and m. The sequence (13) is either of �nite length k with ϕk = f and Vk(f(z)) = ∞ or
the sequence is in�nite.

Observe that we have that

ϕnii ∼ ciϕ
j1(i)
1 · · ·ϕji−1(i)

i−1

in Vi for 1 6 i 6 k − 1, since ϕi+1 is a key polynomial over Vi.

The proof of the theorem will be given after we have established Lemmas 4.2 and 4.3
and Theorem 4.4.

Lemma 4.2. Suppose that V1, . . . , Vk satisfy the conclusions (14) and (15) of Theorem 4.1
and we have an equality

nkVk(ϕk) = Vk(ckϕ
j1(k)
1 · · ·ϕjk−1(k)

k−1 )

in Vk with ck ∈ K, nk = [GVk : GVk−1
] and 0 6 jl(k) < nl for all l. Then ck ∈ RV0 .

Proof. In the case that k = 1, we have thatW (z) > 0 since f is unitary and the coe�cients
of f are in RV0 . Thus V0(c1) > 0.

Now suppose that k > 2. Since ni is the smallest positive integerm such thatmVi(ϕi) ∈
GVi−1 , we have by repeated Euclidean division that every element γ ∈ GVk has a unique
decomposition as

γ = γ0 + j1µ1 + · · ·+ jkµk (16)
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where γ0 ∈ GV0 , µi = W (ϕi) for 1 6 i 6 k and 0 6 ji < ni for 1 6 i 6 k. We have from
(15) that

niµi < µi+1 for all 1 6 i < k. (17)

There is a unique representation

nlµl = γ0 + j1µ1 + · · ·+ jl−1µl−1

of the form of (16). It follows from (17) that

j1µ1 + · · ·+ jl−1µl−1 < nlµl.

Thus V0(ck) = γ0 > 0.

Lemma 4.3. Suppose that V1, . . . , Vk satisfy the conclusions (14) and (15) of Theorem
4.1 with I(Vi)∞ = (0) for all i 6 k. Let A be a local domain whose quotient �eld is K
and suppose that f(z) ∈ A[z]. Further suppose that A is dominated by V0 and that A
contains k (so that A/mA

∼= k). Suppose that ci ∈ A for i 6 k− 1. Then we have a graded
k-algebra isomorphism of grVk(A[z]) with the quotient grV0(A)[ϕ1, . . . , ϕk]/I of the graded
polynomial ring grV0(A)[ϕ1, . . . , ϕk] over grV0(A), where

I = (ϕn1
1 − c1, ϕ

n2
2 − c2ϕ

j1(2)
1 , . . . , ϕ

nk−1

k−1 − ck−1ϕ
j1(k−1)
1 · · ·ϕjk−2(k−1)

k−2 ).

Here c1, . . . , ck−1 are the initial forms of c1, . . . , ck−1 in grV0(A) and ϕi has the weight
Vk(ϕi) for all i.

Suppose there exists c ∈ A and ji ∈ N for 1 6 i 6 k − 1 with 0 6 ji < ni such that
Vk(ϕ

nk
k ) = Vk(cϕ

j1
1 · · ·ϕ

jk−1

k−1 ). Then (ϕnkk − cϕ
j1
1 · · ·ϕ

jk−1

k−1 ) is a prime ideal in grVk(A[z]).

Proof. Every g ∈ A[z] has the unique decomposition of (6) and Remark 3.1,

g =
∑
j

ajϕ
m1,j

1 ϕ
m2,j

2 · · ·ϕmk,jk

with aj ∈ A, m1,j , . . . ,mk,j ∈ N and 0 6 mi,j < ni for i < k and

Vk(g) = minj{V0(aj) +m1,jV1(ϕ1) + · · ·+mk,jVk(ϕk)}
= minj{Vk(aj) +m1,jVk(ϕ1) + · · ·+mk,jVk(ϕk)}

by (9).

Since grVk(A[z]) is generated by the initial forms of elements of A[z], the natural graded
grV0(A)-algebra map

Ψ : grV0(A)[ϕ1, . . . , ϕk]→ grVk(A[z])

is a surjection and I is contained in the kernel. A homogeneous elementG of grV0 [ϕ1, . . . , ϕk]
has a unique representation

G ≡ cϕj11 · · ·ϕ
jk−1

k−1 ϕ
jk
k mod I

with c ∈ A, j1, . . . , jk ∈ N and 0 6 ji < ni for i < k. Now Ψ(G) = 0 implies that c = 0
which implies that G ≡ 0 mod I. Thus Ψ is an isomorphism, and the �rst statement of
the lemma follows.

We now prove the second statement. Let

ψ = ϕnkk − cϕ
j1
1 · · ·ϕ

jk−1

k−1 .
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We have that grVk(A[z]) ∼= B[ϕk] is a graded polynomial ring over the domain

B = grV0(A)[ϕ1, . . . , ϕk−1]/(ϕ
n1
1 − c1, . . . , ϕ

nk−1

k−1 − ck−1ϕ
j1(k−1)
1 · · ·ϕjk−2(k−1)

k−2 ).

Let L be an algebraic closure of the quotient �eld of B. Choose t ∈ L such that tnk =
cϕj11 · · ·ϕ

jk−1

k−1 . Then giving t the weight Vk(ϕk), we have that B[t] is a graded domain which
is a free B-module of rank nk, since Vk(ϕk) has order nk in Gk/Gk−1, and so 1, t, . . . tnk−1

is a B-basis of B[t]. We have a natural surjection of graded B-modules

B[ϕk]/(ψ)→ B[t]. (18)

Now B[ϕk]/(ψ) is a also a free B-module of rank nk, as 1, ϕk, . . . , ϕ
nk−1
k is a B-basis. Thus

(18) is an isomorphism, and so B[ϕk]/(ψ) is a domain.

Suppose that G is a totally ordered Abelian group. Let U = G ⊗Z R, d ∈ Z+ and
γ ∈ G. Since Z is a principal ideal domain, we have that(

1

d
Zγ

)
∩G =

1

m
Zγ for some m ∈ Z+. (19)

Indeed, we must have (
1

d
Zγ

)
∩G =

a

d
Zγ (20)

for some a ∈ Z+. Now γ ∈ a
dZγ implies a|d, and so there exists m ∈ Z+ such that 1

m = a
d .

This implies:
1

m
(d, γ) ∈ Z⊕G. (21)

We shall need the following fact:

For n, q ∈ Z+,
q
n(d, γ) ∈ Z⊕G if and only if n divides qd and q

n = e
m for some e ∈ Z+.

(22)
For the reader's convenience, we give a proof of (22). Suppose that q

n(d, γ) ∈ Z⊕G. Then
n divides qd and writing qd = rn we see that r

dZγ ⊂ G so that it follows from (19) that
r
d = q

n is an integral multiple of 1
m . The converse follows from (21).

Theorem 4.4. Suppose that we have constructed approximants Vi = [Vi−1, Vi(ϕi) =
W (ϕi)] for 1 6 i 6 k − 1 to f over V0 satisfying the conclusions of Theorem 4.1,
Vk−1(ϕk−1) <∞ and we have an equivalence in Vk−1

f ∼ eϕm0
k−1ψ

m1

1 · · ·ψ
mt
t (23)

of the form of (11) with m0 ∈ N and m1, . . . ,mt ∈ Z+ such that e is an equivalence
unit for Vk−1, ψ1 . . . , ψt are homogeneous key polynomials over Vk−1 such that there are
expressions

ψi = ϕ
nk−1

k−1 − εk−1,ick−1ϕ
j1(k−1)
1 · · ·ϕjk−2(k−1)

k−2
with ck−1 ∈ RV0 non zero, εk−1,i ∈ k distinct and nonzero, and 0 6 ji(k − 1) < ni for all
i. The ψi de�ne approximants to f as explained after (11).

Then there exists a unique ψi such that W (ψi) > Vk−1(ψi) and setting ϕk = ψi, there
exists a unique segment S of the principal part of the Newton polygon N(Vk−1, ϕk) which
has slope s = W (ϕk).
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De�ning Vk = [Vk−1, Vk(ϕk) = W (ϕk)], we have that Vk is an approximate to f over
V0, such that the approximants V1, . . . , Vk satisfy the conclusions of Theorem 4.1.

Now suppose that Vk(ϕk) < ∞. The Newton polygon N(Vk−1, ϕk) is computed from
the expansion

f =
∑

fiϕ
i
k (24)

with degz fi < degz ϕk. Let (m − i1, β1) be the lowest point on the segment S and let
(m− i0, β0) be the highest point. Let

Fk,s(ϕk) =
∑

fiϕ
i
k, (25)

where the sum is restricted to i such that (m − i, Vk−1(fi)) is on S. Then there exists a
polynomial in ϕk

Gk,s(ϕk) =
∑

giϕ
i
k (26)

with gi ∈ K[z] such that the i such that gi is not zero are exactly the i such that fi is a
coe�cient of Fk,s and gi ∼ fi in Vk−1 for all such i. Further, factoring the right side of (26)
as a polynomial in ϕk,

Gk,s(ϕk) = fm+1
i1

ϕi0k ψ
a1
1 · · ·ψ

at
t (27)

where

ψi = ϕnkk − εk,ickϕ
j1(k)
1 · · ·ϕjk−1(k)

k−1 (28)

with ck ∈ RV0 nonzero, εk,i ∈ k are distinct and nonzero, 0 6 ji(k) < ni for all i. Further,
we have that fm+1

i1
is an equivalence unit in Vk,

nk = [Gk : Gk−1]

and the ψi are homogeneous key polynomials in Vk. Also, there is a Vk equivalence

f ∼ Gk,s(ϕk) (29)

in Vk.

Proof. The fact that there exists a ψi such that W (ψi) > Vk−1(ψi) follows from the
equivalence relation (23), since W (f(z)) = ∞ and W (eϕm0

k−1) = Vk−1(eϕ
m0
k−1). Uniqueness

of ψi follows since the εk−1,i are distinct. The existence of a segment S of the principal
part of the Newton polygon N(Vk−1, ϕk) with slope s = W (ϕk), follows from Theorem 3.4
and the discussion of Subsection 3.2. The fact that upon setting ϕk = ψi, we have that
Vk = [Vk−1, Vk(ϕk) = W (ϕk)] is an approximate to f over V0 then follows since proj(Vk)
is positive, as W (f(z)) = ∞, and the fact that the approximants V1, . . . , Vk satisfy the
conclusions of Theorem 4.1 follows from our assumptions on the ϕi for i 6 k.

Let y = sx+ r be the equation of the line containing the segment S, so that

s =
β0 − β1
i1 − i0

.

Let m be the largest positive integer such that

1

m
(i1 − i0, β0 − β1) ∈ Z⊕Gk−1. (30)

Here m is as de�ned in (19), with d = i1 − i0, γ = β0 − β1 and G = Gk−1. Let (b, c) =
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1
m(i1 − i0, β0 − β1). If Vk−1(fi)− s(m− i) = r, then

(m− i, Vk−1(fi)) = (m− i1, β1) + λ(b, c) =

(
m− i1 + λb, β1 + λ

(
β0 − β1
m

))
for some λ ∈ N with 0 6 λ 6 m (this follows from (22)). Using the relations (15) for
2 6 i 6 k, there exists

h = ckϕ
j1(k)
1 · · ·ϕjk−1(k)

k−1 ∈ K[z]

with ck ∈ K and 0 6 jl(k) < nl for 1 6 l < k such that Vk−1(h) = β0−β1
m . We have that

Fk,s =
∑m

τ=0 fi0+τbϕ
i0+τb
k

= ϕi0k (
∑m

τ=0 fi0+τbϕ
τb
k )

where

Vk−1(fi0+τb) = s(m− (i0 + τb)) + r = −τ
(
β0−β1
m

)
+ β0

= (m− τ)
(
β0−β1
m

)
+ β1 = Vk−1(h

m−τ ) + Vk−1(fi1).
(31)

By (31), and since V0 is rational (RV0/mV0 = k), there exist γτ ∈ k such that

γτ In(hm−τ )In(fi1) = In(fi0+τb) (32)

in grVk−1
(K[z]). De�ne Gk,s(ϕk) by

Gk,s(ϕk) = ϕi0k (
∑m

τ=0 γτh
m−τfi1ϕ

τb
k )

= fm+1
i1

ϕi0k h
m(
∑m

τ=0 γτ (h−1ϕbk)
τ )

= fm+1
i1

ϕi0k h
m
∏m
j=1((h

−1ϕbk)− αj)
= fm+1

i1
ϕi0k
∏m
j=1(ϕ

b
k − αjh)

for suitable nonzero αj ∈ k.

We will compute the order

[Gk : Gk−1] = [(Gk−1 + sZ) : Gk−1].

We will show that the order nk is nk = b = i1−i0
m . Since s = β0−β1

i1−i0 ,

bs =
β0 − β1
m

∈ Gk−1.

Now with a as de�ned in (20), with d = i1 − i0, γ = β0 − β1 and G = Gk−1, we have that
a = d

m = b.

Suppose n ∈ Z+ and ns ∈ Gk−1. Now

ns = n

(
β0 − β1
i1 − i0

)
=
n

d
γ ∈ Gk−1.

which implies that a = b | n.
Thus we have that

nk = b = [Gk : Gk−1].

We now have that ck ∈ RV0 by Lemma 4.2.
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The fact that f ∼ Gk,s in Vk follows since γτhm−τfi1 ∼ fi0+τb in Vk, which follows from
(32), the facts that by (9),

Vk(h) = Vk(ck) +

k−1∑
i=1

ji(k)Vk(ϕi) = V0(ck) +

k−1∑
i=1

ji(k)Vi(ϕi) = Vk−1(h)

and

Vk(fi) = Vk−1(fi)

for all i since degz fi < degz ϕk.

We know that ϕk is a key polynomial in Vk as discussed after (11). Finally, we verify

that each ψi = ϕnkk − εk,ickϕ
j1(k)
1 · · ·ϕjk−1(k)

k−1 is a key polynomial in Vk. By Lemma 4.3, the
ideal

(In(ψi)) = (ϕnkk − εk,ickϕ
j1(k)
1 · · ·ϕjk−1(k)

k−1 )

is a prime ideal in grVk(RV0 [z]), where ck = In(ck), and ϕi = In(ϕi). Thus ψi is equivalence
irreducible in Vk as a polynomial in RV0 [z]. Since every non zero element of RV0 [z] is a unit
in K this implies that it is equivalence irreducible in Vk as a polynomial in K[z]. We have
that ψi is minimal in Vk by (8). Since ψi has the leading coe�cient 1 and degz ψi > 0, we
have that ψi is a key polynomial over Vk.

Constructions similar to those used in the proof of theorem 4.4 can be found in [17],
pp. 17-18.

We now give the proof of Theorem 4.1. Set ϕ1 = z and V1 = [V0;V1(ϕ1) = W (ϕ1)],
which is an approximant to f over V0 since W (f(z)) =∞. By a simpli�cation of the proof
of Theorem 4.4, we have that f ∼ ezm0ψ

m1

1 · · ·ψ
mt
t in V1, where e is an equivalence unit

in V1 and ψi = zn1 − ε1,ic1 with c1 ∈ RV0 and ε1,i ∈ k are nonzero and distinct.

Now the conclusions of the theorem follow from induction using Theorem 4.4.

As pointed by the referee, another point of view on theorem 4.1 can be obtained from
[17, Formula (3.8)] applied to our situation ; note here that one should prove that ci ∈ RV0 .

Proposition 4.5. Suppose that there is a unique extension of V0 to a pseudo valuation
W of K[z] with I(W )∞ = (f(z)) and we have constructed a �nite or in�nite sequence of
approximants V1, . . . , Vk, . . . to f over V0 satisfying the conclusions of Theorem 4.1. Then
we have that for k > 2, with notation as in (27), setting ek = i0,

f ∼ ϕekk in Vk−1 (33)

where

ϕk+1 = ϕnkk − ckϕ
j1(k)
1 · · ·ϕjk−1(k)

k−1 (34)

with ck ∈ RV0 nonzero, 0 6 ji(k) < ni for all i and

degz f = ek degz ϕk. (35)

Proof. We use the notation of the statement and proof of Theorem 4.4. By Theorem 3.4,
every realization of the algorithm to construct a k-th stage approximant Vk to f over V0
extends to the construction of a pseudo valuation U extending V0 with I(U)∞ = (f(z)).
Since W is unique, every realization of the algorithm must extend to the construction of
U = W .
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We will prove the following equations,

f ∼ ϕekk in Vk−1 with degz f = ek degz ϕk (36)

and for all k > 2, (26) of Theorem 4.4 satis�es

f ∼ ψa11 · · ·ψ
at
t in Vk with degz f = a1 degz ψ1 + · · ·+ at degz ψt. (37)

We will establish (36) and (37) for k = 2. Since the extension is unique, every realization
of the algorithm must extend to the construction of W , so N(V0;ϕ1 = z) has a unique
segment. Let µ1 = s = W (z) be the slope of this segment, so that

V1 = [V0;V1(ϕ1) = µ1].

Expand

f = zd + fd−1z
d−1 + · · ·+ f0

with fi ∈ K. Since N(V0, ϕ1) has a unique segment, i0 = 0, i1 = d and fi1 = 1 in (27) for
k = 1, so by (29) and (27) for k = 1,

f ∼ G1,s(ϕ1) = ψa11 · · ·ψ
at
t (38)

in V1, where

ψi = ϕn1
1 − ε1,ic1 (39)

from (28). Suppose that t > 1. Any choice of ψi is a key polynomial for V1, and if
W2 = [V1;V2(ψi) = µ2] is an approximant extending V1, then since every realization of
the algorithm must extend to the construction of W , as observed in the �rst part of the
proof, we have that

W (ψi) = W2(ψi) = µ2 > n1V1(ϕ1) = V0(c1).

For j 6= i,

ψj = ψi + (ε1,i − ε1,j)c1
so for j 6= i,

W (ψj) = W (ψi + (ε1,i − ε1,j)c1) = V0(c1).

This contradiction shows that t = 1 in (38) and so f ∼ ϕe22 in V1 with degz f = e2 degz ϕ2,
establishing (36) for k = 2.

From (36) for k = 2, we have that there is an expression

f = ϕe22 + fe2−1ϕ
e2−1
2 + · · ·+ f0

with degz fi < degz ϕ2 for all i. From (12), we then have that the principal part of the
Newton polygon N(V1, ϕ2) is the entirety of N(V1, ϕ2). Further, by uniqueness of the
extension of V0, we have that N(V1, ϕ2) has a unique segment, so i0 = 0, i1 = e2 and
fi1 = 1 in (27) for k = 2, so

f ∼ G2,s(ϕ2) = ψa11 · · ·ψ
at
t

in V2 with the ψi given by (28) for k = 2, establishing (37) in V2 for k = 2, with degz f =
a1 degz ψ1 + · · ·+ at degz ψt.

Now by induction on k, repeating the argument for the case k = 2 with the application
of Theorem 4.4, we obtain the conclusions of Proposition 4.5.
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Formulas (33) and (35) also follow from [40, Theorem 3.1], and then formula (34) follows
from Theorem 4.4.

5. When the degree is prime to p and the extension is unique

Theorem 5.1. Suppose that A is a local domain which contains an algebraically closed
�eld k such that A/mA

∼= k. Let K be the quotient �eld of A and suppose that V0 is a
valuation of K which dominates A, such that the residue �eld of the valuation ring of V0 is
k. Suppose that f(z) ∈ A[z] is unitary and irreducible, there is a unique extension of V0 to
a valuation ω of K[z]/(f(z)) and the characteristic p of k does not divide degz f . Let W
be the associated pseudo valuation of K[z] such that I(W )∞ = (f(z)) in K[z]. Then there
exists a realization of the algorithm of Section 4 constructing approximants V1, . . . , Vk to
f over V0 satisfying equations (14) and (15) for all i 6 k such that W = Vk. We have that

degz f = [Gω : GV0 ] = [GVk : GV0 ].

Further, with the notation of (15), ci ∈ A for all 1 6 i 6 k, and

grω(A[z]/(f(z))) ∼= grV0(A)[ϕ1, . . . , ϕk−1]/I

where

I = (ϕn1
1 − c1, ϕ

n2
2 − c2ϕ

j1(2)
1 , . . . , ϕ

nk−1

k−1 − ck−1ϕ
j1(k−1)
1 ϕ

j2(k−1)
2 · · ·ϕjk−2(k−1)

k−2 )

is a �nitely generated and presented grV0(A)-module.

Proof. Suppose by induction on i that we have constructed approximants V1, . . . , Vi to f
over V0 satisfying equations (14) and (15) with c1, . . . , ci−1 ∈ A and that ϕi is not equal to
f . By Theorem 4.4 and Proposition 4.5, f ∼ Gi = ϕ

ei+1

i+1 in Vi, with ϕi+1 a key polynomial
over Vi such that

ϕi+1 = ϕnii − ciϕ
j1(i)
1 · · ·ϕji−1(i)

i−1 and degz f = ei+1 degz ϕi+1 (40)

for some nonzero ci ∈ RV0 . Expanding

f =
∑

fjϕ
j
i (41)

in K[z], with degz fj < degz ϕi, let F =
∑
fjϕ

j
i where the sum is restricted to fj such

that Vi−1(fj) + jµi (with µi = W (ϕi)) is minimal, and expanding Gi as a polynomial in

ϕi, we see that the coe�cients of Gi = ϕ
niei+1

i −ei+1ciϕ
j1(i)
1 · · ·ϕji−1(i)

i−1 ϕ
ni(ei+1−1)
i + · · · as a

polynomial in ϕi and of the coe�cients fj in the expansion F =
∑
fjϕ

j
i must be equivalent

in Vi−1 by Theorem 4.4.

Now ei+1ni degz ϕi = degz f , so since we assume that p does not divide degz f , we have
that p does not divide ei+1. Comparing the expansions of F and Gi, we see that

0 6= fni(ei+1−1) ∼ gni(ei+1−1) = −ei+1ciϕ
j1(i)
1 · · ·ϕji−1(i)

i−1

in Vi−1. Since degz fni(ei+1−1) < degz ϕi and c1, . . . , ci−1 ∈ A by induction, by (6) and
Remark 3.1, fni(ei+1−1) has a unique expansion (with only �nitely many terms)

fni(ei+1−1) =
∑
α>1

aσ1(α),...,σi−1(α)ϕ
σ1(α)
1 · · ·ϕσi−1(α)

i−1 (42)
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with

W (aσ1(α),...,σi−1(α)ϕ
σ1(α)
1 · · ·ϕσi−1(α)

i−1 ) < W (aσ1(α+1),...,σi−1(α+1)ϕ
σ1(α+1)
1 · · ·ϕσi−1(α+1)

i−1 )

for all α, 0 6 σl(α) < nl for 1 6 l 6 i − 1 and aσ1(α),...,σi−1(α) ∈ A. Thus the minimum
value term in Vi−1 in this expansion is

aσ1(1),...,σi−1(1)ϕ
σ1(1)
1 · · ·ϕσi−1(1)

i−1

and so

jl(i) = σl(1) for 1 6 l 6 i− 1

and

−ei+1ci ∼ aσ1(1),...,σi−1(1)

in V0. Replacing ci with − 1
ei+1

aσ1(1),...,σi−1(1) in (40), we have that ci ∈ A.
Suppose ni = 1, so that ei+1 = ei. Then substituting (40) and (42) into (41), we obtain

f = ϕeii+1 + (
∑
k>2

aσ1(k),...,σi−1(k)ϕ
σ1(k)
1 · · ·ϕσi−1(k)

i−1 )ϕei−1i+1 +

ei−2∑
j=2

f ′jϕ
j
i+1

where degz f
′
j < degz ϕi+1 = degz ϕi for all j. Since (42) is a �nite sum, we can only have

ni = 1 for �nitely many consecutive i.

Since degz f = ein1 · · ·ni−1 for all i, we must have that the algorithm terminates in a
�nite number of iterations k. We then have that ϕk = f and W = Vk.

The �nal statement on the structure of grω(A[z]/(f(z))) now follows from Lemma 4.3.

As an immediate consequence of Theorem 5.1, we have the following example, which
allows us to easily compute the associated graded rings and valuation semigroups of many
examples, including the rational double point singularities in dimension two, since the
semigroups of valuations dominating two dimensional regular local rings are completely
known ([34]. [9]).

Example 5.2. Let k be an algebraically closed �eld of characteristic p 6= 2, and A =
k[[x1, . . . , xn]] be a power series ring over k. Let f(z) = z2 + az + b with a, b ∈ mA be
irreducible and let B = A[z]/(f(z)). Suppose that ν is a valuation of the quotient �eld of
A which dominates A and such that Rν/mν = k.

Suppose that ν has a unique extension ω to the quotient �eld of B which dominates
B. Then there exists g ∈ mA such that setting z = z − g, we have that

1) ω(z) is a generator of Gω/Gν ∼= Z/2Z and

2) grω(B) = grν(A)[in(z)] ∼= grν(A)[ϕ]/(ϕ2 − c) for some c ∈ grν(A).

In constrast, if ν does not have a unique extension to the quotient �eld of B which
dominates B, then it can happen that grω(B) is not a �nitely generated grν(A)-module
(as will follow from Example 11.4).

The good conclusions of Theorem 5.1 may fail if either the extension is not unique or
p divides degz f . In [37, Example 8.1], an example of Guillaume Rond is presented which
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shows that the conclusions of Theorem 5.1 may fail if the extension of V0 to a valuation of
K[z]/(f(z)) is not unique and p 6 |degz f .

Example 5.3. The conclusions of Theorem 5.1 may fail if the characteristic p of the �eld k
divides the degree of f(z). In our example, f(z) is separable and V0 has a unique extension
to K[z]/(f(z)).

We now give the construction of the example. Let k be an algebraically closed �eld of
characteristic 2 and let A = k[x1, x2](x1,x2) be a localization of a two dimensional polyno-
mial ring over k. Let K be the quotient �eld of A. Let V0 be the rank 1 valuation on K
de�ned by V0(x1) = 1 and V0(x2) =

√
37, so that GV0 = Z +

√
37Z. Let

f(z) = z4 + x3171 z + x41x
2
2 + x312 .

We have that f(z) is an irreducible, separable polynomial in K[z].

Setting ϕ1 = z, we have that the Newton polygon N(V0, ϕ1) has only one segment,
from (0, 0) to (4, 4 + 2

√
37). The slope of this segment is 1 + 1

2

√
37, giving the �rst step

approximant to f over V0, V1 = [V0;V1(ϕ1) = 1 + 1
2

√
37]. We have that GV1 = Z +

√
37
2 Z.

Now f ∼ (z2 + x21x2)
2 in V1 and V1(z) 6∈ GV0 so ϕ2 = z2 + x21x2 is a key polynomial

over V1. We have that

f = ϕ2
2 + x3171 z + x312

so the principal part of N(V1, ϕ2) is equal to N(V1, ϕ2), which has only one segment, from
(0, 0) to (2, 31

√
37). The slope is 31

2

√
37, giving the 2-nd step approximant to f over V0,

V2 = [V1;V2(ϕ2) = 31
2

√
37], with GV2 = GV1 . We have that

f = (ϕ2 + zx−11 x152 )2 + ϕ2x
−2
1 x302 + x3171 z

so that f ∼ (ϕ2 + zx−11 x152 )2 in V2. Thus

ϕ3 = ϕ2 + zx−11 x152 (43)

is a key polynomial for V2. We have that

f = ϕ2
3 + x−21 x302 ϕ3 + x−31 x452 z + x3171 z

so the principal part of N(V2, ϕ3) is equal to N(V2, ϕ3) which has only one segment, from
(0, 0) to (2, 912

√
37 − 2). The slope is 91

4

√
37 − 1, giving the 3-rd stage approximant to f

over V0, V3 = [V2;V3(ϕ3) = 91
4

√
37− 1], with

GV3 = GV1 +

(
91

4

√
37− 1

)
Z = Z +

√
37

4
Z.

Now f ∼ ϕ2
3 + x−31 x452 z in V3 and V3(ϕ3) 6∈ GV1 , so ϕ4 = ϕ2

3 + x−31 x452 z is a key polynomial
over V3. We have that

f = ϕ4 + x−21 x302 ϕ3 + x3171 z

so the principal part of N(V3, ϕ4) is N(V3, ϕ4), which has only one segment, from (0, 0) to
(1,−3 + 131

4

√
37). The slope is −3 + 131

4

√
37, giving the 4-th stage approximant to f over

V0, V4 = [V3;V4(ϕ4) = −3 + 131
4

√
37]. We have that GV4 = GV3 . Now f ∼ ϕ4 + x−21 x302 ϕ3

in V4 so

ϕ5 = ϕ4 + x−21 x302 ϕ3
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is a key polynomial over V4. We have that f = ϕ5+x3171 z so the principal part of N(V4, ϕ5)
is N(V4, ϕ5), which has only one segment, from (0, 0) to (1, 318+ 1

2

√
37). The slope is 318+

1
2

√
37, giving the 5-th stage approximant to f over V4, V5 = [V4;V5(ϕ5) = 318 + 1

2

√
317].

We have that GV5 = GV3 .

Now f = ϕ5 + x3171 z is a key polynomial for V5, so V6 = [V5;V6(f(z)) =∞] is a pseudo
valuation with I(V6)∞ = (f(z)).

Let ω be the induced extension of V0 to K[z]/(f(z)). We have that Gω = GV3 and thus

[Gω : GV0 ] = 4 = degz f = [L : K]

showing that ω is the unique extension of V0 to a valuation of L, and that δ(ω/V0) = 1, so
that the extension is defectless (Section 8). Observe that we cannot avoid substitutions like
(43), leaving the ring A in any realization of the algorithm. Notice that the conclusions of
Theorem 5.1 are veri�ed, if we take A1 to be a birational extension of A containing x−11 x152 .

Remark 5.4. In the example, the valuation V0 is an Abhyankar valuation, which means
that there is equality in the fundamental inequality of Abhyankar ([1, Theorem 1]),

dimQGV0 ⊗Z Q + trdegA/mARV0/mV0 = dimA.

It is known ([21, Theorem 1]) that Abhyankar valuations have �no defect�, a fact which
plays a role in this example. We will come back to the study of the e�ect of defect in
Sections 6, 7, 8 and 9 below.

6. Henselization and completion

A valued �eld (K, ν) is Henselian if for all algebraic extensions L of K, there exists a
unique valuation ω of L which extends ν. Some references on the theory of Henselian �elds
are [20], [14], [32] and [39].

An extension (Kh, νh) of a valued �eld (K, ν) is called a Henselization of (K, ν) if
(Kh, νh) is Henselian and for all Henselian valued �elds (L, ω) and all embeddings λ :
(K, ν)→ (L, ω), there exists a unique embedding λ̃ : (Kh, νh)→ (L, ω) which extends λ.

A Henselization (Kh, νh) of (K, ν) can be constructed by choosing an extension νs of
ν to a separable closure Ksep of K and letting Kh be the �xed �eld of the decomposition
group

{σ ∈ G(Ksep/K) | νs ◦ σ = νs}
of νs, and de�ning νh to be the restriction of νs to Kh ([14, Theorem 17.11]).

Lemma 6.1. Suppose that (K, ν) is a valued �eld and let (Kh, νh) be a Henselization of
(K, ν). Suppose that f(z) ∈ K[z] is unitary, irreducible and separable. Then f(z) is reduced
inKh[z]. Let f(z) = f1(z)f2(z) · · · fr(z) be the factorization of f(z) into irreducible unitary
factors in Kh[z]. If the coe�cients of f(z) are in Rν then the coe�cients of the fi(z) are
in Rνh .

Let νhi be the (unique) extension of νh to Kh[z]/(fi). Then the distinct extensions of ν
to K[z]/(f(z)) are the r restrictions νi of ν

h
i to K[z]/(f(z)), under the natural inclusions

K[z]/(f(z))→ Kh[z]/(fi(z)).

Proof. The polynomial f(z) is reduced in Kh[z] since the separable polynomial f(z) is
reduced in Ksep[z] where Ksep is a separable closure of K.
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Let z be a root of fi(z) in Ksep. Then f(z) is the minimal polynomial of z in K[z],
and K[z]/(f(z)) ∼= K[z]. If z is integral over Rν , then z is integral over Rνh . Thus the
coe�cients of fi are in Rνh since Rνh is normal ([41, Theorem 5, page 260]).

If L is a �nite separable extension of K, then we have two associated sets,

Mon(L,K) = K-embeddings of L in Ksep

and

E(L, ν) = Extensions of ν to a valuation of L.

By [39, Lemma 1.4 ] or [14, Section 17], the map Φ : Mon(L,K) → E(L, ν), de�ned by
Φ(λ) = νs ◦ λ is surjective, with Φ(λ) = Φ(λ′) if and only if λ ∼Kh λ′. The equivalence
∼Kh is de�ned by λ ∼Kh λ′ if and only if there exists a Kh-isomorphism σ : Ksep → Ksep

such that λ′ = σ ◦ λ.
The valuation νs ◦ λ is obtained from the embedding

L ∼= λ(L)→ λ(L) ·Kh

into the join of λ(L) and Kh in Ksep, and the restriction of the valuation νs|λ(L) ·Kh to
L.

Let L = K[z]/(f(z)). The elements λ ∈ Mon(L,K) are in one to one correspondence
with the distinct roots αλ of f(z) in Ksep. We have λ(L) ·Kh = Kh[αλ]. Thus λ(L) ·Kh ∼=
Kh[z]/(fi) for some i. Further, λ ∼Kh λ′ if and only if αλ and αλ′ have the same minimal
polynomial fi in K

h[z].

Since Kh is Henselian, for each i there is a unique extension of νh to Kh[z]/(fi), and
so the last assertion of the lemma follows.

Suppose that A is a local ring and g(z) ∈ A[z] is a polynomial. Let g(z) ∈ A/mA[z] be
the polynomial obtained by reducing the coe�cients of g(z) mod mA.

A local ring A is a Henselian local ring if it has the following property: Let f(z) ∈ A[z] be
a unitary polynomial of degree n. If α(z) and α′(z) are relatively prime unitary polynomials
in A/mA[z] of degrees r and n−r respectively such that f(z) = α(z)α′(z), then there exist
unitary polynomials g(z) and g′(z) in A[z] of degrees r and n − r respectively such that
g(z) = α(z), g′(z) = α′(z) and f(z) = g(z)g′(z).

If A is a local ring, a local ring Ah which dominates A is called a Henselization of A
if any local homomorphism from A to a Henselian local ring can be uniquely extended to
Ah. A Henselization always exists ([28, Theorem 43.5]). The construction is particularly
nice when A is a normal local ring. Let K be the quotient �eld of A and Let Ksep be a
separable closure of A. Let A be the integral closure of A in Ksep and let m be a maximal
ideal of A.

Let H be the decomposition group

H = Gs(Am/A) = {σ ∈ G(Ksep/K) | σ(Am) = Am}.

Then Ah = (Am)H is the �xed ring of the action of H on Am. We have

Ah = (A ∩KH)m∩(A∩KH) = Am ∩KH = (Ã)m∩Ã

where Ã is the integral closure of A in KH .
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Nagata rings are de�ned and their basic properties are developed in [26, Chapter 12].
Nagata rings are called Universally Japanese in [16]. Their basic properties are established
in [16, IV.7.2.2].

We remark that if A is a Nagata local domain with quotient �eld K and ν is a valuation
ofK which dominates A, then there exists a directed system of normal birational extensions
Ai of A such that

⋃
iAi = Rν .

Lemma 6.2. Continuing the assumptions of Lemma 6.1, suppose that A is a Nagata local
domain with quotient �eld K such that ν dominates A, and that Ai is a directed system of
birational extensions of A such that the Ai are normal local domains which are dominated
by ν and

⋃
iAi = Rν . Then there are natural equalities

Rνh = (Rν)h =
⋃
i

Ahi .

Proof. Let νs be an extension of ν to Ksep and

H = {σ ∈ Gal(Ksep/K) | νs ◦ σ = νs},

so that Kh = (Ksep)H . Let V be the integral closure of Rν in K
sep, and let m = V ∩mνs , a

maximal ideal in V . SinceKsep is algebraic overK, we have thatRνs = V m by [42, Theorem
12, page 27]. Now, as is shown on the bottom of page 68 of [42], H is the decomposition
group

H = Gs(Rνs/Rν) = {σ ∈ G(Ksep/K) | σ(Rνs) = Rνs},
so that

(Rν)h = V m ∩Kh = Rνs ∩Kh = Rνh ,

establishing the �rst assertion of the lemma.

Suppose that A is a normal local ring with quotient �eld K. Let Ã be the integral
closure of A in Kh. if A is dominated by V = Rν , then Ãmνs∩Ã is dominated by Ṽmνs∩Ṽ
(where Ṽ is the integral closure of V in Kh). Suppose g, h ∈ Ṽ with h 6∈ mνs ∩ Ṽ . Since Ãi
is a directed system, there exists i such that g, h ∈ Ãi, so h 6∈ mνs∩Ãi and g

h ∈ (Ãi)mνs∩Ãi .
Thus ⋃

i

(Ãi)mνs∩Ãi = Rhν .

Let Ai be the integral closure of Ai in K
sep. By [4, Lemma 3.3], we have inclusions of

decomposition groups

Gs(Rνs/Rν) ⊂ Gs((Ai)mνs∩Ai/Ai)
for all i, and by [4, Lemma 3.4], there exists i0 such that

Gs(Rνs/Rν) = Gs((Ai)mνs∩Ai/Ai)

for i > i0. Thus A
h
i ⊂ (Ãi)mνs∩Ãi for all i and Ahi = (Ãi)mνs∩Ãi

for i � 0. The last
assertion of the lemma now follows.

Let (K, ν) be a valued �eld such that ν has rank 1. The completion (K̂, ν̂) (when ν
has rank 1) is de�ned in Section 2 of [14]. The completion K̂ is de�ned to be the ring of ν-
Cauchy sequences in K modulo the maximal ideal of ν-null sequences (ν-Cauchy sequences
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whose limit is ∞). The extension ν̂ of ν is de�ned by ν̂(h) = limi→∞ ν(hi) if (hi) is a ν-
Cauchy sequence in K which converges to h. We have that K̂ is a Henselian �eld ([14,
Lemma 16.7]). The following lemma is proven in [14, Theorem 2.12 ].

Lemma 6.3. Suppose that (K, ν) is a rank 1 valued �eld and (K̂, ν̂) is a completion of
(K, ν). Suppose that f(z) ∈ K[z] is unitary, irreducible and separable, so that f(z) is
reduced in K̂[z]. Let f(z) = f1(z)f2(z) · · · fr(z) be the factorization of f into irreducible
unitary factors in K̂[z].

Let ν̂i be the (unique) extension of ν̂ to K̂[z]/(fi). Then the distinct extensions of ν
to K[z]/(f(z)) are the r restrictions νi of ν̂i to K[z]/(f(z)), under the natural inclusions
K[z]/(f(z))→ K̂[z]/(fi).

Lemma 6.4. Let notation be as in the statement of Lemma 6.3. We then have a factorization
K → Kh → K̂ of valued �elds. Further, the factorizations of f(z) into products of unitary
irreducible polynomials in Kh[z] and K̂[z] are the same.

Proof. We have a natural inclusion of Kh into K̂ since K̂ is a Henselian �eld. The ir-
reducible factors of f(z) in Kh(z) remain irreducible in K̂[z] since there is a 1-1 corre-
spondence of the irreducible factors of f(z) in K̂[z] with the distinct extensions of ν to
L = K[z]/(f(z)) by Lemma 6.3 and there is a 1-1 correspondence of the irreducible factors
of f(z) in Kh[z] with the distinct extensions of ν to L by Lemma 6.1.

Some references on the defect of a �nite �eld extension are [20], [14], [32] and [39].

Suppose (K, ν) → (L, ω) is a �nite separable extension of valued �elds. Let Ksep be a
separable closure of K with an embedding of L in Ksep. Let νs be an extension of ω to
a valuation of Ksep. As discussed above, we can use νs to de�ne the Henselization Kh of
(K, ν), with valuation νh = νs|Kh, and then Lh = L ·Kh, the join of L and Kh in Ksep, is
a Henselization of (L, ω) with valuation ωh = νs|Lh ([39, Lemma 1.3], [20], [14, (17.16)]).
The defect of ω over ν is de�ned as

δ(ω/ν) = [Lh : Kh]/e(ωh/νh)f(ωh/νh) = [Lh : Kh]/e(ω/ν)f(ω/ν). (44)

The defect is a power of the residue characteristic p of the valuation ring of ν by Ostrowski's
lemma ([20, Theorem 8.2]).

7. Vaquié's Algorithm

Suppose that K is a �eld, f(z) ∈ K[z] is unitary and irreducible, ν is a valuation of K and
µ is a pseudo valuation of K[z] which extends ν such that I(µ)∞ = (f(z)). Vaquié shows
in [38, Theorem 2.5] that there exists a ��nite admissible family of valuations� S which
determines µ. We will take the last element of S to be the pseudo valuation µ. This result
follows from [38, Proposition 2.3], which gives an algorithm for constructing such a family.

We summarize the de�nition of an �admissible family of valuations� approximating µ
(from [38, Section 2.1]), which takes the following form since I(µ)∞ = (f(z)) 6= 0. A family
S of iterated augmented valuations is called a �simple admissible family� if it is of the form
S = (µi)i∈I where the set of indices I is the disjoint union I = B

∐
A with B a �nite set

and A a totally ordered set, where all elements of A are larger than all elements of B and
A does not have a largest element.
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A family of valuations A = (µi)i∈I is called an �admissible family� for µ (de�ned
on page 3473 of [38]) if it is a �nite or countable union of simple admissible families

S(t) = (µ
(t)
i )i∈I(t) . The �rst valuation of S(1) is an inductive valuation of the form µ

(1)
1 =

[µ0;µ
(1)
1 (ϕ

(1)
1 ) = γ1] where µ0 = ν is the given valuation of K and ϕ

(1)
1 is a polynomial

of degree 1. For t > 2, the �rst valuation µ
(t)
1 of S(t) is a �limit augmented valuation� for

the family (µα(t−1))α(t−1)∈A(t−1) . The construction of limit augmented valuations will be
explained below.

Write I(t) = B(t)
∐
A(t) as above and write B(t) = {1, . . . , n(t)}. Then for i > 2 in B(t),

µ
(t)
i = [µ

(t)
i−1;µ

(t)
i (ϕ

(t)
i ) = γ

(t)
i ] is an inductive valuation (Section 3). For α ∈ A(t), we have

that µ
(t)
α = [µn(t) ;µ

(t)
α (ϕ

(t)
α = γ

(t)
α ] is an inductive valuation, where degz ϕ

(t)
α = degz ϕ

(t)

n(t) .

Vaquié requires that degz ϕ
(t)
i−1 < degz ϕ

(t)
i for i > 2 in B(t) but we do not assume this.

By the de�nition of an inductive value, we do have that degz ϕ
(t)
i−1 6 degz ϕ

(t)
i for i > 2 in

B(t). By the construction of limit key polynomials, we have that degz ϕ
(t)

n(t) < degz ϕ
(t+1)
1

for all t.

We require that for g ∈ K[z] and i < j ∈ I,

µi(g) 6 µj(g) 6 µ(g). (45)

Further, µi(ϕi) = µ(ϕi) for all i.

We now discuss the construction of limit augmented valuations.

Suppose that A = (µα)α∈A is an admissible family of valuations for µ. De�ne ([38, page
3473])

Σ̃(A) = {g ∈ K[z] | µα(g) < µ(g) for all µi ∈ A}.
De�ne d(A) =∞ if Σ̃(A) = ∅ and

d(A) = inf{degz ϕ | ϕ ∈ Σ̃(A)}

if Σ̃(A) 6= ∅. Now de�ne

Σ(A) = {ϕ ∈ Σ̃(A) such that ϕ is unitary and degz ϕ = d(A)}

and

Λ(A) = {µ(ϕ) | ϕ ∈ Σ(A)}. (46)

Suppose that Λ(A) does not have a largest element. We then de�ne a totally ordered index
set C, which does not have a largest element, so that

Λ(A) = {γα | α ∈ C},

where α < β if and only if γα < γβ .

A �limit key polynomial� ϕ for A is de�ned on page 3465 of [39]. It satis�es the three
properties that ϕ is A-minimal, ϕ is A-irreducible and ϕ is unitary. The elements of Σ(A)
are limit key polynomials for A by [38, Proposition 1.21]. Choose ϕα ∈ Σ(A) for each α ∈ C
so that µ(ϕα) = γα. We then have a limit augmented valuation µα = [A;µα(ϕα) = γα]
([38, Proposition 1.22]), which is de�ned by

µα(g) = max
j∈A
{min

i
{µj(gi) + iµ(ϕα)}} (47)
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for g ∈ K[z], where

g =
∑

giϕ
i
α

with degz gi < degz ϕα.

The �associated family of iterated augmented valuations� to A is

(µα)α∈C . (48)

We will explain here how the algorithm proceeds if we are given a discrete simple
admissible family S = {µ1, . . . , µn} such that Σ(µn) is nonempty. We will produce an
admissible family of valuations B such that d(B) > d(µn).

All elements of Σ(µn) are key polynomials for µn by [24, Theorem 8.1] or [39, Theorem
1.15 page 3453].

First suppose that the set of values Λ(µn) has a largest element γ′ (which could be∞).
Then we can de�ne µ′ = [µn; ν ′(ϕ′) = γ′] where ϕ′ ∈ Σ(µn) satis�es µ(ϕ′) = γ′. We then
have two cases, depending on if degz ϕ

′ > degz ϕn or if degz ϕ
′ = degz ϕn.

Assume that degz ϕ
′ > degz ϕn. Set ϕn+1 = ϕ′, γn+1 = γ′ and

µn+1 = µ′ = [µn;µn+1(ϕn+1) = γn+1].

Then de�ne B = {µ1, . . . , µn, µn+1} which is a discrete simple admissible family, with
d(B) > degz(ϕn+1) > degz ϕn.

Now assume that degz ϕ
′ = degz ϕn. Then de�ne B = {µ1, . . . , µn, µ′} which is again a

discrete simple admissible family with d(B) > d(µ′) (by [24, Lemma 15.1] or [38, Corollary,
page 3448]).

The last case is when Λ(µn) does not have a largest element. De�ne the associated
family of iterated augmented valuations (µα)α∈C of (48) for µn. For all γα ∈ Λ(µn), de�ne
µα = [µn;µα(ϕα) = γα]. De�ne S(1) by adding to S the family C = (µα)α∈C , so S(1) is
indexed by I ′ = {1, . . . , n}

∐
C (which does not have a largest element). We have that

S(1) is a simple admissible family. The family C is an �exhaustive, continuous family of
iterated augmented valuations� with the property that degz ϕα = d(µn) for all α ∈ C. We
have that f 6∈ Σ(µn) since C does not have a largest element. Thus Σ̃(C) 6= ∅. By [38,
Proposition 1.21], all polynomials of Σ(C) are limit key polynomials for the family C. We

now choose a polynomial ϕ
(2)
1 ∈ Σ(C), and de�ne the �limit augmented valuation� µ

(2)
1 =

[(µα)α∈C ; ν
(2)
1 (ϕ

(2)
1 ) = µ(ϕ

(2)
1 )] (by the de�nition on page 2465 of [38] and [38, Proposition

1.22] and as explained in (47)) and the discrete, simple admissible family S(2) = {µ(2)1 }.
By [38, Proposition 1.27], degz ϕ

(2)
1 is greater than the degree of the polynomials in Σ(µn).

De�ne the admissible family B = S(1) ∪ S(2), which is indexed by I ′′ = I ′
∐
{1(2)} (where

1(2) is larger than every element of I ′).

7.1 Comparison of the algorithms of Section 4 and Vaquié

Suppose that W is a pseudo valuation of K[z] which extends a valuation V0 of K, such
that I(W )∞ = (f(z)) where f is unitary and f(z) ∈ RV0 [z]. Let

V1, . . . , Vk, . . . (49)

be a sequence of approximants to f over V0 constructed by the algorithm of Section 4
which satisfy (45) (with µj = Vj and µ = W ).
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We then either have that ϕk = f or V0, V1, . . . , Vk, . . . is in�nite with degz ϕk = degz ϕk0
for k > k0 In the �rst case, we have that S = {V1, . . . , Vk} is a discrete simple admissible
family of valuations which determines W .

Suppose that V1, . . . , Vk, . . . is in�nite. Then ϕk ∈ Σ(Vk0) for k > k0, and so d(Vk0) =
degz ϕk0 .

If Λ(Vk0) has a maximal element γ, ϕ′ ∈ Σ(Vk0) is a key polynomial with W (ϕ′) = γ
and corresponding valuation µ′ = [Vk0 ;µ′(ϕ′) = W (ϕ′)], then {V1, . . . , Vk0 , µ′} is the �rst
part of the discrete part of S(1) constructed by Vaquié's algorithm. If W (ϕ′) = ∞, then
S = S(1) = {V1, . . . , Vk0 , µ′ = W} is an admissible family of valuations which determines
W .

Suppose that Λ(Vk0) does not have a largest element. Let C = (µα)α∈C be the associated
family of iterated augmented valuations associated to Vk0 of (48). Choose a limit key

polynomial ϕ
(2)
1 for C. The next step in Vaquié's algorithm is to construct S = S(1) ∪ S(2)

where S(1) = {V1, . . . , Vk0} ∪ C and S(2) = {V (2)
1 = [C;V (2)

1 (ϕ
(2)
1 ) = W (ϕ

(2)
1 )]}.

Looking again at the case where Λ(Vk0) has a maximal element γ and ϕ′ ∈ Σ(Vk0) is
the corresponding key polynomial, we have an expression ϕ′ = ϕk0 +h where h ∈ K[z] has
degz h < degz ϕk0 . We further have that h ∈ RV0 [z] by Remark 3.3. We have an expression
(for some r)

h =
r∑
j=1

ajϕ
σ1(j)
1 · · ·ϕσk0−1(j)

k0−1

with aj ∈ RV0 , 0 6 σi(j) < ni = [GVi : GVi−1 ] for all i and j and

W (aiϕ
σ1(i)
1 · · ·ϕσk0−1(i)

k0−1 ) < W (ajϕ
σ1(j)
1 · · ·ϕσk0−1(j)

k0−1 )

if i < j. Let

ψi = ϕk0 + a1ϕ
σ1(1)
1 · · ·ϕσk0−1(1)

k0−1 + · · ·+ aiϕ
σ1(i)
1 · · ·ϕσk0−1(i)

k0−1 (50)

for 1 6 i 6 r. We then have (for instance by the criterion of [38, Proposition 1.9]) that

V1, . . . , Vk0 , V
′
k0+1, . . . , V

′
k0+r (51)

is a (k0 + r)-th stage approximant to f over V0, where

V ′k0+1 = [Vk0 ;V ′k0+1(ψ1) = W (ψ1)] and V
′
k0+i = [V ′k0+i−1;V

′
k0+i(ψi) = W (ψi)] for 2 6 i 6 r.

Further, either W (ϕ′) <∞ and

d({V1, . . . , Vk0 , V ′k0+1, . . . , V
′
k0+r}) > degz ϕk0 ,

or W (ϕ′) =∞, in which case f = ϕ′ (since f and ϕ′ are unitary in z of the same degree)
and ψr = f .

We may now continue the algorithm of Section 4 to construct higher stage approxi-
mants, starting from V ′k0+r. After a �nite number of iterations of this procedure, we con-
struct a sequence of approximants to f ,

V1, . . . , Vk1 , . . . (52)

so that degz ϕi 6 degz ϕi+1 if i < k1 and degz ϕi = degz ϕi for i > k1. which is either of
�nite length k1, so that Vk1 = W , or there is a jump (t > 1) in the construction of the
admissible family S = S(1) ∪ · · · ∪ S(t) determining W .
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Suppose that (52) is in�nite and the equivalent conditions of Lemma 3.2 hold for (52).
Let C = (µα)α∈C be the associated family to Vk1 of (48). Suppose g ∈ K[z] and W (g) <∞
and k is so large that W (ϕk) > W (g). Write g = gmϕ

m
k + · · ·+ g0 with degz gi < degz ϕk

for all i. We have that

Vk(g) = Vk(g0) = Vk0−1(g0) = W (g0) = W (g).

Thus g 6∈ Σ̃(C) and so degz f is the smallest degree of an element of Σ̃(C). Thus S = S(1)∪
S(2) where S(1) = {V1, . . . , Vk1} ∪ C and S(2) = {V (2)

1 } where V
(2)
1 = [C;V (2)

1 (f(z)) =∞].

The following proposition follows from our analysis.

Proposition 7.1. Suppose that V0 has �nite rank. Then there exists a realization of
the algorithm of Section 4 which produces the �rst simple admissible family S(1) of an
admissible family S = S(1) ∪ · · · ∪ S(t) determining W , where all key polynomials are in
Rν [z].

7.2 Invariants of rami�cation and jumps

Suppose that W is an extension of a valuation V = V0 of K to a pseudo valuation of
K[z] with I(W )∞ = (f(z)) in K[z] with f unitary. Let ω be the induced valuation on
L = K[z]/(f(z)).

The jumps s(j−1)(S) in a family S = S(1) ∪ · · · ∪ S(t) realizing W are de�ned by the
equations

degz ϕ
(j)
1 = s(j−1)(S) degz ϕ

(j−1)
α (53)

where ϕ
(j−1)
α is a key polynomial of a member of the continuous family C(j−1) associated

to S(j−1). The total jump of the family S is

stot(S) =
t∏

j=2

s(j−1)(S).

We have by Lemma 2.11 and [39, Corollary 2.10] that

degz f = [L : K] = e(ω/V )f(ω/V )stot(S). (54)

We have that stot(S) = 1 if and only if there are no jumps in the construction of approxi-
mants. Here e(ω/V ) = [Gω : GV ] where Gω and GV are the respective value groups of ω
and V , and f(ω/V ) is the index of the respective residue �elds of the valuation rings of ω
and V .

In the case where ω is the unique extension of V to a valuation of L, we have by
Ostrowski's lemma that

[L : K] = e(ω/V )f(ω/V )δ(ω/V ) (55)

where the defect δ(ω/V ) is a power of the residue characteristic p of V . Comparing with
(54), we have that stot(S) = δ(ω/V ) in this case. Thus (assuming ω is the unique extension
of V ) there is no jump if and only if there is no defect and in this case,

[L : K] = e(ω/V )f(ω/V ). (56)

In constrast to the good property of key polynomials of (4), we have examples of the
following type for limit key polynomials.
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Example 7.2. The jumps s(i)(S) and total jump stot(S) can be rational numbers which
are not integers.

We now construct such an example. Let k be an algebraically closed �eld and K = k(x)
be a rational function �eld in one variable over k. Let ν be the valuation ofK with valuation
ring Rν = k[x](x) and such that ν(x) = 1. Let L = K[z]/(z3 − z2 − x) ∼= k(z). Let ω be

the extension of ν to L with valuation ring Rω = k[z](z) and ω(z) = 1
2 . Then e(ω/ν) = 2

and f(ω/ν) = 1. Thus by (54),

stot(S) =
degz(z

3 − z2 − x)

e(ω/ν)f(ω/ν)
=

3

2
.

8. Defectless extensions

Lemma 8.1. Suppose that (K, ν) is a valued �eld containing an algebraically closed �eld
k such that Rν/mν

∼= k and f(z) ∈ Rν [z] is unitary, irreducible and separable. Let L =
K[z]/(f(z)) and let ω be an extension of ν to L. Let W be the induced pseudo valuation
on K[z]. Let f(z) ∈ Kh[z] be the irreducible factor of f(z) which induces ω (by Lemma
6.1) and let ωh be the (unique) extension of νh to Kh[z]/(f(z)). Let W be the induced
pseudo valuation on Kh[z]. Let V0 = ν and W0 = νh. Then the following hold:

1) grνh(Rνh) = grν(Rν).

2) Set ϕ1 = z, let V1 = [V0;V1(ϕ1) = W (ϕ1)] and let W1 = [νh;W1(ϕ1) = W (ϕ1)]. Then
grW1

(Rνh [z]) = grV1(Rν [z]).

3) Suppose that Vi = [Vi−1;Vi(ϕi) = W (ϕi)] for 1 6 i 6 k is a realization of the
algorithm of Section 4 in Rν [z] such that Wi = [Wi−1;Wi(ϕi) = W (ϕi)] for 1 6 i 6 k
is a realization of the the algorithm of Section 4 in Rνh [z] and

grWi
(Rνh [z]) = grVi(Rν [z]) for 1 6 i 6 k. (57)

Suppose that ϕk+1 ∈ Rν [z] has an expression ϕk+1 = ϕnk − ckϕ
j1
1 · · ·ϕ

jk−1

k−1 of the form
of (15), ϕk+1 is a key polynomial for Wk and Wk+1 = [Wk;Wk+1(ϕk+1) = W (ϕk+1)]
is a (k + 1)-st approximant of f over W0. Then ϕk+1 is a key polynomial for Vk and
Vk+1 = [Vk;Vk+1(ϕk+1) = W (ϕk+1)] is a (k+1)-st approximant of f over V0. Further,
grWk+1

(Rνh [z]) = grVk+1
(Rν [z]).

Proof. Statement 1) follows since Gνh = Gν and Rνh/mνh = Rν/mν by [14, Theorem
17.19]. Statement 2) follows since

grW1
(Rνh [z]) = grνh(Rνh)[inW1(ϕ1)] = grν(Rν)[inV1(ϕ1)] = grV1(Rν [z]).

Now we will prove statement 3). To show that ϕk+1 is a key polynomial over Vk, we
must verify that 1) - 6) of the de�nition of a key polynomial, given after (3) hold for
ϕk+1 over Vk. This follows since these conditions hold for ϕk+1 over Wk. The fact that
Wk+1 is a (k+ 1)-st approximant to f over Wk implies that ϕk+1 equivalence divides f in
Wk. Thus inWk

(ϕk+1) divides inWk
(f) in grWk

(Rνh [z]). Now inWk
(f) divides inWk

(f(z))
in grWk

(Rνh [z]). So inWk
(ϕk+1) divides inWk

(f(z)) in grWk
(Rνh [z]) = grVk(Rν [z]). Thus

ϕk+1 equivalence divides f(z) in Vk and so Vk+1 is a (k + 1)-st approximant to f(z) over
Vk. We have that n = [GWk

: GWk−1
] = [GVk : GVk−1

] as GWk−1
= GVk−1

. Finally, we have
that grVk+1

(Rν [z]) = grWk+1
(Rνh [z]) by Lemma 4.3.
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Theorem 8.2. Suppose that A is a Nagata local domain which contains an algebraically
closed �eld k such that A/mA

∼= k. Let K be the quotient �eld of A and suppose that
V0 = ν is a rank 1 valuation of K which dominates A and such that the residue �eld of the
valuation ring of V0 is k. Suppose that f(z) ∈ A[z] is unitary, irreducible and separable and
W is a pseudo valuation of K[z] such that I(W )∞ = (f(z)) in K[z] which extends V0. Let
ω be the induced valuation of L = K[z]/(f(z)). Then ω is defectless over ν (δ(ω/ν) = 1)
if and only if there exists a normal birational extension A1 of A which is dominated by ν
such that there exists a realization

V1, . . . , Vk, . . .

of the algorithm of Section 4 in A1[z], satisfying (14) and (15) for all k with ck ∈ A1 for
all k > 1, such that W = Vk for some �nite k or W = limk→∞ Vk.

If these equivalent conditions hold, then there exists a positive integer k such that

grω(A1[z]/(f(z))) ∼= grν(A1)[ϕ1, . . . , ϕk]/I

where

I = (ϕn1
1 − c1, ϕ

n2
2 − c2ϕ

j1(2)
1 , . . . , ϕnkk − ckϕ

j1(k)
1 ϕ

j2(k)
2 · · ·ϕjk−1(k)

k−1 )

is a �nitely generated and presented grν(A1)-module.

An example showing that the conclusions of Theorem 8.2 may not hold if ν has rank
larger than one will be given in Section 10. In Example 8.3, it will be shown that the
conclusions of Theorem 8.2 may not hold if f(z) is not separable over K.

Proof. First suppose that δ(ω/ν) = 1. Let notation be as in Section 6. By Lemma 6.1,
there exists an extension W of νh to a pseudo valuation of Kh[z], such that I(W )∞ = (f)
where f(z) is an irreducible factor of f(z) in Kh[z], and W is an extension of W .

We will construct a special sequence of approximants W1, . . . ,Wk0 to f over νh such
that W = Wk0 . In particular,

Wk0 = [Wk0−1;Wk0(ϕk0) =∞]

where ϕk0 = f .

Set ϕ1 = z and let W1 = [νh;W1(ϕ1) = W (ϕ1)]. Suppose by induction on k that we
have constructed a sequence of approximants to f over νh,

W1, . . . ,Wk

giving a realization of the algorithm of Section 4, such that expressions

ϕi = ϕ
ni−1

i−1 − ci−1ϕ
j1(i−1)
1 · · ·ϕji−2(i−1)

i−2

of the form of 15) hold for i 6 k with ci ∈ Rν for i 6 k − 1. After replacing A with a
birational extension A1 of A, we may suppose that ci ∈ A for i 6 k − 1.

If Λ(Wk) does not have a largest element, then we have a jump s(1) > 1 by (53) and
the analysis of this case in Subsection 7.1. But by (54) and (55), there cannot be a jump,
and we have a contradiction, showing that Λ(Wk) has a largest element.

Suppose we are in the case where Λ(Wk) has a maximal element γ 6=∞ and ϕ′ ∈ Σ(Wk)
is a corresponding key polynomial. We will modify the resulting sequence (51) of the
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analysis in Subsection 7.1, which we will write as

W1, . . . ,Wk,W
′
k+1, . . . ,W

′
k+r (58)

by modifying the ψi of (50), replacing the ai with suitable bi ∈ Rν for 1 6 i 6 r. With
the notation of Lemma 6.2, since a1, . . . , ar ∈ Rνh , there exists Al such that ai ∈ Ahl
for 1 6 i 6 r and ϕ1, . . . , ϕk0 ∈ Al[z]. Thus, since W induces a rank 1 valuation on
Kh[z]/(f(z)), there exists n ∈ Z+ such that nV0(mAhl

) > W (ϕ′) = γ. Now Al → Ahl is

unrami�ed with no residue �eld extension, so there exists bi ∈ Al such that ai − bi ∈ mn
Ahl

for 1 6 i 6 r. Thus V0(bi) − νh(ai) > ω(ϕ′) for 1 6 i 6 r and we can replace ψi with

ψi−1 + biϕ
j1(i)
1 · · ·ϕjk−1(i)

k−1 in (50) for 1 6 i 6 r, to produce a sequence (58) with ψi ∈ Rν [z]
for all i. We then have a corresponding sequence to (58),

V1, . . . , Vk, V
′
k+1, . . . , V

′
k+r

of approximants to f over V0 by Lemma 8.1.

Now we can continue, using the algorithm of Section 4, applying the above argument
as necessary until we reach Wk such that the maximal element of Λ(Wk) is ∞, so that
f ∈ Σ(Wk).

With this assumption, there exists l (with the notation of Lemma 6.2) such that the
coe�cients of f are in Ahl and the coe�cients of ϕ1, . . . , ϕk are in Al. We have f = ϕk + h
where h ∈ Ahl [z] and degz h < degz ϕk. Set ψ0 = ϕk. By induction, we may construct
a sequence ψi ∈ Al[z] of monic poynomials with degz ψi = degz ϕk, such that for all i,
f = ψi + hi with hi ∈ (Al)

h[z] a polynomial of degree < degz ϕk and

ψi+1 = ψi + biϕ
σ1(i)
1 · · ·ϕσk0−1(i)

k0−1

with bi ∈ Al and 0 6 σj(i) < nj for 1 6 j 6 k0 − 1 such that W (ψi+1) > W (ψi) for all i.
Since Al is Noetherian, and W induces a rank 1 valuation on Kh[z]/(f(z)), we have that
W takes on Al[z] only a �nite number of values which are less than or equal to a given
�nite upper bound. Thus we either obtain that ψi = f(z) for some i, or that

lim
i→∞

W (ψi) = lim
i→∞

W (ψi) =∞.

By Lemma 8.1, inductively de�ning Vi = [Vi−1;Vi(ϕi) = W (ϕi)] for 1 6 i 6 k and
Vi+k = [Vi+k−1;Vi(ψi) = W (ψi)] for k < i, we construct a sequence

V1, . . . , Vk, . . .

of approximants to f(z) over V0 such that limi→∞ Vi(ϕi) =∞, so that W = limi→∞ Vi by
Lemma 3.2.

Now suppose there exists a normal birational extension A1 of A and a realization
V1, . . . , Vk, . . . of the algorithm of Section 4 as in the statement of the theorem. We will
show that the defect δ(ω/ν) = 1.

First suppose that the sequence is of �nite length, terminating with Vk = W , so that
the last key polynomial is ϕk = f (with Vk(ϕk) = ∞). We have that degz ϕ1 = 1 and
degz ϕi = ni−1 degz ϕi−1 for i > 2. Thus

[Gω : GV0 ]δ(ω/V0) 6 degz f = n1n2 · · ·nk−1 = [Gω : GV0 ]

so that δ(ω/ν) = 1.
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Now suppose that V1, . . . , Vk, . . . is of in�nite length. We have (by Lemma 6.4) natural
extensions of valued �elds

(K, ν)→ (Kh, νh)→ (K̂, ν̂).

Let f(z) be the irreducible factor of f(z) in Kh[z] which induces ω (from Lemma 6.1).
Then f(z) is irreducible in K̂[z] (by Lemma 6.4) and so is the irreducible factor of f(z) in
K̂[z] which induces ω (by Lemma 6.3). Thus the pseudo valuation W extends to a pseudo
valuation W h of Kh[z] and to a pseudo valuation Ŵ of K̂[z] such that I(W h)∞ = (f(z))
in Kh[z] and I(Ŵ )∞ = (f(z)) in K̂[z]. By (44),

δ(ω/ν) = [Lh : Kh]/[Gω : Gν ] = degz f/[Gω : Gν ]. (59)

There exists k0 such that degz ϕk = degz ϕk0 for k > k0. There exist ai ∈ A1 and
j1(i), . . . , jk0−1(i) with 0 6 jl(i) < nl for 1 6 l 6 k0 − 1 such that

ϕk0+i+1 = ϕk0+i − aiϕ
j1(i)
1 · · ·ϕjk0−1(i)

k0−1

for i > 0. Now

W (ϕk0+i) = W (aiϕ
j1(i)
1 · · ·ϕjk0−1(i)

k0−1 )

for i > 0 and

W (ϕk0+i) 7→ ∞ as i 7→ ∞ (60)

by Lemma 3.2. Thus ν(ai) 7→ ∞ as i 7→ ∞.

For �xed (b1, . . . , bk0−1) such that 0 6 bl < nl for 1 6 l 6 k0 − 1, de�ne

cl(b1, . . . , bk0−1) =
∑

ai,

where the sum is over i < l such that (j1(i), . . . , jk0−1(i)) = (b1, . . . , bk0−1). Let

τi =
∑

b1,...,bk0−1

ci(b1, . . . , bk0−1)ϕ
b1
1 · · ·ϕ

bk0−1

k0−1

where the sum is over b1, . . . , bk0−1 such that 0 6 bj < nj for 1 6 j 6 k0− 1. We have that
ϕk0+i = ϕk0 − τi. Thus

W (τj − τi) = W (ϕk0+i − ϕk0+j) > min{W (ϕk0+i),W (ϕk0+j)}

so W (τj − τi) 7→ ∞ as j > i 7→ ∞. We have that

W (τj − τi) = min{ν(ci(b1, . . . , bk0−1)− cj(b1, . . . , bk0−1)) +W (ϕb11 · · ·ϕ
bk0−1

k0−1 )}

where the minimum is over b1, . . . , bk0−1 with 0 6 bj < nj for 1 6 j 6 k0 − 1. So for all
b1, . . . , bk0−1, ν(ci(b1, . . . , bk0−1) − cj(b1, . . . , bk0−1)) 7→ ∞ as j > i 7→ ∞. Thus for each
b1, . . . , bk0−1, (ci(b1, . . . , bk0−1)) is a ν-Cauchy sequence.

Thus these sequences have limits in K̂, and so (ϕk0+i) is a ν-Cauchy sequence in K[z]
which has a non zero limit ϕ∞ in K̂[z] (ϕ∞ is necessarily unitary of degree equal to
degz ϕk0). Now ϕ∞ ∈ I(Ŵ )∞ = (f) by (60). Thus degz ϕ∞ > degz f . Now

degz f 6 degz ϕ∞ = degz ϕk0 = [GVk0 : GV0 ] = [Gω : Gν ].

Thus degz f = [Gω : Gν ] and δ(ω/ν) = 1 by (59).

Example 8.3. The conclusions of Theorem 8.2 may fail if f(z) is not separable over K.
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An example of F.K. Schmidt of a discrete valuation ring (with value group Z) and an
inseparable extension of its quotient �eld which has defect is explained in [23, Example 3.1].
The example is as follows. Let k be an algebraically closed �eld of characteristic p > 0,
A = k[x, y](x,y) be the localization of a polynomial ring in two variables and K be the
quotient �eld of A. Let k[[t]] be a power series ring and let s ∈ k[[t]] be transcendental over
k(t) and such that ordt(s) > 0. The k-algebra embedding K → k[[t]] de�ned by x 7→ t
and y 7→ sp induces a valuation ν on K which dominates A by ν(g(x, y)) = ordt(g(t, sp)).
We have that Gν = Z and Rν/mν = k. Let f(z) = zp − y ∈ K[z]. There is a unique
extension of ν to a valuation ω of L = K[z]/(f(z)) (since L is purely inseparable over K)
which is an immediate extension of ν (Gω = Gν and Rω/mω = Rω/mω). Thus the defect
δ(ω/ν) = degz f = p by Ostrowski's lemma (1). Since ν is a rank 1 discrete valuation, by
MacLane's theorem (Section 3), ω is a limit valuation which is realized by his algorithm.
We will give an explicit construction.

LetW be the pseudo valuation induced by ω on K[z], and let V0 = ν. We will construct
a sequence of approximants V1, . . . , Vi, . . . to f over V0 which realize W .

Expand s =
∑∞

i=1 ait
i with ai ∈ k. We have that sp =

∑∞
i=1 a

p
i t
ip. De�ne

σ(1) = ordt(s) = min{i | ai 6= 0}

and for j > 1,

σ(j) = min{i | σ(j − 1) < i and ai 6= 0}.

The �rst approximant is V1 = [V0;V1(ϕ1) = σ(1)] where ϕ1 = z. For i > 1, Vi+1 is
de�ned by Vi+1 = [Vi;Vi+1(ϕi+1) = σ(i + 1)], where ϕi+1 = ϕi − aσ(i+1)x

σ(i+1). Then
limi→∞ Vi(ϕi) =∞ and so W is the limit valuation W = limi→∞ Vi by Lemma 3.2.

9. A Rank 1 Separable Example with Defect

We consider an example from [11, Theorem 7.38], with regard to the algorithm of Section
4. Let k be an algebraically closed �eld of characteristic p > 0. Let K = k(u, v) be a two
dimensional rational function �eld over k, and, using the method of [34] and [9], de�ne a
valuation ν of K by the following generating sequence:

P0 = u, P1 = v, P2 = vp
2 − u and Pi+1 = P p

2

i − u
p2i−2

Pi−1 for i > 2.

We normalize the valuation ν so that ν(u) = 1. We have the de�ning relations vp
2 ∼ u in

ν and P p
2

i ∼ up
2i−2

Pi−1 in ν for i > 2. As shown in [11], the value group Gν = 1
p∞Z =⋃

i>1
1
pi
Z. Let f = xp+uxp−1−u ∈ K[x]. By [11, Theorem 7.38], ν has a unique extension

to a valuation ω of L = K[x]/(f(z)). Further, ω is an immediate extension, so it is a defect
extension with [L : K] = δ(ω/ν) = [L : K] = p.

Let W be the pseudo valuation induced by ω on K[x]. We will construct a realization
of the algorithm of Section 4, giving an in�nite sequence of approximants to f over V0 = ν,

V1, . . . , Vk, . . .

satisfying (14) and (15) with ci ∈ Rν for all i.

Setting ϕ1 = x, we have that N(V0, ϕ1) has a single segment, which has the slope
V0(u)
p = 1

p . Thus the �rst approximant to f over V0 is V1 = [V0;V1(ϕ1) = 1
p ].
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We will make use of the following observation when constructing our sequence of ap-
proximants. Suppose we have constructed the sequence V1, . . . , Vk of approximants, where
degx ϕi = 1 for all i. Then for i 6 k, ϕi = ϕi−1 + ai−1 with ai−1 ∈ Rν and

W (ϕi) > W (ϕi−1) = ν(ai−1).

Expanding

uxp−1 = gp−1ϕ
p−1
k + gp−2ϕ

p−2
k + · · ·+ g0

with gi ∈ Rν , we have that

V0(g0) > min{W (giϕ
i
k)} = Vk(ux

p−1) = W (uxp−1) = 1 +
p− 1

p
>

p4

p4 − 1
. (61)

Now f ∼ ϕp1 − u in V1 and u = vp
2 − P2 ∼ vp

2
in V0. Thus f ∼ (ϕ1 − vp)p in V1, and we

take our second key polynomial to be ϕ2 = ϕ1 − vp = ϕ1 − P p1 . We thus have that the
second approximant is V2 = [V1;V2(ϕ2) = W (ϕ2)]. Expanding

f = ϕp2 + fp−1ϕ
p−1
2 + · · ·+ f1ϕ2 + f0

with fi ∈ Rν , by (61) with k = 2, we have that

f0 = vp
2 − u+ terms of value >

p4

p4 − 1

and vp2−u = P2. Now since ω is the unique extension of ν, we have that the principal part
of N(V1;ϕ2) is N(V1, ϕ2) and N(V1, ϕ2) has a single segment, which has slope V0(f0)

p =
V0(P2)
p = 1

p + 1
p5
, which is less than p4

p4−1 . The second approximant is V2 = [V1;V2(ϕ2) =
1
p + 1

p5
].

By (61), we have that f ∼ ϕp2 + P2 in V2. Now P2 ∼
P p

2

3

up
4 in V0, so

f ∼
(
ϕ2 +

P p3
up3

)p
in V2,

and so ϕ3 = ϕ2 +
P p3
up3

is a key polynomial for V2. We thus have that the third approximant

is V3 = [V2;V3(ϕ3) = W (ϕ3)]. We expand

f = ϕp3 + fp−1ϕ
p−1
3 + · · ·+ f1ϕ3 + f0

with fi ∈ Rν . By (61), we have that

f0 = −P
p2

3

up4
+ P2 + terms of value >

p4

p4 − 1
.

Also,

−P
p2

3

up4
+ P2 = − P4

up4
.

Now since ω is the unique extension of ν, we have that the principal part of N(V2, ϕ3) is
N(V2, ϕ3) and N(V2, ϕ3) has a single segment, which has slope

V0(f0)

p
=

1

p
V0

(
− P4

up4

)
=

1

p
+

1

p5
+

1

p9
<

p4

p4 − 1
.

The third approximant is V3 = [V2;V3(ϕ3) = 1
p + 1

p5
+ 1

p9
].
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Continuing in this way, we construct an in�nite sequence of approximants V1, . . . , Vk, . . .
to f over V0 with Vk = [Vk−1;Vk(ϕk) = µk] and for k > 3,

ϕk = ϕk−1 + (−1)k−1
P p2(k−2)+1

up3+p7+···+p
4(k−3)+3

with

µk =
1

p
+

1

p5
+

1

p9
+ · · ·+ 1

p4(k−1)+1
.

We have that

lim
k→∞

µk =
p4

p(p4 − 1)
. (62)

In particular, we have by Lemma 3.2, that the limit valuation V∞ = limk→∞ Vk is a
valuation, and thus is not equal to W .

We observe that there does not exist a birational extension A1 of k[u, v](u,v) which is
dominated by V0 such that ϕi ∈ A1[x] for all i, as there can only be �nitely many values
of elements in a Noetherian local ring which is dominated by a rank 1 valuation that are
less than a �xed �nite bound.

We now analyze the extension W of ν in the context of Vaquié's algorithm. We will
construct an admissible family of valuations S which determines W .

In the above realization of the algorithm of Section 4, we started by de�ning ϕ1 = x,
and V1 = [V0;V1(ϕ1) = 1

p ]. With the notation of Section 7, we have

Σ(V1) = {x− g | g ∈ K and W (x− g) > W (x)}

and

Λ(V1) = {W (ϕ) | ϕ ∈ Σ(V1)}.
Let (µα)α∈C be the associated family of iterated augmented valuations to A = {V1} of
(48).

The concept of distance of an element of L from K and the concepts of dependent and
independent Artin-Schreier extensions are introduced in [22]. In [13], our extension ω of ν
is analyzed, and it is shown that it is a dependent Artin-Schreier extension. We will make
use of a calculation in their proof, to determine lim sup{Λ(V1)}. Suppose that g ∈ Σ(V1).
Then W (x − g) > W (x) so ν(g) = W (x) = 1

p . Thus g ∈ Rν , and by 2) of [13, Theorem
4.4], we have that

W (gp − xp) 6 1 +
1

p4
+ · · ·+ 1

p4(k+1)

for some k > 0. Thus

W (x− g) =
1

p
W (gp − xp) 6 1

p
+

1

p5
+ · · ·+ 1

p4(k+1)+1
<

p4

p(p4 − 1)
.

By (62), we have that lim sup{Λ(V1)} = p4

p(p4−1) and
p4

p(p4−1) 6∈ Λ(V1). In particular, Λ(V1)

does not have a largest element. Thus the �rst simple admissible family associated to W is

S(1) = {V1} ∪ {(µα)α∈C}

and S is the union of t > 1 simple admissible families. Since ω is an immediate extension
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of ν, we have by (54) that

p = degx f = stot(S) =

t∏
j=2

s(j−1)(S). (63)

Let ψα = x− ϕα ∈ K for α > 1. We have

ν(ψσ − ψρ) = W (ϕσ − ϕρ) = W (ϕρ) = µρ < µσ = W (ϕσ) = ν(ψτ − ψσ)

for ρ < σ < τ . Thus {ψα} is a pseudo-convergent set in K in the sense of Kaplansky [18].

Let g(x) be a limit key polynomial for {ϕα} (de�ned in Section 7). As explained in [29,
Section 3], g(x) is a polynomial of smallest degree such that g(ψα) < g(ψβ) for α < β. By
[18, Lemma 10], the degree of g is a power of p. By (63), g has degree p, and so f is a

limit key polynomial for {ϕα}. Thus ϕ(2)
1 = f and so S(2) = {µ(2)1 } where µ

(2)
1 is the limit

augmented value

µ
(2)
1 = [(µα)α∈B;µ

(2)
1 (f) =∞].

In summary, our admissible family of valuations S which determine W is

S = S(1) ∪ S(2)

where S(1) and S(2) are as described above.

We now consider the key polynomials ϕi and valuations Vi constructed in our realization
of MacLane's algorithm. Since

lim supW (ϕi) =
p4

p(p4 − 1)
= lim sup Λ(V1)

and ϕi ∈ Σ(V1) for i > 1, we have by Proposition 1.9 [38] that the limit valuations
V∞ = limi→∞ Vi and limα∈B µα are equal. Thus the pseudo valuation W satis�es

W (g) =

{
∞ if f |g in K[x]
V∞(g) if f 6 |g in K[x].

10. A defectless extension of a rank two valuation with many jumps

In this section we construct the following example, which shows that the conclusions of
Theorem 8.2 may not hold if ν has rank larger than one.

Example 10.1. Let k be an algebraically closed �eld of characteristic not equal to 2, and
let k[x, y] be a polynomial ring in two variables over k. Let K = k(x, y) and let ν be the
rank two valuation on K de�ned by ν(x) = (0, 1), ν(y) = (1, 0) ∈ (Z2)lex and ν|(k\0) = 0.
Let

f = ((z2 − x2 − x3)2 − y2(x2 + 2x3))2 − (y6 + y7) (64)

and let ω be an extension of ν to K[z]/(f(z)). Let W be the induced pseudo valuation of
K[z]. Then a family S = S(1) ∪ · · · ∪ S(t) (with notation of Section 7) realizing W has at
least three jumps; that is, t > 3.

We �rst establish that f is irreducible in K[z]. Setting x = 0 in f , we obtain the
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reduction f̃ = z8 − (y6 + y7) ∈ k(y)[z]. We have that

f̃ =

7∏
j=0

(z − τ jy
3
4 (1 + y)

1
8 )

over an algebraic closure of k(y), where τ is a primitive 8-th root of unity in k. A unitary

factor of f̃ of degree r must have the constant term τ s(y
3
4 (1 + y)

1
8 )r for some s ∈ N. But

(y
3
4 (1 + y)

1
8 )r ∈ k(y) only if r = 8, so f̃ is irreducible in k(y)[z], and thus f is irreducible

in K[z].

Henselization is discussed in Section 6.

Lemma 10.2. The polynomial f factors into a product of linear unitary polynomials in
Kh[z], where (Kh, νh) is a Henselization of (K, ν).

Proof. We will solve the equation f(z) = 0 in Rνh . Let

Q = z2 − (x2 + x3), U = Q2 − y2(x2 + 2x3).

With these substitutions, the equation f(z) = 0 becomes U2 = (y6 + y7). Let (1 + y)
1
2 be

a square root of 1 + y in the Henselization Ah of A = k[x, y](x,y). Then U = y3(1 + y)
1
2 in

Ah. Thus we have that

Q2 = y3(1 + y)
1
2 + y2(x2 + 2x3) = y2(x2 + 2x3 + y(1 + y)

1
2 ).

Set x = x1 and y = x21y1. We have that x1, y1 ∈ Rν . Then

Q2 = x41y
2
1(x21 + 2x31 + x21y1(1 + x21y1)

1
2 ) = x61y

2
1(1 + 2x1 + y1(1 + x21y1)

1
2 ).

Let (1+2x1+y1(1+x21y1)
1
2 )

1
2 be a square root of 1+2x1+y1(1+x21y1)

1
2 in the Henselization

Ah1 of A1 = k[x1, y1](x1,y1). Then

Q = x31y1(1 + 2x1 + y1(1 + x21y1)
1
2 )

1
2

in Ah1 . We now have that

z2 = Q+ x2 + x3

= x31y1(1 + 2x1 + y1(1 + x21y1)
1
2 )

1
2 + x21 + x31

= x21(1 + x1 + x1y1(1 + 2x1 + y1(1 + x21y1)
1
2 )

1
2 ).

Let (1 + x1 + x1y1(1 + 2x1 + y1(1 + x21y1)
1
2 )

1
2 )

1
2 be a square root of

1 + x1 + x1y1(1 + 2x1 + y1(1 + x21y1)
1
2 )

1
2

in Ah1 . Then

z = x1(1 + x1 + x1y1(1 + 2x1 + y1(1 + x21y1)
1
2 )

1
2 )

1
2 ∈ Ah1 ⊂ Rνh

by Lemma 6.2.

Since all eight roots of f(z) can be found this way, by making di�erent choices of
square roots, we have the desired factorization of f(z) in Kh[z] into a product of linear
polynomials.

By Lemma 6.1, ω is the restriction to K[z]/(f(z)) of the extension of νh to a valuation
ωh of Kh[z]/(f) for some factor f of f in Kh[z]. Since f is a linear polynomial by Lemma
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10.2, we have that

[Gω : Gν ] = [Gωh : Gνh ] = degz f = 1 (65)

by (54).

We will require the following remark.

Remark 10.3. An element g ∈ k(z) is a square of an element of k(z) if and only if all
zeros and poles of g(z) in A1

k have even order.

The remark follows since every element g(z) of k(z) has a unique factorization

g(z) = c(z − a1)n1 · · · (z − at)nt

with c ∈ k, a1, . . . , at distinct elements of k and n1, . . . , nt nonzero integers.

We now turn to the construction of the family S. We will use the notation of Section
7. To begin with, we observe that the total jump stot(S) of S satis�es

stot(S) = degz f(z) = 8 (66)

by (54) and (65).

Let V0 = ν. Since W (f(z)) =∞, we have that W (z) = (0, 1) and so the �rst approxi-
mant is V1 = [V0;V1(z) = (0, 1)]. As above, let Q = z2− (x2 +x3). Since W (f(z)) =∞, we
have thatW (Q) = (1, 1). Let

∑∞
i=1 αix

i with αi ∈ k be a square root of x2+x3 = x2(1+x)
in k[[x]]. Let z = z − (α1x+ · · ·+ αnx

n) for some n ∈ Z+. Then

Q = (z + α1x+ · · ·+ αnx
n)2 − (x2 + x3)

= z2 + 2(α1x+ · · ·+ αnx
n)z + (α1x+ · · ·+ αnx

n)2 − (x2 + x3)

so that W (z(z + 2(α1x+ · · ·+ αnx
n)) > (0, n). Thus

W (z − α1x− · · · − αnxn) > (0,
n

2
) or W (z + α1x+ · · ·+ αnx

n) > (0,
n

2
). (67)

Thus d(V1) = 1 and so

Σ(V1) = {ϕ = z + h | h ∈ K and V1(ϕ) < W (ϕ)}.

We will show that

Λ(V1) = {W (ϕ) | ϕ ∈ Σ(V1)} ⊂ {0} × Z+. (68)

We now prove equation (68). Suppose there exists h ∈ K such that setting ϕ = z + h,
we have that W (ϕ) > (1, 0). Then

W (h) = (0, 1). (69)

Substituting into Q, we have that Q = ϕ2 − 2hϕ + h2 − (x2 + x3). Now W (Q) = (1, 1)
implies

W (h2 − (x2 + x3)) > (1, 0). (70)

By (69), we have an expression

h =
α0(x) + yΩ1

β0(x) + yΩ2

with α(x), β(x) ∈ k[x] nonzero and Ω1,Ω2 ∈ k[x, y]. Now substituting into (70), we have
that

W ((α0(x) + yΩ1)
2 + (x2 + x3)(β0(x) + yΩ2)

2) > (1, 0)
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which implies

W

((
α0(x)

β0(x)

)2

− (x2 + x3)

)
> (1, 0)

so that (
α0(x)

β0(x)

)2

= x2 + x3,

a contradiction by Remark 10.3. Thus (68) holds.

Let

A = {µα = [V1;µα(ϕα) = W (ϕα) | ϕα ∈ Σ(V1)}.

By (67) and (68), we have that (1, 0) is the least upper bound of Λ(A) in (Z2)lex but
(1, 0) 6∈ Λ(A). Thus A does not have a maximal element.

Suppose that µα ∈ A. Then µα = [V1;µα(ϕα) = W (ϕα] with ϕα = z + h for some
h ∈ K. Expand

Q = ϕ2
α − 2hϕα + (h2 − (x2 + x3)),

so that

µα(Q) 6 2µα(ϕα),

and µα(Q) < (1, 0) by (68). Thus Q ∈ Σ̃(A), and since Q has the smallest possible
degree that a polynomial in Σ̃(A) can have (it must have degree greater than 1 = d(V1))
we have that d(A) = 2 and Q ∈ Σ(A), and so Q is a limit key polynomial for A. Let
V2 = [A;V2(Q) = (1, 1)]. Then the �rst simple admissible family in S is S(1) = {V1}∪{A},
and the second admissible family S(2) begins with V2. Thus the �rst jump in S is

s(1)(S) =
degz Q

degz z
= 2.

We have that f = (Q2 − y2(x2 + 2x3))2 − (y6 + y7). Let

U = Q2 − y2(x2 + 2x3)

as above. We have thatW (U) = (3, 0) sinceW (f(z)) =∞. Let
∑∞

i=1 βix
i with βi ∈ k be a

square root of x2 + 2x3 = x2(1 +x) in k[[x]]. For n ∈ Z+, let Q = Q− y(β1x+ · · ·+βnx
n).

Then

U = Q
2

+ 2y(β1x+ · · ·+ βnx
n)Q+ y2(β1x+ · · ·+ βnx

n)2 − y2(x2 + 2x3),

so that

W (Q(Q+ 2y(β1x+ · · ·+ βnx
n))) > (2, n).

Thus

W (Q− y(β1x+ · · ·+ βnx
n)) > (1,

n

2
) or W (Q+ y(β1x+ · · ·+ βnx

n)) > (1,
n

2
). (71)

Thus d(V2) = 2 and so

Σ(V2) = {ϕ = Q+Az +B | A,B ∈ K and V2(ϕ) < W (ϕ)}.

We will show that

Λ(V2) = {W (ϕ) | ϕ ∈ Σ(V2)} ⊂ {1} × Z+. (72)
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We now prove equation (72). Suppose there exist A.B ∈ K such that setting

ϕ = Q+Az +B,

we have that W (ϕ) > (2, 0). We have that W (Q) = W (Az +B). Expand

U = ϕ2 − 2(Az +B)ϕ+ (Az +B)2 − y2(x2 + 2x3).

Now W (ϕ2) > (4, 0) and W ((Az +B)ϕ) > (3, 0). Since W (U) = (3, 0), we have that

W ((Az +B)2 − y2(x2 + 2x3)) > (3, 0).

Thus

(1, 1) = W ((Az +B)) = min{W (A) + (0, 1),W (B)}.
We can thus write

A = y

(
α0(x) + yΩ1

γ0(x) + yΩ3

)
, B = y

(
β0(x) + yΩ2

γ0(x) + yΩ3

)
with Ω1,Ω2,Ω3 ∈ k[x, y], γ0(x) 6= 0 and at least one of α0(x), β0(x) 6= 0. Thus

W ([(α0(x) + yΩ1)z + (β0(x) + yΩ2)]
2 − (γ0(x) + yΩ3)

2(x2 + 2x3)) > (1, 0),

and so

(1, 0) 6 W ((α0(x)z + β0(x))2 − γ0(x)2(x2 + 2x3))
= W (α0(x)2z2 + 2α0(x)β0(x)z + β0(x)2 − γ0(x)2(x2 + 2x3))
= W (α0(x)2Q+ 2α0(x)β0(x)z + (α0(x)2(x2 + x3) + β0(x)2 − γ0(x)2(x2 + 2x3))).

Thus

W (2α0(x)β0(x)z + (α0(x)2(x2 + x3) + β0(x)2 − γ0(x)2(x2 + 2x3))) > (1, 0).

But this implies that

α0(x)β0(x) = 0 (73)

by (68) and thus

α0(x)2(x2 + x3) + β0(x)2 − γ0(x)2(x2 + 2x3) = 0. (74)

We have that α0(x) = 0 or β0(x) = 0 by (73). If α0(x) = 0, then (74) becomes(
β0(x)

γ0(x)

)2

= x2 + 2x3

which is not a square in k(x) by Remark 10.3, giving a contradiction. If β0(x) = 0, then
(74) becomes (

α0(x)

γ0(x)

)2

=
x+ 2

x+ 1
,

again giving a contradiction by Remark 10.3. Thus (72) holds.

Set

B = {νβ = [V2; νβ(ϕβ) = W (ϕβ)] | ϕβ ∈ Σ(V2)}.
Suppose νβ ∈ B. Then νβ = [V2; νβ(ϕβ) = W (ϕβ)] with ϕβ = Q + Az + B for some
A,B ∈ K. Expand

U = ϕ2
β − 2(Az +B)ϕβ + (Az +B)2 − y2(x2 + 2x3)
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to see that νβ(U) 6 2νβ(ϕβ), and thus νβ(U) < (3, 0) by (72). Thus U ∈ Σ̃(B). We thus
have that d(B) = 4 or d(B) = 3.

Let ψ ∈ Σ(B), and de�ne V3 = [B;V3(ψ) = W (ψ)]. Then the second admissible family
in S begins with V3. Thus the second jump is

s(2)(S) =
degz ψ

degz Q
=

3

2
or 2.

Thus

s(1)(S)s(2)(S) 6 4 < 8 = stot(S)

so there must be at least one more jump in the construction of S so that t > 3.

11. Extensions of associated graded rings and semigroups

We will consider in this section the conditions of �nite generation of extensions of associated
graded rings along a valuation and relative �nite generation of extensions of valuation
semigroups.

In this section, we will have the following assumptions. Suppose that A is a Noetherian
local domain which contains an algebraically closed �eld k such that A/mA

∼= k. Let K
be the quotient �eld of A and suppose that ν is a rank 1 valuation of K which dominates
A, such that the residue �eld of the valuation ring of ν is k.

Suppose that S is a sub semigroup of a semigroup T . We say that T is a �nitely
generated module over S if there exists a �nite number of elements t1, . . . , tr of T such
that

T = (t1 + S) ∪ · · · ∪ (tr + S).

With our assumptions, grν(A) is isomorphic to the semigroup algebra k[tS
A(ν)]. Thus if

A → B is an inclusion of domains and ω is an extension of ν to the quotient �eld of B
which is nonnegative on B such that the residue �eld of ω is k, then grω(B) is a �nitely
generated grν(A)-module if and only if SB(ω) is a �nitely generated module over SA(ν).

We have the following immediate corollary of Theorem 5.1.

Corollary 11.1. Suppose that f(z) ∈ A[z] is unitary and irreducible and there is a unique
extension of ν to a valuation ω of K[z]/(f(z)) and the characteristic p of k does not divide
degz f(z). Then grω(A[z]/(f(z))) is a �nitely generated grν(A)-module and SA[z]/(f(z))(ω)
is a �nitely generated module over the semigroup SA(ν).

The following corollary addresses the case when the extension of valuations is not
unique. It is an immediate corollary of Theorem 8.2.

Corollary 11.2. Further suppose that A is a Nagata ring. Suppose that f(z) ∈ A[z] is
unitary, irreducible and separable and ω is a valuation of K[z]/(f(z)) which extends ν and
there is no defect in the extension (δ(ω/ν) = 1). Then there exists a birational extension A1

of A which is dominated by ν such that grω(A1[z]/(f(z))) is a �nitely generated grν(A1)-
module and SA1[z]/(f(z))(ω) is a �nitely generated module over the semigroup SA1(ν).

If we remove any of the assumptions of Corollary 11.1, then the conclusions of the
corollary are false, as is shown in the following three examples. We consider �nite extensions
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A → B where A and B are excellent, B is a domain with quotient �eld L and ω is an
extension of ν to L which dominates B.

Example 11.3. There exists a �nite extension A→ B such that ω is the unique extension
of ν to L = QF(B), p does not divide [L : K] but grω(B) is not a �nitely generated
grν(A)-module and SB(ω) is not a �nitely generated module over the semigroup SA(ν).

In particular, the representation of B as a �hypersurface singularity� over A is essential
to the conclusions of Theorem 5.1 and Corollary 11.1.

Example 11.4. There exists an extension A→ B = A[z]/(f(z)) where f(z) is unitary and
irreducible, such that p does not divide degz f(z) but the extension ω of ν to a valuation
of L = QF(B) is not unique such that grω(B) is not a �nitely generated grν(A)-module
and SB(ω) is a not a �nitely generated module over the semigroup SA(ν).

Example 11.4 shows that the condition that ω is the unique extension of ν is necessary
in Theorem 5.1 and Corollary 11.1, and that the birational extension A → A1 in the
conclusions of Corollary 11.2 is necessary.

Example 11.5. There exists an extension A → B = A[z]/(f(z)) where f(z) is unitary
and irreducible, such that the extension ω of ν to a valuation of L = QF(B) is unique but
p divides degz f(z) such that grω(B) is not a �nitely generated grν(A)-module and SB(ω)
is not a �nitely generated module over SA(ν). In the example, δ(ω/ν) = 1.

Example 11.5 shows that the condition that p 6 |degz f(z) is necessary in Corollary 11.1.

In the remainder of this section, we will construct these three examples.

Examples 11.3 and 11.4 will be obtained from Example 9.3 of [9]. In [9, Example 9.3],
k is an arbitrary �eld. We will make the further restriction that k is an algebraically closed
�eld of characteristic p > 2. Let T = k[x, y](x,y), a localization of a polynomial ring in two
variables, and R be the subring R = k[x2, xy, y2](x2,xy,y2). Let ω be the rational rank 1
valuation dominating T which is determined by the generating sequence

P0 = x, P1 = y, P2 = y3 − x5

and

Pi+1 = P 3
i − xaiPi−1 for i > 2

where ai is even, and chosen so that ST (ω) is not a �nitely generated module over SR(ν),
where ν is the restriction of ω to the quotient �eld M of R. Let N be the quotient �eld of
T .

Since the characteristic of k is not equal to 2, N is Galois overM , and the Galois group
is generated by the involution σ de�ned by σ(x) = −x and σ(y) = −y. Given 0 6= g ∈ T ,
we expand

g =
∑

αi0,i1,...,irP
i0
0 P

i1
1 · · ·P

ir
r

with αi0,i1,...,ir ∈ k, i0 ∈ N and 0 6 ij < 3 for 1 6 j, so that

ω(g) = min{i0ω(P0) + i1ω(P1) + · · ·+ irω(Pr) | αi0,i1,...,ir 6= 0}.

Then

σ(g) =
∑

αi0,i1,...,ir(−1)i0+i1+···+irP i00 P
i1
1 · · ·P

ir
r
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and thus ω(σ(g)) = ω(g). Since the extensions of a valuation in a �nite Galois extension
are conjugate ([42, Corollary 3 to Theorem 12, page 66]), we have that ω is the unique
extension of ν to N .

We now give a direct veri�cation that T is not isomorphic to R[z]/(f(z)) for some
f(z) ∈ R[z]. This follows since for a maximal ideal m in R[z]/(f(z)), we have that

dimkm/m
2 > 3 > 2 = dimkmT /m

2
T .

We thus have that R→ T gives Example 11.3.

In [9, Example 9.4], it is shown that in the natural extension S → T , where S =
k[u, v](u,v) and u = x2, v = y2, with valuation µ obtained by restricting ω to the quotient

�eld of S, that ST (ω) is not a �nitely generated SS(µ)-module. Now we have a factorization
of our extension S → U → T where U = k[x, v](x,v). Now U ∼= S[z]/(z2 − u) and T ∼=
U [z]/(z2 − v). Let τ be the restriction of ω to the quotient �eld L of U .

Now we must have that SU (τ) is not a �nitely generated SS(µ)-module or ST (ω) is not
a �nitely generated SU (τ)-module since ST (ω) is not a �nitely generated SS(µ)-module.

We necessarily have by Corollary 11.1 that either τ is not the unique extension of µ to
L or ω is not the unique extension of τ to N , giving Example 11.4.

In [12], a general theory of eigenfunctions for a valuation is developed for two dimen-
sional quotient singularities, and a complete characterization is given of when the resulting
extension of associated graded rings along the valuation is �nite.

We now construct Example 11.5. Let A = k[u, v](u,v) with quotient �eld K and let ν
be the valuation of K which dominates A constructed in [11, Theorem 7.38] and analyzed
in Section 9. Let f(x) = xp + uxp−1 − u. It is shown in Theorem 7.38 [11] that there is a
unique extension of ν to a valuation ω of L = K[x]/(f(x)). The extension is immediate,
with defect δ(ω/ν) = p. Let B = A[x]/(f(x)).

We see from the generating sequence P0, . . . , Pi, . . . recalled in the beginning of Section
9 that grν(A) ∼= k[P 0, P 1, . . .]/I where

I = (P
p2

1 − P 0, P
p2

i − P
p2i−2

0 P i−1 for i > 2).

It is shown in formulas (35) and (36) of [5] that

U0 = x, U1 = v, U2 = vp − x

and for j > 2,

Uj+1 = Upj − x
p2j−2

Uj−1 if j is odd,

Uj+1 = Up
3

j − x
p2j−1

Uj−1 if j is even

is a generating sequence for ω in B. Thus grν(B) ∼= k[U0, U1, . . .]/J where

J = (U
p
1 − U0, U

p
i − U

p2i−2

0 U i−1 for i > 2 odd, U
p3

i − U
p2i−1

0 U i−1 for i > 2 even).

Thus U
p
n = Pn if n is even and Un = Pn if n is odd, and so grω(B) is not a �nitely

generated grν(A)-module and Sω(B) is not a �nitely generated Sν(A)-module.
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