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ABSTRACT

Suppose that (K,v) is a valued field, f(z) € KJ[z] is a unitary and irreducible
polynomial and (L, w) is an extension of valued fields, where L = K[z]/(f(z)). The
description of these extensions is a classical subject. We deal here with the more
delicate situation where A is a local domain with quotient field K dominated by
the valuation ring of v and f(z) is in A[z], and we want to describe the extensions
w of v to Alz]/(f(z)). A motivation is the problem of local uniformization in
positive characteristic: assuming that the valuation v on A can be uniformized,
when can w on A[z]/(f(2)) also be uniformized?

In recent years it has appeared that this problem is closely connected to
the description of the structure of the associated graded ring gr,A[z]/(f(z)) of
Alz]/(f(z)) for the filtration defined by w as an extension of the associated graded
ring of A for the filtration defined by v. In important special cases this description
reduces the extension of local uniformization to embedded resolution of singular-
ities of toric varieties, which is already known. This paper is devoted to this
description. In particular we give an algorithm which in many cases produces a
finite set of elements of A[z]/(f(z)) whose images in gr, A[z]/(f(z)) generate it
as a gr, A-algebra as well as the relations between these images. We also work out
the interactions of our method with phenomena which complicate the study of
ramification and local uniformization in positive characteristic, such as the non
tameness and the defect of an extension. For a valuation v of rank one and a sep-
arable extension of valued fields (K, v) C (L,w) as above our algorithm produces
a generating sequence in a local birational extension A; of A dominated by v if
and only if there is no defect. In this case, gr, A1[z]/(f(2)) is a finitely presented
gr,, A;-module.
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1. Introduction

Given a field K and an extension L of K, the study of the problem of extending a valuation
from K to L has a long history motivated in part by its close relation with ramification
theory, whether in number theory or in algebraic geometry. It has an incarnation in logic,
the model theory of valued fields which provides another viewpoint on ramification theory.
After fundamental work by E. Artin, H. Hasse, A. Ostrowski and others, S. MacLane
created a method for describing all extensions of a discrete rank one valuation on a field
K to a primitive extension K(z), be it algebraic or transcendental. The method is based
on the existence of key polynomials in K[z] which provide successive approximations of a
given extension of the valuation and, by the behavior of their degrees, a measure of its
complexity.

On the side of algebraic geometry, Zariski’s approach to resolution of singularities of
algebraic varieties using local uniformization of valuations provides a strong motivation for
the study of valuations on local domains essentially of finite type over a field, which waned
after Hironaka’s proof of resolution in characteristic zero but later revived as an approach
to resolution in positive characteristic.

In the 1970’s and 1980’s appeared (see [35], [34], [15]) the idea that the associated
graded ring gr, A of a local domain A with respect to the filtration of A associated to a
valuation v of its field of fractions centered in A (non negative on A and positive on its
maximal ideal) encoded in a geometric way essential characters of the valuation and could
be used at least in special cases to obtain local uniformization. For example, representatives
in A of the generators of the graded algebra associated to the unique valuation of a one
dimensional integral complex analytic algebra can be used to embed the corresponding
curve in an affine space where a single birational toric modification provides an embedded
resolution of singularities (see [15]). It also became apparent that some of MacLane’s
essential definitions are better understood using associated graded rings.

Somewhat later, MacLane’s theory was generalized by Vaquié who extended to all
Krull valuations the construction of sequences of key polynomials, now indexed by totally
ordered sets (see [38], [39], [40] and section 7 below). He also described the extension
gr, K C gr K|z] of graded rings corresponding to an extension of valuations from v on
K to w on K|z], for z algebraic or transcendental over K. It appeared that the images of
MacLane’s and Vaquié’s key polynomials in the graded algebra gr K |[z] were related to its
generation as a gr, K-algebra.

In the last three decades or so the problem of describing a generating sequence for a
valuation, which is a set of elements of a ring A whose images in gr, A provide a presentation
by generators and relations has become of major interest for the ramification theory of
extensions of valued fields as well as for local uniformization in positive characteristic,
which is still an open problem.

In fact it has become apparent that given an extension (A, v) C (B,w) of valued rings the
extension gr, A C gr,B of the associated graded algebras, as well as the similar extensions
obtained after birational extensions of A and B encodes in a comparatively simple lan-
guage, such as the condition of being finitely generated, essential information about the
ramification of the original extension. This concerns especially the defect and the possibil-
ity to uniformize w on B if we can uniformize v on A. But we can access this information
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only if we have descriptions by generators and relations of gr, A and gr,B, or of gr B as
a gr, A-algebra. This is the main motivation for this work.!

Here we consider the case where the essence of the difficulty resides: suppose that
(K,v) is a valued field, f(z) € K|z] is a unitary and irreducible polynomial and (L,w) is
a finite field extension, where L = K|z]/(f(z)). Further suppose that A is a local domain
with quotient field K such that v dominates A and that f(z) is in A[z]. We provide an
algorithm producing the first significant part of a generating sequence for extensions of a
valuation v to A[z]/(f(z))-

The valuations v and w also induce filtrations of K and K|[z]/(f(z)) respectively and the
associated graded ring of K[z]/(f(z)) along w as an extension of the associated graded ring
of K along v has been constructed implicitly, in the papers [24], [25] of MacLane for discrete
rank one valuations, and for general valuations by Vaquié in [38], [39], [40]. Further papers
on this topic, and comparison with the method of pseudo convergent sequences (introduced
by Ostrowski in [30, Teil III, § 11] and developed by Kaplansky in [18]) are [2], [29], [33],
[17] and [10]. Finding generating sequences for A[z]/(f(z)) in the case where A is no longer
a field but an arbitrary noetherian subring dominated by R, and with the same field of
fractions is much more closely related to resolution of singularities via local uniformization
and correspondingly more difficult.

This paper is devoted to this problem. We describe the relationship of our method with the
key polynomials of MacLane and Vaquié. We also work out the interactions of our method
of computation with phenomena which complicate the study of ramification in positive
characteristic, such as the lack of tameness and the defect of an extension.

We now give more details about the content of this paper:

Let G, be the value group of v and R, be the valuation ring of v, with maximal ideal m,,.
Given a subring A of the field of fractions of R, the associated graded ring of A along v

is defined as
= P P, (4)/PF(4)

veG,
where

Py(A) ={g € A\{0} | v(g) = 7} and P (4) = {g € A\ {0} | v(g) > 7}
The ring gr, (A) is an algebra over its degree zero subring. It is a domain which is generally
not Noetherian. In this text we shall consider subrings of R, so that the semigroup S*(v)
of values of elements of A\ {0} which indexes the homogeneous components of gr,(A) is
contained in the positive part of G,. We shall see more about this semigroup below.
Important invariants of a finite extension (K, v) C (L,w) of valued fields are the reduced
ramification index and residue degree of w over v, which are

e(w/v) =[Gy : Gy] and f(w/v) = [Ry/my, : Ry,/m,).

!We think that the problem of constructing generating sequences in a Noetherian local domain A which is
dominated by a valuation v is very difficult, and little i is known about it in general. The difficulty reflects
the fact that the structure of the semigroup of values S*(v) = v(A \ {0}) is closely related to some of the
birational maps providing embedded local uniformizations of v and can be extremely complicated. It is well
understood in the case that A has dimension one (see [35], [15]), and for regular local rings of dimension
two ([34], [9], [27])- It is known for certain valuations dominating two dimensional quotient singularities
12] and for certain valuations dominating three dimensional regular local rings [19].
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Another, very subtle invariant is the defect §(w/v) of the extension, which is a power of the
characteristic p of the residue field R, /m,. The defect and its role in local uniformization
are explained in [20]. We give the definition of the defect in (44) below. In the case where
w is the unique extension of v to L we have that

[L: K] =e(w/v)f(w/v)d(w/v). (1)

If A and B are local domains with quotient fields K and L such that w dominates B and
B dominates A, we have a graded inclusion of graded domains

gr,(4) = gr,(B).
The index of quotient fields is:
[QF(gr,(B)) : QF(gr, (A))] = e(w/v) f(w/v)

by Proposition 3.3 of [3]. The defect seems to disappear, but it manifests itself in mysterious
behavior in the extensions of associated graded rings of injections A’ — B’ of birational
extensions of Noetherian local domains A, B. For instance, if v has rational rank 1 but is
not discrete, the defect 0(w/v) is larger than 1 and A and B are two dimensional excellent
local domains, then gr,(B’) is not a finitely generated gr, (A’)-algebra for any regular local
rings A* — B’ which are dominated by w and dominate A and B as shown in [6].

The construction of generating sequences is closely related to the problem of local
uniformization. In [7, Theorem 7.1], it is shown how reduction of multiplicity along a rank
1 valuation can be achieved in a defectless extension A — A[z]/(f(2)). A similar statement
is proven by San Saturnino in [33].

The statement “defectless” means that the rank 1 valuations v and w satisfy 0(w/v) = 1.
From this assumption, it follows that either w(z — K') has a largest element, or the limsup of
this set is co. If the limsup of this set is oo, then in an appropriate extension, the valuation
w corresponds to a linear factor of f(z), and it is not difficult to realize a reduction of
multiplicity by blowing up. So assume that w(z — K) has a largest element v € G,. We
then have v € G,,. After a birational extension A; of A and a change of variables of z in
Ai1[z], we obtain that w(z) =« and then after a Cremona transformation involving z, we
obtain a reduction of the multiplicity of the strict transform of f.

In [36] and |37], it is shown how associated graded rings along a valuation can be used to
prove local uniformization, at least when the associated graded rings are finitely generated
algebras over A/m 4. A suitable toric resolution of singularities of the associated graded
ring induces a local uniformization of the given valuation.

The subring of degree zero elements of the graded ring gr,(A) is (gr,(A))o = 4/Q
where () is the prime ideal in A of elements of positive value. A generating sequence for v
on A is an ordered set of elements of A whose classes in gr,,(A) generate gr,(A) as a graded
(gr, (A))o-algebra. To be meaningful, a generating sequence should come with a formula
for computing the values of elements of A, and their relations in gr,(A). In particular, a
generating sequence should give the structure of gr,(A) as a graded (gr,(A))o-algebra.

In the case of an inclusion A C B of domains, and an extension w of v to the quotient
field of B such that w has nonnegative value on B, a generating sequence of the extension
is an ordered sequence of elements of B whose classes in gr (B) generate gr,(B) as a
gr,(A)-algebra. A generating sequence for an extension should come with a formula for
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computing the values of elements of B, relative to the values of elements of A, and give
their relations in gr, (B). That is, a generating sequence should give the structure of gr(B)
as a graded gr, (A)-algebra.

In this paper, we give a very simple algorithm which allows us to compute a generating
sequence and the structure of gr,(A[z]/(f(z)) in many situations. Throughout this paper,
we have the assumption that A is a local domain which contains an algebraically closed
field k such that its residue field A/m4 = k, v dominates A and the residue field of the
valuation ring R, of v is R,/m, = k (v is a “rational valuation”). This algorithm is derived
in Section 4. The algorithm is valid for an arbitrary extension w of an arbitrary valuation
v dominating A (m, N A =my).

A realization of our algorithm produces a subring of gr, (R, [z]/(f(2)) which is the quo-
tient C'/I of a graded polynomial ring C' over gr,(R,) in either finitely many or countably
many variables, and a set of generators of the graded prime ideal I of C. Our algorithm
gives an explicit representation of this subring as

ng(Ry)[¢1, s a¢k7 . ]/I7
where

(2) 1(k)

- _ _ _j _ _ 2 (k —_Jrk—1(k
I= (@ —e, P52 — 6], ..,k — ey (k) dr-1(k) )

—J2
SOZ ...gpk_l Yo

with ¢1,...,Ck,... € gr,(R,) homogeneous elements. The elements @; are homogeneous
with strictly increasing values. If our algorithm terminates in a finite number of steps k,
then elements @1, ..., @, € R,[z] whose classes are @y, ..., form a generating sequence
of Ry[z]/(f(z)) over R, and we have built up the entire associated graded ring

gr, (Ry[2]/(f(2)) = g, (R)[@1, - - - i/ 1

where

— N — — —J1(2 — — —j1(k)—j2(k —Jk—1(k
1= @] ey —epl e —at Vet ),

In this case, we have that gr,(R,[z]/(f(z)) is a finitely generated and presented gr, (R, )-
module.

When we compare our algorithm to the theory of Vaquié ([38], [39], [40]) in Subsection
7.1, we conclude in Proposition 7.1 that a realization of our algorithm produces the “first
simple admissible family” S() of an “admissible family” S determining the valuation w.

In the case of a noetherian local domain A dominated by R, as above, our algorithm
produces in many situations a finite sequence of elements of A[z] whose images generate
the gr,A-algebra gr A[z]. It does this even in cases where there are infinitely many key
polynomials. Remarks 8.12 in [37] displays a similar phenomenon of finite generation in
the presence of an infinity of key polynomials.

More precisely, if the characteristic p of k does not divide the degree of f, A is a
domain as above and w is the unique extension of v to a valuation of the quotient field L of
Alz]/((f(2)), then we show in Theorem 5.1 that our algorithm produces a finite generating
sequence in A[z]/(f(2)). The associated graded ring of A[z]/(f(z)) along w is then a finitely
generated and presented module over the associated graded ring of A along v.

Since the defect 6(w/v) is always a power of p, the assumption that p does not divide

the degree of f in Theorem 5.1 and the assumption that w is the unique extension of v
forces the defect 6(w/v) to be 1 by (1).
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We show that if any of the above assumptions are removed, then the conclusions of
Theorem 5.1 do not hold (Examples of Section 4 and Section 11). For instance, the as-
sumption that R,[z]/(f(2)) is a “hypersurface singularity” is shown to be necessary for
finite generation to hold in Example 11.3.

To illustrate the power of Theorem 5.1, we compute in Example 5.2 the associated
graded ring when f(z) is a quadratic polynomial, k£ has characteristic not equal to 2 and
w is the unique extension of v. It has the simple form

gr,(Al2]/(£(2)) = gr, (A)[P)/ (@ —©)

for some homogeneous ¢ € gr,(A). From the classification of associated graded rings of
valuations dominating a two dimensional regular local ring A ([34] and [9])) we see that we
are able to completely calculate the associated graded ring along an extended valuation in
the local rings of two dimensional rational double points, when the extension w is unique.
In constrast, if w is not the unique extension of v, then gr, (A[z]/(f(z)) might not be a
finitely generated gr,(A)-module, as shown in Examples 5.2 and 11.4.

In Theorem 8.2, we consider an arbitrary separable extension (with no assumption on
the degree) and assume that A is a Nagata local domain. We show that an extension of
a rank one valuation v is without defect if and only if there exists a realization of our
algorithm with coefficients in a birational extension A; of A which constructs w, either as
a valuation or a limit valuation. A birational extension A; of A is a localization of a finitely
generated A-algebra whose quotient field is K and which is dominated by v.

An example showing that the conclusions of Theorem 8.2 may not hold if v has rank
larger than one is given in Section 10. In Example 8.3, it is shown that the conclusions of
Theorem 8.2 may not hold if f(z) is not separable over K.

In Section 9 we analyze our algorithm in a rank 1 example with defect from [11] to
motivate the necessary condition of Theorem 8.2. We explicitly show that a generating
sequence does not exist in Ap[z] for any birational extension A; of A which is dominated
by v, and the valuation w is not realizable as a limit valuation; that is, w is not realizable
as a sequence of approximants, only of a collection of approximants indexed by a more
general well ordered set.

In the final section, Section 11, we give examples showing that the finite generation of
extensions of associated graded rings and valuation semigroups ensured by Theorem 5.1
may fail if any of the assumptions of the theorem are removed. The semigroup S4(v) of
values of v on A is

S4w) = {v(g) | g € A\ {0}}.

In Example 11.3, it is shown that there exists an extension L of the quotient field K of
A of degree prime to p, a valuation v of K which dominates A and has a unique extension
to L such that if B is the integral closure of A in L, then gr (B) is not a finitely generated
gr,(A)-module and the semigroup SP(w) is not a finitely generated S4(v)-module. In
particular, the conclusions of Theorem 5.1 do not hold for this extension. This example
shows that we must have the condition that B = A[z]/(f(z)) is a “hypersurface singularity”
for the conclusions of Theorem 5.1 to be true.

We make use of the theory of MacLane, [24], [25], which he developed to construct the
extensions of a (rank 1) discrete valuation v of K to a discrete valuation w of K[z]| or of
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K[z]/(f(2)) for some irreducible unitary polynomial f(z) € K[z]. Our algorithm can be
viewed as a realization of MacLane’s method in the context of a general valuation, in a
specific, nice form. MacLane’s theory is surveyed in Section 3.

We also make use of Vaquié’s generalization of MacLane’s method in [38], [39], [40] to
construct extensions of general valuations in K[z] and K[z]/(f(z)) in our proof of Theorem
8.2. The essential new concept in Vaquié’s work is that of a “limit key polynomial”. He gave
in [40, Exemple 4.1] an example of infinite sequences of key polynomials due to the non
uniqueness of valuation extension. Vaquié’s method is surveyed in Section 7, as well as
a study of its relationship to our algorithm. In the situation of this paper we shall meet
only finite sequences of limit key polynomials since the number of limit key polynomials
is bounded by the degree of f(z). In Section 6 we collect and derive some results about
Henselizations of rings and valued fields which we need for the proof of Theorem 8.2.

In this paper, a local ring is a commutative ring with a unique maximal ideal. In
particular, we do not require a local ring to be Noetherian. We will denote the maximal
ideal of a local ring A by m4. The quotient field of a domain A will be denoted by QF(A).
We will say that a local ring B dominates a local ring A if A C B and mpNA=m4u.

We will denote the natural numbers by N and the positive integers by Z.

2. Valuations and pseudo valuations

We shall in the sequel consider sequences of valuations which approximate w. For that
reason we change notations and denote these sequences by Vg, Vi, ... as in [24] and [25]. A
general valuation will be denoted by V' and the reader may think of v as V4.

Suppose that V is a valuation on a field K. We will denote the valuation ring of V' by
Ry and its maximal ideal by my . The value group of V' will be denoted by Gy .

Suppose that A is a Noetherian local domain with quotient field K and A — A; is
an extension of local domains such that A; is a domain whose quotient field is K and A;
is essentially of finite type over A (A; is a localization of a finitely generated A-algebra).
Then we will say that A — A is a birational extension.

If A is a domain which is contained in Ry, then the associated graded ring of A along
V is gry,(A) as defined in the introduction, The initial form Iny (g) of g € A is the class of g
in Py g (A4)/ P‘i(g) (A). The semigroup of V' on A has also been defined in the introduction.

A pseudo valuation (or semivaluation) V' on a domain A is a surjective map V : A —
Gy U {oo} where Gy is a totally ordered Abelian group and a prime ideal

I(V)oo = I (V) = {g € A| V(g) = o0}
of A; such that V : QF(A/I(V)) \ {0} — Gy is a valuation.

3. The MacLane theory of key polynomials

Suppose that V is a valuation or a pseudo valuation on a domain A. Following MacLane
in [24] in the case A = K|[z], we can define an equivalence ~ on A defined for g,h € A by
gr~ginVif V(g —h)>min{V(g),V(h)} or V(g9) = V(h) = co. We say that g € A is
equivalence divisible by h in V| written hlg in V, if there exists a € A such that g ~ ah in
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V. An element g is said to be equivalence irreducible in V' if glab in V implies g|a or g|b
in V.

These conditions can be expressed respectively as the statement that Iny (h)) = Iny(g) in
gry (A), that Iny (h) divides Iny(g) in gry (A) and that the ideal generated by Iny (g) in
gry (A) is prime.

3.1 MacLane’s algorithm

We review MacLane’s algorithm [24] to construct the extensions of a valuation Vj of a field
K to a valuation or pseudo-valuation of the polynomial ring K[z]. MacLane applied his
method to construct extensions of rank 1 discrete valuations of K to K[z]|. This algorithm
has been extended to general valuations by Vaquié [38]. MacLane constructs “augmented
sequences of inductive valuations”

Vit Vi, ... (2)

which extend V) to K[z]. An augmented sequence (2) is constructed from successive in-
ductive valuations

Vie = [Vi—1; Vie(or) = pg) for 1 < k (3)
of K|[z], where ¢y, is a “key polynomial” over Vi_1 and py, is a “key value” of ¢y over Vi_1.
We always take p1 = 2.
We say that ¢(z) € K[z] is a key polynomial with key value p over Vj_ if
1) ¢(z) is equivalence irreducible in Vj_;.
2) (z) is minimal in Vj_q; that is, if ¢(z) equivalence divides ¢(z) in Vj_;, then
deg p(2) < deg. g(2).
3) ©(z) is unitary and deg, ¢(z) > 0.
4) p> Vim1(p(2)).
Following MacLane ([24, Definition 6.1]) we also assume
5) deg, ¢i(z) > deg, pi—1(z) for i > 2.
6) pi(z) ~ @i—1(z) in V;_; is false. Here the equivalence is to be understood for polyno-
mials in Kz].
It follows from [24, Theorem 9.3] that
if p(z) is a key polynomial over Vj_; then deg, i_1(2) divides deg, p(z). (4)
The key polynomials g (z) can further be assumed to be homogeneous in Vj_1, which
will be defined after (7).

MacLane shows that if Vj is discrete of rank 1, then the extensions of V| to a valuation
or pseudo valuation of K|z]| are the Vj, arising from augmented sequences of finite length
(2) and the limit sequences of augmented sequences of infinite length (2) which determine
a limit value V5, on K|[z] defined by

Vaolg(2)) = Jim Vi(g(2)) for g(2) € K[2).

We have that Vi (g(2)) is well defined whenever Vj has rank 1, and is a valuation or
pseudo-valuation by the argument of |24, page 10].
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MacLane’s method has been extended by Vaquié [38], to eventually construct all ex-
tensions of an arbitrary valuation Vj of K to a valuation or pseudo valuation of K[z]. We
will discuss Vaquié’s method in Section 7.

To compute the “k-th stage” value Vi(g(z)) for g(z) € K[z] by MacLane’s method, we
consider the unique expansion
9(2) = gm(2)9i(2) + gm-19]" " (2) + - + g0 (5)
with g;(z) € K|z], deg, gi(z) < deg, ¢i(z) for all i and g, (z) # 0. Then

Vii(9(2)) = min{Vi_1(gm(2)) + mpg, Ve—1(gm-1(2)) + (m — Dpg, - .-, Ve—1(g0)(2) }-

This expression suffices to prove by induction, assuming the existence of a unique expansion
of the coefficients g;(z) in terms of the polynomials ¢;(2) with j < k, that every g(z) € K|[z]
has a unique expansion

9(z) = D aj(2)ey M (2)y 2 (2) - (2) (6)
i

witha; € K and 0 < m; ; < deg, @;y1/deg, ¢; for i =1,..., k—1. Recall that deg, ¢;1/ deg, ¢;
is a positive integer by (4). Then

Vi(g) = mjin Vi(ajpy™? @y 27 o ™). (7)

If all terms in (6) have the same values in V}, then g is said to be homogeneous in V.

We shall often, as we just did, simplify notations by writing g for g(z), etc. when there is
no fear of confusion.

REMARK 3.1. If A is a subring of K such that ¢; € Alz] for 1 <i < k and g € Alz], then
the coefficients a; in (6) are all in A.

The polynomial g, with expansion (5), is minimal in Vj if and only if g,, € K and

Vi(9) = Vi(gmei") (8)
by 2.3 [25] or Theorem 9.3 [24].
By 3.13 of [25] or [24, Theorem 6.5]|, for k > i,

Vie(pi) = Vi(p;) and Vi(g) = Vi(g) whenever deg, g < deg, @;t1. (9)
Further, by |24, Theorems 5.1 and 6.4], or [25, 3.11 and 3.12],
For all g € K|[z], Vi(g9) = Vik_1(g) with equality if and only if ¢ Jg in Vji_1. (10)

3.2 MacLane’s algorithm in a finite primitive extension

Suppose f(z) € K|z] is unitary and irreducible. The extensions of V{ to valuations of
K|[z]/(f(z)) are the extensions of Vj to pseudo valuations V' of K|[z] such that I(V)s =
(f(2)). MacLane [25] gives an explicit explanation of how his algorithm can be applied to
construct the pseudo valuations V' of K|z] which satisty I(V)s = (f(2)) in Section 5 of
[25] (when Vj is discrete of rank 1). Vaquié shows in [39] and [40] how this algorithm can
be extended to arbitrary valuations V| of K.

Suppose Vi, ..., V) is an augmented sequence of inductive valuations in K[z]. Expand

f= bl +- -+ fo
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as in (5). Define the projection of Vi by proj(Vi) = o — 8 where « is the largest and 3 is
the smallest amongst the exponents j for which Vi (f(2)) = Vi(fj¢.)- A k-th approximant
Vi to f(z) over V is a k-th stage homogeneous (meaning that the key polynomial ¢; is
homogeneous in V;_1 for i < k) inductive valuation which is an extension of Vj and which
has a positive projection (|25, Definition 3.3]).

First approximants Vi to f are defined as Vi = [Vp; Vi(¢1) = w1, where o1 = z
and p; is chosen so that proj(Vi) > 0. MacLane shows in [25, Lemma 3.4] that if Vj
is a k-th approximant to f(z), then so is V; for i = 1,...,k — 1. Further, ¢i|f in V4
and Vi(f(2)) > Vi—1(f(2)) > -+ > Vi(f(2)). In [25, Theorem 10.1], MacLane shows
that if Vj is a discrete valuation of rank 1 then every extension of Vy to a valuation of
K[z]/(f(2)) is an augmented sequence of finite length of approximants Vi,..., V) such
that Vi (f(z)) = oo or a limit of an augmented sequence of approximants of infinite length
such that Vo (f(2)) = oo. If 1} is not discrete of rank 1, then there is the possibility that
the algorithm will have to be continued to construct a pseudo valuation W of K|[z] with
W(f(z)) = oo. If this last case occurs, then the situation becomes quite complicated, as
we must then extend the family {V} | k € Z4} to a “simple admissible family” and possibly
make some jumps. This is shown by Vaquié in |38, Theorem 2.5| and is explained in Section
7. An essential point is that for every construction Vi, ...,V of approximants to f over 1}
by MacLane’s algorithm, there exists an extension W of Vj to a pseudo valuation of K|z]
such that I(W)s = (f(2)) and W (pg) = Vi(¢x) for all k& (This will be deduced from [40,
Theorem 1| in Theorem 3.4).

We will assume now that Vj has rank 1, so we may assume that Gy, is an ordered
subgroup of R. We will now look a little more at the case where we have an infinite
sequence of approximants, leading to a limit valuation V.. In this case, there exists kg
such that ¢y = @i, + hi with deg, hy < deg, ¢y, for k > kg. Thus for k > ko,

Vi(er) > Vie1(er) = Vi—i(¢r—1)-

Thus limg_,o Vi(pr) exists, and is either equal to co or an element of R.

LEMMA 3.2. Suppose that Vi has rank 1 and Vi,...,V),... is an infinite sequence of
approximants to f over V. Then the following are equivalent:

1) Voo = limy_, o0 Vi is a pseudo valuation on K|[z] (but not a valuation).
2) IK[Z](VOO)OO - (f(Z))
3) limy_o0 Vi(or) = 0.

Proof. We first prove 1) implies 3). By assumption, there exists 0 # h € I(V)oo. There
exists ko such that for k > ko, deg, ¢r = deg, ¢r,. Expand

h = R+ b 19+ -+ Ry

with deg, h; < deg, ¢y, for all i and hy, # 0. There exists A € Z;, 1 < A < degyy, such
that deg, 2 h,, = deg, pr, and so there exists 0 # a € K such that az*h, = @, + 7m
with degn,, < deg yg,. This implies that az*h has an expansion

az h = @%ﬂ + NPy + ozz)‘hm_mozz_l +--+ CKZ)\hm_jQDZ;_j + -+ azthy

with deg, z’\hm_j < 2deg, @i, for all 7. Now we can expand each az’\hm_j = Nm—j Pk +
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Or—;, with deg, n,,—; and deg, 0,,—; less than deg, ¢y, so that finally we can expand
az h = QDZ?)H + Qe+ + h;nH_jng?)H_j + -+ Ry

with deg, hy, . _; < deg, gy, for all j. Thus, substituting az*h € I(Va)oo for h and
continuing to denote by m the degree of its expansion in ¢y,, we may assume that h,, = 1.
The same argument shows that for & > ko there exist h;(k) € K|[z] for i < m such that

h=of" + hm-1 (k)" + -+ ho(k)
with deg, h;(k) < deg, ¢r. Now by definition of V}, we have
Vi(h) < mVi (k)

for k > ko, so limg_,o Vi(pr) = 0.

We now prove that 3) implies 2). In the expansion

J = In@ 4+ fo
with deg, f; < deg, ¢r, we have that at least two distinct terms have the same value
Vii(f(2)) = min{ Vi1 (fs) + iVi(er)}-
Thus Vi(f(2)) = Vi(pk) for all k, which implies
lim Vi(f(2)) = o0
k—o00
so that f € I(Voo)oo- Now I(Vao)oo is a proper principal ideal in K[z] and f is ireducible

in K[z] so I(Vos)oo = (f(2)).
Finally, 2) implies 1) follows since I(Vx)so # (0). O

We observe that if the equivalent conditions of Lemma 3.2 hold and g € K[z] is such
that f Ag, then there exists k such that Vi(g) = Vi(g). This follows since we can find
a ¢y, such that Vi(or) = Veo(@r) > Vi(g). Then, expanding g = gmp)' + -+ + go with
deg, g; < deg, pr, we have that Vo (g9) = Vi(9) = Vi(90)-

For the rest of this section, we will assume that Vj has arbitrary rank. MacLane gives the
following explanation of how to find all of the extensions of a (k — 1)-st stage approximant
Vi—1 to f over Vj to a k-th stage approximant Vi to f over Vj.

We say that e € K|z] is an “equivalence unit” for Vj if there exists an “equivalence-
reciprocal” h € K]Jz| such that eh ~ 1 in Vj. It is shown in Section 4 of [25] that e
is an equivalence unit if and only if e is equivalent in Vi to a polynomial g such that
deg, g < deg, ¥i.

By [25, Theorem 4.2 |, f has an essentially unique (unique up to equivalence in Vj,_1)
expression

[ e 0™ ™ (11)
in Vi_1, with mg € N and mq,...,m; > 0. Here ¢ is an equivalence unit for V;_; and
Y1, ..., are homogeneous key polynomials over Vj_; all not equivalent to ¢g_1 in Vi1

and not equivalent in Vj;_1 to each other. We have that ¢ > 0 since proj(V;—_1) > 0. We
have that ¢r_1 is a homogeneous key polynomial in Vj,_; by [25, Lemma 4.3].



12 Generating sequences on hypersurfaces

If f is a homogeneous key polynomial for Vi_i, then Vi, = [Vi_1; Vi(f(2)) = o] is a
pseudo valuation of K[z] with I(V)s = (f(2)).

If f is not a homogeneous key polynomial for V;_1, then none of the 1; are equal to f,
and we may define a k-th stage approximant to f over Vj which is an inductive valuation
of Vig_1 by Vi = [Vik—1; Vi (k) = k] where @ is one of the ;. In the expansion (5) of f,

f=Ffmer' +-+ fo
ux must be chosen so that proj(Vj) > 0. All k-th stage approximants Vj to f extending
Vi—1 are found by the above procedure.
Let T'=R x Gy,. Given «, 5 € Gy, and g € R, we have the line
D ={(x,7) €T |qy+az+p =0}

in T. When ¢ # 0, we define the slope of D to be —% € Gy, ®z R. Associated to D are
two half spaces of T,

HY = {(z,7) € T | ¢y + oz + 8 > 0}
and

H? ={(z,7) €T | q7+ oz + B <0}
Given a subset A of T, the convex closure of A is Conv(A) = NH where H runs over the
half spaces of 1" which contain A.

The Newton polygon is constructed as on page 500 of [25] and page 2510 of [40]. These
constructions are equivalent but slightly different. We use the convention of [25]. The
possible values p can be conveniently found from the Newton polygon N (Vi_1, ¢k). This
is constructed by taking the convex closure in T' of

A={(m—1,0) 10> Vip_1(fi),0 <i<m},

where the union is over i such that f; # 0. A segment F' of the boundary of Conv(A)
is a subset F' of Conv(A) which is defined by F' = Conv(A) N D where D is a line of T’
such that Conv(A) is contained in one of the half spaces Hg or Hg defined by D and
F = Conv(A) N D contains at least two distinct points.

The slopes p of the segments of N(Vj;_1, px) satisfying u > Vi_1(¢x) are the possible
values of ¢i. The polygon composed of those segments of slope p with p > Vi_1(¢k) is
called the principal part of the Newton polygon N(Vi_1, @k)-

In the proof of Theorem 5.1 of [25], it is shown that for 1 < i < ¢, the principal polygon
of N(Vi—_1,%;) (from (11)) is
{(z,y) € NVie—1, %) [ 2 = m — m;}. (12)
Further, mq is the smallest exponent i suqh that in the expansion f = > figoi;_l with
deg, fi < deg, pr—1, we have that Vi_1(fi¢})_;) = Vi—1(f(2)).
REMARK 3.3. If the coefficients of f(z) are all in the valuation ring Ry, of Vp, then the
coefficients of all key polynomials ¢y, are also in Ry, as is established in [25, Theorem 7.1].

The following theorem follows from a criterion of [40].

THEOREM 3.4. Suppose that Vj is a k-th approximant to f over Vy. Then there exists a
pseudo valuation W of K|[z] such that W|K = Vy, I(W)s = (f(2)), W(g) = Vi(g) for all
g € K[z] and W (p;) = Vi(y;) for 1 <i < k.
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Proof. As explained in the construction of V}, above, we have that @g|f in Vi_1, and there
exists a key polynomial ¢ for V4 with ¢ not equivalent to ¢y in Vi and such that v|f in
Vi. The theorem now follows from [40, Theorem 1]. O

4. An algorithm to construct generating sequences

Let Vp be a valuation of a field K. Suppose that there exists an algebraically closed field
k such that k C Ry, and Ry,/my, = k. Let f(z) € Ry,[z] be an irreducible unitary
polynomial.

In this section we give an inductive construction of a sequence of approximants to f
over Vjp, so that the key polynomials constructed have a particularly nice form. We will call
the sequence of approximants “a realization of the algorithm of Section 4”. We will prove
the following theorem by induction on the index k.

THEOREM 4.1. Suppose that W is a pseudo valuation of K|[z| extending Vj such that
I(W)eo = (f(2)). Then we can construct a sequence of approximants to f over Vj

Vi,oo iy Vi, oo, (13)
where
Vi = [Vi—1; Vilgi) = W (i) (14)
for all © such that the key polynomials y; satisfy 1 = z in V and
i— j1(i—1 ji—2(i—1
i =@ — Ci—lell(l ) "‘905_22(1 ) (15)

inV;_q for 2 <1< k with ¢;_1 € RVO; Nj—1 = [G\/Fl : G‘/i72] and 0 < ]l(m) < ny for all
[ and m. The sequence (13) is either of finite length k with ¢, = f and Vi(f(z)) = oo or
the sequence is infinite.

Observe that we have that

90:7'2 ~ cisp'{l (7') . Sogl:ll (2)

in V; for 1 <7< k—1, since ;41 is a key polynomial over V;.

The proof of the theorem will be given after we have established Lemmas 4.2 and 4.3
and Theorem 4.4.

LEMMA 4.2. Suppose that V1,...,Vy satisfy the conclusions (14) and (15) of Theorem 4.1
and we have an equality

Vi (or) = Valewpl ® - o)

in Vi, with ¢, € K, ny, =[Gy, : Gy, _,] and 0 < ji(k) < ny for all l. Then c;, € Ry,.
Proof. In the case that k = 1, we have that W (z) > 0 since f is unitary and the coefficients

of f are in Ry;. Thus Vp(c1) > 0.

Now suppose that k > 2. Since n; is the smallest positive integer m such that mV;(y;) €
Gvy,_,, we have by repeated Euclidean division that every element v € Gy, has a unique
decomposition as

Y= +Jipr + -+ Jetk (16)



14 Generating sequences on hypersurfaces

where v € Gy, pi = W(p;) for 1 <i < kand 0 < j; <mn; for 1 <i < k. We have from
(15) that

Ny < fhit1 forall 1 <i<k. (17)

There is a unique representation

N = Yo i+ g1
of the form of (16). It follows from (17) that

Jipr 4 e e < mgpy-
Thus Vo(cr) =0 > 0. O

LEMMA 4.3. Suppose that Vi,...,V} satisfy the conclusions (14) and (15) of Theorem
4.1 with 1(V;)oo = (0) for all i < k. Let A be a local domain whose quotient field is K
and suppose that f(z) € A|z]. Further suppose that A is dominated by Vj and that A
contains k (so that A/m4 = k). Suppose that ¢; € A for i < k—1. Then we have a graded
k-algebra isomorphism of gry, (A[z]) with the quotient gry, (A)[@y, ..., P;]/I of the graded
polynomial ring gry, (A)[@1, . .., Px] over gry, (A), where

— _ — —J1(2 P — —J1(k—1 —Jr—2(k—1
I= (o —¢1,p5% — cch]ll( ). LB ClcflSO]ll( )"'ﬁpﬁ_;( ))
Here ¢y, ...,Cx—1 are the initial forms of c1,...,cx_1 in gry (A) and @; has the weight

Vie(p;) for all i.
Suppose there exists c € A and j; € N for 1 <1i < k —1 with 0 < j; < n; such that
j j —Jk—1

Vi(op®) = Visep -+ o1 ). Then (pp* — gyt -+ - 7)') is a prime ideal in gry, (A[z]).
Proof. Every g € Alz] has the unique decomposition of (6) and Remark 3.1,

_ L M1 Mo mp,j
9—2:%501 Po TPy
J

with a;j € A, my;,...,my; € Nand 0 <m;; <n; for i <k and

Vilg) = mini{Vo(ay) +ma;Vi(er) + -+ mu; V(o) }
= minj{Vi(a;) +mi;Vi(er) + -+ mp i Vi(er) }
by (9).
Since gry, (A[2]) is generated by the initial forms of elements of A[z], the natural graded
gry, (A)-algebra map
U gry, (B Bl — ey (Al2])
is a surjection and I is contained in the kernel. A homogeneous element G of gry, [@1, .. ., Py
has a unique representation

—Jk—1—Jk

G=cg) @ 7r mod I

with ¢ € A, ji,...,5k € N and 0 < j; < n; for ¢ < k. Now ¥(G) = 0 implies that ¢ = 0
which implies that G = 0 mod I. Thus W is an isomorphism, and the first statement of
the lemma follows.

We now prove the second statement. Let

—Jk—1

Y= —Ch By
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We have that gry, (A[z]) = B[p;] is a graded polynomial ring over the domain

_ _ — _ B —jr—a(k—1
B =gy (A1, B /@1 — e BT —aem Y g Y,
Let L be an algebraic closure of the quotient field of B. Choose ¢t € L such that t"* =

—Jk—1

cpy' - @) Then giving t the weight Vi (¢y), we have that B[t] is a graded domain which
is a free B-module of rank ny, since Vi (@) has order ny, in Gi/Gj_1, and so 1,¢,... "1
is a B-basis of B[t]. We have a natural surjection of graded B-modules

Blpgl/ () = Bt]. (18)
Now B[p;]/(¢) is a also a free B-module of rank ny, as 1,5, . . . ,@Z’“fl is a B-basis. Thus
(18) is an isomorphism, and so B[g,]/(¢) is a domain. O

Suppose that G is a totally ordered Abelian group. Let U = G ®z R, d € Z, and
~v € G. Since Z is a principal ideal domain, we have that

1 1
(Z’y) NG = —Z~ for somem € Z. (19)
d m
Indeed, we must have
1 a
-Zy ) NG =-Z 20
( y 7) 227 (20)
for some a € Z. Now vy € §Zr implies a|d, and so there exists ™ € Z such that % = 2.
This implies:
1
—(d,y) e ZaG. 21
() €20 e1)

We shall need the following fact:

For n,q € Z, 1(d,v) € Z® G if and only if n divides qd and 1 = £ for some e € Z,.
(22)
For the reader’s convenience, we give a proof of (22). Suppose that £(d,v) € Z® G. Then
n divides qd and writing qd = mn we see that 7Z~ C G so that it follows from (19) that

& =1 is an integral multiple of % The converse follows from (21).
THEOREM 4.4. Suppose that we have constructed approximants V; = [Vi_1,Vi(p;) =

Wi(pi)] for 1 < i < k—1 to f over Vy satisfying the conclusions of Theorem 4.1,
Vi—1(¢k—1) < 0o and we have an equivalence in Vj_4

f e gty (23)
of the form of7(11) with mo € N and mq,...,m; € Zy such that e is an equivalence
unit for Vi1, ¥y ..., are homogeneous key polynomials over Vi_, such that there are
expressions

— _ i1(k—1 jk—o(k—1
;=7 — 6k71,i0k71¢]11( ) ~--90?f_22( )

with c;—1 € Ry, non zero, €j,_1,; € k distinct and nonzero, and 0 < j;(k — 1) < n; for all
i. The 1, define approximants to f as explained after (11).

Then there exists a unique 1); such that W (1;) > Vi_1(1;) and setting ¢y = 1);, there
exists a unique segment S of the principal part of the Newton polygon N (Vj_1, pr) which
has slope s = W (gy).
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Defining Vi, = [Vi—1, Vi(vr) = W(pk)|, we have that Vi is an approximate to f over
Vo, such that the approximants Vi, ..., Vy satisfy the conclusions of Theorem 4.1.

Now suppose that Vj,(¢r) < oco. The Newton polygon N(Vi_1,¢x) is computed from
the expansion

=Y fih (24)
with deg, fi < deg, pr. Let (m — i1,31) be the lowest point on the segment S and let
(m — g, Bo) be the highest point. Let

st Sok Zfz@ka (25)

where the sum is restricted to i such that (m —i,Vx_1(f;)) is on S. Then there exists a
polynomial in ¢y,

Grs(oe) = > 9ok (26)

with g; € K|[z]| such that the i such that g; is not zero are exactly the i such that f; is a
coefficient of F, s and g; ~ f; in Vi, for all such i. Further, factoring the right side of (26)
as a polynomial in @y,

Grs(or) = [ o0yt -y (27)
where
i = gt — epaere] ™ gt (28)
with ¢i, € Ry, nonzero, ¢ ; € k are distinct and nonzero, 0 < j;(k) < n; for all i. Further,
we have that ffﬂ is an equivalence unit in Vi,

ne = [Gk : Gk—l]
and the v; are homogeneous key polynomials in Vy. Also, there is a V}, equivalence

f~ Grs(or) (29)
in Vi.

Proof. The fact that there exists a 1, such that W(i;) > Vi_1(¢;) follows from the
equivalence relation (23), since W(f(z)) = oo and W(ep;";) = Vi—1(ew;™;). Uniqueness
of 1), follows since the erx—1,; are distinct. The existence of a segment S of the principal
part of the Newton polygon N (Vi_1, ¢x) with slope s = W (¢y), follows from Theorem 3.4
and the discussion of Subsection 3.2. The fact that upon setting ¢ = 1);, we have that
Vie = [Vie—1, Vie(pr) = W(pg)] is an approximate to f over Vj then follows since proj(Vj)
is positive, as W(f(z)) = oo, and the fact that the approximants Vi, ..., V} satisfy the
conclusions of Theorem 4.1 follows from our assumptions on the ; for ¢ < k.

Let y = sx + r be the equation of the line containing the segment .S, so that

_bBo=H

i1 — 1o

Let m be the largest positive integer such that
r.. .
%(11 — 0,00 — P1) € Z® Gp1. (30)

Here m is as defined in (19), with d = i1 — ig, 7 = Bo — f1 and G = Gj_1. Let (b,¢) =
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%(il — 0,80 — B1). U Vik—1(fi) — s(m — i) = r, then
(i Viea () = (m i1, 50) + 36.0) = (m — i + 38,6144 (D= 21) )

for some A € N with 0 < A < m (this follows from (22)). Using the relations (15) for
2 <t < k, there exists

h = Ck‘lei( ) @?f 11("7) e K[z]
with ¢, € K and 0 < j;(k) < ny for 1 <1 < k such that Vx_1(h) = ﬂo . We have that

Fk,s - me 0 20+Tb80;€0+7—b7
‘Pk (ZT:O zo+7b90£b)
where
Vi1(fioirp) = s(m—(io+70)) +7 = — (%) + Bo (31)
= (=) (252) + B = Vi (W) + Vi ().
By (31), and since V} is rational (Ry;/my, = k), there exist v, € k such that
’YTIn(hm_T)In(fil) = In(fio_g.q—g) (32)
in gry, | (K[z]). Define Gy s(¢r) by
Grs(or) = SOE(ZT:OZThm_Tfu‘P E) B
— fm+1 zohm(ZT O%_(h jwb)r)
= fff“ P T ((h 'el) = aj)
= meSDk j:l(‘Pk ih)
for suitable nonzero o; € k.
We will compute the order
[Gk : kal] = [(kal +sZ) : kal]-
B1

We will show that the order ny is ng = b = L= ’0 . Since s = BB

11—10
7 _Bo—5H
m

bs = € Gr_1.

Now Wlth a as defined in (20), with d = i; —ip, 7 = o — 1 and G = G_1, we have that
a= : =b.

Suppose n € Z, and ns € Gi_1. Now

ns=mn <M> = E’y € Gr_1.
1 — 10 d

which implies that a = b | n.

Thus we have that

ng = B = [Gk : Gk—l]-

We now have that ¢, € Ry, by Lemma 4.2.
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The fact that f ~ Gy s in Vj, follows since v, h™ ™7 f;, ~
(32), the facts that by (9),

fig+rp I Vi, which follows from

Vie(h) = Vi(ck +ij Wi(pi) = Vol(cx +ij = Vi-1(h)

and

Vie(fi) = Vi (f3)
for all 7 since deg, f; < deg, ¢.

We know that ¢y is a key polynomial in Vj as discussed after (11). Finally, we verify
that each 1; = ¢p* — €k7ickg0{1(k) e @?fjf(k) is a key polynomial in V},. By Lemma, 4.3, the
ideal

(In(4)) = @+ —erdt -7 @)
is a prime ideal in gry, (Ry,[z]), where ¢ = In(ct), and @; = In(y;). Thus 1; is equivalence
irreducible in Vj, as a polynomial in Ry, [z]. Since every non zero element of Ry, [2] is a unit
in K this implies that it is equivalence irreducible in V} as a polynomial in K[z]. We have
that 1; is minimal in Vi by (8). Since 1; has the leading coefficient 1 and deg, 1; > 0, we
have that v; is a key polynomial over V. O

Constructions similar to those used in the proof of theorem 4.4 can be found in [17],
pp- 17-18.

We now give the proof of Theorem 4.1. Set ¢1 = z and Vi = [V; Vi(e1) = W(p1)],
which is an approximant to f over Vj since W( f(z )) 00. By a simplification of the proof
of Theorem 4.4, we have that f ~ ezmowl . wt in V1, where e is an equivalence unit
in V7 and % = 2" —e14c1 with ¢; € Ry, and €1; € k are nonzero and distinct.

Now the conclusions of the theorem follow from induction using Theorem 4.4.

As pointed by the referee, another point of view on theorem 4.1 can be obtained from
[17, Formula (3.8)] applied to our situation ; note here that one should prove that ¢; € Ry,.

PROPOSITION 4.5. Suppose that there is a unique extension of Vy to a pseudo valuation
W of K[z] with (W) = (f(2)) and we have constructed a finite or infinite sequence of

approximants Vi,...,Vg,... to f over Vy satisfying the conclusions of Theorem 4.1. Then
we have that for k > 2, with notation as in (27), setting ey = iy,
[~k in Vi (33)
where
j k
k41 = QDZ,C _ Ckgpjll( ) (pik 11( ) (34)
with ¢i, € Ry, nonzero, 0 < j;(k) < n; for all i and
deg, f = erdeg, vi. (35)

Proof. We use the notation of the statement and proof of Theorem 4.4. By Theorem 3.4,
every realization of the algorithm to construct a k-th stage approximant Vi to f over Vj
extends to the construction of a pseudo valuation U extending Vp with I(U)s = (f(2)).
Since W is unique, every realization of the algorithm must extend to the construction of
U=w.
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We will prove the following equations,

[~k in Vi with deg, f = e deg, ¢y (36)
and for all & > 2, (26) of Theorem 4.4 satisfies
[~ in Vi, with deg, f = aydeg, ¢¥1 + -+ - + ap deg,, ¢y. (37)

We will establish (36) and (37) for k = 2. Since the extension is unique, every realization
of the algorithm must extend to the construction of W, so N(Vp;p1 = z) has a unique
segment. Let u; = s = W(z) be the slope of this segment, so that

Vi = [Vo; Vi(er) = .
Expand
f=24 faz 4+ fo

with f; € K. Since N(Vp, ¢1) has a unique segment, io =0, iy = d and f;; = 1 in (27) for
k =1, so by (29) and (27) for k =1,

[~ Grs(on) =91 -y (38)

in Vi, where
Vi =@t — e (39)
from (28). Suppose that t > 1. Any choice of v; is a key polynomial for Vi, and if
Wy = [V1; Va(¥;) = pe] is an approximant extending V7, then since every realization of

the algorithm must extend to the construction of W, as observed in the first part of the
proof, we have that

W (i) = Wa(¥i) = p2 > miVi(er) = Vo(er).
For j # i,
VY; =i + (€14 — €1,5)c1
so for j # i,
W ;) = Wi + (1, — e1,5)c1) = Voler).

This contradiction shows that ¢ = 1 in (38) and so f ~ 5% in V; with deg, f = ez deg, 2,
establishing (36) for k£ = 2.

From (36) for k = 2, we have that there is an expression
F=63 4 for95 7+ 4 fo
with deg, f; < deg, @2 for all i. From (12), we then have that the principal part of the
Newton polygon N (Vi,p9) is the entirety of N(Vi,p2). Further, by uniqueness of the
extension of V), we have that N(Vi,¢2) has a unique segment, so ig = 0, i = ez and
fi, =11in (27) for k = 2, so
[~ Gaspa) = ¥f - g
in V4 with the v; given by (28) for k = 2, establishing (37) in V5 for k = 2, with deg, f =
aydeg, ¥1 + -+ + ardeg, ;.

Now by induction on k, repeating the argument for the case k = 2 with the application
of Theorem 4.4, we obtain the conclusions of Proposition 4.5. 0
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Formulas (33) and (35) also follow from [40, Theorem 3.1|, and then formula (34) follows
from Theorem 4.4.

5. When the degree is prime to p and the extension is unique

THEOREM 5.1. Suppose that A is a local domain which contains an algebraically closed
field k such that A/mg = k. Let K be the quotient field of A and suppose that Vj is a
valuation of K which dominates A, such that the residue field of the valuation ring of Vj is
k. Suppose that f(z) € A[z] is unitary and irreducible, there is a unique extension of Vj to
a valuation w of K[z]/(f(z)) and the characteristic p of k does not divide deg, f. Let W
be the associated pseudo valuation of K [z] such that I(W ). = (f(2)) in K[z]. Then there
exists a realization of the algorithm of Section 4 constructing approximants Vi, ..., Vi to
[ over Vj satisfying equations (14) and (15) for all i < k such that W = Vj,. We have that

deg, f =[G : Gy ] =[Gy, : Gy -
Further, with the notation of (15), ¢; € A for all 1 < i < k, and
gr,(Alz]/(f(2))) = gy, (A) @1, - B ]/]

where
_ _ — 12 —np—1 = —gi(k=1)—ja(k—1 —jp—a(k—1
I= (@1 —¢1, Py — c%ojll( ), R @Zill — Ck—180{1( )90%2( ) SO?gk_;( ))
is a finitely generated and presented gry, (A)-module.
Proof. Suppose by induction on ¢ that we have constructed approximants Vp,...,V; to f

over Vj satisfying equations (14) and (15) with ¢;,...,¢;—1 € A and that ¢; is not equal to
f- By Theorem 4.4 and Proposition 4.5, f ~ G; = ¢; ' in V;, with ¢;;1 a key polynomial
over V; such that

i1 = o — il ol and deg, f = eiy1 deg, pin (40)

for some nonzero ¢; € Ry,. Expanding
f=> fiel (41)

in K[z], with deg, f; < deg, @;, let F' = Zf]wpg where the sum is restricted to f; such
that Vi—1(f;) + jui (with p; = W(e;)) is minimal, and expanding G; as a polynomial in

i, we see that the coefficients of G; = ¢, “™" — ei+1cig0{1 @ ... 4,0?1':11 (@) go?z Cii=D 4 . a5 a
polynomial in ¢; and of the coefficients f; in the expansion F' = Y f;¢] must be equivalent

in V;_1 by Theorem 4.4.

Now e;+1n; deg, p; = deg, f, so since we assume that p does not divide deg, f, we have
that p does not divide e; 1. Comparing the expansions of F' and G;, we see that
0 7& f’ni(81'+1—1) ~ Oni(eir1—1) = _€i+1ci90111(1) T (1051:11(1)
in Vi—1. Since deg, fy, (e, —1) < deg,; and c1,...,¢;i—1 € A by induction, by (6) and
Remark 3.1, f,,(e,,,—1) has a unique expansion (with only finitely many terms)
fni(eprlfl) = Z aal(a),...,aifl(a)(p(ln(a) o 90?1_11 () (42)

a>1
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with

o1(a g o1 (a+1 ogi—1(a+1
W(aol(a),,..,oi,l(a)@ll( Voo ) < W (a Uy (at1),.moi 1(a+1)3011( L grirletl)y

for all @, 0 < oy(a) < my for 1 <1 <i—1and ay (a),. 0, (a) € A Thus the minimum
value term in V;_1 in this expansion is

o1(1 Oj— 1
Qo1 (1),..0i-1(1 )‘pll( : "‘Pifll( )

and so
gi@)=o(1)for 1 <l <i—1
and

—€i+1Ci ™~ Qg (1),....00_1(1)

in Vp. Replacing ¢; with ———a5,(1),....0,_,(1) in (40), we have that ¢; € A.

€+1

Suppose n; = 1, so that e;41 = e;. Then substituting (40) and (42) into (41), we obtain

(k) i (k j
z+1+ Zam )sees i1 ( )<p¢171 QD;T 11 907,.4_1 + Zf(pi-&-l
k>2

where deg, f]’~ < deg, pir1 = deg, p; for all j. Since (42) is a finite sum, we can only have
n; = 1 for finitely many consecutive i.

Since deg, f = e;ny ---n;—1 for all ¢, we must have that the algorithm terminates in a
finite number of iterations k. We then have that ¢ = f and W = V.

The final statement on the structure of gr, (A[z]/(f(2))) now follows from Lemma 4.3.
O

As an immediate consequence of Theorem 5.1, we have the following example, which
allows us to easily compute the associated graded rings and valuation semigroups of many
examples, including the rational double point singularities in dimension two, since the
semigroups of valuations dominating two dimensional regular local rings are completely
known (|34]. [9]).

ExAMPLE 5.2. Let k be an algebraically closed field of characteristic p # 2, and A =
k[[z1,...,2,]] be a power series ring over k. Let f(z) = z? + az + b with a,b € m4 be
irreducible and let B = Alz]/(f(z)). Suppose that v is a valuation of the quotient field of
A which dominates A and such that R,/m, = k.

Suppose that v has a unique extension w to the quotient field of B which dominates
B. Then there exists g € m 4 such that setting Z = z — g, we have that

1) w(Z) is a generator of G, /G, = Z/2Z and
2) er,(B) = gr,(A)[in(2)] = gr, (4)[@]/(* —¢) for some ¢ € gr, (A).

In constrast, if v does not have a unique extension to the quotient field of B which
dominates B, then it can happen that gr, (B) is not a finitely generated gr,(A)-module
(as will follow from Example 11.4).

The good conclusions of Theorem 5.1 may fail if either the extension is not unique or
p divides deg, f. In [37, Example 8.1, an example of Guillaume Rond is presented which
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shows that the conclusions of Theorem 5.1 may fail if the extension of V; to a valuation of
K[z]/(f(2)) is not unique and p fdeg, f.

ExaMPLE 5.3. The conclusions of Theorem 5.1 may fail if the characteristic p of the field k
divides the degree of f(z). In our example, f(z) is separable and Vi has a unique extension

to K[z]/(f(2))-

We now give the construction of the example. Let k be an algebraically closed field of
characteristic 2 and let A = k[z1, :r;g](m’x?) be a localization of a two dimensional polyno-
mial ring over k. Let K be the quotient field of A. Let Vjj be the rank 1 valuation on K
defined by Vp(x1) = 1 and Vy(x2) = /37, so that Gy, = Z + /37Z. Let

f(z) =2 + 2372 4 afad + 23
We have that f(z) is an irreducible, separable polynomial in K|[z].

Setting ¢1 = z, we have that the Newton polygon N (Vj,¢1) has only one segment,
from (0,0) to (4,4 + 2v/37). The slope of this segment is 1 + %\/37, giving the first step
approximant to f over Vo, Vi = [Vo; Vi(p1) = 1+ 34/37]. We have that Gy, = Z + @Z.

Now f ~ (22 + 2322)? in V] and V4(2) € Gy, 50 pg = 22 + 2325 is a key polynomial
over V1. We have that

f=¢h+aiTe+ a3
so the principal part of N(V1,¢2) is equal to N(Vi, p2), which has only one segment, from
(0,0) to (2,314/37). The slope is %\/ﬁ, giving the 2-nd step approximant to f over Vj,
Vo = [Vi; Va(p) = 31/37], with Gy, = Gy,. We have that

1152 —2 30 317
f=(p2+ za7 23°)" + ooz ‘a5 + 27 2

so that f ~ (g9 + 227 '23?)? in Vo. Thus
p3 = 2 + zx] '@y (43)

is a key polynomial for V5. We have that

f=03+ a0 05 + o732z + 23172
so the principal part of N(Va, p3) is equal to N(Va, ¢3) which has only one segment, from
(0,0) to (2,237 — 2). The slope is 211/37 — 1, giving the 3-rd stage approximant to f
over Vo, V3 = [Va; Va(p3) = 2v/37 — 1], with

91 V37
Gy, = Gy, + <4\/37 - 1) Z=7+ "L

Now f ~ 3 + a:l_ga;;wz in V3 and V3(p3) € Gy, 50 g4 = 03 + x1_3a:‘215z is a key polynomial
over V3. We have that

-2 30 317
f=pata w3+ a7 "2

so the principal part of N(Vs, ¢4) is N(V3, ¢4), which has only one segment, from (0, 0) to
(1,-3+ %1 37). The slope is —3 + 1%1\/ 37, giving the 4-th stage approximant to f over
Vo, Vi = [Vs; Va(ipa) = —3 + 13L/37]. We have that Gy, = Gy,. Now f ~ ¢4 + 27 223003
in V4 so

w5 =4+ $f2$§'0903
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is a key polynomial over Vj. We have that f = ¢5-+23172 so the principal part of N(Vy, ¢s5)
is N (V4, ¢5), which has only one segment, from (0, 0) to (1, 318+ 3+/37). The slope is 318+
%\/37, giving the 5-th stage approximant to f over Vy, Vs = [Vy; Vs(ps5) = 318 + % 317].
We have that Gy, = Gy;.

Now f = @5 + 2372 is a key polynomial for Vs, so Vg = [Vs; Vs(f(2)) = oc] is a pseudo
valuation with I(Vg)eo = (f(2)).

Let w be the induced extension of Vj to K[z]/(f(z)). We have that G,, = Gy, and thus

G, : Gyl =4=deg, f=I[L: K]

showing that w is the unique extension of Vj to a valuation of L, and that §(w/Vp) = 1, so
that the extension is defectless (Section 8). Observe that we cannot avoid substitutions like

(43), leaving the ring A in any realization of the algorithm. Notice that the conclusions of
Theorem 5.1 are verified, if we take A1 to be a birational extension of A containing z7 *z3°.

REMARK 5.4. In the example, the valuation Vy is an Abhyankar valuation, which means
that there is equality in the fundamental inequality of Abhyankar ([1, Theorem 1]),

dimq Gy, ®z Q + trdegA/mARVO/mVO = dim A.

It is known ([21, Theorem 1]) that Abhyankar valuations have ‘no defect”, a fact which
plays a role in this example. We will come back to the study of the effect of defect in
Sections 6, 7, 8 and 9 below.

6. Henselization and completion

A valued field (K,v) is Henselian if for all algebraic extensions L of K, there exists a
unique valuation w of L which extends v. Some references on the theory of Henselian fields
are [20], [14], [32] and [39].

An extension (K" ") of a valued field (K,v) is called a Henselization of (K,v) if
(K", v") is Henselian and for all Henselian valued fields (L,w) and all embeddings \ :
(K,v) = (L,w), there exists a unique embedding A : (K", ") — (L,w) which extends .

A Henselization (K", ") of (K,v) can be constructed by choosing an extension v* of
v to a separable closure K*P of K and letting K" be the fixed field of the decomposition
group

{0 e G(K*P/K) | v° 00 =1}
of 1%, and defining 1" to be the restriction of v* to K" ([14, Theorem 17.11]).

LEMMA 6.1. Suppose that (K,v) is a valued field and let (K" v") be a Henselization of
(K, v). Suppose that f(z) € K|[z] is unitary, irreducible and separable. Then f(z) is reduced
in K"z]. Let f(2) = f1(2) f2(2) - - - f(2) be the factorization of f(z) into irreducible unitary
factors in K"[2]. If the coefficients of f(z) are in R, then the coefficients of the f;(z) are
in Rn.

Let vl be the (unique) extension of V" to K"[2]/(f;). Then the distinct extensions of v
to K[z]/(f(2)) are the r restrictions v; of V' to K|[2]/(f(z)), under the natural inclusions
K[2]/(f(2) = K"[2]/(fi(2)).

Proof. The polynomial f(z) is reduced in K"[z] since the separable polynomial f(z) is
reduced in K®P[z] where K®°P is a separable closure of K.
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Let Z be a root of f;j(z) in K*P. Then f(z) is the minimal polynomial of Z in K|z],
and K|[z]/(f(z)) = K|z]. If Z is integral over R,, then Z is integral over R, .. Thus the
coefficients of f; are in R,» since R,» is normal (|41, Theorem 5, page 260)).

If L is a finite separable extension of K, then we have two associated sets,
Mon(L, K) = K-embeddings of L in K5
and
E(L,v) = Extensions of v to a valuation of L.

By [39, Lemma 1.4 | or |14, Section 17|, the map ® : Mon(L, K) — £(L,v), defined by
®(N\) = v® o A is surjective, with ®(\) = ®(\) if and only if A ~pn N. The equivalence
~ g is defined by A ~yn X if and only if there exists a K"-isomorphism o : K5P — K5P
such that N =c o \.

The valuation v® o A is obtained from the embedding
L=NL)— ML) - K"

into the join of A(L) and K" in K®P, and the restriction of the valuation v*|\(L) - K" to
L.

Let L = K[z]/(f(2)). The elements A € Mon(L, K) are in one to one correspondence
with the distinct roots ay of f(z) in K5P. We have A(L)- K" = K"[a]. Thus A(L)- K" =
K"2]/(f;) for some i. Further, A ~n A if and only if oy and s have the same minimal
polynomial f; in K"[z].

Since K" is Henselian, for each i there is a unique extension of v to K"[2]/(fi), and
so the last assertion of the lemma follows. O]

Suppose that A is a local ring and g(z) € A[z] is a polynomial. Let g(z) € A/ma[z] be
the polynomial obtained by reducing the coefficients of g(z) mod my .

Alocal ring A is a Henselian local ring if it has the following property: Let f(z) € A[z] be
a unitary polynomial of degree n. If a(z) and o’(z) are relatively prime unitary polynomials
in A/ma[z] of degrees r and n —r respectively such that f(z) = a(z)da/(z), then there exist
unitary polynomials ¢g(z) and ¢’(z) in A[z] of degrees r and n — r respectively such that
9(z) = a(2), '(z) = o/(2) and [f(z) = g(2)g'(2).

If A is a local ring, a local ring A" which dominates A is called a Henselization of A
if any local homomorphism from A to a Henselian local ring can be uniquely extended to
A", A Henselization always exists ([28, Theorem 43.5]). The construction is particularly
nice when A is a normal local ring. Let K be the quotient field of A and Let K be a
separable closure of A. Let A be the integral closure of A in K*P and let m be a maximal
ideal of A.

Let H be the decomposition group
H = G*(Am/A) = {0 € G(K’P/K) | 0(Am) = Am}.
Then A" = (A7) is the fixed ring of the action of H on Az. We have
AM = (AN K)o dngemy = Am N KT = (A)

where A is the integral closure of A in KX,



S.D. Cutkosky, H. Mourtada, B. Teissier 25

Nagata rings are defined and their basic properties are developed in [26, Chapter 12].
Nagata rings are called Universally Japanese in [16]. Their basic properties are established
in |16, IV.7.2.2].

We remark that if A is a Nagata local domain with quotient field K and v is a valuation
of K which dominates A, then there exists a directed system of normal birational extensions

A; of A such that | J; 4; = R,.

LEMMA 6.2. Continuing the assumptions of Lemma 6.1, suppose that A is a Nagata local
domain with quotient field K such that v dominates A, and that A; is a directed system of
birational extensions of A such that the A; are normal local domains which are dominated
by v and |J; Ai = R,. Then there are natural equalities

R, = (R)" =] AP

Proof. Let v°® be an extension of v to K*P and
H = {0 € Gal(K*P/K) | v’ o0 = v},

so that K" = (K*P)H, Let V be the integral closure of R, in K*P, and let m = VNmys, a
maximal ideal in V. Since K% is algebraic over K, we have that Rl,s V. by [42, Theorem
12, page 27]. Now, as is shown on the bottom of page 68 of [42], H is the decomposition

group
H = G*(R,/R,) = {0 € G(K*P/K) | o(R,:) = Ry},
so that
(R)"=VuNK" =R, NK" =Ry,
establishing the first assertion of the lemma.

Suppose that A is a normal local ring with quotient field K. Let A be the integral
closure of A in K. if A is dominated by V = R,, then A A4 1s dominated by V eV

(where V is the integral closure of V in K"). Suppose g, h € V with h & mys N V. Slnce A;
is a directed system, there exists ¢ such that g, h € A;, 50 h & Mmys NA; and g (A )
Thus

mys ﬂAi

U(Ai)ml,s ﬂAi = RZ

Let A; be the integral closure of 4; in K*°P, By [4, Lemma 3.3|, we have inclusions of
decomposition groups
G*(Rys/Ry) C GS((Zi)m,,sti/Ai)
for all 4, and by [4, Lemma 3.4], there exists iy such that
G*(Ro/Ry) = G (A, iz, /A
for i > io. Thus AP C (4j),, .4 for all i and A} = (4;), .z for i > 0. The last

assertion of the lemma now follows. O

Let (K,v) be a valued field such that v has rank 1. The completion (K,7) (when v
has rank 1) is defined in Section 2 of [14]. The completion K is defined to be the ring of v-
Cauchy sequences in K modulo the maximal ideal of v-null sequences (v-Cauchy sequences
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whose limit is 0o). The extension ¥ of v is defined by 7(h) = lim;_,o v(h;) if (h;) is a v-
Cauchy sequence in K which converges to h. We have that K is a Henselian field ([14,
Lemma 16.7]). The following lemma is proven in |14, Theorem 2.12 |.

LEMMA 6.3. Suppose that (K,v) is a rank 1 valued field and (K, V) is a completion of
(K,v). Suppose that f(z) € K|z] is unitary, irreducible and separable, so that f(z) is
reduced in K|[z]. Let f(z) = f1(2)f2(2) - f+(2) be the factorization of f into irreducible
unitary factors in K|[z].

Let 7; be the (unique) extension of i to K|z]/(fi). Then the distinct extensions of v
to K[z]/(f(z)) are the r restrictions v; of ; to K[z]/(f(z)), under the natural inclusions

K[2]/(f(2)) = K[2]/(fi).

LEMMA 6.4. Let notation be as in the statement of Lemma 6.3. We then have a factorization
K — K" — K of valued fields. Further, the factorizations of f(z) into products of unitary
irreducible polynomials in K"[z] and K|z] are the same.

Proof. We have a natural inclusion of K" into K since K is a Henselian field. The ir-
reducible factors of f(z) in K”(z) remain irreducible in K|[z] since there is a 1-1 corre-
spondence of the irreducible factors of f(z) in K|[z] with the distinct extensions of v to
L = K|z]/(f(z)) by Lemma 6.3 and there is a 1-1 correspondence of the irreducible factors
of f(2) in K"[2] with the distinct extensions of v to L by Lemma 6.1. O

Some references on the defect of a finite field extension are [20], [14], [32] and [39].

Suppose (K,v) — (L,w) is a finite separable extension of valued fields. Let K*P be a
separable closure of K with an embedding of L in K®P. Let v® be an extension of w to
a valuation of K. As discussed above, we can use v* to define the Henselization K" of
(K,v), with valuation v = v*| K", and then L" = L- K", the join of L and K" in K5, is
a Henselization of (L,w) with valuation w” = v*|L" ([39, Lemma 1.3], [20], [14, (17.16)]).
The defect of w over v is defined as

d(w/v) = [L": K" /e(w" ") f(" V") = [L" : K" Je(w/v) f(w/v). (44)

The defect is a power of the residue characteristic p of the valuation ring of v by Ostrowski’s
lemma (|20, Theorem 8.2]).

7. Vaquié’s Algorithm

Suppose that K is a field, f(z) € K[z] is unitary and irreducible, v is a valuation of K and
w is a pseudo valuation of K[z] which extends v such that I(u)s = (f(2)). Vaquié shows
in [38, Theorem 2.5| that there exists a “finite admissible family of valuations” S which
determines p. We will take the last element of S to be the pseudo valuation p. This result
follows from [38, Proposition 2.3|, which gives an algorithm for constructing such a family.

We summarize the definition of an “admissible family of valuations” approximating u
(from [38, Section 2.1]), which takes the following form since (1) = (f(2)) # 0. A family
S of iterated augmented valuations is called a “simple admissible family” if it is of the form
S = (pi)ier where the set of indices I is the disjoint union I = B[ A with B a finite set
and A a totally ordered set, where all elements of A are larger than all elements of B and
A does not have a largest element.
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A family of valuations A = (u;);er is called an “admissible family” for p (defined
on page 3473 of [38]) if it is a finite or countable union of simple admissible families

SO = (ugt))ie 0. The first valuation of SM) is an inductive valuation of the form ugl) =

[,uo;ugl)(apgl)) = v1] where g = v is the given valuation of K and cpgl) is a polynomial

of degree 1. For ¢t > 2, the first valuation ugt) of S® is a “limit augmented valuation” for
the family (jt,-1))q-1)cac-1). The construction of limit augmented valuations will be
explained below.

Write 1) = BO ] A® as above and write B® = {1,...,n®)}. Then for i > 2 in B®),
ugt) = [ugi)l; ,uf;t)(cpl(»t)) = ’yl-(t)] is an inductive valuation (Section 3). For o € A®) we have

that u((xt) = [, 05 ,ug)(gog) = ’y((xt)] is an inductive valuation, where deg, wg) = deg, @S()t).

®) (®)

Vaquié requires that deg, ¢;”; < deg, ¢, for ¢ > 2 in B® but we do not assume this.

By the definition of an inductive value, we do have that deg, gpl(t_)l < deg, gol(t) for ¢ > 2 in

B By the construction of limit key polynomials, we have that deg, cpff()t) < deg, gogtﬂ)
for all ¢.

We require that for g € K[z] and i < j € I,

pi(g) < pj(g) < p(g)- (45)
Further, u;(p;) = u(p;) for all .
We now discuss the construction of limit augmented valuations.

Suppose that A = (la)aca is an admissible family of valuations for p. Define (38, page
3473))

S(A) = {g € K[2] | talg) < p(g) for all p; € A}.
Define d(A) = oo if ¥(A) = () and
d(A) = inf{deg, ¢ | p € B(A)}
if ¥(A) # 0. Now define
2(A) = {¢ € 2(A) such that ¢ is unitary and deg, ¢ = d(A)}
and

AA) = {ulp) | ¢ € B(A)}- (46)

Suppose that A(A) does not have a largest element. We then define a totally ordered index
set C, which does not have a largest element, so that

AA) ={1alael},

where o < # if and only if v, < 3.

A “limit key polynomial” ¢ for A is defined on page 3465 of [39]. It satisfies the three
properties that ¢ is A-minimal, ¢ is A-irreducible and ¢ is unitary. The elements of ¥(.A)
are limit key polynomials for A by [38, Proposition 1.21]|. Choose ¢, € ¥(A) for each a € C
so that p(ga) = Yo We then have a limit augmented valuation p, = [A; pa(¥a) = Yo
(|38, Proposition 1.22]), which is defined by

ta(g) = Ifg{m}n{uj (9i) +ip(ea)}} (47)
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for g € K|[z], where

9=>_gich

The “associated family of iterated augmented valuations” to A is

(Na)a60~ (48)

We will explain here how the algorithm proceeds if we are given a discrete simple
admissible family S = {u1,...,un} such that 3(uy,) is nonempty. We will produce an
admissible family of valuations B such that d(B) > d(u.).

All elements of X(u,) are key polynomials for p,, by [24, Theorem 8.1] or [39, Theorem
1.15 page 3453|.

First suppose that the set of values A(u,) has a largest element 4 (which could be o0).
Then we can define ' = [un; V' (¢') = 7] where ¢’ € X(u,,) satisfies u(p’) = +'. We then
have two cases, depending on if deg, ¢’ > deg, @, or if deg, ¢’ = deg, ¢n,.

with deg, ¢; < deg, ¢q.

Assume that deg, ¢’ > deg, vn. Set ©nir1 = ¢, Ynt1 =7 and

1 = 1 = [ fing1(Png1) = Yns1)-

Then define B = {p1,..., fin, pin+1} which is a discrete simple admissible family, with
d(B) > deg.(pnt1) > deg, pn.

Now assume that deg, ¢’ = deg, ¢,,. Then define B = {1, ..., in, '} which is again a
discrete simple admissible family with d(B) > d(y') (by [24, Lemma 15.1] or [38, Corollary,
page 3448]).

The last case is when A(u,) does not have a largest element. Define the associated
family of iterated augmented valuations (pq)acc of (48) for uy,. For all v, € A(uy,), define
o = [tn; ta(Pa) = 7a]. Define S by adding to S the family C = (tta)acc, so SU) is
indexed by I’ = {1,...,n}[[C (which does not have a largest element). We have that
SW is a simple admissible family. The family C is an “exhaustive, continuous family of
iterated augmented valuations” with the property that deg, ¢o = d(uy,) for all & € C'. We
have that f ¢ X(u,) since C' does not have a largest element. Thus $(C) # (. By [38,
Proposition 1.21], all polynomials of 3(C) are limit key polynomials for the family C. We

now choose a polynomial g0§2) € X(C), and define the “limit augmented valuation” u§2) =

[(ta)acc; V£2)((p§2)) = ,u(gpgz))] (by the definition on page 2465 of [38] and [38, Proposition
1.22] and as explained in (47)) and the discrete, simple admissible family S(?) = {,ugz)}.

By [38, Proposition 1.27|, deg, gng) is greater than the degree of the polynomials in ¥(uy,).
Define the admissible family B = M U S®), which is indexed by I” = I'[[{1®} (where
1® is larger than every element of I’).

7.1 Comparison of the algorithms of Section 4 and Vaquié

Suppose that W is a pseudo valuation of K|[z] which extends a valuation Vj of K, such
that (W) = (f(2)) where f is unitary and f(z) € Ry, |[z]. Let

Viyeoi Vi (49)

be a sequence of approximants to f over V{ constructed by the algorithm of Section 4
which satisfy (45) (with p; =V, and p = W).
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We then either have that ¢ = f or Vo, Vi,..., Vg, ... is infinite with deg, ¢, = deg, ¢x,
for k > ko In the first case, we have that S = {V1,...,V4} is a discrete simple admissible
family of valuations which determines W.

Suppose that Vi,..., Vg, ... is infinite. Then ¢, € X(Vj,) for k > ko, and so d(V,) =
deg, Yk,-

If A(V,) has a maximal element v, ¢ € 3(V},) is a key polynomial with W (¢') =~
and corresponding valuation p' = [Vi,; 1/ (¢') = W(¢')], then {Vi,..., Vi, i’} is the first
part of the discrete part of S constructed by Vaquié’s algorithm. If W (') = oo, then

S=80={n,..., Vio» ' = W} is an admissible family of valuations which determines
w.

Suppose that A(Vj,) does not have a largest element. Let C = (uq)acc be the associated
family of iterated augmented valuations associated to Vi, of (48). Choose a limit key
polynomial 4,052) for C. The next step in Vaquié’s algorithm is to construct & = SHyUs®
where SO = {V4,..., Vi, } UC and @ = {V? = [C; VP (o)) = W (o]}

Looking again at the case where A(Vj,) has a maximal element v and ¢’ € 3X(V},) is
the corresponding key polynomial, we have an expression ¢’ = ¢y, + h where h € K|z] has
deg, h < deg, vi,. We further have that h € Ry,[z] by Remark 3.3. We have an expression
(for some )

h=3age] et
j=1
with a; € Ry, 0 < 0i(j) < n; =[Gy, : Gy,_,] for all i and j and

o1(2 Tko—1(8) o1(j Oky—1(J)
W(aiﬁpll( ) te QOksO_ll ) < W(U’j(pll(]) e kago_ll ’ )

if i < j. Let
(1 ; NG
i = ory + arg] Voot W Ly g O gkl (50)
for 1 <@ < r. We then have (for instance by the criterion of [38, Proposition 1.9]) that
Vl,...,VkO,VéO+1,...,VéO+T (51)

is a (ko + r)-th stage approximant to f over Vj, where
Vk/()—l-l = [Vk07 Vk{o—l—l(/l/}l) = W(wl)] a‘nd Vklo—l-l = [Vk/()—l-i—l; Vk/()—l-z(wl) = W(w'L)] fOI‘ 2 < Z g .
Further, either W (y') < oo and

d({‘/l? T Vk()? Vlclo+17 T Vklo—i-r}) > degz Pko s
or W(¢') = oo, in which case f = ¢’ (since f and ¢’ are unitary in z of the same degree)
and ¥, = f.
We may now continue the algorithm of Section 4 to construct higher stage approxi-
mants, starting from Vk’0 4, After a finite number of iterations of this procedure, we con-
struct a sequence of approximants to f,

Vi, Vi, (52)

so that deg, ¢; < deg, wi+1 if ¢ < k1 and deg, p; = deg, ¢; for ¢ > k;. which is either of
finite length ki, so that Vi, = W, or there is a jump (¢ > 1) in the construction of the
admissible family S = S U---US® determining W.
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Suppose that (52) is infinite and the equivalent conditions of Lemma 3.2 hold for (52).
Let C = (pa)acc be the associated family to Vi, of (48). Suppose g € K[z] and W(g) < oo
and k is so large that W (pr) > W(g). Write g = gm@}' + -+ - + go with deg, g; < deg, i
for all . We have that

Vi(9) = Vi(90) = Vig—1(90) = W(g0) = W (g).
Thus g ¢ ¥(C) and so deg, f is the smallest degree of an element of 3(C). Thus S = S U
S®@ where SM = {V3,...,V}, }UC and S@?) = {Vl(Q)} where V1(2) = [C; Vl(g)(f(z)) = 0.
The following proposition follows from our analysis.

PROPOSITION 7.1. Suppose that V{, has finite rank. Then there exists a realization of
the algorithm of Section 4 which produces the first simple admissible family S of an
admissible family S = SO U ... U S® determining W, where all key polynomials are in
R, [z].

7.2 Invariants of ramification and jumps
Suppose that W is an extension of a valuation V = V|, of K to a pseudo valuation of
K[z] with I(W)s = (f(2)) in K[z] with f unitary. Let w be the induced valuation on
L= K[z]/(f(2)).

The jumps sY~D(S) in a family S = SM U --- U S® realizing W are defined by the
equations

deg, ¢V = sU=D(8) deg, o~V (53)

(64
where go&j Visa key polynomial of a member of the continuous family CU~1) associated

to SU=1). The total jump of the family S is
t
s°US8) = J[sY1(S).
j=2

We have by Lemma 2.11 and [39, Corollary 2.10| that
deg, f = [L: K] = e(w/V)f(w/V)s(S). (54)

We have that s*°'(S) = 1 if and only if there are no jumps in the construction of approxi-
mants. Here e(w/V) =[Gy, : Gy| where G, and Gy are the respective value groups of w
and V, and f(w/V) is the index of the respective residue fields of the valuation rings of w
and V.

In the case where w is the unique extension of V' to a valuation of L, we have by
Ostrowski’s lemma that

[L: K] = e(w/V)f(w/V)i(w/V) (55)
where the defect §(w/V') is a power of the residue characteristic p of V. Comparing with

(54), we have that s°*(S) = §(w/V) in this case. Thus (assuming w is the unique extension
of V') there is no jump if and only if there is no defect and in this case,

[L: K] =e(w/V)f(w/V). (56)

In constrast to the good property of key polynomials of (4), we have examples of the
following type for limit key polynomials.



S.D. Cutkosky, H. Mourtada, B. Teissier 31

EXAMPLE 7.2. The jumps s (S) and total jump s*°*(S) can be rational numbers which
are not integers.

We now construct such an example. Let k be an algebraically closed field and K = k(z)
be a rational function field in one variable over k. Let v be the valuation of K with valuation

ring R, = k[z](,) and such that v(z) = 1. Let L = K|[2]/(2® — 2 — x) = k(2). Let w be

the extension of v to L with valuation ring R, = k[2](,) and w(z) = 3. Then e(w/v) = 2

and f(w/v) = 1. Thus by (54),

3 _ .2
Stot(S) — degz(z z x) 3

ew/m)fw/v) 2

8. Defectless extensions

LEMMA 8.1. Suppose that (K,v) is a valued field containing an algebraically closed field
k such that R,/m, = k and f(z) € R,|[z] is unitary, irreducible and separable. Let L =
K|[z]/(f(z)) and let w be an extension of v to L. Let W be the induced pseudo valuation
on K[z]. Let f(z) € K"[2] be the irreducible factor of f(z) which induces w (by Lemma
6.1) and let w" be the (unique) extension of v" to K"[2]/(f(z)). Let W be the induced
pseudo valuation on K"[z]. Let Vy = v and Wy = v"". Then the following hold:

1) gron(Ryn) = gry,(Ry).

2) Set 1 = 2, let Vi = [Vo; Vi(1) = W(p1)] and let Wy = [V Wi(p1) = W (p1)]. Then
g, (Ron[2]) = grys (R [2)).

3) Suppose that V; = [Vi_1;Vi(pi) = W(p;)] for 1 < i < k is a realization of the
algorithm of Section 4 in R, [z] such that W; = [W;_1; Wi(¢i) = W(g;)] for 1 <i <k
is a realization of the the algorithm of Section 4 in R, x[z] and

gry, (R,n[2]) = gry. (Ry[2]) for 1 <i < k. (57)

Suppose that p1 € R,[z] has an expression i1 = @} — ckw{l e cp‘,i’ff of the form
of (15), ¢y+1 is a key polynomial for Wy, and Wii1 = [Wi; Wi i1(pk41) = W(pk11)]
is a (k + 1)-st approximant of f over Wy. Then .1 is a key polynomial for Vj, and
Vierr = [Vie; Vier1 (@k+1) = Wipks1)] is a (k+1)-st approximant of f over V. Further,
8w, (Runlz]) = gry,  (Ru[2]).
Proof. Statement 1) follows since G,» = G, and R, n/m,» = R,/m, by [14, Theorem
17.19|. Statement 2) follows since

grw, (Bun[2]) = gron (Ryn)[inw, (91)] = gr, (Ry)[inv; (¢1)] = gry, (R [2]).

Now we will prove statement 3). To show that ¢x11 is a key polynomial over Vi, we
must verify that 1) - 6) of the definition of a key polynomial, given after (3) hold for
wg+1 over Vi. This follows since these conditions hold for ¢y, over Wj. The fact that
Wiyt is a (k + 1)-st approximant to f over Wy implies that ¢, 1 equivalence divides f in
Wi Thus iny, (¢r41) divides iny, (f) in gry, (R, (z]). Now inyw, (f) divides inw, (f(2))
in gry, (R,n[z]). So inw, (pr41) divides inw, (f(2)) in gry, (R,n[2]) = gry, (Ry[2]). Thus
¢k+1 equivalence divides f(z) in Vi and so Vj41 is a (k + 1)-st approximant to f(z) over
Vi. We have that n = [Gw, : Gw,_,] = [Gv, : Gv,_,]| as Gw,_, = Gy, _,. Finally, we have
that gry,  (Ru[2]) = gry, , (R,r[2]) by Lemma 4.3. O
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THEOREM 8.2. Suppose that A is a Nagata local domain which contains an algebraically
closed field k such that A/my = k. Let K be the quotient field of A and suppose that
Vo = v is a rank 1 valuation of K which dominates A and such that the residue field of the
valuation ring of Vjy is k. Suppose that f(z) € A[z] is unitary, irreducible and separable and
W is a pseudo valuation of K|[z] such that I(W ). = (f(2)) in K|z] which extends Vj. Let
w be the induced valuation of L = K|[z|/(f(z)). Then w is defectless over v (§(w/v) = 1)
if and only if there exists a normal birational extension A; of A which is dominated by v
such that there exists a realization

Viyeoo Vi
of the algorithm of Section 4 in A;[z|, satisfying (14) and (15) for all k with ¢, € Ay for
all k > 1, such that W =V}, for some finite k or W = limy_ oo Vi.

If these equivalent conditions hold, then there exists a positive integer k such that

gr,(Ailz]/(f(2))) = gr,(A)[@1, - @] /T

where

= —me - 02 o = (R —jo (k) (K
I=@" -2, 70 — 6@, .. g — g Weh® ... gh 1)

is a finitely generated and presented gr, (A;)-module.

An example showing that the conclusions of Theorem 8.2 may not hold if v has rank
larger than one will be given in Section 10. In Example 8.3, it will be shown that the
conclusions of Theorem 8.2 may not hold if f(z) is not separable over K.

Proof. First suppose that §(w/v) = 1. Let notation be as in Section 6. By Lemma 6.1,
there exists an extension W of v" to a pseudo valuation of K"[z], such that [(W)s = (f)
where f(z) is an irreducible factor of f(z) in K"[z], and W is an extension of V.

We will construct a special sequence of approximants Wy,..., Wy, to f over v" such
that W = Wy, . In particular,
Wio = [Wio—15 Who (ko) = o9

where ¢y, = f.
Set @1 = z and let Wy = [V Wi(p1) = W(p1)]. Suppose by induction on & that we
have constructed a sequence of approximants to f over ",

Wi,...,Wg
giving a realization of the algorithm of Section 4, such that expressions
. i1 (i1
i =@ — 01'7180{1(2 ) "'905_22(1 )

of the form of 15) hold for i < k with ¢; € R, for i < k — 1. After replacing A with a
birational extension A; of A, we may suppose that ¢; € A for ¢ < k — 1.

If A(W}) does not have a largest element, then we have a jump s > 1 by (53) and
the analysis of this case in Subsection 7.1. But by (54) and (55), there cannot be a jump,
and we have a contradiction, showing that A(WW}) has a largest element.

Suppose we are in the case where A(W},) has a maximal element v # oo and ¢’ € X (W)
is a corresponding key polynomial. We will modify the resulting sequence (51) of the
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analysis in Subsection 7.1, which we will write as
Wi, Wi, Wi, -, Wi, (58)

by modifying the v; of (50), replacing the a; with suitable b; € R, for 1 < i < r. With
the notation of Lemma 6.2, since ay,...,a, € R,n, there exists A; such that a; € A?
for 1 < i < rand ¢1,...,0k, € Ai[z]. Thus, since W induces a rank 1 valuation on
K"2]/(f(2)), there exists n € Z, such that nVo(mA?) > W(¢') = . Now 4 — A} is
unramified with no residue field extension, so there exists b; € A; such that a; — b; € mzlh
for 1 < i < r. Thus Vp(b;) — v/*(a;) > w(¢') for 1 < i < r and we can replace 1; with
i1+ bm{l( ) gofc’“ 11( ) in (50) for 1 <i <7, to produce a sequence (58) with ¢; € R, [7]
for all i. We then have a corresponding sequence to (58),

! !
Vieeo s Vis Vit Vi,

of approximants to f over Vj by Lemma 8.1.

Now we can continue, using the algorithm of Section 4, applying the above argument
as necessary until we reach W, such that the maximal element of A(W}) is oo, so that
f € X(Wy).

With this assumption, there exists [ (with the notation of Lemma 6.2) such that the
coefficients of f are in A? and the coefficients of ¢, ..., ¢y are in A;. We have f = o5, + h
where h € Al[z] and deg, h < deg, px. Set 1y = ¢x. By induction, we may construct
a sequence ¥; € A;[z] of monic poynomials with deg, v; = deg, ¢k, such that for all i,
f = ; + h; with h; € (A;)"[2] a polynomial of degree < deg, ¢} and

Yig1 = Vs +bz¢1 1), @ZSO_T(Z)

with b; € A; and 0 < 0;(i) < nj for 1 < j < ko — 1 such that W (iy1) > W (3;) for all i.
Since A; is Noetherian, and W induces a rank 1 valuation on K"[2]/(f(2)), we have that
W takes on A;[z] only a finite number of values which are less than or equal to a given
finite upper bound. Thus we either obtain that 1; = f(z) for some 4, or that

lim W (y;) = lim W (y;) = oo

By Lemma 8.1, inductively defining V; = [Vi_1; Vi(pi) = W(p;)] for 1 < i < k and
Vitk = [Vigr—1; Vi(e;) = W(4;)] for k < i, we construct a sequence

Vi Vi, ...
of approximants to f(z) over Vj such that lim;_, V;(p;) = oo, so that W = lim;_, V; by
Lemma 3.2.

Now suppose there exists a normal birational extension A; of A and a realization
Vi,...,Vg,... of the algorithm of Section 4 as in the statement of the theorem. We will
show that the defect 0(w/v) = 1.

First suppose that the sequence is of finite length, terminating with V, = W, so that
the last key polynomial is ¢ = f (with Vi(¢r) = o0). We have that deg, v1 = 1 and
deg, w; = n;j_1 deg, w;—1 for i > 2. Thus

Gy : Gy ]o(w/ Vo) < deg, f =ning---ng—1 =[Gy : Gy ]
so that d(w/v) = 1.
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Now suppose that Vi,..., Vg, ... is of infinite length. We have (by Lemma 6.4) natural

extensions of valued fields
(K,v) = (K", v") = (K, D).

Let f(z) be the irreducible factor of f(z) in K h[2] which induces w (from Lemma 6.1).
Then f(2) is irreducible in K[z] (by Lemma 6.4) and so is the irreducible factor of f(z) in
K[z] which induces w (by Lemma 6.3). Thus the pseudo valuation I extends to a pseudo
valuation " ofAKh[z] and to a pseudo valuation W of Kz] such that IWh) o = (f(2))
in K"[2] and I(W)eo = (f(2)) in K[z]. By (44),

S(w/v) = [L": K"/[G, : G,)] = deg, f/[G. : G.]. (59)
There exists ko such that deg, ¢r, = deg, ¢i, for k > ko. There exist a; € A; and
J1(9), ..., Jko—1(i) with 0 < ji(i) < ny for 1 <1 < ko — 1 such that

o ‘ () Jkg—1(%)
Pho+i+l = Pho+i — GiP1 " P

for i > 0. Now
- .
W (proti) = W(aigpjll( ). 901?_11 ))
for ¢ > 0 and
W (@rg+i) — 00 as i — 00 (60)

by Lemma 3.2. Thus v(a;) — oo as i — oo.
For fixed (by,...,bg,—1) such that 0 < b < n; for 1 <1< kg — 1, define

a(br,. .. bgg—1) = Z%
where the sum is over ¢ < [ such that (j1(¢), ..., jr—1(7)) = (b1,...,bg,—1). Let
b —
T, = Z Ci(bl,...,bkofl)(/)l{l "'Soklg(),ll
b1se.,brg—1

where the sum is over by, ..., by,—1 such that 0 < b; < n; for 1 < j < kg — 1. We have that
Pko+i = Pk — Ti- Thus

W(Tj - Ti) = W(Sﬂkoﬂ‘ - 90160+j) = min{W(@ko—i—i)’ W(kao-"—j)}

50 W(Tj —7;) — 00 as j > i+ oo. We have that

. b
W(rj — 1) = min{v(c;(b1, ..., brg—1) — ¢j(b1,. .., bgy—1)) + W(golil e SOkI;(Lll)}

where the minimum is over bq,...,by,—1 with 0 < b; < nj for 1 < j < kg — 1. So for all
bi,...,byy—1, v(ci(b1,... bgy—1) — ¢j(b1,...,bgy—1)) + 00 as j > i — oo. Thus for each
bi,...,bry—1, (ci(b1,...,bry—1)) is a v-Cauchy sequence.

Thus these sequences have limits in K, and so (pko+i) 18 a v-Cauchy sequence in K|z]
which has a non zero limit peo in K[z2] (oo is necessarily unitary of degree equal to

deg, ¢k,)- Now g € I(W)so = (f) by (60). Thus deg, oo > deg, f. Now

degZ? < deg, Yoo = deg, i, = [GVkO 1 Gyy) =[Gy 1 Gyl

Thus deg, f =[Gy : G,] and 6(w/v) =1 by (59). O

EXAMPLE 8.3. The conclusions of Theorem 8.2 may fail if f(z) is not separable over K.
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An example of F.K. Schmidt of a discrete valuation ring (with value group Z) and an
inseparable extension of its quotient field which has defect is explained in [23, Example 3.1].
The example is as follows. Let k be an algebraically closed field of characteristic p > 0,
A= k[m,y]ww be the localization of a polynomial ring in two variables and K be the
quotient field of A. Let k[[¢]] be a power series ring and let s € k[[¢]] be transcendental over
k(t) and such that ord;(s) > 0. The k-algebra embedding K — k[[t]] defined by x > ¢
and y — sP induces a valuation v on K which dominates A by v(g(z,y)) = ord.(g(t, sP)).
We have that G, = Z and R,/m, = k. Let f(z) = 2P —y € K]Jz]. There is a unique
extension of v to a valuation w of L = K[z]/(f(z)) (since L is purely inseparable over K)
which is an immediate extension of v (G, = G, and R, /m, = R,,/m,,). Thus the defect
d(w/v) = deg, f = p by Ostrowski’s lemma (1). Since v is a rank 1 discrete valuation, by
MacLane’s theorem (Section 3), w is a limit valuation which is realized by his algorithm.
We will give an explicit construction.

Let W be the pseudo valuation induced by w on K|z], and let V) = v. We will construct
a sequence of approximants V4,...,V;,... to f over V which realize W.

Expand s = Y%, a;t’ with a; € k. We have that s”? = 322, a?t"?. Define

o(1) = ord¢(s) = min{i | a; # 0}
and for j > 1,
0(j) =min{i | o(j — 1) < i and a; # 0}.
The first approximant is Vi = [Vo; Vi(¢1) = o(1)] where o1 = z. For i > 1, V41 is

defined by Vi1 = [Vi; Vig1(pir1) = o(i + 1)], where ;11 = ¢; — ag(iﬂ)x"(”l). Then
lim; o0 Vi(@i) = 00 and so W is the limit valuation W = lim; ,~ V; by Lemma 3.2.

9. A Rank 1 Separable Example with Defect

We consider an example from [11, Theorem 7.38], with regard to the algorithm of Section
4. Let k be an algebraically closed field of characteristic p > 0. Let K = k(u,v) be a two
dimensional rational function field over k, and, using the method of [34] and [9], define a
valuation v of K by the following generating sequence:

Py=u,P=v,P= oP* — u and Py = Pip2 — WP for i > 2.

We normalize the valuation v so that v(u) = 1. We have the defining relations v?* ~ u in
v and Pfg ~ PP in v for i > 2. As shown in [11], the value group G, = I)%Z =
Uit #Z. Let f = 2P +uxP~! —u € K|[x]. By [11, Theorem 7.38|, v has a unique extension
to a valuation w of L = K[z]|/(f(z)). Further, w is an immediate extension, so it is a defect
extension with [L : K] = §(w/v) = [L: K] = p.

Let W be the pseudo valuation induced by w on K[z]. We will construct a realization
of the algorithm of Section 4, giving an infinite sequence of approximants to f over Vy = v,

Viyeoi Vi

satisfying (14) and (15) with ¢; € R,, for all i.

Setting p1 = x, we have that N(Vj,¢1) has a single segment, which has the slope
Vo(u)

== ;1). Thus the first approximant to f over Vj is Vi = [Vo; Vi(¢1) = %]
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We will make use of the following observation when constructing our sequence of ap-
proximants. Suppose we have constructed the sequence V7, ..., V, of approximants, where
deg, p; = 1 for all 4. Then for ¢ <k, ¢; = v;—1 + a;—1 with a;,_; € R, and

W (i) > W(pi-1) = v(ai-1).
Expanding
urP~! = gp_1<,0£_1 + gp—zwi_Q +--+ 90

with g; € R,, we have that

_ -1 !

Valn) > min{W (i)} = Vel ) = Waa? ) =1+ 22 T
Now f ~ ¢ —win V; and u = wP? — Py ~ vP* in V. Thus f~(p1 —oP)? in V}, and we
take our second key polynomial to be p2 = 1 — vP = 1 — PF. We thus have that the
second approximant is Vo = [Vi; Va(p2) = W (p2)]. Expanding

F=@b+ forb 4+ froa + fo
with f; € R,, by (61) with £ = 2, we have that

(61)

4

fozvp2 —u+ terms of value > —
p*t—1

and vP?2 —u = P,. Now since w is the unique extension of v, we have that the principal part
of N(Vi; gpg) is N(V1,¢2) and N(Vi,p2) has a single segment, which has slope M

Yollo) _ 5 + F’ which is less than p4—i1. The second approximant is Vo = [Vl,Vg(gog) =

].

2
By (61), we have that f ~ @) + P, in Va. Now Py ~ —p in Vp, so
Pp P.
f"\‘ <902+53) in Vs,

and so 3 = @2 +5 isa key polynomial for V5. We thus have that the third approximant
is Vi = [Va; Vg((pg) W( 3)]. We expand

p
+

D=
i

-1

f=8 4+ fpm198 +-- 4 fives + fo

with f; € R,. By (61), we have that

p> 4

fo=-

Also,

Pp Py

up® T wt
Now since w is the unique extension of v, we have that the principal part of N(V3, p3) is
N(Va, p3) and N(Va, p3) has a single segment, which has slope

Vi P 1 1 4
o(fo)_vo< 4) +7+7< pt
p p ub! p P pt—1
The third approximant is V3 = [Va; Va(p3) = % 4 % + 1%]
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Continuing in this way, we construct an infinite sequence of approximants Vi,..., Vg, ...
to f over Vp with Vi = [Vi—1; Vie(pr) = ux) and for k > 3,
P
P 2(k—2)+1

_ k—1
Yk = Prk—1+ (_1) up3+P7+”'+P4(k_3)+3

with
_ 1 + ! + ! +-+ !
Hk = P PAG—D)+T
We have that
4

li = 62

i = o) (62)
In particular, we have by Lemma 3.2, that the limit valuation Voo = limg oo Vi is a

valuation, and thus is not equal to W.

We observe that there does not exist a birational extension Ay of k[u,v](, ) which is
dominated by Vj such that ¢; € A;j[z] for all ¢, as there can only be finitely many values
of elements in a Noetherian local ring which is dominated by a rank 1 valuation that are
less than a fixed finite bound.

We now analyze the extension W of v in the context of Vaquié’s algorithm. We will
construct an admissible family of valuations & which determines W.

In the above realization of the algorithm of Section 4, we started by defining ¢ = z,
and Vi = [Vo; Vi(g1) = %D] With the notation of Section 7, we have

YWV)={z—g|ge K and W(x —g) > W(z)}
and
A(V1) ={W(p) | ¢ € Z(V1)}.
Let (pta)acc be the associated family of iterated augmented valuations to A = {Vi} of
(48).

The concept of distance of an element of L from K and the concepts of dependent and
independent Artin-Schreier extensions are introduced in [22]. In [13], our extension w of v
is analyzed, and it is shown that it is a dependent Artin-Schreier extension. We will make
use of a calculation in their proof, to determine limsup{A(V})}. Suppose that g € X(V1).
Then W(z —g) > W(x) so v(g) = W(x) = %. Thus g € R,, and by 2) of |13, Theorem
4.4], we have that

1 1
P _ P B
Wi(g x)<1+p4+ STy
for some k > 0. Thus
1 1 1 1 p*
_ - _ p_ Py < = _
W(x —g) pW( az)\p+p5+ +p4(k+1)+1<p(p4—1)'

By (62), we have that limsup{A(V1)} = p(pﬁi‘;) and p(pziiil) ¢ A(V1). In particular, A(V7)

does not have a largest element. Thus the first simple admissible family associated to W is

S(l) — {Vl} U {(,Ua)ae(}}

and § is the union of ¢ > 1 simple admissible families. Since w is an immediate extension
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of v, we have by (54) that

t
p=deg, f =s""(S) =[] sV (63)
j=2

Let ¢y = x — o € K for a > 1. We have

V(e —¥p) = Wlps —9p) = W(pp) = pp < po = Wlps) = v(tbr — ¢5)
for p < o < 7. Thus {¢o} is a pseudo-convergent set in K in the sense of Kaplansky [18].

Let g(z) be a limit key polynomial for {¢q} (defined in Section 7). As explained in [29,
Section 3|, g(z) is a polynomial of smallest degree such that g(v) < g(¢3) for a < 3. By
[18, Lemma 10|, the degree of g is a power of p. By (63) g has degree p, and so f is a
limit key polynomial for {¢q}. Thus gpg ) = f and so S@ = {,u } where uf) is the limit
augmented value

,qu) = [(Ha)aeB; ,U/?) (f) = oa].

In summary, our admissible family of valuations & which determine W is
S=8Wuys®?

where SO and S®@ are as described above.
We now consider the key polynomials ¢; and valuations V; constructed in our realization
of MacLane’s algorithm. Since

p4

p(p* —1)
and ¢; € X(V1) for i« > 1, we have by Proposition 1.9 [38] that the limit valuations
Vo = lim; oo V; and lim,ep po are equal. Thus the pseudo valuation W satisfies
00 if flg in Klz]
Wi(g) = . .
(9) { Vaolg) if f fg in K[z].

lim sup W (p;) = = limsup A(V4)

10. A defectless extension of a rank two valuation with many jumps

In this section we construct the following example, which shows that the conclusions of
Theorem 8.2 may not hold if v has rank larger than one.

ExampPLE 10.1. Let k be an algebraically closed field of characteristic not equal to 2, and
let k[z,y] be a polynomial ring in two variables over k. Let K = k(z,y) and let v be the
rank two valuation on K defined by v(x) = (0,1),v(y) = (1,0) € (Z2)1ex and v|(k\0) = 0.
Let

f=(("—a® =a®)? =P (@® + 22%)" = (° + ") (64)
and let w be an extension of v to K[z]/( (2)). Let W be the induced pseudo valuation of
K|[z]. Then a family S = SM U ..U S® (with notation of Section 7) realizing W has at
least three jumps; that is, t > 3.

We first establish that f is irreducible in K[z]. Setting x = 0 in f, we obtain the
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reduction f = 2% — (y5 4 y7) € k(y)[z]. We have that
7

F=T1E- v +u)s)

j=0
over an algebraic closure of k(y), where 7 is a primitive 8-th root of unity in k. A unitary
factor of f of degree r must have the constant term Ts(y%(l + y)é)" for some s € N. But
(y%(l + y)é)’" € k(y) only if = 8, so f is irreducible in k(y)[z], and thus f is irreducible
in K[z].

Henselization is discussed in Section 6.

LEMMA 10.2. The polynomial f factors into a product of linear unitary polynomials in
K"[z], where (K", ") is a Henselization of (K, v).

Proof. We will solve the equation f(z) =0 in R, . Let
Q=2"— (2" +2°),U = Q> — y*(a® + 22%).
With these substitutions, the equation f(z) = 0 becomes U? = (3% 4+ ¢7). Let (1 + y)% be

a square root of 1 +y in the Henselization A" of A = k|[z, Y)(zy)- Then U = y3(1+ y)% in
AP, Thus we have that

Q> =31+ y)% + 92 (2 + 22%) = 92 (2 + 22° + y(1 + )

N

).
Set = x1 and y = 23y;. We have that z1,y; € R,,. Then

1 1
Q* = 21yi (27 + 227 + 2y (L + 27y1)2) = 2y (1 + 221 + y1 (1 + 27m1)2).

1

Let (14221 +y1 (1+22y;)2 )% be a square root of 1+ 2z +y1(1+m%y1)% in the Henselization
Alf of A1 = k[ml,yl]( ) Then

T1,Y1
3 2 i1

Q = ryy1(1+ 271 + y1 (1 + 27y1)2)2

in A", We now have that
22 = Q+a?+2°
= ol (L +221 + (1 +ah)?)? +ad + a3
1.1

= 21+ 21+ 21y (1 + 221 + 1 (1 + 2791)2)2).

Let (1+ 21+ x50 (14221 + 1 (1 + J;%yl)%)é); be a square root of
1
3

1
L+ 2y + 2y (1 + 221 + y1 (14 2iyr)2)2
in A?. Then

1.1.1
z=x1(1+x1 +x11(1 4+ 221 + 11 (1 +x%y1)§)5)5 € A}f C R,n

by Lemma 6.2.

Since all eight roots of f(z) can be found this way, by making different choices of
square roots, we have the desired factorization of f(z) in K"[z] into a product of linear
polynomials. O

By Lemma 6.1, w is the restriction to K[z]/(f(2)) of the extension of V" to a valuation
wh of K"[2]/(f) for some factor f of f in K"[z]. Since f is a linear polynomial by Lemma
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10.2, we have that
[Go: Gy =[Gy, : Gp] =deg, f=1 (65)
by (54).
We will require the following remark.
REMARK 10.3. An element g € k(z) is a square of an element of k(z) if and only if all
zeros and poles of g(z) in Aj. have even order.

The remark follows since every element g(z) of k(z) has a unique factorization
g(z) =clz—a))"™ - (z —ar)™

with ¢ € k, aq,...,a; distinct elements of k and ni,...,n; nonzero integers.

We now turn to the construction of the family S. We will use the notation of Section
7. To begin with, we observe that the total jump s*°%(S) of S satisfies

$9U(S) = deg, [(2) =8 (66)
by (54) and (65).

Let Vo = v. Since W(f(z)) = oo, we have that W (z) = (0,1) and so the first approxi-
mant is V7 = [Vo; Va(2) = (0,1)]. As above, let Q = 22 — (22 +23). Since W (f(2)) = oo, we
have that W(Q) = (1,1). Let >, a;z’ with a; € k be a square root of 22 +23 = 2%(1+z)
in k[[z]]. Let Z =2z — (1 + - - - + apa™) for some n € Z. Then

Q = EF+az+-+apa™)? — (22 +27)
= 2242z + -+ o)z + (g + -+ apz™)? — (22 + 23)
so that W(Z(Z + 2(anx + - - - + apa™)) > (0,n). Thus
W(z—oayx—-- —anz™) > (0, g) or W(z+ajz+ -+ apz™) > (0, g) (67)
Thus d(V1) =1 and so
YW)={pe=z+h|heKand Vi(p) < W(p)}.

We will show that
A(V1) = {W(p) | ¢ € X(V1)} C {0} x Zy. (68)
We now prove equation (68). Suppose there exists h € K such that setting ¢ = z + h,
we have that W(p) > (1,0). Then
W(h) = (0,1). (69)
Substituting into @, we have that Q = ¢? — 2hg + h% — (2% + 23). Now W(Q) = (1,1)
implies
W(h* — (2* + 2°)) > (1,0). (70)
By (69), we have an expression
_ o) +yth
Bo(x) + y§2
with a(z), 8(x) € k[z] nonzero and 1, Qs € k[z,y]. Now substituting into (70), we have
that

W ((ao(z) +y)* + (2% + 2°) (Bo(2) + y22)*) > (1,0)
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which implies

so that
<a0($)>2 =224+ 23
Bo(x) 7
a contradiction by Remark 10.3. Thus (68) holds.
Let

A = {pa = [Vi; pa(pa) = W(pa) | ¢a € E(V1)}-
By (67) and (68), we have that (1,0) is the least upper bound of A(A) in (Z2)x but
(1,0) ¢ A(A). Thus A does not have a maximal element.

Suppose that p, € A. Then py = [Vi; a(va) = Wipa] with ¢4 = 2z + h for some
h € K. Expand

Q = @2 — 2hgpq + (h* — (2% + 2°)),
so that

pa(Q) < 2M0z(90a)a
and 1o(Q) < (1,0) by (68). Thus Q € %(A), and since Q has the smallest possible

degree that a polynomial in 3(A) can have (it must have degree greater than 1 = d(V}))
we have that d(A) = 2 and @ € X(A), and so @ is a limit key polynomial for A. Let
Vo = [A; Va(Q) = (1,1)]. Then the first simple admissible family in S is S = {V;}U{A},

and the second admissible family S begins with V4. Thus the first jump in S is

deg, Q
(1) _dee v _ 92
sY(S) deg 2 .

We have that f = (Q% — y?(2% + 22%))2 — (v° + y"). Let
U=Q*—y*(2* +22°)

as above. We have that W(U) = (3,0) since W (f(z)) = oo. Let Y52, B;z® with 3; € k be a
square root of 72+ 2z3 = 2%(1+ ) in k[[z]]. Forn € Zy, let Q = Q —y(B1z + - - - + Buz™).
Then

U=Q" +2y(fiz+ -+ Bna™Q + y* (B + - + Bz™)? — y*(a® + 22%),
so that
W(Q(Q + 2y(Brz + - + Bpa™))) > (2,n).
Thus
W(Q—y(Bra+---+ ™) > (L3) or W(Q+y(Biz +--+ Bua™) > (L5).  (T1)
Thus d(V3) = 2 and so
S(Va)={p=Q+ Az +B| A B € K and Va(p) < W(p)}.

We will show that
A(V2) ={W(p) | p € B(V2)} C {1} x Zy.. (72)
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We now prove equation (72). Suppose there exist A.B € K such that setting
p=Q+ Az + B,

we have that W () > (2,0). We have that W(Q) = W(Az + B). Expand
U=¢*—2(Az+ B)p+ (Az + B)* — y*(2® + 22°).

Now W (p?) > (4,0) and W ((Az + B)y) > (3,0). Since W(U) = (3,0), we have that

W((Az + B)? — y? (2% 4 22%)) > (3,0).

Thus

(1,1) =W((Az + B)) = min{W(A) + (0,1), W(B)}.

We can thus write
A=y <040($) + le) B=y (50(90) + y92>
Yo(z) + yS23 Yo(z) + yQs
with Q1,Q9, Q3 € kiz,y], 70(z) # 0 and at least one of ag(x), Bo(x) # 0. Thus

W ([(eo(@) +y21)z + (Bo(x) + y)]* = (vo(@) + ) (2 + 22°)) > (1,0),

and so
(1,0) < W((ao(x)z + Bo(x))? — vo(x)?(2? + 223))
= W(ao(z)*2? + 2a0(x)Bo(z)z + fo(x)? — y0(x)(2” + 22%))
= W(ao(2)?Q + 2a0(z)Bo(z)z + (co(x)?(2? + 23) + Bo(2)? — vo(x)? (22 + 223))).

Thus
W (2a0(z)Bo(x)z 4 (ap(z)? (2% + 23) 4 Bo(x)? — yo(z)?(z* + 22°))) > (1,0).
But this implies that

ao(z)Bo(z) =0 (73)
by (68) and thus

a0(2)?(@? +2%) + Bo(2)? — 70(2)2(2? +2%) = 0. (74)
We have that ap(x) =0 or fo(x) = 0 by (73). If ag(x) = 0, then (74) becomes

(i) ==

which is not a square in k(z) by Remark 10.3, giving a contradiction. If Sy(z) = 0, then
(74) becomes

ap(z) ) _z+2

() ) a4+l

again giving a contradiction by Remark 10.3. Thus (72) holds.
Set

B ={vp = [Va;vs(ps) = Wipp)l | ps € 2(V2)}-
Suppose vg € B. Then vg = [Va;vp(pg) = W(pg)| with g3 = Q + Az + B for some
A, B € K. Expand

U= cp% —2(Az + B)pg + (Az + B)? — y*(2? + 22°)
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to see that v5(U) < 2vs(ps), and thus vg(U) < (3,0) by (72). Thus U € %(B). We thus
have that d(B) =4 or d(B) = 3.

Let ¢ € X(B), and define V3 = [B; V3(¢)) = W (%))]. Then the second admissible family
in § begins with V3. Thus the second jump is

deg, v 3
2)(g) = 8% _ 2
s¥(S) dog. Q2 or 2.
Thus
sD(8)s@(S) < 4 < 8 = s™4(8)

so there must be at least one more jump in the construction of S so that ¢ > 3.

11. Extensions of associated graded rings and semigroups

We will consider in this section the conditions of finite generation of extensions of associated
graded rings along a valuation and relative finite generation of extensions of valuation
semigroups.

In this section, we will have the following assumptions. Suppose that A is a Noetherian
local domain which contains an algebraically closed field k such that A/m4 = k. Let K
be the quotient field of A and suppose that v is a rank 1 valuation of K which dominates
A, such that the residue field of the valuation ring of v is k.

Suppose that S is a sub semigroup of a semigroup 7. We say that T is a finitely
generated module over S if there exists a finite number of elements t¢1,...,¢. of T such
that

T=(tH+S)U---U(t,+9).
With our assumptions, gr,(A) is isomorphic to the semigroup algebra k[tSA(” )]. Thus if
A — B is an inclusion of domains and w is an extension of v to the quotient field of B
which is nonnegative on B such that the residue field of w is k, then gr, (B) is a finitely
generated gr, (A)-module if and only if SB(w) is a finitely generated module over S4(v).
We have the following immediate corollary of Theorem 5.1.

COROLLARY 11.1. Suppose that f(z) € A[z] is unitary and irreducible and there is a unique
extension of v to a valuation w of K[z]/(f(z)) and the characteristic p of k does not divide
deg, f(z). Then gr,(A[z]/(f(2))) is a finitely generated gr,(A)-module and SAF/ /() (w)
is a finitely generated module over the semigroup S4(v).

The following corollary addresses the case when the extension of valuations is not
unique. It is an immediate corollary of Theorem 8.2.

COROLLARY 11.2. Further suppose that A is a Nagata ring. Suppose that f(z) € A|z] is
unitary, irreducible and separable and w is a valuation of K|z|/(f(z)) which extends v and
there is no defect in the extension (6(w/v) = 1). Then there exists a birational extension Ay
of A which is dominated by v such that gr,(A1[z]/(f(z))) is a finitely generated gr,(A;)-
module and S41F/U(2)(w) is a finitely generated module over the semigroup S41(v).

If we remove any of the assumptions of Corollary 11.1, then the conclusions of the
corollary are false, as is shown in the following three examples. We consider finite extensions
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A — B where A and B are excellent, B is a domain with quotient field L and w is an
extension of v to L which dominates B.

EXAMPLE 11.3. There exists a finite extension A — B such that w is the unique extension
of v to L = QF(B), p does not divide [L : K] but gr,(B) is not a finitely generated
gr,(A)-module and SB(w) is not a finitely generated module over the semigroup S4(v).

In particular, the representation of B as a “hypersurface singularity” over A is essential
to the conclusions of Theorem 5.1 and Corollary 11.1.

EXAMPLE 11.4. There exists an extension A — B = A[z]/(f(z)) where f(z) is unitary and
irreducible, such that p does not divide deg, f(z) but the extension w of v to a valuation
of L = QF(B) is not unique such that gr,(B) is not a finitely generated gr,(A)-module
and SB(w) is a not a finitely generated module over the semigroup S4(v).

Example 11.4 shows that the condition that w is the unique extension of v is necessary
in Theorem 5.1 and Corollary 11.1, and that the birational extension A — A; in the
conclusions of Corollary 11.2 is necessary.

EXAMPLE 11.5. There exists an extension A — B = Alz]/(f(z)) where f(z) is unitary
and irreducible, such that the extension w of v to a valuation of L = QF(B) is unique but
p divides deg, f(z) such that gr,(B) is not a finitely generated gr,(A)-module and SP(w)
is not a finitely generated module over S4(v). In the example, §(w/v) = 1.

Example 11.5 shows that the condition that p fdeg, f(2) is necessary in Corollary 11.1.

In the remainder of this section, we will construct these three examples.

Examples 11.3 and 11.4 will be obtained from Example 9.3 of [9]. In [9, Example 9.3],
k is an arbitrary field. We will make the further restriction that k is an algebraically closed
field of characteristic p > 2. Let T' = k[, 9], a localization of a polynomial ring in two
variables, and R be the subring R = k[z?, 2y, yQ](xzyxy,yz). Let w be the rational rank 1
valuation dominating 7" which is determined by the generating sequence

P[):.%',Plzy,PQZyg—JZS

and
PiJrl = f)i?) — g™ i—1 for ¢ = 2
where a; is even, and chosen so that ST (w) is not a finitely generated module over S®(v),

where v is the restriction of w to the quotient field M of R. Let IV be the quotient field of
T.

Since the characteristic of k is not equal to 2, NV is Galois over M, and the Galois group
is generated by the involution o defined by o(z) = —x and o(y) = —y. Given 0 # g € T,
we expand

9= Z aio,ih---,i»ﬂpéopfl T Pﬁr
with o4, €k, 70 € N and 0 <¢; < 3 for 1 < j, so that
w(g) = min{iow(Po) + i1w(Pr) + - + ipw(Pr) | Qigdy,...q, 7 0}
Then
a(g) _ Z ai(),il,...,l‘y-(_1)i0+i1+...+iTPSOP]Z:1 .. _P;f'r
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and thus w(o(g)) = w(g). Since the extensions of a valuation in a finite Galois extension
are conjugate ([42, Corollary 3 to Theorem 12, page 66]), we have that w is the unique
extension of v to N.

We now give a direct verification that 7' is not isomorphic to R[z]/(f(z)) for some
f(2) € R[z]. This follows since for a maximal ideal m in R[z]/(f(z)), we have that

dimy m/m? > 3 > 2 = dimy mp/mé.

We thus have that R — T gives Example 11.3.

In [9, Example 9.4], it is shown that in the natural extension S — T, where S =
k[u, v](y) and u = x2,v = y?, with valuation p obtained by restricting w to the quotient
field of S, that ST (w) is not a finitely generated S°(u)-module. Now we have a factorization
of our extension S — U — T where U = K[z, v](;,). Now U = S[z]/(2* — u) and T =
Ulz]/(2% — v). Let T be the restriction of w to the quotient field L of U.

Now we must have that SY(7) is not a finitely generated S°(p)-module or ST (w) is not
a finitely generated SY(7)-module since ST (w) is not a finitely generated S (u)-module.

We necessarily have by Corollary 11.1 that either 7 is not the unique extension of y to
L or w is not the unique extension of 7 to IV, giving Example 11.4.

In [12], a general theory of eigenfunctions for a valuation is developed for two dimen-
sional quotient singularities, and a complete characterization is given of when the resulting
extension of associated graded rings along the valuation is finite.

We now construct Example 11.5. Let A = k[u, v](,.) with quotient field K and let v
be the valuation of K which dominates A constructed in [11, Theorem 7.38] and analyzed
in Section 9. Let f(x) = 2P 4+ uaP~! — w. It is shown in Theorem 7.38 [11] that there is a
unique extension of v to a valuation w of L = K[x]/(f(z)). The extension is immediate,
with defect 6(w/v) = p. Let B = Alx]/(f(z)).

We see from the generating sequence Iy, ..., F;, ... recalled in the beginning of Section
9 that gr,(A) = k[P, P1,...]/I where

2

[=(P" —Po. P’ P, Py fori>?2).
It is shown in formulas (35) and (36) of [5] that
Up=z,Uy =v, Uy =" —x

and for j > 2,

Ujpr = UY — 2P Uy if j is odd,

Ujt1 = UJJ-D3 - x”Qj_lUj_l if j is even
is a generating sequence for w in B. Thus gr,(B) 2 k[Uy,Uy,...]/J where

J = (ﬁf — Uo,Uf — Ug%ﬁﬁi_l for i > 2 odd,UfS — Ugmilﬁi_l for i > 2 even).

Thus U, = P, if n is even and U, = P, if n is odd, and so gr,(B) is not a finitely
generated gr, (A)-module and S¥(B) is not a finitely generated S”(A)-module.
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