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Abstract

In many modern enterprises, factory managers monitor their machinery and processes to prevent faults and product defects, and maximize the
productivity and efficiency. Asset condition, product quality and system productivity monitoring consume some 40-70% of the production costs.
Oftentimes, resource constraints have prevented the adoption and implementation of these practices in small businesses. Recent evolution of
manufacturing-as-a-service and increased digitalization opens opportunities for small and medium scale companies to adopt smart manufacturing
practices, and thereby surmount these constraints. Specifically, sensor wrappers that delineate the specifications of sensor integration into
manufacturing machinery, with appropriate edge-cloud computing and communication architecture can provide even small businesses with a
real-time data pipeline to monitor their manufacturing machines. However, the data in itself is difficult to interpret locally. Additionally,
proprietary standards and products of the various components of a sensor wrapper make it difficult to implement a sensor wrapper schema. In
this paper, we report an open-source method to integrate sensors into legacy manufacturing equipment and hardware. We had implemented this
pipeline with off-the-shelf sensors to a polisher (from Buehler), a shaft grinding machine (from Micromatic), and a hybrid manufacturing machine
(from Optomec), and used hardware and software components such as a National Instruments Data Acquisition (NI-DAQ) module to collect and
stream live data. We evaluate the performance of the data pipeline as it connects to the Smart Manufacturing Innovation Platform (SMIP)—web-
based data ingestion platform part of the Clean Energy Smart Manufacturing Innovation Institute (CESMII), a U.S. Department of Energy-
sponsored initiative—in terms of data volume versus latency tradeoffs. We demonstrate a viable implementation of Smart Manufacturing by
creating a vendor-agnostic web dashboard that fuses multiple sensors to perform real-time performance analysis with lossless data integrity.
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1. Introduction and background

In recent years, new business models are emerging to
support custom manufacturing to meet the personal preferences
of individual customers [1-3], ostensibly without
compromising on the efficiencies and functionality [4]. While
the technological advances during the past century have
enhanced the efficiencies and performance of high-volume
manufacturing systems, manufacturing of low-volume, high-
mix custom products tends to incur comparatively longer cycle

times, higher unit cost, and lower productivity [3]. These issues
with custom manufacturing, together with the advent of
technologies such as additive/hybrid manufacturing, cloud
computing, sensor fusion, and [oT are fueling a trend towards
digitization and the emergence of a manufacturing-as-a-service
(MaaS) paradigm [5]. This paradigm promotes a democratized
manufacturing sector where the customers as well as the major
firms and producers alike can “uber” their (custom) production
requirements to a distribution of smart micro- small- and
medium-enterprises (MSMESs) [5]. Moreover, such digitization
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and democratization of the manufacturing industry promotes
original equipment manufacturing (OEM) and in-turn enhances
innovation [6-10]. The presence of MSMEs in the cloud will
keep them competitive and they can gain same level of visibility
in the cyberspace as the big firms [11]. The companies that take
a step towards virtualizing their business models and operations
are likely to be among the first receivers of benefits from
democratized manufacturing environment.

Pertinently, MSMEs currently constitute over 90% of
modern manufacturers, and a vast majority of them face
significant challenges, the so-called digital divide barrier, in
adopting smart manufacturing (SM) practices [12][5]. These
challenges impede their entry into the MaaS paradigm [5]. In
this context, over 70% of the manufacturing equipment,
especially of those in MSMEs, are legacy machines. Resource
constraints often prevent the upgrade and replacement of old
machinery with those capable of connecting to the digital thread
and leverage the on-line solutions to enhance their equipment
condition, quality, and productivity [13].

It is now becoming increasingly feasible to integrate the
current machines and other assets of a manufacturing system
with commercial off-the-shelf (COTS) sensors and industrial
IOT technology as a part of an SM platform. However, mere
sensorization does not meet the critical SM requirement of
gaining access to reliable, accurate, and up-to-date data. The
data needs to be collected, stored, and accessed while
preserving its integrity. Additionally, it should be analyzed to
provide timely and meaningful insights and inputs [2].

In such a data processing pipeline, there must first exist an
agreed-upon protocol to transfer information. Unfortunately,
the manufacturing industry is currently inundated with
competing SM related standards and closed architecture
products [14]. A mixed-vendor stack must deal with
incompatible processes and data structures, undermining SM's
focus on cooperation and plug-and-play [15]. Sophisticated and
complete package solutions such as OSIsoft's PI System exist
that overcome this limitation. However, many of these are
proprietary and expensive for adoption into many MSME
environments. For example, in 2015, the city of Holland,
Michigan, was quoted $118,968 for a PI System deployment at
Holland Energy Park, a natural gas power plant [16].

A few computational platforms, such as the Smart
Manufacturing Innovation Platform (SMIP) of the Clean
Energy Smart Manufacturing Innovation Institute (CESMII)
[17] have emerged to address this limitation. A few parallel
efforts that have been made towards sensorizing legacy
machines, sending collected data to a database, analyzing it, and
displaying it at client’s end as a webpage, exist in literature [18-
20]. Some of these implementations have investigated the
introduction of different IoT elements, edge and cloud-
computing architectures, and machine learning methods. For
example, Verma ef al. [21] used a case study of an loT-based
vibration monitoring using commercial off-the-shelf sensors
with open-source connections. However, the earlier methods
largely ignore the data pipelines and the sensor wrapper needed
to integrate an MSME as part of an established smart
manufacturing platform, such as OSIsoft PI or SMIP. Again, a
systematic study of data integrity and latency issues in a

realistic context that considers a distributed, multivendor, and
multi-ownership scenario does not exist.

The proposed work differs from the prior efforts in studying
the issues of accuracy and transmission of the data in the SM
context that consider multivendor and multi-owner hardware
and software data pipelines to integrate a manufacturer with an
SM platform. The specific focus will be on how the data
integrity and latency emerge in such real-world scenarios.
These considerations can offer an approach to benchmark the
performance of viable SM implementations.

Moreover, the SM architecture described in this paper and
its capabilities are unique in terms of its plug-and-play nature,
real-time signal visualization and analytics, provision for
various desirable metrics, and fusion of multiple sensors. It can
achieve high throughput streaming with availability of open-
source connections, and can integrate with CESMII’s
applications marketplace which is akin to an “App Store” where
developers of such SM based applications can make their
products available to customers via SMIP. Botcha et al. [2]
provides the workflow towards transforming the current
manufacturing  systems into SM  platform-integrated
environments. This paper extends that work on integrating a
traditional manufacturing environment with an SM platform by
demonstrating a viable SMIP implementation built entirely on
an open-source stack.

We developed a viable implementation of SM which is both
completely open-source and also compliant with a reliable
cloud historian that can handle high frequency data. A live
analysis functionality was also a part of this implementation
and comes with our own web dashboard. The dashboard
displays the real-time data stream in the time-domain,
frequency-domain (FFT), as well as the time-frequency domain
(spectrogram). It has capabilities for integrating desired add-in
applications or metrics and can handle any further analyses
based on these.

For the SM implementation’s use-case on CESMII’s SMIP
built based on the aforementioned investigations, we were able
to preserve data integrity and achieve data loss-free
transmission, i.e., the SMIP database did not drop even one
sample of data for up to 23 kHz throughput rate. With this high
throughput rate, we were able to enable cloud analytics for
quality assurance and visualization. These capabilities also
expand the possible set of applications and enhances the
scalability and reproducibility of our SM implementation.

This paper is organized as followed. Section 2 delves into
the methodology and implementation. The architecture used,
communication channel, dashboard development, and testing
are also discussed here. Results and findings are summarized in
Section 3 with extensive discussion on performance. Section 4
summarizes the paper with a few conclusions based on our
implementation and testing.

2. Methodology and implementation
2.1. System architecture
Our system architecture is loosely based on CESMII's model

[16] and is composed of three components as shown in figure
1: Edge Adapters, Data Historian, and Analytics Modules.
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Figure 1. Diagram of the system architecture

The Machines in Figure 1 correspond to a group of
equipment on which various sensors are mounted for data
acquisition. Edge Adapters physically connect to sensors, poll
the sensors for data, and preprocess the data for transport to the
Data Historian. The Data Historian stores incoming data from
Edge Adapters in a database and responds to Analytics
Modules' requests for data. Lastly, Analytics Modules provide
user interfaces where users can request analysis. The Analytics
Modules then pull relevant data from the Data Historian,
performs the analysis, and display the results to the user/client.
The Clients have the ability to specify certain parameters such
as the sampling rate and get a visual illustration of real-time
analytics given by the Analytics modules. This architecture
allows for seamless plug-and-play for various commercial/oft-
the-shelf implementations of each of these modules.

In this paper, we discuss various connections we have
implemented in our SM architecture described in figure 2. The
proposed SM architecture has 4 layers in it which includes data
collection, data processing and edge-based analytics, cloud-
based storage and analytics, and anyplace visualization. In the

— Connections Implemented

first layer, multimodal data is collected from various sensors
by utilizing suitable DAQ systems which are connected to an
edge device such as a local computer. The connection between
the sensors and DAQ systems is established via BNC cables
while that between DAQ systems and the edge device is
achieved via USB cables. For the second layer, several options
are available for analyzing the collected data on the edge
device. This layer harnesses the power of various machine
learning techniques to process the data, conduct edge-based
analyses such as those in the time domain, frequency domain,
and time-frequency domain in form of real-time time series,
FFT, and spectrogram plots.

Similarly, this second layer is also capable of hosting
applications such as predictive models which can be utilized to
predict desired parameters and metrics. The processed data and
supplementary information from the hosted applications can
then be uploaded into the third layer with transmission usually
via ethernet or LAN cables. This layer acts as a data historian
for common data management and historization purposes with
enabled browsing of data entities. Followed by this, the
architecture also has capabilities for live real-time analysis of
the data using an interactive dashboard as a part of the fourth
layer.

The proposed SM architecture is unique in its plug-and-play
nature wherein various options are available at each of the
layers discussed above. The user can install and integrate
additional or replace already existing COTS components in the
four layers as per their preference. These add-on components
in the architecture can be both proprietary and open-source.
There is also freedom to host additional desired applications
and metrics in various locations in the existing architecture.
Moreover, such a plug-and-play nature allows for potential
edge-cloud partitioning and aiding the achievement of a sweet
spot between computational requirements and expenditure. At
this stage, we have successfully implemented the routes
highlighted by green arrows in figure 2. At layer one, we have
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sensors such as accelerometer, acoustic emissions sensor, and
force sensor, and we collect the data from them using National
Instrument (NI) DAQs. Analytics and data processing options
such as LabVIEW, Python, and MATLAB based
implementations exist in the second layer. Followed by this, we
have successfully implemented the third layer via OSIsoft’s PI
system as well as an open-source GraphQL based cloud
historian, CESMII’s SMIP.

Our dashboard only relies on edge-based applications such
as productivity metrics, quality metrics, and surface roughness
predictor as of now at the fourth layer. Our implementation has
dashboards which are based on LabVIEW as well as Python.
Such a dashboard can be viewed both on the cloud as well as
on edge devices, irrespective of the location of these systems
and usually on client’s end. The routes highlighted by red
arrows are still under progress as a part of our SM innovation
initiative. In this paper, we will propose and focus on the open
source implementation of SM via Python based approach
which is highlighted in magenta and thicker green arrows in
figure 2. After collecting multimodal sensor data using NI
DAQs, the analyses and processing is done via Python. We also
have edge-based Python generated metrics as mentioned in
figure 2. Followed by this, the processed data is transmitted to
CESMII’s SMIP in form of JSON objects over the internet.
Finally, the data can be downloaded from the SMIP and
visualized in the form of an interactive web-based Python
dashboard.

2.1.1. Edge adapters

Off-the-shelf sensors commonly output their readings with
a simple analog voltage. These signals cannot be used directly,
so we must first convert them into digital values. Our
implementation uses NI DAQ modules. National Instruments
offers a wide variety of DAQ modules with varying tolerances
and precisions. These modules have internal analog to digital
converters and connect to a computer via USB. Using Python
and the nidaqmx library, we can read the digital data and store
it in Python lists, a standard data structure in data science.

The storage can also be implemented using NI’s Technical
Data Management Streaming (TDMS) file format [22], a
proprietary high-efficiency format for compatibility with
existing analysis workflows. These TDMS files are easy to
extract using Python and the npTDMS library. Timestamps of
when each sample is taken are also recorded so recreation of
the signal is possible later on. The samples along with their
timestamps can then be packaged into a JSON object, a
common format for transmitting structured data over the
internet, compressed, and sent to the Data Historian. An
example of such a JSON object can be found in Listing 1. With
this approach, Edge Adapters can be deployed on low-cost,
low-performance hardware such as Raspberry Pis or internet-
enabled microcontrollers because they do not have to perform
any computationally intensive analysis.

2.1.2. Data historian

As Edge Adapters and Analytics Modules may be spread
across distant networks, the Data Historian must be deployed

in the cloud. We chose CESMII's open-source SMIP for this
role. The SMIP is a solution by CESMII to deliver industrial
plug-and-play framework to the discrete, hybrid, and process
manufacturing industries. With secure connectivity to
equipment and processes, it adds valuable context with a goal
to access information intelligently and in an automated manner.
As a part of the SMIP platform, CESMII is also developing the
Profiles standards to describe sensing elements, equipment, and
processes. It also provides a semantics aspect to the data and
describes the relationship among them. The culmination of all
these aspects is expected to form the holy grail with an ability
to define new systems without extensive middleware
reconfigurations and maintenance issues. Specifically, we
make use of the fact that SMIP stores data in an internal
database which indexes data and allows for fast lookup and
retrieval. It also provides a web endpoint, a web address where
applications can send requests to insert and retrieve data. In our
configuration, SMIP was deployed on a Linux server. It used
PostgreSQL as its internal database, and PostGraphile to
provide an endpoint. Requests to the endpoint are written in
GraphQL, a query language developed by Facebook [23].

2.1.3. Analytics modules

The fundamental aspect of smart manufacturing is data
analysis. After collecting data and storing it in an easily
accessible location, the Analytics Modules perform the
analyses and display the results. Examples of Analytics
Modules can be something as simple as a history viewer for
raw sensor data or as complex as a live dashboard that
outsources data processing to cloud services. We created a web
dashboard for this project using Dash, a Python framework for
creating data science web apps. Our dashboard runs directly in
the web browser without the need of additional software.
Moreover, it can be run by the client at any location irrespective
of whether they have the software or not since all they have to
do is modify the IP on which the dashboard will be displayed
and then the user can view it.

{
“‘query”: *
mutation AddData($id: Bigint, $entries:
[TimeSeriesEntrylnput]) {
replaceTimeSeriesRange(
input : {
attributeOrTagld : $id,
entries: $entries

}
H

Json

“variables” : {
“id” : 5356,
“entries” : [
“value”: 3.9729e-23 ,

“timestamp” : “2021-07-25T23:11:41.462553+00:00",
“status”: 0

Am——

“value” : 3.9729e-23,
“timestamp” : “2021-07-26T19:09:57.809348+00:00",
“status”: 0

Listing 1. Example of a JSON object used to upload data
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2.2. Implementation of communication library

We achieve seamless communication between components
in the SM network with a custom library, which takes care of
low-level operations like authentication, managing HTTP
sessions, and converting between Python data structures and
GraphQL. Our communication library provides a developer-
friendly interface for communicating between programs and
the SMIP. Communication with SMIP takes place via HTTP
POST requests, each containing a JSON object with two keys:
query and variables. The query value is a GraphQL query for a
database operation, such as adding data or getting data. Each
query is a constant string, with placeholder tags for variables.
The variables value contains key-value pairs of variables to be
substituted into the placeholder tags in the query. Database-
modifying requests additionally must include an authentication
token. To obtain a token, we must first request a challenge from
the endpoint with a username. The SMIP replies with a
challenge for the user. We then request a token by sending the
challenge combined with the password.

To streamline this process as much as possible for
developers, we take an object-oriented approach. The library
defines one class that acts as a connection manager. The class
constructor takes the endpoint address, a username, and a
password as arguments, requests a token, and stores it in the
object as a private variable. It also opens an HTTP session to
reduce overhead on repeated requests. The class also provides
methods for database operations that take Python data types.
These methods then construct the appropriate HTTP POST
request, attach the token, and return with the server's response.
With this approach, how the requests are made is abstracted
away from the developer, and database operations can be made
with one line of code. A flowchart of this process is shown in
figure 3.
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Figure 3. Flowchart of using the communication library to upload data to
SMIP

2.3. Implementation of dashboard

The dashboard consists of a web app frontend and a Dash
backend. The web app frontend runs in the browser, and the
Dash backend is deployed on a server in the cloud. Variables
are stored in the browser, and calculations take place on the
backend via callbacks. This split of responsibilities is so that
any server instance can service any client. Thus the dashboard
can be scaled up by simply adding more server instances.
Callbacks are functions that the frontend can request the
backend to run. In our dashboard, one main callback asks the
backend for new data every second, and other callbacks trigger
when the data updates. These other callbacks use the updated
data to draw new graphs and calculate performance metrics.
Since callbacks are self-contained functions, new functionality
can be added easily without affecting existing functionality.

A screenshot of the dashboard is shown in figure 4. For this
example, we envision a use-case for a grinding machine. For
the use-case discussed [24], experiments were conducted on an
external cylindrical plunge grinding machine from Micromatic
Grinding Technologies Ltd., India. The machine is capable of
producing parts with an IT3 tolerance grade by using an A80-
L5-V alumina grinding wheel. An EN-31 cylindrical steel
workpiece with a hardness value of 60 HRC and initial
diameter of 21 mm was used as the starting stock for all
experiments. In total, each workpiece goes through four stages,
namely, roughing, semi-finishing, finishing, and spark-out.
Surface roughness measurements are taken at the end of each
stage using a Mahr perthometer. In each stage, data was
collected simultaneously from three sources, namely from two
accelerometers, one in the tangential and other in the normal
direction of the wheel, and a power cell to capture the power
drawn by the grinding wheel when engaged with the
workpiece. The accelerometers are single axis piezoelectric
type from Dytran (Specifications- Range: £10 g, Sensitivity:
500-1000 mV/g) and the power cell is a hall effect based power
cell from Loadcontrol Inc., USA (Specifications- Range: 0-25
kW, Output: 0-10 V/set power range).

The data collection was possible by using National
Instruments Data Acquisition Systems- NI DAQ-9234 and NI
DAQ-9205 with sampling frequencies of 10 kHz and 66.67 Hz
for the accelerometers and the power cell respectively. The
process parameters, namely the wheel speed, workpiece speed,
and in-feed of the grinding wheel were varied with each
experiment.

As seen in figure 4, by monitoring the power usage and the
acceleration of the grinding wheel, the dashboard can provide
several real-time visualization and insights into the
synchronous variations of multiple signal patterns in the time
domain, frequency domain, as well as time-frequency domain
in form of live time series, FFT, and spectrogram plots. Along
with these live visuals, it also captures various metrics.

The dashboard provides a visual and point-and-click
interactive web interface based on Python Analytics. It was
built using Dash, an open source Python framework written on
the top of Flask, Plotly.js, and React.js. Our implementation
takes in the data coming from data acquisition systems
mentioned above and provides visuals into the real-time time
series data signal as well as frequency spectra and other spectral
features based on the last second of the streaming data. The
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dashboard also has the functionality to select the appropriate
window type and other parameters for the generation of
spectrograms.

We can keep the performance of our SM implementation in
check by tracking the latest update or response from the cloud
and the number of data samples received during that time
frame. We also have a functionality of tracking the wall time
and machine states such as the status of machine being idle or
active.

With regards to productivity, by monitoring the power
usage, the dashboard can track how long the machine spends
actively working versus idling. It can also keep a count of how
many parts have been produced which provides useful
information and hints the operators on need for optimization of
their workflow. It also keeps track of the Run time, Idle time,
Down time, and total Elapsed time both in terms of units of
time as well as in percentage.

Our dashboard also keeps an indirect track of quality of the
parts produced by the machine. The Python and MATLAB
based analyses work atop the dashboard in order to perform
various real-time analyses and predictions. It keeps a check for
any abnormally high power usage and works behind the scenes
with an ability to predict and mark these parts as good or
potentially anomalous. This provides operators with an early
warning of expected malfunctions and allows time for
preventative maintenance before any failure. Moreover, by
using a pre-trained random forest machine learning regression
model in MATLAB, the dashboard can provide the predicted
surface roughness value of a produced part using parameters
such as feed rate, speed, power usage, and acceleration of the
grinding wheel.

The case study of external cylindrical plunge grinding
machine demonstrates the SM implementation only for the case
of vibration and power cell signals. However, with the growth

in imaging technologies, the SM implementation and the
predictive models working behind the scenes can be integrated
to include image based analyses as well. Although, at present,
technologies are available for fast visual inspections, much of
the inline imaging technologies which are affordable are
confined to measuring and identifying geometrical errors and
large morphological defects [25]. They are not mature enough
yet to measure aspects such as surface roughness values and
other fine features in an industrial environment. In the proposed
SM implementation, most predictions and metrics are based on
open-source Python based analyses except for the surface
roughness which is based on a MATLAB engine based
machine learning model. However, it can be easily swapped for
a model based on open-source languages such as Python or R.
This provides a means of automating the long and complex
process of manual inspection of the surface roughness and can
result in time and cost savings. Obviously, these can be
swapped with for any other use-case with its own desired
prediction models and analyses.

The use case provided in this paper is just one example. We
envision similar dashboards can be created based on the same
framework to monitor multi-sensor data from any machine or
a group of machines to look into real-time insights and provide
feedback on productivity and quality metrics.

2.4. Testing methodology

To be viable, the SM network must support a high enough
bandwidth to provide meaningful analysis and ensure that
information is not corrupted or lost during transmission. Since
the Data Historian coordinates communication between the
network components, we focused our testing on the SMIP and
the performance of transmission of data and instructions
between the edge and the SMIP.
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Figure 4. Screenshot of the SM dashboard
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To test this, we define Integrity and Speed as our objectives.
For integrity, every sample sent must be received. We test for
this by creating a dataset of n samples, uploading the dataset to
SMIP, downloading the dataset from SMIP, and confirming
that the downloaded and original datasets contain the same
number of samples. Additionally, the data contained within
each sample should not change when transmitted. We tested
this by generating a dataset of random-valued samples,
uploading it to SMIP, downloading them from SMIP, and
calculating the difference between the downloaded dataset and
the original. Lastly, speed is tested by timing how long it takes
to transfer a dataset of n samples. We tested several different
transmission methods. Firstly, SMIP has an upper limit of
8,000 samples per upload request, so larger datasets must be
split into chunks before uploading. We tested both small chunk
size (n = 1000) and large chunk size (n = 8000) requests.
Secondly, we tested parallelization by comparing the
performance of sending requests serially, i.e., one at a time,
versus sending them all at once asynchronously.

3. Results and discussion
3.1. Integrity

While testing SMIP’s performance, we used a dataset with
240,000 samples between 0 and 1 which were randomly
generated. This dataset was uploaded/transmitted to the SMIP
database and later on downloaded from the same. It was
observed that the database did not drop even a single sample,
but there were minor differences in the timestamps and floats.
However, as seen in Figures 5 and 6, the differences between
the downloaded samples and the original ones are very small.
The timestamp differences was uniformly distributed with a
maximum and minimum at exactly 4+ 6.0 x 1077 s,
respectively, indicating that timestamps are rounded at the
microsecond precision. The distribution corresponding to the
floating point differences seems to be a combination of
multiple gaussian distributions each corresponding to a
variable source. The float differences has a mode of 0,
indicating that most floats are losslessly preserved. Still, a
significant numbers of samples exhibit small variations due to
floating-point errors and rounding. However, the size of the
differences is not large enough to affect analyses though, so we
conclude that SMIP preserves data integrity.
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Figure 6. Floating point difference between downloaded and original data

3.2. Speed

Asseen in Table 1, we found that when transmitting 240,000
total samples serially, larger chunk sizes significantly increased
the performance. Requests using chunks of size 8,000 complete
nearly twice as fast as requests using chunks of size 1,000.
However, this trend reverses itself once we allow multiple
requests at the same time. By using a smaller chunk size, we
split one upload task into more numerous requests, which can
be more evenly distributed across all server threads.

Table 1. Time to upload 240,000 samples by various methods

Method Run 1 Run 2 Run 3
Serial 8k 16.881 17.020 16.724
Serial 1k 31.324 31.943 31.350
Async 8k 11.309 10.919 11.114
Async 1k 8.499 8.734 8.808

Having identified asynchronous requests with chunk sizes
of 1,000 as the fastest upload method, we measured the time to
upload and download increasingly large datasets, the results of
which are plotted in Figure 7. We notice that both upload and
download trends appear linear and at larger sizes of datasets,
the downloads consistently complete faster than uploads. This
is expected since the database lookups are much faster than
insertions. In the proposed work, the lag consideration due to
variations in the internet speeds was not explicitly discussed.
In other words, the communication and computing network
conditions were treated as random effects as opposed to
considering their blocking effects. However, with a faster
internet connection with higher upload speeds, we expect the
upload trend to be more gradual and behave similar to that of
download trend. This behavior is anticipated to change with a
weaker internet connection, wherein the upload trend will be
much steeper than the download trend.

In our open-source Python based implementation using
CESMII’s SMIP, we were able to sustain a data rate of around
23,000 samples per second with our configuration, although we
expect this will scale by deploying the SMIP database on faster
hardware.
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Figure 7. Upload and download times versus sample count. Uploads were
async with 1k chunk size.

4. Discussion and concluding remarks

In this project, we tested and demonstrated an open-source
implementation that integrates multiple layers of data handling
pipeline in SM with CESMII's SMIP.

The effort has also investigated the handling of high-
frequency data in SM platform. The open-source
implementation of SM provides live visualization and analysis
of data via our web dashboard. Our dashboard displays not only
the data stream but also data analytics such as FFT and
spectrogram along with any add-in applications or metrics such
as those based on machine learning predictive models.

Next, the effect of different data upload methods were
studied, and the parameters of these were optimized to achieve
a loss-free transmission of data at 23 kHz rates. This is one of
the highest transmission rates reported with the currently
deployed SMIP database and historian. While this data rate per
channel of data stream does not match up what was
demonstrated with other proprietary based or our OSIsoft PI
system implementations, we expect it to scale with deployment
of SMIP database over faster hardware and the onset of 5G
technologies.

More pertinently, such a high sampling rate is essential to
enable advanced process monitoring methods that can learn
from IoT vibration and vision sensors combining the
computing capabilities at the edge and cloud. We can also
measure and analyze certain short time-scale phenomenon
associated with a manufacturing process. This opens new doors
and helps manufacturers and operators have a better insight into
higher frequency features along with a higher quality data
stream which was not possible earlier.

Better rate also implies capturing more sample data points
for a given timestamp. With the availability of more data, the
machine learning models for various metrics can be further
improved, making prediction of the results with a better
accuracy. The higher data rates also enable functionalities to
install additional sensors and measurement challenges, and
implement data fusion methods to improve condition
monitoring of the machines and quality assurance. Potential
applications of our SM implementation include continuous
health and productivity monitoring of a machine, incipient

detection of anomalous parts from a process on a machine, and
anomaly detection schema by looking for any abrupt
divergence from the usually observed time and frequency
domain plots, among others.

As the data streaming rates improve and the architecture
opens to accommodate larger plug-and-play capabilities, the
smart manufacturing platforms begin to offer value to the
industry, especially to address certain asset management and
quality assurance challenges. While the present effort
contributes to the advancement of process monitoring in SM
platforms, this effort does not address near real-time control of
anomalies. Given the latencies, we need to be extremely
cognizant of performance of true real-time control however set
point control can be achieved based on such cloud based SM
systems.

Additionally, these emerging SM architectures and
paradigms render the manufacturing environments vulnerable
to cyber-attacks [26]. Mahesh ef al. provides one of the most
comprehensive taxonomy in regard to various cyber security
threats, attack modes, goals, targets, and preventive
countermeasure approaches in this context. In near future, we
envision integration of our SM architecture with important
cyber security solutions such as secure distributed-streaming of
encrypted manufacturing data or instructions [5].

As SMIP matures, we envision this project as a
steppingstone for future SM systems, which can build off our
work. In the future, we hope to see traditional manufacturing
for small- and medium-sized businesses adopt SM to respond
to a rapidly developing production landscape. As part of our
ongoing effort, we are enhancing the plug-and-play capability
with the functionality to choose the desired data pipeline and
ingestion option throughout the SM implementation. For
example, an OSIsoft PI based dashboard along with Python and
MATLAB based data analyses can be combined to offer a
custom-solution to an MSME. Such an architecture will
provide freedom to the client or user to choose any desired
component based on their existing setup without disrupting
their operations in any way. CESMII’s SMIP is just one use-
case among various other SM initiatives. The future efforts
include testing of the current implementation on other open-
source platforms similar to SMIP and improving the data rates
we have achieved. Moreover, we in early stages of adding
functionalities of closed loop feedback system which can
enhance the SM implementation to go beyond only monitoring.
The closing of the loop aspect will allow for real-time update
of the parameters in case of any deteriorating or undesired
performance in the metrics. Furthermore, with the growing
adoption of 5G technologies, we intend to scale our SM
implementation to make it compatible for a network of
connected machines that allow data collection, analyses, and
communication channel with lower latencies, higher reliability,
and bandwidth.
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