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Abstract

Let M be a smooth submanifold of Rn equipped with the Euclidean
(chordal) metric. This note considers the smallest dimension m for which
there exists a bi-Lipschitz function f : M !→ R

m with bi-Lipschitz con-
stants close to one. The main result bounds the embedding dimension m

below in terms of the bi-Lipschitz constants of f and the reach, volume,
diameter, and dimension of M. This new lower bound is applied to show
that prior upper bounds by Eftekhari and Wakin [5] on the minimal low-
distortion embedding dimension of such manifolds using random matrices
achieve near-optimal dependence on both reach and volume. This sup-
ports random linear maps as being nearly as efficient as the best possible
nonlinear maps at reducing the ambient dimension for manifold data. In
the process of proving our main result, we also prove similar results con-
cerning the impossibility of achieving better nonlinear measurement maps
with the Restricted Isometry Property (RIP) in compressive sensing ap-
plications.

1 Introduction

Given a set T ⊂ Rn and ε ∈ (0, 1) we consider functions f : T #→ Rm satisfying

(1− ε)‖x− y‖2 ≤ ‖f(x)− f(y)‖2 ≤ (1 + ε)‖x− y‖2

for all x,y ∈ T , where ‖ ·‖2 denotes the "2-norm. Such a function f is said to be
an ε-distortion (Euclidean) embedding of T into Rm with embedding dimension
m. The use of such embeddings has exploded in growth during the last two
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decades in computer science (where T is often a finite point set), numerical lin-
ear algebra (where T is often a low-dimensional subspace), and signal processing
(where T is often a manifold, or all s-sparse vectors in Rn). This is due in large
part to results of Johnson and Lindenstrauss (JL) [11] and their later simpli-
fications (see, e.g., [4, 2]), as well as subsequent developments in compressive
sensing [7] which showed that random matrices could easily provide such em-
beddings. Questions concerning how sub-optimal such linear embeddings might
be at reducing the low-distortion embedding dimension m in comparison to the
best possible nonlinear f have remained less well explored, however see, e.g.,
[10] for a rare result of this kind concerning finite sets T .

In this note we are principally interested in the optimality of random matrices
as ε-distortion embeddings of submanifolds of Rn into Rm. More specifically,
we will consider the optimality of the following result with respect to bounding
the low-distortion embedding dimension m.

Theorem 1 (Theorem 2 in [5]). Let M be a compact d-dimensional Riemannian
submanifold of Rn having reach τ and volume V . Conveniently assume that

V

τd
≥
(

21

2
√
d

)d

. (1)

Fix 0 < ε ≤ 1/3 and 0 < ρ < 1. Let Φ be a random m × n matrix populated
with i.i.d. zero-mean Gaussian random variables with variance of 1/m with

m ≥ 18ε−2max

(

24d+ 2d log

(√
d

τε2

)

+ log(2V 2), log

(

8

ρ

)

)

.

Then with probability at least 1−ρ the following statement holds: For every pair
of points p,q ∈ M,

(1− ε)‖p− q‖2 ≤ ‖Φp− Φq‖2 ≤ (1 + ε)‖p− q‖2.

The main result of this paper is a lower bound which demonstrates the near-
optimality of Theorem 1. In particular, we will see that it is generally necessary
for m to exhibit a logarithmic dependence on both the volume V and the inverse
of reach 1/τ when (1) holds.

1.1 The Main Result and Some Examples

In this paper we prove the following lower bound for the low-distortion embed-
ding dimension of a smooth submanifold of Rn.

Theorem 2 (Main Result). Let M be a d-dimensional smooth submanifold of
Rn, possibly with boundary, that has volume V and reach τ .1 Furthermore, let
ε ∈ (0, 1), and suppose that f : M #→ Rm satisfies

(1− ε)‖p− q‖2 ≤ ‖f(p)− f(q)‖2 ≤ (1 + ε)‖p− q‖2
1See Definition 11 for the formal definition of reach.
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for all p,q ∈ M. If 1
4
√
e
( V
ωd

)
1
d ≤ τ then

m ≥ C1

(

1− ε

1 + ε

)2 d

diam2(M)

(

V

ωd

)
2
d

.

Else, if τ ≤ 1
4
√
e
( V
ωd

)
1
d then

m ≥ C2

(

1− ε

1 + ε

)2 dτ2

diam2(M)
log

(

V
1
d

(ωd)
1
d (4τ)

)

.

Here C1, C2 > 0 are universal constants that are independent of all other quan-

tities, ωd := πd/2

Γ( d
2
+1)

is the volume of the d-dimensional Euclidean unit ball, and

diam(M) := supp,q∈M ‖p− q‖2.
To help illustrate the use of Theorem 2 we will now apply it to the standard
examples of the d-dimensional sphere of radius r, rSd and "2-ball rBd

2 as sub-
manifolds of Rn. In the process we will see that it gives near-optimal (up to
constants) lower bounds on m for these simple examples when ε is small.

Example 3 (The Low-Distortion Embedding Dimension of Euclidean ball of
radius r, rBd

2 ). The pertinent geometric parameters of rBd
2 ⊂ Rn as a subman-

ifold of Rn are as follows: The volume of rBd
2 is rdωd, its reach is τ(rBd

2 ) = ∞,
and its diameter is diam(rBd

2 ) = 2r. Applying Theorem 2 to M = rBd
2 (i.e., a

ball of radius r in an d-dimensional subspace of Rn) we therefore learn that

m ≥ C1

(

1− ε

1 + ε

)2 d

(2r)2

(

rdωd

ωd

)

2
d

=
C1

4

(

1− ε

1 + ε

)2

d.

This result agrees with our intuition based on the fact that for a no distortion
ε = 0 embedding of rBd, a target embedding dimension of d is both necessary
and sufficient for all choices of the radius r.

Example 4 (The Low-Distortion Embedding Dimension of a Sphere rSd). The
pertinent geometric parameters of rSd ⊂ Rn as a submanifold of Rn are as fol-

lows: The volume of rSd is 2rd π
d+1
2

Γ( d+1
2

)
, its reach is τ(rSd) = r, and its diameter

is diam(rSd) = 2r. Check the relation between reach and the other parameters
to find that

1

4
√
e

(

V

ωd

)
1
d

=
r

4
√
e

(

2
√
π
Γ(d2 + 1)

Γ(d+1
2 )

)
1
d

Using that lim
d→∞

(

2
√
π
Γ(d2 + 1)

Γ(d+1
2 )

)
1
d

= 1, for large enough d we have 1
4
√
e

(

V
ωd

)
1
d
<

r = τ . Applying Theorem 2 we now learn that

m ≥
C1

4

(

1− ε

1 + ε

)2

d

(

2
√
π
Γ(d2 + 1)

Γ(d+1
2 )

)
2
d
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holds for all r and sufficiently large d. This again agrees which our intuition
that to embed rSd without distortion requires at least d dimensions.

The attentive reader may have noticed that both Examples 3 and 4 end up
utilizing the first 1

4
√
e
( V
ωd

)
1
d ≤ τ case of Theorem 2. Somewhat crucially, the

following discussion will largly hinge on the second case.

1.2 A Discussion of Theorems 1 and 2

Considering the second case of Theorem 2 with τ ≤ 1
4
√
e
( V
ωd

)
1
d we note that the

ratio V
τd must be at least ωd(4

√
e)d = (4

√
eπ)d

Γ(1+d/2) , where Γ denotes the gamma

function. Recalling Stirling’s approximation one can show that
(

d
2e

)d/2 ≤
Γ (1 + d/2). As a result, we see, e.g., that assuming τ ≤ 1

4
√
e
(( d

2eπ )
d/2V )1/d ≤

1
4
√
e

(

Γ(1+d/2)
πd/2 V

)1/d
= 1

4
√
e
( V
ωd

)
1
d , or equivalently that

(

32e2π
d

)d/2
= (4

√
e)d

( d
2eπ )d/2

≤
V
τd , implies the inequality τ ≤ 1

4
√
e
( V
ωd

)
1
d in Theorem 2. We further note that

this range of τ is also compatible with assumption (1) in Theorem 1 that
V
τd ≥ ( 21

2
√
d
)d.

Assuming then for the sake of comparison that V
τd ≥ max

{

( 21
2
√
d
)d,ωd(4

√
e)d
}

and setting ε = ρ = 1/3 (for example) in Theorem 1 one can see that the
minimum achievable, e.g., ε = 1/3 embedding dimension m of M must satisfy

C′
2dτ

2

diam2(M)
log

(

V
1
d

(ωd)
1
d (4τ)

)

≤
Thm 2

m ≤
Thm 1

C̃d

(

1 + log

(

d

τ2
V

2
d

))

for all d ≥ 1. Simplifying the expression further under the assumption that,
e.g., V

τd = ( C′

√
d
)d we have that

C′
2τ

2

diam2(M)
log

(

C′

4
√
d d
√
ωd

)

≤
m

d
≤ C̃

(

1 + log
(

2C′2))

In this case we can see that under the assumptions above that the upper and
lower bounds on m differ by a factor proportional to τ2

diam2(M)
for d not too large

(e.g., d < 100).

Taken all together we can see that Theorem 2 supports Theorem 1 as being
optimal up to (at worst) a factor proportional to τ2

diam2(M) for d not too large,

and V
τd = ( C′

√
d
)d for appropriate ranges of C′ ∈ R+. This is perhaps most

interesting due to the fact that Theorem 2 implies that it is not possible to
improve Theorem 1 beyond this factor in this regime, even by utilizing nonlinear
functions f in the place of the matrix Φ. Indeed, a similar fact is established
as a consequence of the proof of Theorem 2 for matrices with the Restricted
Isometry Property (RIP) (see Example 9 below), and an existing result of this
kind is also reproduced for JL embeddings of finite sets (see Example 8).
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1.3 An Outline of the Proof of Theorem 2

The remainder of the paper is organized as follows. In Section 2 we prove Theo-
rem 7, a general method for bounding the low-distortion embedding dimension
of an arbitrary subset T ⊂ Rn in terms of its covering numbers. Given this
result the proof of Theorem 2 is then reduced to lower bounding the covering
numbers of submanifolds of Rn as subsets of Rn. This is done in Section 3 and
results in Theorem 13. Finally, Theorem 2 is then proven in Section 4.

2 General Lower Bounds for Embedding Dimen-

sion via High Dimensional Probability

In this section we present a relatively simple lower bound for the achievable low-
distortion Euclidean embedding dimension, m, of an arbitrary bounded subset
T ⊂ Rn into Rm by any function. As we shall see, when coupled with lower
bounds for the covering numbers of T , Theorem 7 below allows one to quickly
reproduce more specialized results concerning the necessary low-distortion em-
bedding dimension of finite point sets [3, 9, 10] in certain parameter regimes.
Similarly, the result can also be used to quickly lower bound the number of rows
that any matrix with the RIP must have, reproducing existing lower bounds of
interest in compressive sensing (see, e.g., [7, Corollary 10.8]). In this second
example one can further learn that existing RIP matrices are optimal in the
sense that they match the necessary embedding dimension of even nonlinear
embeddings of all s-sparse vectors in Rn (up to constants in certain parameter
regimes).

To prove this general lower bound result we need the notion of the Gaussian
Width of a set T ⊂ Rn.

Definition 5. [13, Definition 7.5.1] The Gaussian Width of a set T ⊂ Rn is

w(T ) := E sup
x∈T

〈g,x〉

where g is a random vector with n independent and identically distributed (i.i.d.)
mean 0 and variance 1 Gaussian entries.

The following lemma bounds the Gaussian width of the image of a low-distortion
linear map of T ⊂ Rn in terms of the Gaussian width of T . It is largely a
consequence of the Sudakov-Fernique comparison theorem for mean 0 Gaussian
processes (see, e.g., [13, Theorem 7.2.11] for the statement used here).

Lemma 6. Let a, b ∈ R+, T ⊂ Rn, and f : T → Rm be a function such
that a‖x − y‖2 ≤ ‖f(x) − f(y)‖2 ≤ b‖x − y‖2 holds for all x,y ∈ T . Then,
aw(T ) ≤ w (f(T )) ≤ b w(T ) also holds.

Proof. Define the mean 0 Gaussian processes viaXx := a〈g,x〉, Yx := 〈g′, f(x)〉,
and Zx = b 〈g,x〉 for all x ∈ T , where g,g′ are Gaussian random vectors with

5



n and m i.i.d. mean 0 and variance 1 Gaussian entries, respectively. For each
x,y ∈ T , we then have that their increments satisfy

E (Xx −Xy)
2 = a2E〈g,x− y〉2 = a2‖x− y‖22 ≤

E(Yx − Yy)
2 = E〈g′, f(x)− f(y)〉2 = ‖f(x)− f(y)‖22 ≤

E(Zx − Zy)
2 = b2E〈g,x− y〉2 = b2‖x− y‖22.

The stated result now follows from the Sudakov-Fernique comparison theorem
together with the fact that, e.g., E supx∈T Xx = aE supx∈T 〈g,x〉 = aw(T ).

With Lemma 6 in hand we are now able to prove the main theorem of this
section. The proof also utilizes basic properties of Gaussian widths [13, Propo-
sition 7.5.2], the Gaussian width of the open Euclidean unit ball in m dimen-
sions, Bm

2 ⊂ Rm, being w(Bm
2 ) ≤ C′√m for an absolute constant C′ ∈ R+ [13,

Example 7.5.7], and Sudakov’s minoration inequality [13, Theorem 7.4.1].

Theorem 7. Let a, b, δ ∈ R+, T ⊂ Rn, and f : T → Rm be a function such
that a‖x− y‖2 ≤ ‖f(x)− f(y)‖2 ≤ b‖x− y‖2 holds for all x,y ∈ T . Then,

Ca2δ2

b2
logN(T, δ)

diam2(T )
≤
(

2a

C′b

w(T )

diam(T )

)2

≤ m

holds, where diam(T ) := sup
x,y∈T ‖x−y‖2, and where N(T, δ) is the δ-covering

number of T by Euclidean balls of radius δ centered on T . Here C,C′ > 0 are
universal constants that are independent of all other quantities.

Proof. Consider the set f(T )− f(T ) := {f(x)− f(y) | x,y ∈ T }. By Lemma 6
and the properties of Gaussian widths, aw(T ) ≤ w (f(T )) = 1

2w (f(T )− f(T )).
Furthermore, f(T ) − f(T ) is contained in a ball in Rm with radius b diam(T ).
Since w(Bm

2 ) ≤ C′√m, monotonicity of the Gaussian width and scaling prop-
erties now imply that w(f(T )− f(T )) ≤ C′ b diam(T )

√
m. Therefore,

aw(T ) ≤
1

2
w (f(T )− f(T )) ≤

C′ b

2
diam(T )

√
m.

The rightmost inequality follows. The leftmost inequality is now a consequence
of Sudakov’s minoration inequality.

We will now use Theorem 7 to reproduce the promised lower bounds concerning
RIP matrices and the low-distortion embedding dimension of finite point sets.

Example 8 (The Necessary Low-Distortion Embedding Dimension of Finite
Sets). Let ε ∈ (0, 1), and T = {x1, . . .xN} ⊂ Rn be a finite set of points
whose minimal distance between any two elements is δ := minj '=k ‖xj − xk‖2.
Note that the δ/2-covering number of T is N(T, δ/2) = N . As a result, The-
orem 7 implies that any function f : Rn → Rm satisfying

√
1− ε‖xj − xk‖2 ≤

‖f(xj) − f(xk)‖2 ≤
√
1 + ε‖xj − xk‖2 for all xj ,xk ∈ T must have m ≥

6



C′′ (1−ε)δ2

(1+ε)
logN

diam2(T )
for an absolute constant C′′ ∈ R+.

Now consider ε not too small (e.g., ε > 0.01). Furthermore, let T to be a
subset of, e.g., a 0.01-packing of the closed unit ball Bn

2 ⊂ Rn so that δ > 0.01
and 1.98 ≤ diam(T ) ≤ 2 both hold. For this range of ε and such T coming
from a packing of the unit ball one can see that the lower bound on m from
Theorem 7 matches (up to constants) the most recent worst case bounds of the
form m = Ω

(

log(N)/ε2
)

proven by Larson and Nelson in [10] for finite point
sets. Furthermore, this example application of Theorem 7 helps to cement our
intuition that (subsets of) packings of the unit ball are among the most difficult
finite sets to embed into a lower dimensional Euclidean space.

Example 9 (The Number of Rows Required by an RIP matrix, and the Non-Ex-
istence of Better Nonlinear Low-Distortion Embeddings for Sparse Vectors). Let
S ⊆ [n] := {1, . . . , n} ⊂ N, and denote the jth-column of the n× n identity ma-
trix by ej for all j ∈ [n]. Next, define CS := span{ej | j ∈ S} and let Us :=




⋃

S⊂[n], |S|≤s

CS





⋂

Bn
2 ⊂ R

n be the set of all s-sparse vectors with "2-norm at

most one. A matrix A ∈ Rm′×n will have the RIP of order (s, ε) for s ∈ [n] even
and ε ∈ (0, 1) if and only if

√
1− ε‖x − y‖2 ≤ ‖Ax − Ay‖2 ≤

√
1 + ε‖x − y‖2

holds for all x,y ∈ Us/2. As in the previous example we will consider ε not

too small (e.g., ε > 0.01). In this regime it is known that a matrix A ∈ Rm′×n

with both the RIP of order (s, ε) and as few rows m′ as possible will/must have
m′ = Θ (s log(N/s)). See, e.g., [7, Theorem 9.2] and [7, Corollary 10.8] for
specific supporting theorems.

One natural question concerns whether allowing the matrix A ∈ Rm′×n to be
replaced by an arbitrary nonlinear function f : Rn → Rm might permit m /
m′ = Θ (s log(N/s)) to hold while still approximately preserving the "2-norms of
all s-sparse vectors up to the same

√
1± ε-distortion factors. Toward answering

this question one can apply Theorem 7 to see that any function f : Rn → Rm

satisfying
√
1− ε‖x−y‖2 ≤ ‖f(x)−f(y)‖2 ≤

√
1 + ε‖x−y‖2 for all x,y ∈ Us/2

must have m ≥ C (1−ε)δ2

(1+ε)
logN(Us/2,δ)

diam2(Us/2)
= C (1−ε)δ2

4(1+ε) logN(Us/2, δ) for our choice of

δ ∈ R+. In order to make a good choice for δ in this bound we will use the
following lemma.

Lemma 10 (Lemma 10.12 in [7]). Given integers s < n, there exist N ≥
(

n
2s

)s/4

subsets S1, . . . , SN of [n] such that |Sj | = s/2 and |Sj∩Sk| < s
4 whenever j 1= k.

We can now use Lemma 10 to define x1, . . . ,xN ∈ Us/2 by letting xj be
√

2/s for
each index in Sj, and 0 elsewhere. Note that ‖xj −xk‖2 > 1 will hold whenever
j 1= k. As a consequence of the existence of these N points we can see that, e.g.,

setting δ < 1/2 forces N(Us/2, δ) ≥ N ≥
(

n
2s

)s/4
. Hence, choosing any ε > 0.01

and, e.g., δ = 1/3 in the bound on m from Theorem 7 above will yield the bound

7



m ≥ C′′′s log(n/2s) for a universal constant C′′′ ∈ R+. As a consequence, we
can see that linear measurements achieve the RIP with a near optimal level of
compression even when compared to arbitrary nonlinear measurement functions,
at least for larger values of ε. Allowing f to be nonlinear doesn’t help here.

Having digressed with the two previous examples, we hope to have established
a clear proof strategy for the manifold case. If we can lower bound the covering
numbers of smooth submanifolds of Rn, then we can use those lower bounds to-
gether with Theorem 7 to establish lower bounds of the achievable low-distortion
embedding dimension m of any given submanifold M of Rn into Rm. In per-
suance of that strategy we will develop lower bounds for the covering numbers
of submanifolds of Rn in the next section.

3 Lower Bounds for the Covering Numbers of

Smooth Submanifolds of Euclidean Space

Our lower covering number bounds for a smooth submanifold M ⊂ Rn will in
terms of its dimension d, d-dimensional volume V , and reach τ .

Definition 11 (Reach: Definition 4.1 in [6]). For a subset of Euclidean space
T ⊂ Rn, the reach τ is defined as

τ(T ) = sup{t ≥ 0
∣

∣∀x ∈ R
n with d(x, T ) < t, x has a unique closest point in T }.

The following lemma concerns the control of the sectional curvatures of M by
τ , and also demonstrates how τ can be used to help relate geodesic distances
between points on M to their Euclidean distances.

Lemma 12. Let M be a compact, smooth submanifold of Rn possibly with
boundary. Furthermore, let τ be the reach of M, p,q ∈ M, x ∈ Rn, and d and
l be the Euclidean and geodesic distances between p and q, respectively. Then:

1. In the interior of M, any sectional curvature k satisfies −2
τ2 ≤ k ≤ 1

τ2 .

2. l − l2

2τ ≤ d.

3. When restricted to d ≤ τ
2 , we further have l ≤ d+ 2d2

τ .

Proof. 1. See [1, proposition A.1]. 2. See [12, lemma 6.3]. 3. See [12, lemma 6.3]

and [5, lemma 7] which gives l ≤ τ − τ
√

1− 2d
τ . Using 1 −

√
1− x ≤ x+x2

2 we

get the claimed l ≤ d+ 2d2

τ .

Lemma 12 in combination with Bishop’s volume comparison theorem [8, Theo-
rem 3.101, part i] now allows us to prove the main result of this section.

8



Theorem 13. Let M be a d-dimensional smooth submanifold of Rn possibly
with boundary, and with volume V and reach τ . Let 0 < δ ≤ τ

2 , and r :=

δ(1 + 2δ
τ ). Let ωd = πd/2

Γ(d
2
+1)

be the volume of the d-dimensional Euclidean unit

ball Bd
2 . Then the covering number of M with Euclidean balls centered on M

of radius δ, N(M, δ), satisfies

V

ωd(8δ)d
≤

V

ωd(1 +
2
√
2r
τ )d−1rd

≤ N(M, δ) .

Proof. We claim that the volume of the intersection of M with a Euclidean ball

having center in M and radius δ is no greater than ωd(1 + 2
√
2r

τ )d−1rd. This
claim immediately implies the rightmost inequality.

Toward establishing this claim, we note that for two points p,q ∈ M with Eu-
clidean distance d, geodesic distance l, and having d ≤ τ

2 , one has l ≤ d(1 + 2d
τ )

by Lemma 12. Hence, the intersection of M with a Euclidean ball of radius
δ centered on M is contained in a geodesic ball of radius r = δ(1 + 2δ

τ ) with
the same center provided that δ ≤ τ

2 . Thus, it suffices to bound the volume of

such a geodesic ball from above by wd(1 + 2
√
2r

τ )d−1rd in order to obtain the
rightmost inequality.

By Lemma 12 the sectional curves of M are bounded below by −2
τ2 . Hence by

Bishop’s theorem the volume of a geodesic ball of radius r in M is bounded
above by the volume of the geodesic ball of radius r in the hyperbolic space
with constant sectional curvature −2

τ2 . Denote this volume by V−2

τ2
(r); it is given

by the formula

V−2

τ2
(r) =

2πd/2

Γ(d2 )

∫ r

0
S−2

τ2
(x)d−1 dx

where Sk(x) =
1√
−k

sinh(
√
−kx). Since sinh(x)

x is increasing on 0 < x,

V−2

τ2
(r) =

2πd/2

Γ(d2 )

∫ r

0
S−2

τ2
(x)d−1 dx ≤

2πd/2

Γ(d2 )

∫ r

0

(

sinh(
√
2x
τ )

√
2x
τ

)d−1

xd−1 dx

≤
2πd/2

Γ(d2 )

(

sinh(
√
2r
τ )

√
2r
τ

)d−1
rd

d
.

Using that sinh(x)
x ≤ 1 + 2x for 0 < x <

√
2π, we finally obtain that

V−2

τ2
(r) ≤

2πd/2

Γ(d2 )

(

1 +
2
√
2r

τ

)d−1
rd

d
= ωd

(

1 +
2
√
2r

τ

)d−1

rd.

9



This proves the rightmost inequality. To obtain the leftmost inequality we
simplify r = δ(1 + 2δ

τ ) via r ≤ 2δ ≤ τ using that 0 < δ ≤ τ
2 . We then get the

factor of 8 from the fact that (1 + 2
√
2)2 < 8.

In light of Theorem 13, the following technical lemma will be useful in choosing
the parameter δ in Theorem 7.

Lemma 14. Let d, C′ ∈ R+. If 2C′
1
d√
e

≤ τ then

d

2e
C′ 2d ≤ sup

δ∈(0,τ/2]
δ2 log

(

C′

δd

)

.

If τ ≤ 2C′
1
d√
e

then

dτ2

4
log

(

2C′ 1d

τ

)

≤ sup
δ∈(0,τ/2]

δ2 log

(

C′

δd

)

.

Proof. One can see that δ2 log
(

C′

δd

)

is maximized at δ∗ := C′ 1d /
√
e > 0. If

δ∗ /∈ (0, τ/2] we instead evaluate the function at τ/2.

We are now prepared to prove the main theorem of this paper.

4 The Proof of Theorem 2

Applying Theorem 7 to M ⊂ Rn we learn that

m ≥ C

(

1− ε

1 + ε

)2 δ2 logN(M, δ)

diam2(M)
,

where we may choose δ ∈ R+ as we wish. Restricting ourselves to δ ∈ (0, τ/2]
and applying Theorem 13 we further learn that

m ≥ C

(

1− ε

1 + ε

)2 δ2 log
(

V
ωd(8δ)d

)

diam2(M)
.

To maximize this lower bound as a function of δ we now apply Lemma 14 with
C′ = V/ωd8d. The stated result now follows.
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