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Abstract

In this paper, we focus on the approximation of smooth functions f : [-m, 7] — C, up to an
unresolvable global phase ambiguity, from a finite set of Short Time Fourier Transform (STFT) mag-
nitude (i.e., spectrogram) measurements. Two algorithms are developed for approximately inverting
such measurements, each with theoretical error guarantees establishing their correctness. A detailed
numerical study also demonstrates that both algorithms work well in practice and have good numerical
convergence behavior.

1 Introduction

We consider the approximate recovery of a smooth function f : R — C supported inside of a compact
interval I C R from a finite set of noisy spectrogram measurements of the form

00 9 .
Yo = ‘/ f(x)m (1‘ - ;E) e "dx

Here m : R — C is a known mask, or window, and the 7, , are arbitrary additive measurement errors.
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Without loss of generality, we will assume that I C [—m, 7] and seek to characterize how well the function
f, with its domain restricted to [—m, 7|, can be approximated using dL measurements of this form for
d frequencies w at each of L shifts £. Toward that end, we present two algorithms which can provably
approximate any such function f (belonging to a general regularity class defined below in Definition 1) up
to a global phase multiple using spectrogram measurements of this type resulting from two different types
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of masks m. As we shall see, both algorithms ultimately work by approximating finitely many Fourier
series coeflicients of f.

Inverse problems of this type appear in many applications including optics [25], astronomy [10], and
speech signal processing [4,15] to name just a few. In this paper we are primarily motivated by phase-
less imaging applications such as ptychography [23], in which Fourier magnitude data is collected from
overlapping shifts of a mask/probe (e.g., a pinhole) across a specimen and then used to recover the
specimen’s image. Indeed, these types of phaseless imaging applications directly motivate the types of
masks m : R — C considered below. In particular, we consider two types of masks /m including both (7)
relatively low-degree trigonometric polynomial masks representing masking the sample f with shifts of a
periodic structure/grating, and (i7) compactly supported masks representing the translation of, e.g., an
aperture/pinhole across the sample during imaging. Note that first type of periodic masks are reminicent
of some of the Coded Diffraction Pattern type measurements for phase retrieval analyzed by Candes et
al. in the discrete (i.e., finite-dimensional f and ) setting [7,8]. (See Section 1 of [22] for a related
discussion.) The second type of compactly supported masks, on the other hand, correspond more closely
to standard ptychographic setups in which Fourier magnitude data is collected from small overlapping
portions of a large sample f in order to eventually recover its global image.

Although a number of algorithms exhibiting great empirical success were designed decades ago for
phaseless imaging, e.g., [11], [14], [15], the mathematical community has only recently begun to undertake
the challenge of designing measurement setups and corresponding recovery algorithms with provable
accuracy and reconstruction guarantees. The vast majority of those theoretical works have only addressed
discrete (i.e., finite-dimensional) phase retrieval problems, (see e.g., [4], [3], [7], [8], [17], [13]) where the
signal of interest and measurement masks are both discrete vectors and where the relevant measurement
vectors are generally random and globally supported.

In this paper, we develop a provably accurate numerical method! for approximating smooth functions
f :R — C from a finite set of Short-Time Fourier Transform (STFT) magnitude measurements. Though
there has been general work concerning the uniqueness and stability of reconstruction from STFT mag-
nitude measurements in this setting (see, e.g., recent work by Alaifari, Cheng, Daubechies, and their
collaborators [2], [9]), to the best of our knowledge, no prior work exists concerning the development
or analysis of provably accurate numerical methods for actually carrying out such reconstructions from
a finite set of such measurements. Perhaps the closest prior work is that of Thakur [24], who gives an
algorithm for the reconstruction of real-valued bandlimited functions up to a global sign from the ab-
solute values of their point samples, and that of Grochenig [16], who considers/surveys similar results
in shift-invariant spaces. Other related work includes that of Alaifari et al. [1], which proves (among
other things) that one can not hope to stably recover a periodic function up to a single global phase
using a trigonometric polynomial mask of degree p/2, as done below, unless its Fourier series coefficients
do not vanish on any p consecutive integer frequencies in between two other frequencies with nonzero
Fourier series coefficients. This helps to motivate the function classes we consider recovering here. (In
particular, if a function f satisfies Definition 1 below, then any strings of zero Fourier series coefficients in
{ f (n) }nez longer than a certain finite length must be part of an infinite string of zero Fourier coefficients
associated with all frequencies beyond a finite cutoff.) We also refer the reader to [19] and [9] for similar
considerations in the discrete setting.

!"Numerical implementations of the methods proposed here are available at https://bitbucket.org/charms/blockpr.



1.1 Problem Setup and Main Results

Let m, f : R — C be C*-functions for some k > 2. Let d be an odd number, and let K and L divide d.
Let D = {—%, SR | SR %}, and let Y = (Y, ¢)w cep be the d x d measurement matrix defined by

/Rf(m)fn (w - 2;6) e Wy

where n = (N,¢)wrep is an arbitrary additive noise matrix. The goal of this paper is to address the
following question.

2

Yw,ﬁ = + Nw, 5 (1)

Question 1. Under what conditions on f and m can we produce an efficient and noise robust algorithm
which provably recovers f from the K x L measurement matriz Y i 1, obtained by subsampling equispaced
entries of Y.

In order to partially answer this question, we will assume that f satisfies a regularity assumption
defined below in Definition 1 and also that one of the following two assumptions hold:

1. f is compactly supported with supp(f) C [—m, 7| and m is a trigonometric polynomial given by

p/2 .
m(z)= Y mp)e’”
p=—p/2
for some even number p < d and some complex numbers m(—p/2),...,m(0),...,m(p/2).

2. Both f and m are compactly supported with supp(f) C (—a,a) and supp(m) C (—b,b) for some
a and b such that a +b < 7.

We will introduce a four-step method which relies on recovering the Fourier coefficients of f. In
our discretization step, we approximate the mask /m by a function with finitely many nonzero Fourier
coefficients. Therefore, we effectively regard the mask as being compactly supported in the frequency
domain. As mentioned above, several previous works, including [19], [1], and [9], have noted that this
implies that the recovery of f is impossible if f has many consecutive Fourier coefficients which are equal to
zero followed by nonzero Fourier coefficients at higher frequencies. Moreover, if there are many consecutive
small Fourier coefficients followed by larger coefficients at higher frequencies, the problem is inherently
unstable. Therefore, we will remove such pathological functions from consideration by assuming that our
function f is a member of the following function class for a suitable choice of 5. This choice of 8 will
depend on whether f and 7 satisfy Assumption 1 or Assumption 2, respectively.

~

Definition 1. Let 8 be a positive integer and let Dy, = maxXy, _n|<g/2 |f(m)|. We say that f has 3 Fourier
decay if D,, > D, whenever |n| < |n/|.

A useful property of this function class, which follows immediately from the definition, is summarized
in the following remark.

Remark 1. Suppose f has B Fourier decay, and let a,n € Z with |a| < |n|. Then the string of 5 — 1

~ ~

consecutive integers centered around a contains an integer m such that |f(m)| > |f(n)].

We will show that functions satisfying Definition 1 can be reconstructed from Y using the following
four-step approach:



1. Approximate the matrix of continuous measurements Y, defined in terms of functions f and m, by
a matrix of discrete measurements T’, defined in terms of corresponding vectors x and z.

2. Apply a discrete Wigner distribution deconvolution method [22] to recover a portion of the Fourier
autocorrelation matrix XX*.

3. Recover X, the discrete Fourier transform of x, via a greedy angular synchronization scheme along
the lines of the one used in [20].

4. Estimate f by a trigonometric polynomial with coefficients given by X.

The details of step 2 are quite different depending on whether f and m satisfy Assumption 1 or Assumption
2. However, we emphasize that the other three steps of the process are identical in either case. The result
of this approach is two algorithms which allow for the reconstruction of f under either Assumption 1 or
2, as well as two theorems providing theoretical guarantees. The following main results are variants of
Corollaries 1 and 2 presented in Section 4.

Theorem 1. Let C;f/Q be the set of all compactly supported functions f : R — C with supp(f) C [—7, 7]
that are C*-smooth for some k > 5 and that have p/2 Fourier decay. Then, there exist degree p/2
trigonometric polynomial masks m such that for all f € CS/Q’ K =d2>2p+6, and L dividing d with

2+ p < L < 2p the trigonometric polynomial f.(x) output by Algorithm 1 is guaranteed to satisfy

2 1\ +—9/2 pe
< - —_—
L2([-m7]) Cf’m< (d) + 7172 Hnd,LHF>,

where na 1, is the d x L matriz obtained by subsampling equispaced entries of n and Cy, is a constant

(Bﬂef - fe

min
0€[0,27]

only depending on f,m, and k.

Proof. Apply Corollary 1 with s = [(d+1)/2] and r = d —s —1 > d/2 — 2. The assumption that
d > 2p+ 6, implies that p < r —1. Noting now that x := L — p > 2 and applying Proposition 1 for choices
of m satisfying (17) with s replaced by p (since p > ), we have that ;' < C,d for a mask-dependent
constant C,,. O

Theorem 1 guarantees the existence of periodic masks which allow the exact recovery of all sufficiently
smooth f as above as d — oo in the noiseless case (i.e., when 7 = 0). In particular, it is shown that a
single mask m will work with all sufficiently large choices of d as long as d has a divisor in [p + 2,2p].
Furthermore, Theorem 1 demonstrates that Algorithm 1 is robust to small amounts of arbitrary additive
noise on its measurements for any fixed d. We note here that the d term in front of the noise term
InaLl|F is almost certainly highly pessimistic, and the numerical results in Section 5 indicate that the
method performs well with noisy measurements in practice. We expect that this d* dependence in our
theory can be reduced, especially for more restricted classes of functions f that are compatible with less
naive angular synchronization approaches than the one utilized here. (See, for example, recent work on
angular synchronization approaches for phase retrieval by Filbir et al. [12].)

Focusing on the total number of STFT magnitude measurements (1) used by Algorithm 1, we can
see that Theorem 1 guarantees that KL < 2dp will suffice for accurate reconstruction when the mask m
is a trigonometric polynomial. In particular, this is linear in d for a fixed p. As we shall see below, the
situation appears more complicated when m is compactly supported. In particular, Theorem 2 stated
below requires KL = d?/3 STFT magnitude measurements in that setting (and more generally, the
argument we give here always requires KL > Cbd?, where C' is an absolute constant, and b is the support
size of the mask as per Assumption 2).



Theorem 2. Let CNL]f”B be the set of all compactly supported functions f : R — C with supp(f) C (—a,a)
for some a € (0,7 — 3/4) that are C*-smooth for some k > 4 and have § Fourier decay. Let b= 3/4, and
then fix d = L to be a multiple of three large enough that all of the following hold: § < [db/2w] —1/2,
s =1 = [db/2r] < d/8 — 1, and 5d/21 < § = |db/w]| < d/4. Finally, set K = d/3. Then, for any
compactly supported mask m with supp(m) C (=b,b) and ua > 0 (see (29) and (8) for the definition of
p2) the trigonometric polynomial fe(x) output by Algorithm 2 is guaranteed to satisfy

2 1 Ik allr <1>2k2>
<Cm + ’ +{ 5
L2([—m,7]) 7 </1120'min (W)dk H20min (W) d

for all f € CN!;B, where Cym, is a constant only depending on f,m, and k. Here omin(W) denotes the
smallest singular value of the (2(d/3 — |3d/4n|) — 1) x [db/2w]| partial Fourier matrix W defined in
Section 3.2 and M q 18 the K x d matriz obtained by subsampling equispaced entries of m.

ewf - fe

min
0€[0,27)

Proof. We first note that § + (s +1)/2 < 5d/16 < K < 10d/21 < 26. Next, we apply Corollary 2 with
s, 1,60, and all other parameters set as above. Next, we observe that W will be full rank given that it is a
Vandermonde matrix. Therefore, opyin (W) > 0 will always hold. Finally, we note that, for any choice of
d and b < 7 — a, Proposition 2 guarantees the existence of a smooth and compactly supported mask m
with pe > 0. OJ

Theorem 2 demonstrates that sufficiently smooth functions f can be approximated well for measure-
ment setups and masks having ps and opin (W) not too small. Furthermore, Proposition 2 demonstrates
that masks exist for which pg scales polynomially in d (independently of f and k). It remains an open
problem, however, to find a single compactly supported mask m which will provably allow recovery for all
choices of d, as well as optimal constructions of such masks more generally. Nonetheless, our numerical
results in Section 5 demonstrate that Algorithm 2 does indeed work well in practice for a fixed compactly
supported mask and that the mask we evaluate has reasonable values of us for the range of choices of d

evaluated there.
1.2 Notation
We will denote matrices and vectors by bold letters. We will let M; denote the j-th column of a matrix

M and, if x and y are vectors, we will let

y
denote their componentwise quotient. For any odd number n, we will let

be the set of n consecutive integers centered at the origin. In a slight abuse of notation, if n is even, we
will define [n]. = [n + 1], so that in either case [n]. is the smallest set of at least n consecutive integers
centered about the origin. We will let d be an odd number, let K and L divide d, and let

D:=[d. K:=[Kl, and L:=I[L].
For £ € Z, we let Sy : C¢ — C? be the circular shift operator defined for x = (z,)pep by
(Sex)p = Xpte,

where the addition p + £ is interpreted to mean the unique element of D which is equivalent to p + ¢
modulo d.



If K and L are integers which divide d, and M = (Mj, )k ¢ep is a d x d matrix, we will let Mk 1, be
the K x L matrix obtained by subsampling M at equally spaced entries. That is, for k € I and ¢ € L,
we let

(MK,L)k,K = Mk%j%- (2)
We let Fgq be the d x d Fourier matrix with entries given by
1 —2rijk
(Fa)jp = —e

for j, k € D, and similarly let Fy, and F be the L x L and K x K Fourier matrices with indices in £ and
IC, respectively. Finally, we will often use generic constants whose values change from line to line, but
whose dependencies on other quantities are explicitly tracked and noted. These constants will be denoted
by capital C' and have subscripts that indicate the mathematical objects on which they depend.

2 Discretization

Let 7, f : R — C be C*-functions for some k > 2 such that supp(f) C [—m, 7], and assume that either
Assumption 1 or Assumption 2 holds. We will define m to be a periodic function which coincides with m
on [—m,m]. Specifically, we let

{ﬁm(m) if Assumption 1 holds,
m(z) =

Y nez Mm(z +2mn)  if Assumption 2 holds.

As in Section 1, let D be the set of d consecutive integers centered at the origin, and define Z =
(Zw.0)weep to be the d x d matrix with entries given by

/Rf(x)m (x - 2;€> e Wy

Our goal is to recover f from the matrix Y = (Y[, ¢)w sep of noisy measurements given by

2
Zw,[ =

Yw,é = Zw,é + Nw, 05

where 17 = (1)y¢)w ¢ep is an arbitrary additive noise matrix. Since the support of f is contained in [—7, 7],

we note that
2
2T

Zi = ' _7; f(z)m (x — de) e 1wy (3)

Furthermore, under either Assumption 1 or Assumption 2, we note that we may replace m with m in (3),
ie.,

2

(4)

T ) .
Zy = ' flx)m (CE - 26) e "dz

Under Assumption 1, this is immediate since m(x) = m(x) by definition. Under Assumption 2, we note
that
supp(m —m) C (—o0,b— 27| U [2m — b, 00)

and that ‘%‘ < 7 for all £ € D. Therefore, we have that

2 2
m<x—;£>—m<m—;€> =0 forall|z|]<7m—b.



As a result, the assumptions that the support of f is contained in (—a,a) and that a < 7 — b imply that
g 2 2 .
/ fx) (Th (ac - ;5) -m <x - ;E)) e "dr =0

For any C2-smooth function g : R — C, we will define

1) =5 [ glre s

:% .

and so (4) follows.

for all n € Z, and note that, if ¢ is 2w-periodic, we may use Fourier series to write

g(z) = G(n)e'. (5)
nez
We also note that, if ¢ is not 27-periodic, but its support is contained in (—m,7), then (5) still holds for
all x € (—m, ) since we may view {g(n)},cz as the Fourier coefficients of the periodized version of g. For
any set A C Z, we define P4 to be the Fourier projection operator given by

Pagla) = 3 gln)et™. (6)
neA
Now, let r, s, and d be odd numbers with r + s < d. Let R = [r]., S := [s]., and D = [d]. be the
sets of r, s, and d consecutive integers centered at the origin. Let T = (T}, /), cp denote the matrix of
measurements obtained by replacing f with Psf and m with Pgrm in (4), i.e., the matrix whose entries
are given by
2

Tw,Z = ’/_W ng(a:)PRm <.1‘ - 27T€) CB_].wwd.% (7)

d

If Assumption 1 holds, we will assume that r > p 4+ 1 which implies Prm(z) = m(z).
The following lemma provides a bound on the ¢°°-norm of the error matrix Z — T.

Lemma 1. Let v, s, and d be odd numbers with r +s < d, and let m : R — C and f : R — C be
C*-smooth functions for some k > 2. Then, under Assumption 1, we have

1 k—1
2= Tl < Crn (3)

and, under Assumption 2, we have

12~ Tl < g <1)“ " (1)“)

In either case, Cf,, € RT is a generic constant that depends only on f, m, and k (and, in particular, is
independent of s, r and d).

To prove Lemma 1, we need the following auxiliary lemma. Note in particular, it can be applied both
to 2m-periodic functions and to functions whose support is contained in (—m, ).

Lemma 2. Let k > 2, and let g : R — C be a C*-smooth function such that (5) holds for all x € (—m, ).
Let n > 3 be an odd number, let N := [n]., and let A be any subset of Z. Then, there exists a constant C,
depending only on g and k such that

1

k—1
|1Pagllree((—nap) < Cg  and  [|g — Pxngllpee((—na)) < Cg <n> :

where Py and Py are the Fourier projection operators defined as in (6).



For a proof of Lemma 2, please see Appendix A.

The Proof of Lemma 1. We note that the measurements given in (4) and (7) may be written as
Zw,@ = ‘Mw,Z‘Q and Tw,Z = ‘Uw,€‘27
where

M, = f(z)m (a; — Jﬁ) e "dr and U,y = Psf(x)Prm (x — gﬁ) e "dz.

—T

Lemma 2 implies
1P| Lo (=) < Cm - and [ Ps fll oo ((—r,m)) < C-

Therefore,
|Uw el < 27| Prm|| poo (=) | Ps fll Lo (= m,x)) < Cme

Next, letting ¢ = 27l/d, we note that

™

My —Uyyp = /7r (f(z) = Psf(x))m(z — D) ™ dx +/

-7 -7

Psf(x) (m(m —0) — Prm(z — Z)) e Wy,
Therefore, by Lemma 2 and the triangle inequality, we get

k—1
1
|Miyg — Uy el < Cf,m< <S> + [jm — PRmHLOO([—WJr}))-
Thus, we may use the difference of squares formula to see

| Zoe = Tl = (|Muo el + Ut DI Moy el = [Uss,el| < (2[Usel + |Moyp = U )| Moy = Us

1 k—1 1 k—1
< Cpm <1 + <S> + |lm — PRm||L°°([—7r,7r])> < <8> + |lm — PRm||Loo([—7r,7r])>-

Under Assumption 1, we have ||m — Prm| foo((—rx) = 0, and thus,

1 k—1 1 k—1 1 k—1
e zem(ie ()7 () e ()
S S S

Likewise, under Assumption 2, Lemma 2 implies [[m — Prm||zoc((—x,x)) < Cm (%)k_l , and so

rmazen( ()07 (7)
con(()))

Algorithms 1 and 2 rely on discretizing the integrals used in the definitions of our measurements.

+
O

Towards this end, we define three vectors x := (zp)pep, ¥ = (Yp)peD, and z := (2,)pep by

2m 27 27
zp = Psf <dp> . Yp=Prm <dp> , and zp,=m <dp> . (8)



We note that under Assumption 1, we have Prm(z) = m(x) and therefore y = z. Under Assumption 2,
we have that supp(m) N [—m, 7] C (—b,b). Therefore, supp(z) C [0 + 1]., where § := | 2d|. The following
lemma shows that the integral used in the definition of T can be rewritten as a discrete sum. Please see
Appendix A for a proof.

Lemma 3. Let x = (xp)pep and 'y = (yp)pep be defined as in (8). Then, for allw € D, L € Z, and

(= 27“8, we have that

" N o—lzw 2m —27iwp/d
/_7r Psf(x)Prm(x — )e”"“dx = i Ze;xpypge 2miwp/d
P

and as a consequence,

47 2
ot ="

(9)

2 ::Upyp_ee_%““p/d
peD

The matrix T depends on the vector y which is obtained by sampling the trigonometric polynomial
Prm. By construction, y is not compactly supported, even under Assumption 2. In Section 3, we will
apply a Wigner Deconvolution method based on [22] to invert our discretized measurements. In order
to do this, we will need to use the vector z which is obtained by subsampling m rather than Prm. (By
construction, z will be compactly supported under Assumption 2, and under Assumption 1, we have
y = z and so this makes no difference.) This motivates the following lemma which shows that T is
well-approximated by the matrix T" = (T, ;)u ¢ep obtained by replacing y with z in (9), i.e.,

2
Z acpzp,ge_zﬂ‘“p/d . (10)
peD

wl —

, 472
rz

Lemma 4. Let T and T’ be the matrices defined in (7) and (10). Then, under Assumption 1, we have
IT = Tl = 0,

and under Assumption 2,
k—1
1
IT- Tl (1)

Proof. Under Assumption 1, we have y = z. Thus by (9) and (10) we have T = T’ and therefore the first
claim is immediate. To prove the second claim, we will assume Assumption 2 holds and use arguments
similar to those used in the proof of Lemma 1. Let

2 o 2 o
Uiy = = Z Tyl 2miwp/d o1 q UL,e = Z Tp2p i@ 2miwp/d_
peD pED

Then by Lemma 3 we have
Top=Uuyl® and T, ,=|U, >

By Lemma 2 and the fact that m is a continuous periodic function, we see
[%[loc < 1P8flLoe (=27 < Cfs

[¥lloo < [[PRM| Lo ((—7,7]) < Cm,  and

1Zllo0 < Ml oo ((—7.m)) < Com-



Therefore,
Usstl + 10U 4l < Crom-

To bound |U,» — U/ ,|, we may again apply Lemma 2, to see
1\ A1
Ut = ULl < 20y = 2l < Cplim = Pronll sy < Cpm (7))
Therefore, by the same reasoning as in the proof of Lemma 1, we have

1 k—1
Tt — T o) < (Uinel + [0} (Uit — Ulal) < Cpom () |

r

3 Wigner Deconvolution

In this section, we will use a Wigner Deconvolution method based on [22] to recover x from the matrix
T’ defined in (10). In order to do this, we let E be the total error matrix defined by

E=Y-T.
We note that E can be decomposed by
E=(Z-T)+n,

where (Z — T") is the error due to discretization and 7 is measurement noise. Let K and L divide d. Let
Ex 1, T’K’L7 and Mk 1, be the K x L matrices obtained by subsampling the columns of E, T/, and 7 as
in (2). Similarly to [22], we introduce the quantities E and T defined by

E:=FLEx1 Fx’ and T:=F(Tky) Fx’.

Since V/LFy, and vV KFk are unitary, we have
1

|E|lp = |[FLEk,L Fk'||F < ﬁllEK,LllF <|Z — T +

Therefore, Lemmas 1 and 4 imply that under Assumption 1 we have

1
\/ﬁHTIK,LHF-

k—1
~ 1 1
[Ble<Crn (3)  + ez lmenls (1)

and that under Assumption 2 we have

B 1\ k-1 1\ +-1 1
Elr <Crml (= + (= + . 12
Ble<crn((3) +(3) )+ seplmels (12)

It follows from Theorem 4 of [22] that
Tgw = 4r°d Z Zd: (Fd (X ] SqL eX))w_pK (Fd </Z\ o Se_qL/Z\))W—pK + Eé,w (13)
ac[z], pel%].
472 _ _ ~

= 7 Z Z (Fd (XOSW_pKX))Z—qL (Fd (ZOSw—pKZ))qL_g+E€,w' (14)

In Sections 3.1 and 3.2, we will be able to use (13) and (14) to recover a portion of the Fourier autocor-
relation matrix xx*. (Note that [22] uses a different normalization of the discrete Fourier transform and
consequently (13) and (14) have different powers of d than the corresponding equations there.)

10



3.1 Wigner Deconvolution Under Assumption 1

In this subsection, we will assume our mask m(z) satisfies Assumption 1, i.e., that it is a trigonometric
polynomial with at most p nonzero coefficients for some p < r — 1. We also assume that K = d, that L
divides d, and that L = p 4 k for some 2 < x < p.

Since K = d, equation (13) simplifies to

T =10 Y (Fa(%08,-R)) (Fa (50 50u)) + o
ac[z],

By construction, supp(z) C [p + 1].. Therefore, if 1 — k < ¢ < k — 1, we may use the same reasoning as
in the proof of Lemma 10 of [22], to see
/Z\ o} Sg_qL§ =0

except for when ¢ = 0. Thus,

Ty, = An*d (Fd (§< o s_ﬁ))w (Fd (20 sﬁ))w + By, forall [(] <k —1. (15)

In order use (15) to solve for (Fd (i o S_g§>)

us to introduce a mask-dependent constant defined by

(a (2053)) |

Proposition 1 shows that it is relatively simple to construct a trigonometric polynomial m(z) such that

, we must divide by (Fd (2 ) Sﬁ)) . This motivates

w

g1 = min (16)

1 is strictly positive. For a proof, please see Appendix B.
Proposition 1. Assume that m satisfies Assumption 1. Further assume
7 (=5)|> 2w (-5+1) )
2 2
and

(4 )2 (44022 [ (2)] o =

Then the mask-dependent constant 1 defined as in (16) satisfies

L7 P\||~( P
> = m(=? _p —1)‘ .
’“—2dm( 2)Hm< g Tr=1)[>0

For the rest of this section, we will assume that p; is non-zero. Therefore, we may make a change of
variables ¢ — —¢ in (15) to see that

(a (505%)) = g (e Lot )

. 1 < Tff,w ) . 1 < Efé,w )
~ 4Am?d \ (Fq(z 0 S_i2)). Ar2d \ (Fq(Z o S_iZ)).

for all 1 — k < /¢ < k — 1. Writing the above equation in column form, we have

— T’ ET
58 - )- )
4m2d \ Fq(z 0 S_42) 4m2d \Fq(z 0 S_42)
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and so

%0 5% = F—1< S )- F—1<’f), 19
¢ 4m2d d Fd(/Z\ o S_[Z\)) 4m2d d Fd(i o] S_g/Z\ ( )

where, as mentioned in Section 1, the division of vectors is defined componentwise and M; denotes the
j-th column of a matrix M.
Let T}, : C¥@ — C9%d be the restriction operator defined for M € C4*? by

M;; ifli—jl<k-—1,
TK(M)U:{ b

0 otherwise.
Then, we may rewrite (19) in matrix form as
T.(%%) = X + N, (20)

where the matrices X = (Xj ;); jep and N = (Nz-,j)mep have entries defined by

_1 -1 L AT _
X = Ir2d <Fd (Fd(aosijg))>i if |i —j| <k —1, o)
0 otherwise,
and
L (P! (o if|i—jl<r—1
NZ] = 47T2d d Fd(EOSi_J‘E) i — )
0 otherwise.

For a d x d matrix, M = (M; j); jep, let R(M) = (R(M); j)iep je[2x—1]. be the d x (2k — 1) matrix
with entries defined by
R(M);; = M.

Note that the columns of R(M) are the diagonal bands of M which are near the main diagonal, and that
in particular, the middle column, column zero, is the main diagonal. Since N is a banded matrix whose
nonzero terms are within x of the main diagonal, we see

INllz = RN .

Therefore, since %Fd_1 is unitary, we may bound the #?-norm of the columns of R(N) by

IR, H L g (ET>
27 4n2d” Y \FqzoS_2)

where (17 is the mask-dependent constant defined in (16). Therefore, by (11) with K = d, we have

1
<
, = Am2d1/?

1

‘A
e IET |
= dm2dl/2y, " 2

Fd(/Z\ 9} S,jﬁ) 2

k—1
INLe = IR e < O Ble < Crmo ((3) + lnasle). (22
Let H : C™4 — C%9 be the Hermitianizing operator
H(M) = u (23)
Since Ty (xx*) is Hermitian, applying H to both sides of (20) yields
T.(XX*) = A+ N, (24)

12



where

A = H(X) and N := H(N). (25)
We note that by (22) and the triangle inequality, we have
Nle < I < G ( (1) + —lmac (26)
F> F = f’mdl/Qm 5 JaL NaLilF |-

3.2 Wigner Deconvolution Under Assumption 2

In this subsection, we assume f(x) and m(z) satisfy Assumption 2, i.e., that supp(f) C (—a,a) and
supp(m) C (—b,b) with a + b < 7. Note that, by construction, this implies that the vector z defined in
(8) satisfies supp(z) C [6 + 1], where § = [%]. We also assume that L = d, that K divides d and that

K =6+ k for some 2 < k <. Furthermore, we let s < 2k — 1.
Since L = d, equation (14) simplifies to

- A2 -
Tro=— Y. (Fa(xo S kX)), (Fa (20 Sup?))_, + Ere.
re(x]

c

Furthermore, if |w| < k — 1, then by the same reasoning as in Lemma 11 and Remark 1 of [22], all terms
in the above sum are zero except for the term corresponding to p = 0. Therefore,

- 472 -
Ty = % (Fq (x08,%)), (Fa (20 S.2)_,+ Er, forall Jw] < — 1. (27)

The following lemma is a restatement of Lemma 3 of [22], although we note that our result appears
slightly different due to the fact that we use a different normalization of the discrete Fourier transform.

Lemma 5. For all { and w, we have

(Fa (x0 5.5)), = dem/* (Fa (%o 5.%)

w

Applying Lemma 5 to (27), we see that
Ty, = 4n2d (Fd (SZ ° S_&)) (Fd (a ° Sﬁ)) + By, (28)

for all |w| < k — 1. In order to solve for (Fd (i o S_g§)) , we need to divide by (Fd (’i ) Sﬁ)) . This
w

motivates us to introduce a second mask-dependent constant given by

(Fa (z053))._|

Proposition 2 shows that, for any given d, it is relatively simple to construct a mask m(x) such that ps

= min
we[2k—1]¢ L€[25—1]c

is strictly positive. For a proof please see Appendix B.
Proposition 2. Assume that m(x) satisfies Assumption 2. Let z = (2p)pep be the vector defined as in
(8) by zp =m (2?er>7 and let § = | 2d]. Let 6 < 6+1 and assume that supp(z) = {n,n+1,...,n+0—1}
for some kK <0 <+ 1. Further assume that

20| > 20|2n41] (30)

and that
’Zn—&-l‘ > ‘Zn+2’ > ... ’ZnJrSil‘ > 0. (31)

Then the mask-dependent constant ug defined in (29) satisfies

1
Ho = @|znuzn+n—l| > 0.

13



Remark 2. Given any vector z = (2p)pep, one may construct, e.g., through spline interpolation, a
function m(x) such that m (221’) =z, for allp € D.

For the rest of this section, we will assume that po is not equal to zero. Therefore, we may make a
change of variables £ — —/ in (28) to see that

(ka (o)), = g (e P

B 1< T 4o, )_1 < E s >
T 4n?d\(Fa(@o0 S_2).) 4Am%d\(Fa(zo S (7))

Now, recall that s < 2k — 1, and let B := (B,,¢),C = (Cy,y), and D = (D, ) be (25 — 1) x (25 — 1)
matrices with entries defined by

~ = 1 T—K w -1 E—K w )
By = (F S . Cly= “ ), Dyy= o 32
& ( d (X ° fx))w L7 dn2d ((Fd(ﬁ ° 5@)) “£ ™ 4r2d <(Fd(a 0 S_i7)). (32)

for w € 2k — 1], and ¢ € [25 — 1], so that

B=C+D.
Note that

D[ < 1Bl (33)

47T2du2
where p19 is the mask-dependent constant defined in (29).
Next observe that we may factor B = WV, where V := (V} 1) jes kej2s—1]. is the s X (25—1) matrix with
entries defined by Vj; = (X0.5kX); and W := (W} ¢)jej2n—1]. kes 1 the (2 — 1) x s partial Fourier matrix
with entries Wj;, = (Fq);x- Since s < 2k — 1, we may let W1 := (W*W)~1W* be the pseudoinverse of
W and see
V=WiC+WD.

Now, let A : C5*2s=1) _, Cdxd e the lifting operator defined by
(A(M))ij = M.

Note that the columns of M are diagonal bands of A(M) with the middle column on the main diagonal.

Ak

By construction, we have Ths_1(XX*) = A(V). Therefore, since Ths_1(XX*) is Hermitian, we have
Tos—1(xx7) = H(A(V)),
where H is the Hermitianizing operator introduced in (23). Therefore,
Tos—1(XX*) = A + N, (34)

where
A= H(A(W'C)) and N := H(A(W'D)). (35)
Since H is contractive, (33) implies

1 1
——||D||lr <
Umin( W ) H ”F o 4W2dﬂ20min( W )

IN|lr < [A(W'D)|| = [W'D||p < IE||F,

where omin (W) is the smallest singular value of W. Combining this with (12) yields

INIlF < C ! ((1)“+(l)“+ L H) (36)
FS f’mdmamin(w) p , Kd NKdl|F |-
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4 Convergence Guarantees of Algorithms 1 and 2

In this section, we will provide convergence guarantees for Algorithms 1 and 2. Specifically, we will prove
Theorem 3 which guarantees that we can reconstruct f(z) from a noisy Fourier autocorrelation matrix.
Corollaries 1 and 2, which guarantee the convergence of our algorithms, will then follow immediately from
(24), (26), (34), and (36), which are proved in Section 3.

For the rest of this section, we will assume that there exists 1 <~ < d such that

T,(%%) = A + N. (37)

Here, A = (A; ;)i jep is a known approximation of the partial Fourier autocorrelation matrix 7% (xx*) and
N € C9* is an arbitrary noise matrix. We note that, under Assumption 1, equation (24) shows that (37)
holds with v = k. Similarly, under Assumption 2, equation (34) shows that (37) holds with v = 2s — 1.
We also remark that (26) and (36) provide bounds on ||[N||r in these cases. We will also assume for the
remainder of this section that there exists 8 < /2 such that f belongs to the class of functions with
Fourier decay introduced in Definition 1.

By construction, the discrete Fourier transform of the vector x defined in (8) satisfies

-~

Zp = f(n) for alln € S,

and so the square magnitudes of the Fourier coefficients of f lie on the main diagonal of the matrix
T, (Xx*). Therefore, we view a,, = \/|A, | as an approximation of |Z,|. More specifically, Lemma 3
of [20] shows that

an ~ 1F)| < 3N (39)

For each n € S, the greedy entry selection algorithm, Algorithm 3, outputs a sequence {W}IEZO, where
ng = arg max,,cs a, and ny = n. Given that sequence, we define

b—1
oy = Z arg (Ane+1,w) . (39)
1=0
To understand this definition, we let
N b—1
0o = arg(f(no)) and 7, =Y arg ((XX*)n,,m,) - (40)
1=0

-~

By construction, 7, = arg (f(n)) — 0. Therefore
e % f(n) = | f(n)[e™
for all n € S. (Note that ny does not depend on n.) Since A is a noisy approximation of (a portion

of) XX*, we intuitively view «,, as a noisy approximation of 7,, (up to a phase shift 6p). Lemma 7 will

~

show that this intuition is correct when |f(n)| is sufficiently large. Therefore, in light of (38), we define
a trigonometric polynomial, f.(x), which estimates f(x) by

fe(z) = Z anel®n e, (41)

nes

The following theorem shows that f.(z) is a good approximation of f(z).
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Theorem 3. Assume that f(x) has B Fourier decay for some 3 < v/2. Forn € S, let o, be defined as
in (39), let an = \/Apn, and let fo(x) be the trigonometric polynomial defined as in (41). Then,

d 2 1 2k—2
i 67— flaoy < Cs (2) Nl (1)

Before proving Theorem 3, we recall that v = x under Assumption 1 and v = 2s—1 under Assumption
2. Therefore, (26), (36), and the fact that |N||o < ||N||p, immediately lead to the following corollaries.

Corollary 1 (Convergence Guarantees for Algorithm 1). Let s +r < d, let K = d, and let L divide d.
Assume that f(x) and m(x) satisfy Assumption 1, that p <r—1, and that L = p+ £ for some 2 < k < p.
Then the trigonometric polynomial f.(x) output by Algorithm 1 satisfies

. d3/2 1 k—1 1 1 2%k—9
; 0 p 2 < sa™” 1 1
ol lle™f felle([_w,nD_Cf,m(sz )t gpimande )+ (5 ,

where py is the mask-dependent constant defined in (16). Moreover, if s > d/2, then

iy ) 1 1\ *-7/2 2 1\ 2k—2
: 1 . < N _at 1 .
phin €™ f = fellz2(emm) < Cf,m<,€2ul <d> + L%, [na,LllF + <d) )

Corollary 2 (Convergence Guarantees for Algorithm 2). Let s +r < d, let L = d, and let K divide d.
Assume f(x) and m(x) satisfy Assumption 2 and let 6 = Ll;—dj. Further, assume that K = 0 + K for some
2 < k <6 and that s < 2k — 1. Then the trigonometric polynomial f.(x) output by Algorithm 2, satisfies

) 0 2
ol S

< () () i) <(2) )
— f,m Sl,LZO'mln(W) s r \/m nK,d F s Y

where pg is the mask-dependent constant defined in (29). Moreover, if s,r > %, then

. 0 2
ol ® 7 S

1 d1/2 2k—2
< — .
= Cs ’m<uzamm(W)bk1dk K o (W) Imcalle + <bd> >

In order to prove Theorem 3, we need the following lemma which provides us with an estimate of
e Psf — f.| 12(|—m,x)) as well as the uniform convergence of Fourier series.

Lemma 6. Assume that f(z) has  Fourier decay for some 8 < v/2. Forn € S, let ay, be defined as in
(39), let ap = \/Apn, and let fo(z) be the trigonometric polynomial defined as in (41) by
fe(z) =3 e ane@me™®. Then,

2 d\ 2
sc*s() N/l
L2([—m,x]) Y

In order to prove Lemma 6, we need the following lemma, which is a modification of [20, Lemma 4].

HefﬁeoPsf — Je

~

It shows that «,, is a good approximation of 7,, for all n such that |f(n)| is sufficiently large. For a proof,
please see Appendix C.
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Lemma 7. Suppose that f has 8 Fourier decay for some [ < ~/2, and let Ly be the set of indices
corresponding to large Fourier coefficients defined by

Li={n€8:|f(n) = 48|Nl|oc}. (42)
Let n € Ly, and let 7, and oy, be as in (39) and (40). Then

4rd |N|loe
71 fm)P

The Proof of Lemma 6. Recall that X,, = J?(n) for all n € S, and let X|s be a vector of length s obtained
by restricting X to indices in S. Define vectors u = (up)nes and v = (v, )nes by

‘CBJ'rrn S 17 ’

Uyp = ap@’®  and v, = \f(n)|em".

By Parsevals identity, we see

H fHGOPSf Z anenan inz _ H —1i6g Z f me Z U@ nna:
L2([—m,m])

nes nes nes
<Vor |le” % c —u
|$ £2
o He—i90§|3 . VHE V27w — v,
2

=0 + L.

L ([~m,m))

To estimate I, we recall (38) and note

IZ =2r E Uy, — vp|* = 27 E ‘a e —|f(n) ena”

nesS nes

2
— |Zal] < 678N, (43)

Using Lemma 7 and the fact that |e'™ — e'@n| < 2, we have

I =2r )" [f(n)]lel™ — et f?

nes
2
<o Y| PwZ( ) INZ, | Fn)|~2
ne€S\Ly neLy
<CsNjw+C (7) NI

TLELf
d 2
scs() NI,
:

where Ly is the set of indices corresponding to large Fourier coefficients introduced in (42). Combining
this with (43) yields

d 2
gcs() INllse
L2([—m,m]) Y

as desired. O

H —nGoP f Za (Bnnac oy,

nes

Theorem 3 now follows readily via Lemma 2 which estimates | f — Psf]|? 12
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The Proof of Theorem 3. Let 6y = arg(f(no)). Then we get

min
0€[0,2m]

(Bﬁef(x) o Z aneﬂaneﬂnx

nes

< min ‘
0€[0,27]

<|[f(@) = Psf(@)|r2(—mx)) + H‘Bfﬁeopsf(w) _ Z a, el pine
nes

L2([=m,m])

(Bwpgf(.f) o Z aneﬂaneﬂnm
nesS

el f(x) - " Ps f(z)

|

LQ([_Trvﬂ—]))

L2 ( [_71—771-})

L2([_7r?7r})

By Lemma 6, we know that

H@fﬁao Psf(z) — Z anemneﬁ”x

nes

d 2
s08<) N,

2
L2([=m.m]) Y

Therefore, we conclude by applying Lemma 2 to see

1 2k—2
1f = Psfll2(-rnpy < 27lf = Psfll o (nmy < Cr ( ) :

S

5 Empirical Evaluation
We now present numerical results demonstrating the efficiency and robustness of Algorithms 1 and 2.
5.1 Empirical Evaluation of Algorithm 1

We begin by investigating the empirical performance of Algorithm 1 in recovering the following class of
compactly supported C*°-smooth test functions,

J
f(@) =)0 bereala —vy). (44)
j=1

Here J € N, o; € C, v; € [—7, 7], and &, ., denotes a C°°-smooth bump function with &, ¢, (x) > 0
in (c1,c2) and &, ¢,(x) = 0 for & ¢ [c1,c2]. For the experiments below, we set J = 4, ¢; = —n/5,
¢ = m/5, and choose o such that its real and complex components are both i.i.d. uniform random
variables U[—1,1]. The shifts v; are selected uniformly at random (without repetition) from the set
{~Vimax + J (20max/ (2] — 1)) }370" where tanayx = 0.97 — max{|c1, |ca|} so that supp(f) C [-m,7]. A
representative plot of (the real and imaginary parts of) such a test function is provided in Fig. 1la.

To generate masks satisfying Assumption 1 (see Section 1.1), we choose the Fourier coefficients m
from a zero mean, unit variance i.i.d. complex Gaussian distribution and empirically verify that the
mask-dependent constant p; (as defined in (16) is strictly positive. Fig. 1b plots such a (complex)
trigonometric mask for p = 20, where p + 1 is the (two-sided) bandwidth of the mask. Table 1 lists the
empirically calculated p; values, and averaged over 100 trials) for such masks. The left two columns of
the table list p; for a fixed discretization size (d = 211) and varying p; they show that p; is approximately
constant for fixed d. The right two columns list ¢y values for fixed p and varying d; they show py decreases
slowly with d (roughly proportional to 1/d). This verifies that constructing admissible (i.e., with p; # 0)
trigonometric masks as per Assumption 1 is indeed possible for reasonable values of d and p.
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Algorithm 1 Signal Recovery with Trigonometric Polynomial Masks

Inputs

1. Trigonometric polynomial mask m satisfying Assumption 1.

2. Matrix Y = (Y, ¢)wep rer of spectrogram measurements defined as in (1).
Steps

1. Define vector z = (2p)pep by 2, = m (2ier> .

2. Let k=L —p,and for 1 — k < /¢ < k — 1, estimate

1 <(FLYTFdT)_g>
AT?Ld? \ Fq(zoS_iz2) )

Fd (§ o Sg?) ~

3. Invert the Fourier transforms above to recover estimates of the vectors X o SyX.
4. Organize these vectors into a banded matrix X = (Xj ;); jep described as in (21).
5. Hermitianize X to obtain the matrix A = (A; ;)i jep as described in (25).

6. Estimate |f(n)| ~ an = V1Annl-

7. For n € S, choose {n,}}_, according to Algorithm 3.

8. Approximate

b—1
arg (f(n)) ~ Q= Z arg (A”£+1an£) :
=0

Output
An approximation of f given by

fo(x) =) ane’ne’™.

nes

Test Function (Assumption 1, supp(f) C [, 7))

Trigonometric Mask (Assumption 1, p = 20)

(a) Test Function (with supp(f) C [—7,7]) (b) Mask (Trigonometric Polynomial; p = 20)

Figure 1: Representative Test Function and Mask Satisfying Assumption 1.
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Algorithm 2 Signal Recovery with Compactly Supported Masks
Inputs

1. Compactly supported mask m satisfying Assumption 2.
2. Matrix Y = (Y, ¢)wek,cep of spectrogram measurements defined as in (1).

Steps

~ (2
1. Define vector z = (Zp)peD by 2z, =m (%) :

2. Let k=K —d,and for ]l —k <w<k—1,1—5</f<s—1 estimate

1 <(FdYTFKT)—e>
Am?Kd* \ (Fa(zo S_z)) /)

Fd <§ o Sg§> ~

3. Form the matrix C according to (32).

4. Compute V = WTC, where W = ((Fa)jk)je2n—1].kes 1 the (25 — 1) x s partial Fourier matrix.
5. Apply lifting operator A.

6. Hermitianize A(V) to obtain the matrix A = (4; ;)i jep as described in (35).

7. Estimate |f(n) ~ an = \/|Annl.

8. For n € S, choose {n,}%_, according to Algorithm 3.

9. Approximate

b—1
arg (f(n)) ~ap = Z arg (AWHJLZ) :
£=0

Output
An approximation of f given by

fe(@) = ape*rei™.

nes

’ (d=211,p) ‘ u1 (Average over 100 trials) H (d, p = 50) ‘ 1 (Average over 100 trials) ‘

(211, 20) 1.957 x 1074 (111, 50) 4.825 x 1074
(211, 40) 1.704 x 1074 (223,50) 1.560 x 104
(211, 60) 1.563 x 1074 (447,50) 6.199 x 10~°
(211, 80) 1.500 x 10~ (895, 50) 2.162 x 107°
(211,100) 1.530 x 1074 (1791, 50) 8.247 x 1076

Table 1: Empirically evaluated u; values (mask constant) for Algorithm 1. (Fourier coefficients of mask
chosen as i.i.d. complex standard normal entries. Left two columns show p; values for fixed d, right two
columns show p; values for fixed p.)
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Algorithm 3 Entry Selection
Inputs

1. Vector of amplitudes a = (ap)nep, an = \/|Annl-

2. Entry n € S.
Steps

1. Choose ng = argmax,,cg an-
2. Let b= 0.

3. While: |n —ny| > 7.
If: n > ny, let npy 1 < arg MaxX,, \~_ g<m<n,ty dm-
If: n < nyp, let npy1 < argmax,, < >n,—+3 m-

b+ b+ 1.

4. ny < n.

Output
A sequence {ng}lgzo, |ngs1 —nel <28, ny =n,b<

il

Finding closed form analytical expressions for the integral in (3) is non-trivial. Therefore, we use
numerical quadrature computations on an equispaced fine grid (of 10,001 points) in [—7, 71| to generate
phaseless measurements corresponding to (3) under both Assumptions 1 and 2.

We now investigate the noise robustness of Algorithm 1. For the results shown in Fig. 2a (where each
data point is generated by averaging the results of 100 trials), we add i.i.d. random (real) Gaussian noise
to the phaseless measurements (3) at desired signal to noise ratios (SNRs). In particular, the noise matrix
nk.L € R™E in Section 3 is chosen to be i.i.d. N(0,0%I). The variance o2 is chosen such that

_ |11
SNR (dB) = 10log;q 1L o2
o

where Z denotes the corresponding matrix of perfect (noiseless) measurements. Errors in the recovered
signal are also reported in dB with

N
Error (dB) = 101logy (hEi:O |f (i) — f6($z)|2> 7

WY | f ()2
where f and f. denote the true and recovered functions respectively, and z; denotes (equispaced) grid
points in [—7, 7], i.e. &; = —m + hi with h := 27 /N. Errors reported in this section use N = 2003.

Fig. 2a plots the error in recovering a test function using Algorithm 1 (for d = 257,p = 32,k =
p— 1 and (2p — 1)d total measurements) over a wide range of SNRs. For reference, we also include
results using an improved reconstruction method based on Algorithm 1, as well as the popular HIO4+ER
alternating projection algorithm [5,11,21]. Refinements over Algorithm 1 included use of an improved
eigenvector-based magnitude estimation procedure in place of Step 6 (see [18, Section 6.1] for details), and
(exponential) low-pass filtering? in the output Fourier partial sum reconstruction step of Algorithm 1.

2With filter order increasing with SNR; we used a 2"%-order filter at 10dB SNR and a 12'"-order filter at 60dB SNR.
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The HIO+ER algorithm implementation used the zero vector as an initial guess, although use of a
random starting guess did not change the qualitative nature of the results. As is common practice, (see
for example [11]) we implemented the HIO+ER algorithm in blocks of eight HIO iterations followed
by two ER iterations in order to accelerate convergence of the algorithm. To minimize computational
cost while ensuring convergence (see Fig. 2d), the total number of HIO+ER iterations was limited to
30. As we see, Algorithm 1 compares well with the popular HIO+ER algorithm, with the improved
method offering even better noise performance. Furthermore, this post-processing procedure does not
significantly increase the computational cost. Fig. 2b plots the execution time (in seconds, averaged over
100 trials) to recover a test signal using dL measurements, where d is the discretization size, L = 2p — 1
and p = min{(d—>5)/2,2[logy(d)|}. Both Algorithm 1 and its refined variant are essentially O(dL), where
dL is the number of measurements acquired, with Algorithm 1 performing much faster than the HIO+ER
procedure. Finally, we note that reconstruction error can be reduced by increasing the number of shifts L
acquired (and consequently, the total number of measurements). Fig. 2c¢ plots the error in reconstructing
a test signal discretized using d = 257 points, kK = p — 1 and Ld = (2p — 1)d measurements for different
values of p (and correspondingly L). As expected, we see that noise performance improves as L increases.
Additional numerical experiments studying the convergence behavior of Algorithm 1 (in the absence of
measurement errors) can be found in Appendix D.

¢ - Alg. 1 (p = min{(d - 5)/2,2(logy(d) ]}, 5 = p— 1 Error vs Iteration Count — Alg. 1 (HIO+ER, 50dB noisc)

B W E) C) 1o B o
SNR (dB) Discretiz SNR (dB)

(a) Noise Robustness (b) Computational Cost  (c) Error vs. No. of Shifts  (d) HIO+ER Iterations®

Figure 2: Empirical Evaluation of Algorithm 1 and Selection of HIO+ER Parameters for Comparison

5.2 Empirical Evaluation of Algorithm 2

We next present empirical simulations evaluating the robustness and efficiency of Algorithm 2. As detailed
in Assumption 2 (see Section 1.1), we recover compactly supported test functions with supp(f) C (—a,a)
using compactly supported masks which satisfy supp(m) C (—b,b), where a + b < 7. For experiments in
this section, we choose b = 3/4 and a = 0.9(w — 3/4). The test functions are generated as detailed in (44)
of Section 5.1, as a (complex) weighted sum of shifted C'*°-smooth bump functions, but with a maximum
shift of vmax = @ — b. A representative test function is plotted in Fig. 3a. The corresponding compactly
supported masks are generated as the product of a trigonometric polynomial and a bump function using

p/2
m(z) = Epp(z) - | Y mpe®/ |, (45)
p=—p/2
where {_; 5, is the C°°-smooth bump function described in Section 5.1, and the term in the parenthesis
describes a (complex) 2b-periodic trigonometric polynomial. A representative example of such as mask

3The notation (HIO,ER)=(z,y) in this figure denotes implementation of the HTO4+ER algorithm in “blocks” of z iterations
of the HIO algorithm followed by y iterations of the ER algorithm. We choose 30 total iterations of the red dashed plot in
our implementations of the HIO+ER algorithm in this section.
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is provided in Fig. 3b with p = 16 and the coefficients m chosen from a zero mean, unit variance i.i.d.
complex Gaussian distribution.

Test Function — Algorithm 2 (supp(f) C (—(r — 3/4),7 — 3/4)) Compactly Supported Mask — Assumption 2 (supp(ih) C (~3/4,3/4))
s

——Re(f(x))
~ — (/)

T

{
1=
!
1
'

(a) Test Function (a = m — 3/4; supp(f) C (—a,a)) (b) Mask (supp(m) C (=b,b) = (—3/4,3/4))

Figure 3: Representative Test Function and Mask Satisfying Assumption 2.

’ (d =189, k) ‘ o (Average over 100 trials) H (d,k = 27) ‘ w2 (Average over 100 trials) ‘

(189, 3) 2.563 x 103 (165, 27) 9.722 x 107°
(189,10) 2.873 x 1074 (223,27) 8.866 x 107°
(189, 31) 8.331 x 107° (495, 27) 4.686 x 107°
(189,94) 2.642 x 10719 (1045, 27) 2.448 x 107°

Table 2: Empirically evaluated po values (mask constant) for Algorithm 2. The left two columns show
o values for fixed d, right two columns show us values for fixed k. Here, d =k + 1 and s = x — 1.

Representative values of the mask constant po (as defined in (29) and averaged over 100 trials) are listed
in Table 2. The first two columns list o values for fixed discretization size d, while the last two columns
list po values for fixed . In both cases, we set K = 2x + 1 and ensure that K divides d. We note that &
denotes the number of modes used in the Wigner deconvolution procedure (Step 2) in Algorithm 2. Since
the masks constructed using (45) are compactly supported and smooth, we expect the autocorrelation
of their Fourier transforms (and the corresponding Fourier coefficients of this autocorrelation) to decay
rapidly. Therefore, we expect s to be small for large x values; indeed, this is seen in the last row of
Table 2 where the po value is essentially zero when d = 189, k = 94. However, as the functions we expect
to recover also exhibit rapid decay in Fourier coefficients, we only require a small number of their Fourier
modes to ensure accurate reconstructions. Hence, small to moderate « values suffice. As seen in Table
2, it is feasible to construct admissible masks (i.e., uo > 0) for such (d, k) pairs. Experiments have also
been conducted with m chosen to be the bump function {_p} and a (truncated) Gaussian, However, these
experiments yield smaller mask constants po, which make the resulting reconstructions more susceptible
to noise. Selection of “optimal” and physically realizable compactly supported masks is an open problem
which we defer to future research.

We note that due to the equivalence of (27) and (28), the Wigner deconvolution step (Step 2) in
Algorithm 2 may be instead evaluated using (27). While theoretical analysis of this equivalent procedure
is more involved, it offers computational advantages since it does not require solving® the Vandermonde
system of Step 4 in Algorithm 2. The corresponding po values for this procedure also follow the qualitative

We use the Iterated Tikhonov method (see [6], [22, Algorithm 3]) to invert the Vandermonde system in Step 4 of Alg. 2.
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behavior in Table 2. This variant of Algorithm 2 is used in generating some of the plots in Appendix D,
while Fig. 4 provides a comparison of Algorithm 2 and this alternate implementation.

Noise Robustness - Algorithm 2 (d = 189, = 32,k = § — 1, s = 20) Computational Efficiency - Alg. 2 (K = d/3,6 = (K +1)/2,k =6 — L,s =k — Error vs Iteration Count — Alg. 2 (HIO+ER, 50dB noise)
st 1 107kF HIO+ER (w/ filt) 4 —o— (HIO,ER)=(10,0)

—-Alg. 2 - (HIO,ER)=(8,2)
wome- Alg. 2 (w/ alt. implementation; post-processsed) or§ 1
[ | === Alg. 2 (w/ alt. implementation)

(dB)

ction Exror (dB)

on Error
o

[[=+-Alg 2

—=— Alg. 2 (alt. implementation)

40 L|-~m-- Alg. 2 (alt. implementation, post-processed) 1
HIO+ER (w/ filt) 0

= o2
sl R S L |

40 50 60 10? 10° 0 50 100 200 250 300

10 20 30 150
SNR (dB) Discretization Size (d) No. of iterations

(a) Noise Robustness (b) Computational Cost (c) HIO+ER Iterations

Figure 4: Empirical Evaluation of Algorithm 2 and Selection of HIO+ER Parameters for Comparison

We now study the robustness and computational efficiency of Algorithm 2. Fig. 4a plots the error in
recovering a test function (with each data point averaged over 100 trials) for discretization size d = 189, § =
32, k =0—1, s = 29 and d/3 total measurements over a wide range of SNRs. For reference, we also include
results using the HIO+ER alternating projection algorithm, as well as the alternate implementation of
Algorithm 2 (using (27) to implement the Wigner deconvolution Step 2). As in Section 5.1, the alternate
implementation of Algorithm 2 and the HIO+ER implementations utilize (exponential) low-pass filtering.
The HIO+ER algorithm is implemented in blocks of eight HIO iterations followed by two ER iterations
in order to accelerate the convergence of the algorithm, with a total of 100 iterations used to ensure
convergence while minimizing computational cost (see Fig. 4c). The proposed method (especially the
alternate implementation) compares well with the HIO+ER algorithm. Additionally, we also provide
results using a post-processed implementation of Algorithm 2 using just 10 iterations of HIO+ER. In
this context, we can view the proposed method as an initializer which accelerates the convergence of
alternating projection algorithms such as HIO+ER. Finally, Fig. 4b, which plots the execution time (in
seconds, averaged over 100 trials) to recover a test signal, shows that the proposed method in Algorithm
2 and its alternate implementation are computationally efficient, with all implementations running in
O(dK) time where dK is the number of measurements acquired.

A The Proofs of Lemmas 2 and 3

The Proof of Lemma 2. We first note that ||g||zec((—r,]) < 00 since g is a continuous periodic function.

Jw

k
Next, we see that since g is C*-smooth, we have [g(w)| < C, (LI) for all w € Z \ {0}, where Cy is a
constant which depends on only g and k. As a result, we have

. . =1
| Pagll o -y < D |5 < [9O)] +2C Y —5 = C.
m=1

WEZ
Similarly,
1 14 1 /-1
lg = Prgllie(rmy < 3 15)] < 2C, (le) <c, <n> .
jw|Z 24 jw|> 2L
The desired result now follows. 0
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The Proof of Lemma 3. Let g := Psf and h = Pgrm, where Ps and Pgr are the Fourier projection
operators defined as in (6). Since g and h are trigonometric polynomials and R +S C D, we may write

/7r g(@)h(z — Oe " dr = Zg(n)ﬁ(m)e—ﬁmé /_7r gilmtn—w)z g,

- meER neS
—~ . =9 .
= 3 D amh(mye T S gl
meR neS peD
= 2% (Z /g\(n)CBQﬂ'ﬁpn/d) (Z h 2mm (p é))) (B—27r1'1mpw/d
pED \nesS meR
peD
2 .
_ jﬂ— Z l‘pyp_zef%rnwp/d.
peD

B The Proofs of Propositions 1 and 2
The Proof of Proposition 1. We first note that

m(q) if |q| < p/2,
0 if |q| > p/2.

)

q

Therefore, for all |p| < k — 1, we have

<A ;) m(g)m(p+q) if —p/2<q,p+q<p/2,
zoSyz) =
q 0 otherwise.

For any |p| <k —1, let
I, ={qeD:—p/2<q<p/2 and —p/2<q+p<p/2}.

One may check that
I [-6-p,5]NZ ifp<0'
P [-£,6—p|NZ ifp>0
Therefore, making a simple change of variables in the case p < 0, we have that

p/2—pl

= LS O+ e = ST @ (€ fpl) e,

Fd </Z\ o Sp§> d
Lel, l=—p/2

q

where @!%r.a¢ is a unimodular complex number depending on p, q and ¢. Using the assumptions (17) and
(18), we see that

/2—|p|
17 o . s s
]d > A e < bl (1) m(2p+1+\p|)\
l=—p/2+1
11 /—p (—p
< — - _"




With this, we may use the reverse triangle inequality to see

/2—Ip|
_ 17 .
z A = m m igp,q,
Fq (z o sz)q = 'de Z/2m(€)m(€+ Ip|)e'Ppat
=—p
1 —p —p p/2-p| .
=37 (%) ‘ g |pr)\ | Ame+ fpleira
l=—p/2+1
L (=p\||~(—P
> — - _F
=57 ()| (3 +w)
L (=p\||~(—P
> — — — - :
_Qdm(2>m<2+ﬂ 1\)'

O]

The Proof of Proposition 2. First, we note that by applying Lemma 5, and setting p = w, g = ¢, we have

_ 1 1
= inf Fq(zoS,z f F SLZ f F S,Z))q|.
H2 we[zn—ﬁgéeps—l]c’( a(25¢2))u| = d wel2n— ﬁ?,zeps 1]C|( a(z05.7))e| = d pef2n— 1]1£qe[2s 1). |(Fa(z05,2))q|

For |p| < k — 1, we have

(208,2) — 24Zprq Un<gqgp+qg<n+d-1,
0 otherwise.
For any [p| <k —1, let
Ip::{qu:n§q§n+5—1 and n§q+p§n+5—1}.
One may check that
I _ n—pn+d—1]NZ ifp<0,
P [n,n4+0—1—p|NZ ifp>0.

Therefore, making a simple change of variables in the case p < 0, we have that in either case

1 1 n+5—1—|p|

— — __2milg/d —

Fq (Z o sz)q‘ = E E Z¢Zp+e® milg/d| _ g E Zezgﬂplemp,ql ,
LeT, {=n

where e!%r.e¢ is a unimodular complex number depending on p, ¢ and £. Using the assumptions (30) and
(31) we see that

1 n+6—1—|p| 5
5 Y e < Sl o] < gglenllenpl
d 2d
{=n+1
With this,
n+6—1—|p| ' 1 1 n+d—1—|p| ‘
’Fd 70 57) ‘ - ‘d L a\zn\lzn+|p|| - 'd Z 2
l=n {=n+1
1
7d‘anzn+\p|‘ = 2d|zn||zn+n 1|
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C The Proof of Lemma 7

Proof. Our proof requires the following sublemma which shows that, if n € Ly, then Algorithm 3 used in
the definition of a,, will only select indices ny corresponding to large Fourier coefficients.

Lemma 8. Letn € Ly, and let ng,...,ny, be the sequence of indices as introduced in the definition of au,.
Then .

~ f n

Fng)l = 1)

for all 0 < £ <b.

Proof. When ¢ = b, the claim is immediate from the fact that ny, = n. For all 0 < £ < b— 1, the definition
of ny implies that there exists an interval Iy of length 3, which is centered at some point a with |a| < |n|,
such that

Qp, = MAX A -
mely

Letting € = /3||IN||o0, We see that by (38) and Remark 1

~ ~ ~

|f(ne)| > an, — € = maxa,, — € > max|f(m)| — 2¢ > |f(n)| — 2e.
i mely mely

The result now follows from noting that € < W for alln € Ly. O

With Lemma 8 established, we may now prove Lemma 7. Let n € Ly and let ng, ... n; be the sequence

~ ~ -~ ~

describe in the definition of ay,. For 0 < £ <b—1, let t; := f(ner1)f(ne), aj = f(nes1)f(ne) + Nopoynes
and N; := N,

Neg41,Me"

and ¢, = |arg(aj) — arg(N;)|, as illustrated in Figure 5. By the law of sines and Lemma 8, we get that
d, Q N/

ty

Consider the triangle with sides aj, t;, and N; with angles 0, = |arg(aj) — arg(t¢)|

[

Figure 5: Triangle in the complex domain.

| N Nle 4N
sin(8,)| = |—¢ sin < — — < —= 46
[sin(6e)l ‘te (‘”)" FoolFoel = Fm)r 1o

for all 0 < ¢ < b. By the definition of Ly and Lemma 8, we have that for all £

n)|? ~ ~
TOIE < | FoliFones)l =

N7l < [N[loo <

Therefore, 0 < 0, < 7, and so by (46), we have

N
10 < T sin(6,)] < 2 INVee
2 | (n)?
By definition 7, = Zg;é arg(ty) and o, = ?;é arg(ay). Therefore, we have
. . b—1 b—1 N
67 — 0| < Jap — o] = | 3 arg(a)) — arg(te)] = Zef] < 2rp N ee.
=0 =0 £ (n)]
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From the definition of n,, we have
Ine — ng—1] 27—52%
for all 1 < /£ < b— 1. Therefore, the path length b is bounded by

|n — no|

2d
<=
gl

~ min|ng — ng_q|

Thus, we have

el _ (Bﬁan‘ < 9orh H/I\\IHOO < 4rd ”/1\\I||oo

f)P 7 [f(n))?

as desired.

D Additional Numerical Simulations using Algorithms 1 and 2

using Alg. 1 (d = 1025) Reconstruc

(a) d=33 (b) d = 33 (zoom) (c) d=1025 (d) d = 1025 (zoom)

Figure 6: Evaluating the convergence behavior of Algorithm 1. Figure plots reconstructions of the real
part of the test function at d = 33 and d = 1025 (along with an expanded view of the reconstruction in
[0,1]) on a discrete equispaced grid in [—m, 7] of 7003 points; we set p = min{(d — 5)/2,16|logy(d)]|} and
k=p—1.

In this section, we provide additional numerical simulations studying the empirical convergence be-
havior of Algorithms 1 and 2. We start with a study of the convergence behavior of Algorithm 1.
Here, we reconstruct the same test function using different discretization sizes d (with p chosen to be
min{(d — 5)/2,16|logy(d)|} and kK = p — 1), where the total number of phaseless measurements used is
Ld = (2p — 1)d. Fig. 6 plots representative reconstructions (of the real part of the test function) for
two choices of d (d = 33 and d = 1025). We note that the (smooth) test function illustrated in the
figure has several sharp and closely separated gradients, making the reconstruction process challenging.
This is evident in the partial Fourier sums (Py f) plotted for reference alongside the reconstructions from
Algorithm 1 (f.). For small d and p, we observe oscillatory behavior similar to that seen in the Gibbs
phenomenon. Nevertheless, we see that the proposed algorithm closely tracks the performance of the
partial Fourier sum, with reconstruction quality improving significantly as d (and p) increases.

We next evaluate the convergence behavior of Algorithm® 2 by reconstructing the same test function
using different discretization sizes d (with K =d/3,d = (K +1)/2, k =0 —1and s =k —1). Fig. 7
plots representative reconstructions (of the real part of the test function) for two choices of d (d = 57 and

Susing the alternate implementation — with (27) utilized in place of (28) in Step 2 of the Algorithm — as described in
Section 5
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expanded view for x € [0,1])

(a) d =57 (b) d = 57 (zoom) (c) d =921 (d) d = 921 (zoom)

Figure 7: Evaluating the convergence behavior of Algorithm 2. Figure plots reconstructions of the real

part of the test function at d = 57 and d = 921 (along with an expanded view of the reconstruction in
[0,1]) on a discrete equispaced grid in [—7, 7] of 7003 points; we set K = d/3,0 = (K+1)/2and k =0 —1.

d =921). As in Fig. 6, we note that the (smooth) test function has several sharp and closely separated

gradients, making the reconstruction process challenging. Again, the partial Fourier sums (Py f) plotted

alongside the reconstructions from Algorithm 2 (f.) exhibit Gibbs-like oscillatory behavior for small d

and k. Nevertheless, we see that the proposed algorithm closely tracks the performance of the partial

Fourier sum, with reconstruction quality improving significantly as d (and d, k) increases.
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