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Abstract

Ptychography is an imaging technique which involves a sample being
illuminated by a coherent, localized probe of illumination. When the
probe interacts with the sample, the light is di↵racted and a di↵raction
pattern is detected. Then the sample (or probe) is shifted laterally in space
to illuminate a new area of the sample whilst ensuring su�cient overlap.
Near-field Ptychography (NFP) (see, e.g., [1, 2, 3]) occurs when the sample
is placed at a short defocus distance having a large Fresnel number. In this
paper, we prove that certain NFP measurements are robustly invertible
(up to an unavoidable global phase ambiguity) by constructing a point
spread function and physical mask which leads to a well-conditioned lifted
linear system. We then apply a block phase retrieval algorithm using
weighted angular synchronization and prove that the proposed approach
accurately recovers the measured sample. Finally, we also propose using a
Wirtinger Flow for NFP problems and numerically evaluate that alternate
approach both against our main proposed approach, as well as with NFP
measurements for which our main approach does not apply.

1 Introduction

The task of recovering a complex signal x 2 Cd from phaseless magnitude
measurements is called the phase retrieval problem. These types of problems
appear in many applications such as optics [4, 5] and x-ray crystallography [6, 7].
Here, we are interested in phase retrieval problems arising from ptychography
[8], an imaging technique involving a sample illuminated by a coherent and often
localized probe of illumination. When the probe interacts with the sample, light
is di↵racted and a di↵raction pattern is detected. The probe, or the sample,
is then shifted laterally in space to illuminate a new area of the sample while
ensuring there is su�cient overlap between each neighboring shift. The intensity
of the di↵raction pattern detected at position ` resulting from the k

th shift of
the probe along the sample takes the general form of

Ỹk,` = |(D(Skm � x))`|
2
, (1)

1

ar
X

iv
:2

11
2.

10
80

4v
1 

 [m
at

h.
N

A
]  

20
 D

ec
 2

02
1



where x 2 Cd is the sample being imaged, m 2 Cd is a mask which represents
the probe’s incident illumination on (a portion of) the sample, � denotes the
Hadamard (pointwise) product, Sk is a shift operator, and D : Cd

! Cd is a
function that describes the di↵raction of the probe radiation from the sample
to the plane of the detector after possibly passing though, e.g, a lens.

Prior work in the computational mathematics community related to pty-
chographic imaging has primarily focused on far-field1 ptychography (FFP)
in which D is the action of a discrete Fourier transform matrix (see, e.g.,
[10, 11, 12, 13, 14, 15]) in (1). Here, in contrast, we consider the less well studied
setting of near-field ptychography (NFP) which describes situations where the
masked sample is too close to the detector to be well described by the FFP
model. See, e.g., [1, 2, 3] for such imaging applications as well as for more
detailed related discussions. In all of these NFP applications the acquired mea-
surements can again be written in the form of (1) where D is now a convolution
operator with a given Point Spread Function (PSF) p 2

d.
Let x 2 Cd denote an unknown sample, m 2 Cd be a known mask, and

p 2 Cd be a known PSF, respectively. For the remainder of this paper we will
suppose we have noisy discretized NFP measurements of the form

Yk,` = Yk,` (x) := |(p ⇤ (Skm � x))`|
2 +Nk,`, (k, `) 2 S ✓ [d]0 ⇥ [d]0 (2)

where Sk is a circular shift operator (Skx)n = xn+k mod d, N = (Nk,`) is an
additive noise matrix, and [d]0 := {0, . . . , d�1}. Throughout this paper we will
always index vectors and matrices modulo d unless otherwise stated.

1.1 Results, Contributions, and Contents

Our main theorem guarantees the existence of a PSF p 2 Cd and a locally
supported mask m 2 Cd with supp(m) ✓ [�]0 := {0, . . . , � � 1}, � ⌧ d, for
which the measurements (2) can be inverted up to a global phase factor by a
computationally e�cient and noise robust algorithm. In particular, we prove
the following result which we believe to be the first theoretical error guarantee
for a recovery algorithm in the setting of NFP.

Theorem 1 (Inversion of NFP Measurements). Choose � 2 [d]0 such that 2��1
divides d. One can construct a PSF p 2 Cd and a mask m 2 Cd with supp(m) ✓
[�]0 such that Algorithm 1 below, when provided with input measurements (2),
will return an estimate xest 2 Cd of x satisfying

min
�2[0,2⇡)

kxest � e
�xk2  C

✓
kxk1

d
p
�

p
kxestk

2
1 + kxestk

3
1

|xest|
2
min

· kNkF +
p

d�kNkF

◆
.

Here C 2 R+ is an absolute constant2, and |xest|min denotes the smallest mag-
nitude of any entry in xest.

1
Far-field versus near-field measurements are defined based on the Fresnel number of the

imaging system. See, e.g., [9] for details.
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Looking at Theorem 1 we can see, e.g., that in the noiseless setting where
kNkF = 0 the output xest of Algorithm 1 is guaranteed to match the measured
signal x up to a global phase factor whenever xest has no zeros.3 Moreover,
the method is also robust to small amounts of additive noise. The proof of
Theorem 1 consists of two parts: First, in Section 3, we show that a specific
PSF and mask choice results in NFP measurements (2) which are essentially
equivalent to far-field ptychographic measurements (4) that are known to be
robustly invertible by prior work [11, 12, 14]. This guarantees the existence of a
PSF and mask which allow for the robust inversion of (2) up to a global phase.
However, these prior works all prove error bounds on min

�2[0,2⇡)
kxest�e

�xk2 which

scale quadratically in d (see, e.g., Corollary 3 in [12] and Theorem 1 in [14]). This
motivates the second part of the proof in Section 4, where we use the results
of [16] to improve these results so that they only depend linearly on d. We
also note that the improved dependence on d proven in Section 4 for the FFP
methods previously analyzed in [11, 12, 14] may be of potential independent
interest.

Theorem 1 applies to a specific p,m pair (described precisely in Lemma 2).
In order to be able to handle more general p and m, in Section 5, we also show
that the NFP measurements (2) may be recovered via a Wirtinger Flow based
algorithm, Algorithm 2. This approach is particularly useful in situations where
the mask is non-compactly supported and, unlike Algorithm 1, it allows us to
use fewer shifts. Similar to Algorithm 1, Algorithm 2 relies on the observation
that the NFP measurements (2) are essentially equivalent to FFP measurements
as shown in Section 3. In Section 6, we evaluate Algorithms 1 and Algorithm
2, numerically, both individually and in comparison to one another in the case
of locally supported masks. Finally, in Section 7, we conclude with a brief
discussion of future work.

2 Preliminaries: Prior Results for Far-Field Pty-
chography using Local Measurements

Our method, described in Algorithm 1, is based on relating the near-field pty-
chographic measurements (2) to far-field ptychographic measurements of the
form

eYk,` = eYk,` (x) :=

�����

d�1X

n=0

m
0
n
xn+ke

�2⇡ `n/d

�����

2

+Nk,`, (3)

where m0 is a compactly supported mask. If we let ( qm`)n := m0
n
e
�2⇡ `n/d, then

these measurements can be written as

eYk,` = |h qm`, Skxi|
2 +Nk,` (4)

2
In this paper we will use C to denote absolute constants which may change from line to

line.
3
Note that prior work on far-field ptychography assumed that x itself was non-vanishing

(see e.g. [11, 12]). However, requiring xest to not vanish is more easily verifiable in practice.
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Table 1: Notational Reference Table

Notation Definition Notes

[n]0 [n]0 = {0, 1, 2, . . . , n� 1} Zero indexing

(x)n x 2 Cd
, (x)n = xn mod d Vector circular indexing

(A)i,j A 2 Cm⇥n
, (A)i,j = Ai mod m,j mod n Matrix circular indexing

hx,yi hx,yi =
P

d�1
n=0 xnyn = y⇤x Complex inner product

supp(x) supp(x) = {n 2 [d]0 | xn 6= 0} Support

Fd (Fd)j,k = e
�2⇡ jk/d

, 8(j, k) 2 [d]0 ⇥ [d]0 Discrete Fourier transform matrix

bx bxn = (Fdx)n =
P

d�1
k=0 xke

�2⇡ nk/d Discrete Fourier transform

F�1
d

x (F�1
d

x)n = 1
d

P
d�1
k=0 xke

2⇡ kn/d Discrete inverse Fourier transform

Sk(x) (Skx)n = x(n+k) mod d, 8n 2 [d]0 Circular shift

ex exn = x�n mod d, 8n 2 [d]0 Reversal

x ⇤ y (x ⇤ y)n =
P

d�1
k=0 xkyn�k Circular convolution

x � y (x � y)n = xnyn Hadamard (pointwise) product

where as above Sk denotes a circular shift of length k, i.e., (Skx)n = xn+k. In
[11], phase retrieval measurements of this form are studied whenm0 is supported
in an interval of length � for some � ⌧ d. The fast phase retrieval (fpr) method
used there relies on using a lifted linear system involving a block-circulant matrix
to recover a portion of the autocorrelation matrix xx⇤. Specifically, letting
D := d(2� � 1), the authors define a block-circulant matrix |M 2 CD⇥D by

|M :=

0

BBBB@

|M0
|M1 . . . |M��1 0 0 . . . 0

0 |M0
|M1 . . . |M��1 0 . . . 0

...
...

...
. . .

. . .
...

...
...

|M1 . . . |M��1 0 0 0 . . . |M0

1

CCCCA
. (5)

where the matrices |Mk 2 C(2��1)⇥(2��1) are defined entry-wise by

(|Mk)`j :=

8
><

>:

( qm`)k( qm`)j+k
, 0  j  � � k

( qm`)k( qm`)j+k�2�, 2� � 1 + k  j  2� � 2 and k < �

0, otherwise.

(6)

Letting z 2 Cd be a vector obtained by subsampling appropriate entries of
vec(xx⇤), the authors show that, in the noiseless setting,

vec( eY) = |Mz, eY 2 Cd⇥(2��1)
. (7)

(See Equation (9) of [11] for explicit details on the arrangement of the entries.)

For properly chosen m, the matrix |M is invertible, and therefore one may solve
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for z by multiplying by |M�1, i.e., z = |M�1vec(Y). Then, one may reshape z

to recover a d ⇥ d matrix bX whose non-zero entries are estimates of the auto-
correlation matrix xx⇤. One may then obtain a vector xest which approximates
x by angular synchronization procedure such as the eigenvector-based method
which we will discuss in Section 2.1.

In [11], it is shown that exponential masks qm(fpr)
`

defined by

( qm(fpr)
`

)n =

(
e
�(n+1)/a

4p
2��1

· e
2⇡ n`
2��1 , n 2 [�]0

0, otherwise
, a := max

⇢
4,

� � 1

2

�
(8)

lead to a lifted linear system which is well-conditioned and thus to provable
recovery guarantees for the method described above. In particular, we may
obtain the following upper bound for the condition number of block-circulant

matrix |M(fpr) obtained when one sets qm = qm(fpr)
`

.

Theorem 2 (Theorem 4 and Equation (33) in [11]). The condition number of
|M(fpr), the matrix obtained by setting m = qm(fpr)

`
in (6), may be bounded by



⇣
|M(fpr)

⌘
< max

⇢
144e2,

9e2(� � 1)2

4

�
 C�

2
, C 2 R+

.

Furthermore, |M(fpr) can be inverted in O(� · d log d)-time and its smallest sin-

gular value �min

⇣
|M(fpr)

⌘
is bounded from below by C/�.

2.1 Angular Synchronization

Inverting |M as described in the previous subsection allows one to obtain a
portion of the autocorrelation matrix xx⇤. This motivates us to consider angular
synchronization, the process of recovering a vector x from (a portion of) its

autocorrelation matrix xx⇤ (or an estimate bX). One popular approach, which we
discuss below, is based on upon first entry-wise normalizing this matrix and then
taking the lead eigenvector. Specifically, we define a truncated autocorrelation
matrix X corresponding to the true signal x by

Xj,k =

(
xjxk, |j � k| mod d < �

0, otherwise.
(9)

We also define a truncated autocorrelation matrix bX corresponding to our esti-
mate, xest, given by

bXj,k =

(
(xest)j(xest)k, |j � k| mod d < �

0, otherwise.
(10)

5



The method from [11] is based upon first solving for bX and then solving for

xest. If bX is a good approximation of X, then the results proved in [17] show
that xest will be a good approximation of x.

Moving forward, prior works [11, 17] e↵ectively decomposed X = X(✓)
�

X(mag) into its phase and magnitude matrices by setting X
(mag)
j,k

= |Xj,k| and

X
(✓)
j,k

= Xj,k/|Xj,k| if |Xj,k| 6= 0 with X
(✓)
j,k

= 0 otherwise. One may then write
bX = bX(✓)

� bX(mag). Note that by construction, if x is nonvanishing, then we

have |X
(✓)
j,k

| = 1 and X
(mag)
j,k

> 0 whenever |j� k| mod d < �. Letting u 2 Cd be

the leading eigenvector of bX and letting diag(bX) 2 Cd be the main diagonal of
bX, the output of the resulting algorithm was then xest := diag(bX) � u.

Example 1. Let d = 4, � = 2. Then bX defined as in (10) is given by

bX =

0

BB@

|(xest)0|
2 (xest)0(xest)1 0 (xest)0(xest)3

(xest)1(xest)0 |(xest)1|
2 (xest)1(xest)2 0

0 (xest)2(xest)1 |(xest)2|2 (xest)2(xest)3
(xest)3(xest)0 0 (xest)3(xest)2 |(xest)3|2

1

CCA

If we write (xest)n = |(xest)n|e ✓n , then we may compute

bX(✓) =

0

BB@

1 e
i(✓0�✓1) 0 e

i(✓0�✓3)

e
i(✓1�✓0) 1 e

i(✓1�✓2) 0
0 e

i(✓2�✓1) 1 e
i(✓2�✓3)

e
i(✓3�✓0) 0 e

i(✓3�✓2) 1

1

CCA

One may verify that the lead eigenvector is u = (e ✓0 e
i✓1 e

i✓2 e
✓3)T and there-

fore

xest =
q
diag(bX) � u = (|(xest)0|e

✓0 |(xest)1|e
✓1 |(xest)2|e

✓2 |(xest)3|e
✓3)T .

In Section 4, we will discuss another slightly more sophisticated way for
estimating the phases based on Algorithm 3 of [18] which involves taking the
smallest eigenvector of an appropriately weighted graph Laplacian. Indeed, this
new angular synchronization approach is what ultimately allows for the NFP
error bound in Theorem 1 to have improved dependence on signal dimension d

over prior FFP error bounds in [11, 12, 14].

3 Near from Far: Guaranteed Near-Field Pty-
chographic Recovery via Far-Field Results

In this section, we show how to relate the near-field ptychographic measurements
(2) to the far-field ptychographic measurements (4). This will allow us to recover
x by using methods similar to those introduced in [11]. In order get nontrivial
bounds, we will also need to prove the existence of an admissible PSF and mask

6



pair, p 2 Cd and m 2 Cd, which lead to a well conditioned linear system in
(7). In particular, we will present a PSF and mask pair such that the resulting

block-circulant matrix, denoted |M(p,m), will have the same condition number as

the matrix |M(fpr) constructed from the masks qm(fpr)
`

defined in (8). Therefore,
Theorem 2 will allow us to obtain convergence guarantees for Algorithm 1.

Here, we will set the measurement index set S considered in (2) to be S =
K ⇥ L where K = [d]0 and L = [2� � 1]0. The following lemma proves that
we can rewrite NFP measurements from (2) as local FFP measurements of the
form (4) as long as the mask m has local support and the PSF is periodic. It
will be based upon defining masks

qm(p,m)
`

:= S`ep �m 2 Cd
, (11)

where ep is the reversal of p about its first entry modulo d, i.e., epn = p�n mod d

Since the masks qm(p,m)
`

have compact support, this will then yield a lifted set
of linear measurements of the type considered in [11, 12, 14].

Lemma 1. Let S = K ⇥ L = [d]0 ⇥ [2� � 1]0, and recall the measurements

Yk,` = |(p ⇤ (Skm � x))`|
2
, (k, `) 2 S.

defined in (2). Suppose that 2� � 1 divides d, that p 2 Cd is 2� � 1 periodic,
and that m 2 Cd satisfies supp(m) ✓ [�]0. Then, we may rearrange the mea-
surements (2) into a matrix of FFP-type measurements

eYk,` := Y�k mod d, k�` mod 2��1 = |h qm(p,m)
`

, Skxi|
2
, (k, `) 2 [d]0 ⇥ [2� � 1]0,

(12)

where qm(p,m)
`

is defined as in (11). As a consequence, recovering x is equivalent
to inverting a block-circulant matrix as described in (5) – (7).

Proof. By Lemma 9 part 1 , Lemma 8, Lemma 9 part 2, and Lemma 7 from
Appendix A, we have that

Yk,` = |(p ⇤ (Skm � x))`|
2 = |hS�`ep, Skm � xi|2

= |hS�`ep � Skm,xi|2

= |hSk(S�`�kep �m),xi|2

= |hSk(S�`�kep �m),xi|2

= |hSk(S�`�k mod 2��1ep �m),xi|2,

where the last equality uses the fact that p is 2� � 1 periodic. We may now
apply Lemma 9 part 3 to see that

Yk,` = |hSk(S�`�k mod 2��1ep �m),xi|2 = |h(S�`�k mod 2��1ep �m), S�kxi|
2
.

Finally, since qm(p,m)
`

= S`ep �m, we see that for all k 2 [d]0 and all ` 2 [2��1]0,
we have

eYk,` = Y�k mod d, k�` mod 2��1

7



= |h(S�(k�`)�(�k) mod 2��1ep �m), S�(�k)xi|
2

= |h(S` mod 2��1ep �m), Skxi|
2

= |h qm(p,m)
`

, Skxi|
2
.

Remark 1. If we instead restrict the domain on our NFP measurements to
(k, `) 2 [k2[d]0{d�k}⇥{k�2�+2, . . . , k�1, k} mod d then we may remove the
assumption that p is 2�� 1 periodic. In particular, if one substitutes k = d� k

0

and `
0 = k

0
� i for some 0  i  2� � 2, then one has (�k

0
� `

0) mod d = i.
Thus, since 0  i  2� � 2, (�`

0
� k

0) mod 2� � 1 = (�`
0
� k

0) mod d, and so
we may use the same calculation as above without assuming that p is 2� � 1
periodic.

Next, in Lemma 2 below, we will show how to choose a mask m and PSF

p such that qm(p,m)
`

defined as in (11) and qm(fpr)
2` mod 2��1 defined as in (8) will

only di↵er by a global phase for each ` 2 [2�� 1]0. As a consequence, we obtain
the desired result that the block-circulant matrix arising from our the NFP
measurements (2) is essentially equivalent (up to a row permutation and global

phase shift) to the well-conditioned lifted linear measurement operator |M(fpr)

considered in Theorem 2.

Lemma 2. Let p,m 2 Cd have entries given by

pn := e
� 2⇡ n

2

2��1 , and mn :=

8
<

:

e
�n+1

/a

4p
2� � 1

· e

2⇡ n
2

2��1 , n 2 [�]0

0, otherwise
,

where a := max

⇢
4,

� � 1

2

�
. Then for all ` 2 [2� � 1]0, qm(p,m)

`
= S`ep �m

satisfies

qm(p,m)
`

= e

2⇡ `
2

2��1 · qm(fpr)
2` mod 2��1, (13)

where qm(fpr)
`

is defined as in (8). As a consequence, if we let |M(fpr) and |M(p,m)

be the lifted linear measurement matrices as per (5) obtained by setting each qm`

in (6) equal to qm(fpr)
`

and qm(p,m)
`

, respectively, then we will have

|M(p,m) = P|M(fpr) (14)

where P is a D ⇥D block diagonal permutation matrix. Thus |Mp,m and |Mfpr

have the same singular values and



⇣
|M(p,m)

⌘
= 

⇣
|M(fpr)

⌘
 C�

2
,

where (·) denotes the condition number of a matrix.
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Proof. Using the definition of the Hadamard product �, the circulant shift op-
erator S` and the reversal operator x 7! ex, we see that

( qm(p,m)
`

)n = (S`ep �m)n = (S`ep)nmn = ep
n+`

mn = p�n�`
mn.

Therefore, inserting the definitions of p and m above shows that for n 2 [�]0

( qm(p,m)
`

)n = e

2⇡ (n+`)2

2��1 ·
e
�(n+1)/a

4p
2� � 1

· e
� 2⇡ n

2

2��1

= e

2⇡ n
2

2��1 · e

4⇡ n`

2��1 · e

2⇡ `
2

2��1 ·
e
�(n+1)/a

4p
2� � 1

· e
� 2⇡ n

2

2��1

= e

2⇡ `
2

2��1

✓
e
�(n+1)/a

4p
2� � 1

· e
2⇡ n(2`)

2��1

◆
= e

2⇡ `
2

2��1
⇣

qm(fpr)
2` mod 2��1

⌘

n

.

For n /2 [�]0, we have
⇣

qm(p,m)
`

⌘

n

= e

2⇡ `
2

2��1
⇣

qm(fpr)
2` mod 2��1

⌘

n

= 0. Thus (13)

follows.
To prove (14), let |M(p,m) and |M(p,m)

k
be the matrices obtained by using the

mask qmp,m

`
in (5) and (6) and let |M(fpr) and |M(fpr)

k
be the matrices obtained

using m(fpr)
`

instead. Then combining (13) and (6) implies that
⇣

|M(p,m)
k

⌘

i,j

=
⇣

|M(fpr)
k

⌘

2i mod 2��1,j
. For example, when j 2 [� � k + 1]0 one may check

⇣
|M(p,m)

k

⌘

i,j

= e

2⇡ i
2

2��1
⇣

qm(fpr)
2i mod 2��1

⌘

k

e

2⇡ i
2

2��1
⇣

qm(fpr)
2i mod 2��1

⌘

j+k

(15)

=
⇣

|M(fpr)
k

⌘

2i mod 2��1,j
,

and one may perform similar computations in the other cases. Since each |M(p,m)
k

and |M(fpr)
k

have 2��1 rows and the mapping i ! 2i is a bijection on Z/(2��1)Z
we see that each |M(p,m)

k
may be obtained by permuting the rows of |M(fpr)

k
(and

that the permutation does not depend on k). Therefore, there exists a block

diagonal permutation matrix P such that |M(p,m) = P|M(fpr). Finally, the
condition number bound for |M(p,m) now follows from Theorem 2 and the fact
that permuting the rows of a matrix does not change its condition number or
any of its singular values.

Lemma 1 above demonstrates how to recast NFP problems involving lo-
cally supported masks and periodic PSFs as particular types of FFP problems.
Then, Lemma 2 provides a particular PSF and mask combination for which
the resulting FFP problem can be solved by inverting a well-conditioned lin-
ear system. Together they imply that, for properly chosen m and p, one may
robustly invert the measurements given in (2) by first recasting the NFP data
as modified FFP data and then using the BlockPR approach from [11, 12, 14].
This is the main idea behind Algorithm 1. However, this approach will lead to

9



theoretical error bounds which scale quadratically in d. To remedy this, the final
step of Algorithm 1 uses an alternative angular synchronization method (which
originally appeared in [18]) based on a weighted graph Laplacian as opposed
to previous works which used methods based on, e.g., the methods outlined in
Section 2.1. As we shall see in the next section, this will allow us to obtain
bounds in Theorem 1 which depend linearly in d rather than quadratically.

Algorithm 1 NFP-BlockPR

Require:
1) Variables d, �, D = d(2� � 1).
2) A 2� � 1 periodic PSF p 2 Cd, and a mask m 2 Cd with supp(m) ✓ [�].
3) A near-field ptychographic measurement matrix Y 2 Cd⇥2��1.

Ensure: xest with xest ⇡ e
i✓x for some ✓ 2 [0, 2⇡].

1) Form masks qm(p,m)
`

= S`ep �m and matrices |M(p,m) as per (5) and (6).

2) Compute z =
⇣

|M(p,m)
⌘�1

vec(Y) 2 CD.

3) Reshape z to get bX as per Section 2.1 containing estimated entries of xx⇤.
4) Use weighted angular synchronization (Algorithm 3, [18]) to obtain xest.

4 Error Analysis for Algorithm 1

In this section, we will prove our main result, Theorem 1, which provides ac-
curacy and robustness guarantees for Algorithm 1. For x 2 Cd, we write its
n
th entry as xn =: |xn|e

✓n and let x(mag) := (|x0|, . . . , |xd�1|)T and x(✓) :=
(e ✓0 , e

✓1 , . . . , e
✓d�1)T so that we may decompose x as

x = x(mag)
� x(✓)

. (16)

The following lemma upper bounds the total estimation error it terms of its
phase and magnitude errors. For a proof, please see Appendix A.

Lemma 3. Let x be decomposed as in (16), and similarly let xest be decomposed

xest = x(mag)
est � x(✓)

est. Then, we have that

min
�2[0,2⇡)

��x� e
�xest

��
2
 kxk1 min

�2[0,2⇡)

���x(✓)
est � e

�x(✓)
���
2
+
���x(mag)

� x(mag)
est

���
2
.

(17)

In light of Lemma 3, to bound the total error of our algorithm, it su�ces to
consider the phase and magnitude errors separately. In order to bound kx(mag)

�

x(mag)
est k2, we may utilize the following lemma which is a restatement of Lemma

3 of [11].

Lemma 4 (Lemma 3 of [11]). Let �min

⇣
|M(p,m)

⌘
denote the smallest singular

10



value of the lifted measurement matrix |M(p,m) from line 1 of Algorithm 1. Then,

���x(mag)
� x(mag)

est

���
1

 C

vuut
kNkF

�min

⇣
|M(p,m)

⌘ .

Having obtained Lemma 4, we are now able to prove the following theorem
bounding the total estimation error.

Theorem 3. Let p and m be the admissible PSF, mask pair defined in Lemma
2. Then, we have that

min
�2[0,2⇡)

��x� e
�xest

��
2
 kxk1 min

�2[0,2⇡)

���x(✓)
est � e

�x(✓)
���
2
+ C

p
d�kNkF .

Proof. Combining Lemmas 3 and 4 along with the inequality kuk2 
p
dkuk1,

implies that

min
�2[0,2⇡)

kx� e
�xestk2  kxk1 min

�2[0,2⇡)

���x(✓)
est � e

�x(✓)
���
2
+C

vuut
dkNkF

�min

⇣
|M(p,m)

⌘ .

(18)

As noted in Lemma 2, the singular values of |M(p,m) are the same as those of
|M(fpr). Therefore, applying Theorem 2 then finishes the proof.

Remark 2. Note that the inequality (18) in the proof of Theorem 3 holds any
time 2��1 divides d, p 2 Cd is 2��1 periodic, and m 2 Cd satisfies supp(m) ✓
[�]0. Therefore, results analogous to Theorem 3 may be produced for any p and

m pair such that �min

⇣
|M(p,m)

⌘
> 0.

In order to bound
���x(✓)

est � e
�x(✓)

���
2
, we will need a few additional definitions.

As in (9), let X denote the partial autocorrelation matrix corresponding to the

true signal x and as in (10), and let bX denote the partial autocorrelation matrix
corresponding to xest, i.e., the matrix obtained in step 3 of Algorithm 1). Let
G = (V,E,W) be a weighted graph whose vertices are given by V = [d]0, whose
edge set E is taken to be the set of (i, j) such that i 6= j and |i� j mod d| < �,
and whose weight matrix W is defined entrywise by

Wi,j =

(
| bXi,j |

2
, 0 < |i� j| mod d < �

0, otherwise
. (19)

Letting AG denote the unweighted adjacency matrix of G, we observe that by
construction, we haveX = (I+AG)�xx⇤ and bX = (I+AG)�xestx⇤

est. LettingD
denote the weighted degree matrix, we define the unnormalized graph Laplacian
by LG := D�W and the normalized graph Laplacian by LN := D�1/2LGD�1/2.
It is well known that both LG and LN are positive semi-definite with a minimal

11



eigenvalue of zero (see, e.g., Section 3.1, [19]). We will let ⌧G denote the spectral
gap (second smallest eigenvalue) of LG. It is well known that if G is connected
then ⌧G is strictly positive (see, e.g., Lemma 3.1.1, [19]).

In [16], the authors used a weighted graph approach to prove the following

result which bounds min
�2[0,2⇡)

kx(✓)
est � e

�x(✓)
k2 .

Theorem 4 (Corollary 3, [16]). Consider the weighted graph G = (V,E,W)
described in the previous paragraph with weight matrix given as in (19). Let ⌧G
denote the spectral gap of the associated unnormalized Laplacian LG. Then we
have that

min
�2[0,2⇡)

���x(✓)
est � e

�x(✓)
���
2
 C

p
1 + kxestk1 ·

kX� bXkF
p
⌧G

, C 2 R+
.

Remark 3. The
p
1 + kxestk1 term is referred to in Theorem 4 of [16] as a

tightness penalty which is applied when taking the non-convex constraint and
performing an eigenvector relaxation, allowing us to use the method of angular
synchronization involving the weighted Laplacian given in Algorithm 3 of [18].

In order to utilize Theorem 4 we require both an upper bound of kX� bXkF

and a lower bound for the spectral gap ⌧G. These are provided by the next two
lemmas.

Lemma 5. Let p and m be defined as in Lemma 2. Then, kX � bXkF 

C�kNkF .

Proof. Let vec : Cd⇥d
!

D be the vectorization operator considered in (7). It
follows from (4), (7), and Step 2 of Algorithm 1, that

vec(Y) = |Mvec(bX) and vec(Y �N) = |Mvec(X).

Therefore,
���X� bX

���
F



����
⇣

|M(p,m)
⌘�1

vec(N)

����
2


kvec(N)k2

�min

⇣
|M(p,m)

⌘  C�kNkF ,

where final inequality again utilizes Lemma 2 and Theorem 2.

Lemma 6. For the graph G considered in Theorem 4, we have that

⌧G �
|(xest)min|

4

kxestk
2
1

4(� � 1)

d2
.

Proof. Letting Wmin and Wmax be the minimum and maximum value of any of
the (nonzero) entries of W, we have that Wmin � |(xest)2min, Wmax  kxestk

2
1,

and diam(Gunw) � d/(2� � 1) (where diam(Gunw) is the diameter of the un-
weighted version of G). Therefore, by Theorem 5 in Appendix B, we have that

⌧G �
|(xest)min|

4

kxestk
2
1

2

(d� 1)diam(G)
�

|(xest)min|
4

kxestk
2
1

4(� � 1)

d2
.
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We shall now finally prove our main result.

The Proof of Theorem 1. By Theorem 3, we have

min
�2[0,2⇡)

��x� e
�xest

��
2
 kxk1 min

�2[0,2⇡)

���x(✓)
est � e

�x(✓)
���
2
+ C

p
d�kNkF .

Combining Theorem 4 with Lemmas 5 and 6 yields

min
�2[0,2⇡)

���x(✓)
est � e

✓x(✓)
���
2
 C

p
1 + kxestk1 ·

kX� bXkF
p
⌧G

 C

p
1 + kxestk1 ·

d
p
�kxestk1kNkF

|(xest)min|
2

.

The result follows.

5 An Alternate Approach: Near-Field Ptychograhy
via Wirtinger Flow

In the previous sections we have demonstrated a particular point spread func-
tion and mask for which NFP measurements are guaranteed to allow image
reconstruction via Algorithm 1. However, in many real-world scenarios the
particular mask and PSF combination considered above are not of the type
actually used in practice. For example, in the setting considered in [3] the
PSF p ideally behaves like a low-pass filter (so that, e.g., bp is supported in
{k 2 Z| � K < k mod d < K} for some K ⌧ d), and the mask m is globally
supported in [d]0. In contrast, the PSF considered above has its nonzero Dis-
crete Fourier coe�cients at frequencies in {kd/(2� � 1)}k2[2��1]0 (and thus its
Fourier support includes large frequencies), and the mask m has small physical
support in [�]0. This motivates us to we explore a variant of the well known
Wirtinger Flow algorithm [20] in this section. This method, Algorithm 2, can be
applied to more general set of PSF and mask pairs than Algorithm 1 considered
in the previous section.

Suppose we have noiseless NFP measurements of the form

Yk,` = |(p ⇤ (Skm � x))`|
2
, (k, `) 2

[

0kK�1

{d� k}⇥ {K � L+ 1, . . . , k} mod d,

where K,L 2 [d+ 1]0 \ {0}. Then by the same argument used in Lemma 1 (see
also in Remark 1), we can manipulate the measurements above so that we have

eYk,` = |h qm(p,m)
`

, Skxi|
2
, (k, `) 2 [K]0 ⇥ [L]0,

where the masks qm(p,m)
`

are defined as in (11). We may then reshape these
measurements into a vector y 2 CKL with entries given by

yn := |h qm(p,m)
n mod L

, Sb n
L cxi|

2
, 8n 2 [KL]0. (20)
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After this reformulation, we may then apply a standard Wirtinger Flow Algo-
rithm with spectral initialization. Full details are given below in Algorithm 2.

Algorithm 2 NFP Wirtinger Flow

Require:
1) Size d 2 N, number of iterations T , stepsizes µ⌧+1 for ⌧ 2 [T ]0.4

2) PSF p 2 Cd, mask m 2 Cd, qm(p,m)
`

= S`ep �m.
3) Noisy measurements Yk,` = |(p ⇤ (Skm � x))`|2 +Nk,`.

Ensure: xest 2 Cd with xest ⇡ e
i✓x for some ✓ 2 [0, 2⇡]

1) Rearrange measurement matrix to form measurement vector y in (20).
2) Compute z0 using spectral method (Algorithm 1 in [20]).

3) For ⌧ 2 [T ]0, let z⌧+1 = z⌧ �
µ⌧+1

kz0k2
rf(z⌧ ) where

f(z) :=
1

KL

P
KL

n=1

✓���
⇣
S�b n

L c qm(p,m)
n mod L

⌘⇤
z
���
2

� yn

◆2

.

4) Return xest = zT .

6 Numerical Simulations

In this section, we evaluate Algorithms 1 and 2 with respect to both noise ro-
bustness and runtime. Every data point in the plots below reports an average
reconstruction error or runtime over 100 tests. For each test, a new sample
x 2 Cd is randomly generated by choosing each entry to have independent
and identically distributed (i.i.d.) mean 0 and variance 1 Gaussian real and
imaginary parts. We then attempt to recover this sample from the noisy mea-
surements Yk,` (x) defined as in (2) where the additive noise matrices N also
have i.i.d. mean 0 Gaussian entries.

In our noise robustness experiments, we plot the reconstruction error as a
function of the Signal-to-Noise Ratio (SNR), where we define the reconstruction
error by

Error(x,xest) := 10 log10

✓
min� kx� e

�xestk
2
2

kxk22

◆
,

and the SNR by

SNR(Y,N) := 10 log10

✓
kY �NkF

kNkF

◆
.

In these experiments, we re-scale the noise matrix N in order to achieve each
desired SNR level. All simulations were performed using MATLAB R2021b on
an Intel desktop with a 2.60GHz i7-10750H CPU and 16GB DDR4 2933MHz
memory. All code used to generate the figures below is publicly available at
https://github.com/MarkPhilipRoach/NearFieldPtychography.

4
For our numerical simulations in Section 6, we set µ⌧ = min(1�e�⌧/330, 0.4) as suggested

in [20].
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6.1 Algorithms 1 and 2 for Compactly Supported Masks

In these experiments, we choose the measurement index set for (2) to be S =
K ⇥ L where K = [d]0 and L = [2� � 1]0. As a consequence we see that we
consider all shifts k 2 [d]0 of the mask while observing only a portion of each
resulting noisy near-field di↵raction pattern |p ⇤ (Skm � x)|2 for each k. This
corresponds to a physical imaging system where, e.g., the sample and (a smaller)
detector are fixed while a localized probe with support size � scans across the
sample. Figure 1 evaluates the robustness and runtime of Algorithm 1 as a
function of the SNR and mask support � in this setting. Looking at Figure 1
one can see that noise robustness increases with the support size of the mask,
�, in exchange for mild increases in runtime.

Figure 1: An evaluation of Algorithm 1 for the proposed PSF and mask with
d = 945. Left: Reconstruction error vs SNR for various � = |supp(m)|. Right:
Runtime as a function of �.

Figure 2 compares the performance of Algorithm 1 and Algorithm 2 for the
measurements proposed in Lemma 2. Looking at Figure 2 we can see that Algo-
rithm 2 takes longer to achieve comparable errors to Algorithm 1 for these par-
ticular p and m as SNR increases. More specifically, we see, e.g., that BlockPR
achieves a similar reconstruction error to 500 iterations of Wirtinger flow at an
SNR of about 50 in a small fraction of the time. This supports the value of the
BlockPR method as a fast initializer for more traditional optimization-based
solution approaches.
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Figure 2: A comparison of Algorithms 1 and 2 for the proposed PSF and mask
with � = 26 and d = 102. Left: Reconstruction error vs SNR for various numbers
of Algorithm 2 iterations. Right: The corresponding average runtimes.

6.2 Algorithm 2 for Globally Supported Masks

As we saw in the previous section, Algorithm 1 is able to invert NFP measure-
ments more e�ciently than Algorithm 2 in situations where it is applicable.
However, Algorithm 1 only applies to locally supported masks. In this sec-
tion, we will show that Algorithm 2 remains e↵ective even when the masks are
globally supported, such as the masks considered in [3].

In Figure 3, we evaluate Algorithm 2 using noisy measurements of the form

Yk,` = |(p ⇤ (Skm � x))`|
2 +Nk,l, (k, `) 2 [K]0 ⇥ [d]0. (21)

Here p 2 Cd is a low-pass filter with bp = S�(��1)/2 � where � = d

3 + 1 and

� 2 {0, 1}d is a vector whose first � entries are 1 and whose last d�� entries are
0. Here, we choose the maskm to have i.i.d. mean 0 variance 1 Gaussian entries.
Thus, the measurements considered in (21) di↵er from those used in Section 6.1
in two crucial respects: i) the mask m here has global support. ii) we utilize a
small number of mask shifts and observe the entire di↵raction pattern resulting
from each one (as opposed to observing just a portion of each di↵raction pattern
from all possible shifts, as above). Examining Figure 3, one can see Algorithm 2
remains e↵ective in this setting. We also observe, as expected, that using more
shifts, i.e., collecting more measurements, results in lower reconstruction errors.
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Figure 3: The reconstruction error of Algorithm 2 with d = 102, L = [d]0, and
number of iterations T = 2000. Left: Reconstruction error vs the number of
total shifts K for fixed SNR = 80. Right: Reconstruction error vs SNR for
various numbers of shifts K.

7 Conclusions and Future Work

We have introduced two new algorithms for recovering a specimen of interest
from near-field ptychographic measurements. Both of these algorithms relie
on first reformulating and reshaping our measurements so that they resem-
ble widely-studied far-field ptychographic measurements. We then recover our
method using either Wirtinger Flow or via methods based on [11]. Algorithm 1
is computational e�cient and, to the best of our knowledge, is the first algorithm
with provable recovery guarantees for measurements of this form. Algorithm 2,
on the other hand, has the advantage of being applied to more general masks
with global support. Developing more e�cient and provably accurate algorithms
for this latter class of measurements remains an interesting avenue for future
work.
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A Technical Lemmas

We state the following lemmas for the sake of completeness. Note that we index
all vectors modulo d.

Lemma 7. Let x,y 2 Cd. We have that |hx,yi|2 = |hx,yi|2.

Lemma 8. Let x,y 2 Cd. We have that hx,y � zi = hx � y, zi.

Proof. By the definition of the inner product and the Hadamard product

hx,y � zi =
d�1X

n=0

xn(y � z)n =
d�1X

n=0

xnynzn =
d�1X

n=0

(x � y)nzn = hx � y, zi.

Lemma 9. Let x,y 2 Cd
, k 2 Z. We have that

1. (x ⇤ y)k = hS�kex,yi;

2. x � Sky = Sk(S�kx � y);

3. hSkx,yi = hx, S�kyi.
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Proof. Proof of 1: Let x,y 2 Cd. By the definition of the circular convolution

(x ⇤ y)k =
d�1X

n=0

xk�nyn =
d�1X

n=0

xk�nyn =
d�1X

n=0

(S�kex)nyn = hS�kex,yi.

Proof of 2: Let x,y 2 Cd
, k 2 Z. Let n 2 [d]0 be arbitrary. Then we have that

(x � Sky)n = xn(Sky)n = (S�kx)n+kyn+k = (Sk(S�kx � y))n.

Proof of 3: Noting that we index modulo d, we have that

hSkx,yi =
d�1X

n=0

(Skx)nyn =
d�1X

n=0

xn+kyn =
d+k�1X

n=k

xnyn�k =
d�1X

n=0

xnyn�k = hx, S�kyi.

We now give our proof of Lemma 3.

Proof of Lemma 3. Fix � 2 [0, 2⇡). By the triangle inequality we have

kx� e
�xestk2 =kx(mag)

� x(✓)
� x(mag)

est � e
i�x(✓)

estk2

 kx(mag)
� x(✓)

� x(mag)
� e

�x(✓)
estk2

+ kx(mag)
� e

�x(✓)
est � x(mag)

est � e
i�x(✓)

estk2 (22)

For the first term, we may use the inequality ku � vk2  kuk1kvk2 to see that

kx(mag)
� x(✓)

� x(mag)
� e

�x(✓)
estk2  kx(mag)

k1kx(✓)
est � e

� �x(✓)
k2

= kxk1kx(✓)
est � e

� �x(✓)
k2. (23)

For the second term, we see that

kx(mag)
� e

�x(✓)
est � x(mag)

est � e
i�x(✓)

estk2  ke
�x(✓)

estk1 · kx(mag)
� x(mag)

est k2

= kx(mag)
� x(mag)

est k2. (24)

Combining (23) and (24) with (22) and minimizing over � completes the proof.

B Auxilliary Results from Spectral Graph The-
ory

In this section, we will prove several lemmas related to the graph Laplacian and
its eigenvalues. The following definition defines a partial ordering on the set of
weighted graphs induced by the spectrum of their graph Laplacians.

20



Definition 1. We say that a symmetric matrix A is positive semidefinite and
write A ⌫ 0 if xTAx � 0, 8x 2 Rn (or equivalently if all the eigenvalues of A
are non-negative). We define the Loewner order5 ⌫ by the rule that A ⌫ B if
A�B is positive semidefinite (or equivalently if xTAx � xTBx, 8x 2 Rn). For
two graphs G and H with the same number of vertices, we will define G ⌫ H

if LG ⌫ LH . We will also write G ⌫
P

n�1
i=0 Hi if LG ⌫

P
n�1
i=0 LHi , and for a

scalar c we will write G ⌫ cH if LG ⌫ cLH .

Remark 4. If G ⌫ H and ⌧G and ⌧H are the smallest non-zero eigenvalues LG

and LH , then one can use the fact that ⌧G = min
x2Rn

x?1

xTLGx

xTx
(see [19]) to verify

that ⌧G � ⌧H .

We now define some basic terminology for weighted graphs. (We note that
these definitions may also be applied unweighted graphs by interpreting each
edge as having weight one.)

Definition 2. (Weighted Distance Definitions) Let G = (V,E,W) be a
weighted graph.
(i) For any subgraph H = (V 0

, E
0) of G, we define the weight of H, denoted

w(H), as

w(H) :=
X

(i,j)2E0

Wi,j ,

(ii) If P is a path inside G, we will let len(P ) := w(P ) denote the weighted
length of P .
(iii) We define the weighted distance between two vertices u and v, distG(u, v),
to the minimal weighted length of any path from u to v

(iv) The weighted diameter of G, denoted by diam(G), is the maximum dis-
tance between any two vertices in G, that is,

diam(G) := max{distG(u, v) | (u, v) 2 V ⇥ V }

In some contexts, it will be useful to consider the pointwise inverses of the
weights Wi,j .

Definition 3. (Inverse Weighted Distance Definitions) Let G = (V,E,W)
be a weighted graph.
(i) For any subgraph H = (V 0

, E
0) of G, the inverse weight of H, is defined

by

w
�1(H) :=

X

(i,j)2E0

1

Wi,j

5
The Loewner order is actually a partial ordering since there exist A and B such that

A 6⌫ B and B 6⌫ A.
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(ii) For a path P inside G, we refer to len�1(P ) := w
�1(P ) as the inverted

weighted length of P .
(iii) For two vertices u and v we will refer to the minimal value of w

�1(P )
over all paths from u to v as the inverted weighted distance, denoted by
dist�1

G
(u, v).

(iv) The inverse weighted diameter of G, denoted by diam�1(G), is the
maximum distance between any two vertices in G, that is,

diam�1(G) := max{dist�1
G

(u, v) | (u, v) 2 V ⇥ V }.

The proof of Lemma 6 (and thus Theorem 1), relies on the following lemma
to provide a lower bound for the spectral gap ⌧G.

Lemma 10. (Weighted Spectral Bound) Let G = (V,E,W) be a weighted,
connected graph with |V | = n, and let Wmin and Wmax denote the minimum and
maximum value of any of the (nonzero) weights of G. Then

⌧G �
2 ·Wmin

Wmax(n� 1) · diam�1(G)
.

To prove Lemma 10, we recall the following lemma from [19].

Lemma 11. (Weighted Path Inequality) (Lemma 5.6.1 [19]) Let Pn =
(v0, v1, . . . , vn�1) be a path of length n and assume that, for all 0  i < n � 2,
wi, the weight of (vi, vi+1) is strictly positive. For 0  i < n � 2, let Gi,i+1 =
(V, (vi, vi+1)) be the graph whose vertex set V is that same as the vertex set of
G but only has a single edge (vi, vi+1). Similarly, let G0,n�1 = (V, (v0, vn�1))
be the graph with only a single edge (v0, vn�1). Then

G0,n�1 4
✓ n�2X

i=0

1

wi

◆ n�2X

i=0

wiGi,i+1
6 = len�1(Pn) · Pn,

where the final equality is interpreted is the sense of A 4 B and B 4 A.

The Proof of Lemma 10. For u, v 2 V , let Gu,v = (V, (u, v)) denote the graph
with only a single edge from u to v and let Pu,v denote a path from u to v with
minimal weighted inverse length. Then, by Lemma 11 we have

Gu,v 4 len�1(Pu,v(G)) · Pu,v(G) 4 diam�1(G) · Pu,v(G) 4 diam�1(G) ·G

where the last inequality holds since for all subgraphs H of a graph G, H 4 G

(Section 5.2 [19])
Let eKn be the extended weighted, complete graph on n vertices with weighted

matrix fW , where fWi,j =

(
Wi,j , (i, j) 2 E

Wmin, (i, j) 62 E
. Then by summing over all ver-

tices, we have that

L eKn
=

X

0i<jn�1

fWi,jLGi,j 4 Wmax

X

0i<jn�1

diam�1(G) · LG

6
Under this construction, we see that if we have a weight which is much larger than all of

the others, it e↵ectively gets nullified by taking the inverse.
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Since
P

0i<jn�1 1 = n(n� 1), we then have that

eKn 4 Wmaxn(n� 1)

2
diam�1(G) ·G,

which, by Remark (4) implies

⌧ eKn


Wmaxn(n� 1)

2
diam�1(G)⌧G

and therefore

⌧G �
2⌧ eKn

Wmaxn(n� 1) · diam�1(G)
.

Letting Kn be the unweighted graph on n vertices we see that

xTL eKn
x =

X

(a,b)2[n]0

fW (a, b)(x(a)� x(b))2 � Wmin

X

(a,b)2[n]0

(x(a)� x(b))2 = Wminx
TLKnx.

Therefore,

⌧ eKn
= min

x2Rn

x?1

xTL eKn
x

xTx
� Wmin min

x2Rn

x?1

xTLKnx

xTx
� Wmin · ⌧Kn .

Thus, since ⌧KN = n (5.4.1, [19]), we have that ⌧G �
2Wmin

Wmax(n� 1) · diam�1(G)

Our next result uses Lemma 10 to produce a bound for ⌧G in terms of the
diameter of the underlying unweighted graph.

Theorem 5. Let G = (V,E,W) be a weighted graph and let Wmin and Wmax

be the minimum and maximum value of any its (nonzero) weights. Then

⌧G �
2 · (Wmin)2

Wmax(n� 1)diam(Gunw)
,

where Gunw = (V,E) is the unweighted counterpart of G.

Proof. Let G
0 = (V,E,W0), where W

0
i,j

= 1/Wi,j if Wi,j 6= 0 and W
0
i,j

=
0 otherwise. Let W

0
max be the maximum element of W0. Observe that by

construction, we have W
0
max =

1

Wmin
. Moreover, it follows immediately from

Definition 2 that we have diam�1(G) = diam(G0). Therefore,

diam�1(G) = diam(G0)  W
0
max · diam(Gunw) =

1

Wmin
diam(Gunw).

So by Lemma 10, we have that

⌧G �
2 ·Wmin

Wmax(n� 1) · diam�1(G)
�

2 · (Wmin)2

Wmax(n� 1)diam(Gunw)
.
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