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Abstract
Solving the optimal power flow (OPF) problem
in real-time electricity market improves the effi-
ciency and reliability in the integration of low-
carbon energy resources into the power grids. To
address the scalability and adaptivity issues of ex-
isting end-to-end OPF learning solutions, we pro-
pose a new graph neural network (GNN) frame-
work for predicting the electricity market prices
from solving OPFs. The proposed GNN-for-OPF
framework innovatively exploits the locality prop-
erty of prices and introduces physics-aware reg-
ularization, while attaining reduced model com-
plexity and fast adaptivity to varying grid topol-
ogy. Numerical tests have validated the learning
efficiency and adaptivity improvements of our
proposed method over existing approaches.

1. Introduction
Electricity market pricing is one of the most crucial tasks
of operating large-scale power grids. As part of the dereg-
ulated electricity market, real-time market determines the
incremental adjustment to the day-ahead dispatch by solving
the optimal power flow (OPF) problem (Cain et al., 2012),
which aims at the most economic decisions for the flexible
generation or demand while satisfying a variety of safety-
related network constraints. The real-time OPF or market
pricing is instrumental for ensuring high efficiency and re-
liability of grid operations (Cain et al., 2012), particularly
under the increasing integration of intermittent and variable
resources towards a low-carbon energy future.

Energy sources to a majority of electric power grids rely
heavily on fossil fuels, which contribute to a significant
portion of world-wide greenhouse gas (GHG) emissions.
Such environment effects can be directly accounted by the
formulation of OPF to reduce GHG emissions (Yang et al.,
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2015; Li et al., 2011; Shao & Jewell, 2010; Gholami et al.,
2014). Meanwhile, the increasing integration of renewable
sources such as wind and solar can greatly diminish the
overall carbon footprint of electricity generation. However,
the variability of renewable generation poses as a main
challenge in real-time solutions of OPF problem. As a result,
the grid operating conditions change rapidly, traditional
iterative methods initialized by the past solutions (Castillo
& O’Neill, 2013) may incur convergence and computation
issues.

The accurate ac-OPF problem is known to incur high com-
putation complexity due to its non-linear, non-convex for-
mulation (Cain et al., 2012). For efficient online solution,
machine learning (ML) techniques have been recently advo-
cated through extensive off-line training of neural network
(NN) models. Existing ML-for-OPF approaches have fo-
cused on identifying the active constraints (Misra et al.,
2018; Deka & Misra, 2019; Chen & Zhang, 2020), finding
a warm start for iterative OPF solutions (Baker, 2019), or
addressing the feasibility issue (Pan et al., 2019; Guha et al.,
2019; Zamzam & Baker, 2020). Almost all of them rely on
end-to-end NNs, which incur high model and computation
complexity for large-scale power grids. In addition to scala-
bility issue, they need to be constantly re-trained whenever
the system inputs change as a result of frequently varying
grid resources or topology. Thus, existing approaches fall
short in efficiently transferring the knowledge obtained from
off-line training into fast, adaptive online OPF decisions.

To tackle these challenges, we propose to leverage the
graph neural networks (GNNs) to design a topology-aware
OPF learning framework. The GNN architecture (Kipf &
Welling, 2016; Gama et al., 2020; Garg et al., 2020) can
effectively incorporate graph-based embedding of nodal
features and explore the topology structures of the underly-
ing prediction models. While a very recent work (Owerko
et al., 2020) has used GNNs to predict OPF’s nodal power
injections, the latter mainly depends on the cost of dispatch-
ing each resource and does not share any topology-based
similarity, or the locality property that is ideal for GNN-
based predictions. Hence, we instead advocate to predict
the actual OPF outputs for electricity market, namely the
locational marginal prices (LMPs) known as the real-time
market signals (Wood et al., 2013). As LMPs relate to the
duality analysis for OPF, their dependence on grid topology
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has been recognized in (Jia et al., 2013; Geng & Xie, 2016).

To this end, we have introduced the ac- and dc-OPF problem
formulations (Section 2) and exploited the topological struc-
ture of LMPs to design a GNN-for-OPF learning framework
(Section 3). This physics-aware approach not only capital-
izes on the locality property of LMPs, but also motivates
meaningful regularization on the feasibility of OPF line lim-
its. Numerical results (Section 4) have demonstrated the
high prediction performance of the proposed GNN-for-LMP
approach at reduced model complexity, while confirming its
topology adaptivity as an effective transfer learning tool to
deal with fast varying grid topology in real-time markets.

2. Real-Time Market Modeling
Consider a power grid modeled by an undirected graph
G = (V, E). The node set V consists of N nodes, each
connected to loads or generators, while the edge set E ∈
V × V includes transmission lines or transformers. Let
p, q ∈ RN collect the nodal active and reactive power
injections, respectively; and similarly for voltage v ∈ RN .
Given the network admittance (Y-bus) matrix Y ∈ RN×N ,
the ac-OPF problem is formulated as

min
p,q,v

∑N
i=1 ci(pi) (1a)

s.t. p + jq = diag(v)(Yv)∗ (1b)
V ≤ |v| ≤ V̄ (1c)
p ≤ p ≤ p̄ (1d)

q ≤ q ≤ q̄ (1e)

f
ij
≤ fij(v) ≤ f̄ij , ∀(i, j) ∈ E (1f)

where ci(·) is a convex (typically quadratic or piece-wise lin-
ear) cost function for flexible nodal injections. The equality
(1b) ensures nodal power balance, while constraints (1c)-
(1f) list the various operational limits such as line flow limits
in (1f). This general OPF (1) includes both flexible gener-
ation and demand, with negative injections indicating the
latter.

To simplify the nonlinear, non-convex problem (1), the lin-
ear dc-OPF is widely used for solving p only, as

minp

∑N
i=1 ci(pi) (2a)

s.t. 1>p = 0 (2b)
p ≤ p ≤ p̄ (2c)

f ≤ Sp ≤ f̄ (2d)

where matrix S is the injection shift factor (ISF) matrix to
form the line flow f = Sp with the limit f = −f̄ . Compared
to (1), the dc-OPF problem omits the modeling of reactive
power and voltage, and also uses lossless linearized power
flow to simplify power balance as in (2b). The accuracy of

dc-OPF can be improved by considering better lineariza-
tion around the operating points and including line losses;
see e.g., (Garcia, 2019). As the resultant constraints are
still linear, the generalized dc-OPF problem can be easily
computed using off-the-shelf convex solvers.

Learning the OPF solutions amounts to obtaining the map-
ping from the uncontrolled problem inputs to the OPF out-
puts. In real-time market (1)-(2), nodal injections have un-
controllable components pu and qu from variable demand
or renewable resources. They in turn affect the limits of re-
spective injections in (1)-(2). In addition, the cost function
ci(·) depends on the offers submitted by generation or load
serving entities (LSEs), thus varying for each OPF instance
as well. Hence, for each node i the input variables include
xi , [p̄i, pi, q̄i, qi, ci] ∈ Rd, with ci denoting the (d − 4)
parameters used for defining the nodal cost function. For
example, quadratic cost is given by the quadratic and lin-
ear coefficients, while piece-wise linear one by the change
points and gradients of each linear part. Due to increas-
ing variability of resources and offers, the real-time OPF
problems may experience dramatic changes from instance
to instance. Given this vast variability, it is beneficial to
develop a learning-based approach that can enable efficient
real-time market operations.

3. Topology-aware Learning for Market Prices
We advocate a topology-aware graph neural network (GNN)
based framework for learning real-time prices that attains
high learning efficiency and topology adaptivity. Before
introducing GNNs, we first discuss how locational marginal
prices (LMPs), the outputs of OPF, are connected to the grid
topology G. LMPs are market signals used by each gen-
erator or demand to determine the flexible power injection
in order to minimize its own cost. To show the topology
dependence, consider the simple convex dc-OPF problem
(2), for which dual variables λ, and [µ; µ̄] are introduced
for constraints (2b) and (2d), respectively, with (2c) kept
as an implicit constraint. Given the optimal dual variables
(denoted by ∗), the nodal LMP vector is given by

π , λ∗ · 1− S>(µ̄∗ − µ∗) (3)

using the ISF matrix S. Interestingly, vector (µ̄∗ − µ∗) in-
dicates the congested lines due to complimentary slackness
(Boyd et al., 2004) ; i.e., µ̄∗` (µ∗

`
) = 0 if and only if line ` is

reaching limit f̄`(f `). Clearly, the LMP π only depends on
those congested lines that have non-zero (µ̄∗` − µ∗` ). Inter-
estingly, matrix S strongly depends on the graph topology
such that π has the locality property that is perfectly suited
for GNNs. Typically, only a few transmission lines are
actually congested (Price & Goodin, 2011). Thus, LMPs
tend to be similar within the neighboring nodes. Formally,
matrix S depends on graph incidence matrix Ar and a di-



Graph Neural Networks for Learning Real-Time Prices in Electricity Market

agonal matrix with line reactance values X = diag{xij},
as well as the resultant weighted graph Laplacian matrix
Br = A>r X−1Ar. Both Ar and Br are reduced from the
original matrices by eliminating a reference node to obtain
the full-rank counterparts. Given the compact singular value
decomposition (SVD) A>r X−

1
2 = UΣV>, we can write

the ISF matrix as

S> = B−1
r A>r X−1 = UΣ−1V>X−

1
2 (4)

with the eigen-decomposition Br = UΣ2U>. Thus, the
LMP vector π in (3) is exactly generated by the eigen-
space of the Laplacian Br, which can be viewed as a graph
shift operator (GSO) (Ramakrishna & Scaglione, 2021).
Accordingly, it strongly depends on the graph topology,
which motivates one to use the topology-aware GNN models
for prediction. Note that even though this LMP analysis
corresponds to the simple dc-OPF, similar intuitions also
hold for the ac-OPF problem; see e.g., (Garcia, 2019).

In the OPF problem, we aim to obtain the function f(X)→
π, where the input X ∈ RN×d has the nodal features
{xi} as its rows. To model f(·) using fully-connected NN
(FCNN), the input to first layer X0 can be a vector embed-
ding of X, with each layer t as

Xt+1 = σ(WtXt + bt), ∀t = 0, . . . , T − 1 (5)

where Wt and bt are parameters to be learned, while σ(·)
is the nonlinear activation like ReLU. Albeit generalizable
to a variety of end-to-end learning tasks, the FCNN models
would incur significant scalability issue for large-scale OPF
learning. It is possible to reduce the layer complexity by
using the graph topology, leading to graph-pruned NNs. For
example, the graph-induced deep NN (GiDNN) developed
in (Zamzam & Sidiropoulos, 2020) sparsifies matrix Wt

according to the graph topology. By pruning out a majority
of blocks in Wt, the total number of parameters is reduced.

Inspired by the graph signal viewpoint on π arising from
the structure in (4), we propose to systematically reduce
the prediction model complexity by leveraging the GNN
architecture (Isufi et al., 2020; Ma & Tang, 2020; Kipf &
Welling, 2016). As a special case of NNs, GNNs take the
input features {xi} defined over graph nodes in V , with
each layer aggregating only the embedding of neighboring
nodes. In this sense, GNN is ideal for predicting output
labels having locality property as a result of graph diffusion
processes. To define the GNN layers, consider again the
feature matrix X as the input to the first layer X0, and each
layer t now becomes:

Xt+1 = σ (WXtHt + bt) , ∀t = 0, . . . , T − 1 (6)

where the feature filters {Ht} are the (dt×dt+1) parameter
matrices that are learned through training, which do not

change with system size N . The key of GNNs lies in the
graph convolution filter W ∈ RN×N such that the node
embedding is updated by neighborhood aggregation. Matrix
W can be the (weighted) graph Laplacian or adjacency
matrix, or its normalized version for stability concerns (Isufi
et al., 2020). For better performance, it can also be learned
through training, leading to a bi-linear filtering process in
(6) as developed in (Isufi et al., 2020). In this case, W has
the sparsity structure as the graph Laplacian with number
of non-zero parameters proportional to the weight of edges.
Clearly, the GNN architecture can significantly reduce the
number of parameters per layer. As the average node degree
of real-world power grids is around 2 or 3 (Birchfield et al.,
2016), we have the following result.

AS1. The edges are very sparse, and the number of edges
|E| ∼ O(|V |) = O(N).

Proposition 1. Under (AS1) and by defining D =
maxt{dt}, the number of parameters for each bi-linear
GNN layer in (6) is O(N +D2).

This complexity order result follows easily from checking
the number of nonzero entries in W and Ht in (6). Train-
able graph filter W only increases the complexity by the
number of edges, which scales linearly with N thanks to
(AS1). Compared to O(N2D2) as the number of parame-
ters in each FCNN layer, the GNN architecture scales very
gracefully with the network dimension. Thanks to the lo-
cality property of LMP π, our proposed design can greatly
improve computation time and generalization performance
by utilizing the reduced-complexity GNN models.

Feasibility-based Regularization: As OPF is a network-
constrained problem, we design the loss function for learn-
ing LMPs that can account for the solution feasibility and
constraints. Note that for dc-OPF problem, the LMP fully
determines the decision variables in p. Based on the KKT
optimality condition (Boyd et al., 2004), the predicted LMP
π̂ allows to obtain the optimal nodal injection, as

p∗i = arg min
p
i
≤pi≤p̄i

ci(pi)− π̂ipi, ∀i ∈ V (7)

For quadratic (or generally strongly-convex) cost functions,
the solution is unique by comparing the unconstrained mini-
mum with the boundary points [p

i
, p̄i]. As for (piece-wise)

linear cost functions, this also holds for most nodes if the
derivative c′i(p

∗
i ) 6= π̂i. Otherwise, the optimal p∗i at the

other nodes can still be computed from the power balance
of the full system and congested lines.

Using this result, we advocate the following chain to gener-
ate the corresponding nodal injection and line flow solutions
to the predicted LMP π̂:

X
f(X; θ)−−−−−→ π̂

(7)−→ p̂∗(π̂)
S−→ f̂∗(π̂)
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Figure 1. Comparison of GNN, FCNN, and GiDNN models, for
both MSE loss and the feasibility regularized (FR) one, in terms
of (top) the normalized L2 error in predicting π (mean ± standard
deviation); and (bottom) the violation rates of line limits (total
violation level versus total limit) for the feasibility performance.

where f(·;θ) denotes the GNN model with weight param-
eter θ according to (6). Hence, the predicted p̂∗ is strictly
feasible for (2c), while the predicted f̂∗ can be used to regu-
larize the GNN loss function by enforcing the feasibility of
(2d). This way, the loss function for GNN training becomes

L (θ) := ‖π − π̂‖22 + λ‖σ(|f̂∗(π̂)| − f̄)‖1 (8)

where the second term captures the total line flow violation
of the limit f̄ , leading to LMP prediction more amendable
to feasibility. Additional regularization terms on p̂ can be
introduced such as the infinity error norm in predicting π.

4. Numerical Results
This section presents the efficiency and scalability results for
the proposed GNN-based algorithms by using the 118- and
2383-bus systems from the IEEE PES PGLib-OPF bench-
mark library (Babaeinejadsarookolaee et al., 2019). A small
example on topology adaptivity is also included to demon-
strate the proposed GNN models can quickly adapt to vary-
ing grid topology in real-time operations. We generated
the datasets from solving the ac/dc-OPF problems for each
system in MATPOWER (Zimmerman et al., 2011), by ran-
domly perturbing the operating conditions (limits for p/q
and the quadratic cost coefficients of ci). GNN models with
high-order graph filter (Owerko et al., 2020) and relu acti-
vation for each layer were implemented by PyTorch library.
GNN models, and the benchmark FCNN and GiDNN mod-

Method Metric 118ac 118dc 2383dc
GNN+FR L2 5.3e-2 6.4e-2 1-6.8e-2

Feas. 99.3% 99.4% 99.9%
GNN L2 5.2e-2 6.1e-2 6.8e-2

Feas. 99.1% 99.0% 99.9%
FCNN+FR L2 4.5e-2 4.5e-2 4.5e-2

Feas. 98.9% 90.7% 99.9%
FCNN L2 4.4e-2 4.4e-2 4.5e-2

Feas. 98.8% 90.7% 99.9%
GiDNN+FR L2 4.4e-2 5.5e-2 5.6e-2

Feas. 99.4% 99.4% 99.9%
GiDNN L2 5.3e-2 5.0e-2 5.6e-2

Feas. 99.3% 98.5% 99.9%

Table 1. Performance of GNN, FCNN, and GiDNN in predicting
price and solution feasibility.

els (implemented by PyTorch library as well) were tested
on Google Colaboratory using the Nvidia Tesla V100 for
training acceleration.

Figure 1 compares the performance of proposed GNN-based
models with FCNN and GiDNN ones, including those using
the feasibility regularized (FR) loss function in (8). The
normalized L2 error in predicting π and the violation rate
of line flow limits are considered, for the ac-OPF of 118-
bus system and dc-OPF of 2383-bus system. Detailed re-
sults are shown in Table 1. Note that for the 2383dc case,
although the feasibility results are almost perfect (above
99.9%), learned models with feasibility ragularization (FR)
in general lead to much smaller infeasibility rates by two
orders of magnitude for all three models. Clearly, the per-
formance of proposed GNN models is comparable to that
of FCNN and GiDNN ones. The FR loss function design
has shown to improve the feasibility of OPF predictions for
the larger 2383-bus system. In addition, it can accelerate
the training process as corroborated by the actual number
of epochs for convergence (not included due to page limit).
Compared to FCNN models, GNN ones clearly improve
the learning accuracy and feasibility in the 2383-bus system
prediction. Hence, the proposed GNN architecture along
with feasibility based loss function design has shown ef-
fective in predicting feasible OPF solutions, especially for
large-scale systems. To demonstrate GNN’s reduced com-
plexity, Figure 2 compares the total number of parameters
for each model. Detailed comparisons of the total model
parameters, occupied memories, training times, and number
of training epochs of all models are summarized in Table
2. Although the memory and training time greatly depend
on the solvers for different models, the parameter number is
indeed reduced by utilizing the topology-based structure of
the GNN architecture.

Topology adaptivity: We have further tested the 118-dc
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Figure 2. The model complexity of GNN, FCNN, and GiDNN in
number of parameters of 118ac and 2383dc systems.

Method Metric 118ac 118dc 2383dc
GNN+FR Parameters 351K 351K 142M

Memory 1.33GB 1.34GB 1.87GB
Time 29s 95s 103s
Epoch 49 69 54

GNN Parameters 351K 351K 142M
Memory 0.91GB 0.92GB 1.87GB
Time 35s 160s 159s
Epoch 114 134 64

FCNN+FR Parameters 5.8M 5.8M 284M
Memory 0.91GB 0.93GB 2.24GB
Time 24s 12s 166s
Epoch 120 30 35

FCNN Parameters 5.8M 5.8M 284M
Memory 0.93GB 0.93GB 2.24GB
Time 22s 33s 146s
Epoch 155 90 40

GiDNN+FR Parameters 9.7M 9.4M 210M
Memory 1.00GB 1.00GB 2.48GB
Time 27s 36s 112s
Epoch 79 94 39

GiDNN Parameters 9.7M 9.4M 210M
Memory 1.00GB 1.00GB 2.48GB
Time 18s 58s 92s
Epoch 94 104 49

Table 2. Model complexity in the number of parameters and mem-
ory, training information in time, and number of epochs of GNN,
FCNN, and GiDNN (with or without feasibility regularization) on
different systems.

OPF case to validate the topology adaptivity of proposed
GNN-based models. Specifically, after obtaining the trained
GNN model for the nominal topology, we randomly pick
at most two lines to disconnect and test the pre-trained
GNN models on this new topology. Figure 3(a) shows that
pre-trained GNN models attain satisfactory prediction per-
formance for some new topologies. In addition, we have
implemented a post-processing step by using the pre-trained
GNNs as a warm start for re-training under each new topol-
ogy. The post-processing step attains very fast convergence
within just 3− 5 epochs, and high prediction performance
as shown in Figure 3(b). This result demonstrates that GNN
models are promising in adapting to real-time power grid
topology, and points to an exciting direction for future re-

(a) Pre-trained (b) Re-trained

Figure 3. The distribution of sample L2 prediction error of (a) the
pre-trained GNN on randomly perturbed grids and (b) after fast
re-training. Each color indicates a new topology.

search .

5. Conclusion and Future Work
This paper proposes a new GNN-based approach for pre-
dicting the electricity market prices in order to support the
efficient and reliable operations of low-carbon electric grids.
Different from earlier learning-for-OPF approaches, our pro-
posed method innovatively incorporates electricity prices’
locality property and physics-based regularization term to
the design of topology-aware GNN models. Reduced model
complexity and topology adaptivity are attained by the GNN-
based price prediction. Numerical tests have demonstrated
the efficiency and adaptivity of our price prediction method.
Interesting future research directions open up on the for-
mal investigation of topology adaptivity and other transfer
learning aspects, as well as the extension to general optimal
resource allocation problems in networked systems.
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