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Abstract

Greedy algorithms have long been a workhorse for learning graphical models, and
more broadly for learning statistical models with sparse structure. In the context
of learning directed acyclic graphs, greedy algorithms are popular despite their
worst-case exponential runtime. In practice, however, they are very efficient. We
provide new insight into this phenomenon by studying a general greedy score-
based algorithm for learning DAGs. Unlike edge-greedy algorithms such as the
popular GES and hill-climbing algorithms, our approach is vertex-greedy and
requires at most a polynomial number of score evaluations. We then show how
recent polynomial-time algorithms for learning DAG models are a special case
of this algorithm, thereby illustrating how these order-based algorithms can be
rigorously interpreted as score-based algorithms. This observation suggests new
score functions and optimality conditions based on the duality between Bregman
divergences and exponential families, which we explore in detail. Explicit sample
and computational complexity bounds are derived. Finally, we provide extensive
experiments suggesting that this algorithm indeed optimizes the score in a variety
of settings.

1 Introduction

Learning the structure of a graphical model from data is a notoriously difficult combinatorial problem
with numerous applications in machine learning, artificial intelligence, and causal inference as well
as scientific disciplines such as genetics, medicine, and physics. Owing to its combinatorial structure,
greedy algorithms have proved popular and efficient in practice. For undirected graphical models
(e.g. Ising, Gaussian) in particular, strong statistical and computational guarantees exist for a variety
of greedy algorithms [27} 28]]. These algorithms are based on the now well-known forward-backward
greedy algorithm [29,(57], which has been applied to a range of problems beyond graphical models
including regression [57]], multi-task learning [52f], and atomic norm regularization [44].

Historically, the use of the basic forward-backward greedy scheme for learning directed acyclic
graphical (DAG) models predates some of this work, dating back to the classical greedy equivalence
search [GES, [13] algorithm. Since its introduction, GES has become a gold-standard for learning
DAGs, and is known to be asymptotically consistent under certain assumptions such as faithfulness
and score consistency [[13}34]. Both of these assumptions are known to hold for certain parametric
families [21], however, extending GES to distribution-free settings has proven difficult. Furthermore,
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although GES is in practice extremely efficient and has been scaled up to large problem sizes [43]],
it lacks polynomial-time guarantees. An important problem in this direction is the development of
provably polynomial-time, consistent algorithms for DAG learning in general settings.

In this paper, we revisit greedy algorithms for learning DAGs with an eye towards these issues. We
propose a greedy algorithm for this problem—distinct from GES—and study its computational and
statistical properties. In particular, it requires at most a polynomial number of score evaluations and
provably recovers the correct DAG for properly chosen score functions. Furthermore, we illustrate its
intimate relationship with existing order-based algorithms, providing a link between these existing
approaches and classical score-based approaches. Along the way, we will see how the analysis itself
suggests a family of score functions based on the Bregman information [5]], which are well-defined
without specific distributional assumptions.

Contributions At a high-level, our goal is to understand what kind of finite-sample and complexity
guarantees can be provided for greedy score-based algorithms in general settings. In doing so, we aim
to provide deeper insight into the relationships between existing algorithms. Our main contributions
can thus be outlined as follows:

* A generic greedy forward-backward scheme for optimizing score functions defined over
DAGs. Unlike existing edge-greedy algorithms that greedily add or remove edges, our
algorithm is vertex-greedy, i.e. it greedily adds vertices in a topological sort.

* We show how several existing order-based algorithms from the literature are special cases
of this algorithm, for properly defined score functions. Thus, we bring these approaches
back under the umbrella of score-based algorithms.

* We introduce a new family of score functions derived from the Bregman information, and
analyze the sample and computational complexity of our greedy algorithm for this family of
scores.

* We explore the optimization landscape of the resulting score functions, and provide evidence
that not only does our algorithm provably recover the true DAG, it does so by globally
optimizing a score function.

The last claim is intriguing: It suggests that it is possible to globally optimize certain Bayesian network
scores in polynomial-time. In other words, despite the well-known fact that global optimization of
Bayesian networks scoring functions is NP-hard [[12}|14]], there may be natural assumptions under
which these hardness results can be circumvented. This is precisely the case, for example, for
undirected graphs: In general, learning Markov random fields is NP-hard [50], but special cases
such as Gaussian graphical models [6, 33] and Ising models [8} 31} 55] can be learned efficiently.
Nonetheless, we emphasize that these results on global optimization of the score are merely empirical,
and a proof of this fact beyond the linear case remains out of reach.

Previous work The literature on BNSL is vast, so we focus this review on related work involving
score-based and greedy algorithms. For a broad overview of BNSL algorithms, see the recent survey
[24] or the textbooks [42,/49]. The current work is closely related to and inspired by generic greedy
algorithms such as [27H29, 144, 152| |57]]. Existing greedy algorithms for score-based learning include
GES [13], hill climbing [L1,51], and A* search [56]. In contrast to these greedy algorithms are
global algorithms that are guaranteed to find a global optimum such as integer programming [[16, [17/]]
and dynamic programming [36, 46} 47]]. Another family of order-based algorithms dating back to
[51] centers around the idea of order search—i.e. first searching for a topological sort—from which
the DAG structure is easily deduced; see also [3| 4, 9} 45, 54]. Recently, a series of order-based
algorithms have led to significant breakthroughs, most notable of which are finite-sample and strong
polynomial-time guarantees [[10} |19} 22, 23| [38]]. It will turn out that many of these algorithms are
special cases of the greedy algorithm we propose; we revisit this interesting topic in Section[3.1]

2 Background

Let X = (X1,...,X,) be a random vector with distribution D. The goal of structure learning
is to find a DAG W = (V, E), also called a Bayesian network (BN), for the joint distribution D.
Traditionally, there have been two dominant approaches to Bayesian network structure learning



(BNSL): Constraint-based and score-based. In constraint-based algorithms such as the PC [48]] and
MMPC [53] algorithms, tests of conditional independence are used to identify the structure of a DAG
via exploitation of d-separation in DAG models. Score-based algorithms such as GES [13]] define an
objective function over DAGs such as the likelihood or a Bayesian posterior, and seek to optimize
this score.

To formalize this, denote the space of DAGs on d nodes by DAG and let S : DAG — R be a score
function. Intuitively, S assigns to each DAG W a “score” S(W) that evaluates the fit between W
and D. In the sequel, we assume without loss of generality that the goal is to minimize the score:

WA (W) v
Although this is an NP-hard combinatorial optimization problem, we can ask whether or not it is
possible to design score functions S which can be optimized efficiently, and whose minimizers are
close to W. In order for this problem to be well-posed, there must be a unique W that we seek;
namely, W must be identifiable from D. The problem of identifiability will be taken up further in
Sectiond] where it will be connected to the choice of score function. For now, our primary interest is
solving the problem (T).

Regarding score-based learning, we highlight a subtle point: Recovering the true DAG is not
necessarily the same as minimizing the score function, for instance, see Example 1 in [30]. Score-
based algorithms in general attempt to learn the true model by way of minimizing the score but it’s
possible that the graph which minimizes the score could be different from the true model. In other
words, the score may not always be properly calibrated to the model. This is a well-studied problem,
see e.g. [20} 21} 126], and it is a fascinating and important open problem to better understand under
what assumptions a score minimizer is also the true DAG in nonparametric settings.

Exact algorithms Solving problem (T)) exactly (“exact” meaning a genuine global minimizer of
(II]) is returned) is known to be NP-hard [12}14]. Some of the earliest exact methods for score-based
learning relied on the following basic idea [35} 139,146, 47]]: Use dynamic programming to search for
optimal sinks in W, remove these sinks, and recursively find optimal sinks in the resulting subgraph.
In doing so, a topological sort of W can be learned, and from this sort, the optimal DAG can be
easily learned. In other words, once the topological sort is known, finding the corresponding DAG is
relatively easy. In the sequel, we refer to the problem of finding the topological sort of W' as order
search. Unfortunately, searching for optimal sinks involves computing d2?~! local scores, which is
both time and memory intensive.

Poly-time algorithms Recently, a new family of algorithms based on applying the idea of order
search has led to significant breakthroughs in our understanding of this problem [[10 [19} 22} 23] [38]].
Most notably, unlike the exact algorithms described above, these algorithms run in polynomial-time.
The key distinction between these algorithms and exact algorithms is the clever exploitation of
specific distributional (e.g. moments) or structural properties (e.g. linearity) of D, and as a result do
not optimize a specific score function. In contrast, exact algorithms apply to any score S, and do not
require any distributional assumptions.

Motivation It is tempting to want to draw connections between exact algorithms and poly-time
algorithms: After all, they both rely on the same fundamental principle of order search. In this paper,
we explore this connection from the perspective of greedy optimization. In particular, we will show
how existing polynomial-time algorithms are special cases of a generic greedy forward-backward
search algorithm for solving (T) under specific choices of S, and show how this leads to new insights
for this problem. We do not prove that this algorithm exactly solves (I]) (save for the exceptional case
of linear models; see Corollary [3.2), however, we provide empirical evidence to support this idea
on a variety of linear and nonlinear models in Section[6] Since the score-based learning problem is
NP-hard, this is of course not possible without additional assumptions.

Notation Let n be the number of samples we observe. Each sample is a vector of the form
X = (Xy,...,X4) on d variables. In this paper, W is used for DAGs and the vertex set is
[d] = {1,2,...,d}. Naturally, we match vertex i to the variable X;. We denote the set of parents
of a vertex i with pay, (i), dropping the subscript when it’s clear from context. We will also abuse
notation and use W for the adjacency matrix of the graph T as well. Let W (9 denote the ith column



Algorithm 1: Greedy Forward-Backward Search

Input: Dataset X, tolerance parameter v > 0
Output: DAG W

t W=0// n-vertex graph with no edges

= L7 T N [ 8]

[ |

10

T =1]// The ordering
// Forward phase
for iter = 1to ddo
i = argmin;g Si(er)// Minimize jump in score
W =WI[T — i
T.append(i)
// Backward phase
for edge e in W do
if S(W—°) — S(W) < ~ then
L W =W~=¢// Delete the edge e

return W // Guaranteed to be a DAG

of W, whose nonzero entries are precisely at the set of parents of vertex i. Let W3, k] denote the
(4, k)th entry of the matrix.

3 The GFBS algorithm

In this section, we will describe the greedy algorithm in a general framework. In subsequent sections,
we will specialize to particular models or scores, as necessary. Throughout, we let S be an arbitrary
decomposable score. That is, S(W) = Y, ., S;(W®) for functions S;, an example of which would
be the least-squares loss. All the score functions we study in the sequel will have this property.

For a set of vertices 7T, let e denote the indicator vector of 7T'. For an edge e of W, denote by W —*
the matrix W with the entry corresponding to e zeroed out. For any set of vertices J and vertex ¢ ¢ J,
denote by W[J — 4] the matrix TV where the ith column 1/ () is replaced by the indicator vector of
J. That is,

o Wlj, k] ifk #1,
Wij, k] if (g, k

W=elj, k] = b K] G ).#e’ WI[J = i|[j, k] =<1 ifk=iandj € J

0 otherwise,

0 ifk=diandj & J

In Algorithm[I] we outline a general framework based on greedy forward-backward search to learn
a DAG W by attempting to minimize the score S(W). For now, we focus on the algorithm itself,
and defer discussions of its soundness to Sections d}5] We denote this algorithm by GFBS for short.
Crucially, in contrast to traditional greedy algorithms for structure learning, GFBS is vertex-greedy:
Instead of greedily adding edges to W, GFBS greedily adds vertices to first build up a topological sort
T of W. Specifically, Line 4 in the algorithm greedily finds the next vertex ¢ to add to the ordering,
by comparing the score changes if we set the parents of 7 to be the vertices already in the ordering.
Conceptually, this step is one of the most important differences from GES which adds edges one at a
time. We make this distinction clear in Appendix [A]

It is worth emphasizing that the output of GFBS is guaranteed to be a DAG. The backward phase
is standard in greedy optimization, e.g. Greedy Equivalence Search (GES), and serves to eliminate
unnecessary edges. In practice, in the backward phase, we could also process the edges in batches.
As we explore in Section[3] in certain cases, this allows us to prove sample complexity upper bounds.

Computational complexity The running time of GFBS is a polynomial in d and the time needed
to compute the scores S;(-). More specifically, GFBS requires O(d?) score evaluations (compared to
O(d2%) for exact algorithms). Evidently, a key computational concern is the complexity of evaluating
the score in the first place. For many models such as linear, generalized linear, and exponential
family models, this computation can be carried out in poly(n, d) time, which implies that GFBS on
the whole runs in polynomial time. For nonparametric models, this computation may no longer be



polynomial-time, but the total number of score evaluations is still O(d?). In particular, GFBS always
enjoys an exponential speedup over exact algorithms.

Comparison to GES In the supplement (see Appendix [A), we exhibit linear Gaussian SEMs and
illustrate how GES differs from GFBS for the least squares score as well as the traditional Gaussian
BIC score. We first examine a folklore model where we show that their outputs sometimes differ. We
also exhibit a model where they always differ. The key takeaway is that GFBS really is a distinct
algorithm from GES.

3.1 Connection to equal variance SEM

An important line of work starting with [22] has shown that the assumption of equal variances in a
linear Gaussian SEM [40] leads directly to an efficient, order-based algorithm. A similar idea in the
setting of so-called quadratic variance function (QVF) DAGs was explored in [38]]. In this section,
we show that the equal-variance algorithm of [[10], Algorithm 1, is a special case of GFBS.

Define a score function as follows:
d
Sis(W) = Evar(X; | pay(i)). )
i=1
A few comments on this score function are in order:

1. The only assumption needed on X for this score to be well-defined is that EX X7 is
well-defined, i.e. X; € L? for each i.

2. When X satisfies a linear structural equation model X = W7 X + z, minimizing Sgs is
equivalent to minimizing the least-squares loss Ele (X;—(W® X)), Loh and Bithlmann
[30] have shown that when cov(z) = o1, the unique global minimizer of the least-squares
loss is the so-called equal variance SEM.

3. More generally, for nonlinear models, we have

d
Sis(W) = min E(X; — ¢:(X))?, 3

LS( ) gl,.A.,ngW; ( % gz( )) ( )

where gi1,...,9¢4 ~ W indicates that for each ¢, ¢g; depends only on the variables in
payy (7). In other words, the minimum is taken over all functions g1, . . ., g4 that respect the

dependency structure implied by W. In this case, g; is essentially E[X; | pay, (i)].

4. We can use (3) to define an empirical score in the obvious way given i.i.d. samples.
Alternatively, the residual variance E var(X; | pay, (i) can be replaced with any estimator
of the residual variance.

The GFBS algorithm consists of two phases: A forward phase and a backward phase. Our claim is
that the forward phase of GFBS is identical to the equal-variance algorithm from [[10]:

Proposition 3.1. After the forward phase, the ordering T returned by GFBS (Algorithm|l)) is the
same as the ordering returned by the top-down equal-variance algorithm from Chen et al. [10].

Corollary 3.2. Assume the linear SEM X = WT X + z with cov(z) = o%I under the score function
(). Then GFBS returns a global minimizer of the problem (1))

Proposition [3.1] will immediately follow from a more general statement which we prove in Theo-
rem[4.6] An intriguing question is to what extent this observation extends to nonlinear models such as
additive noise models: While we do not have a proof, our experiments in Section [f] suggest something
along these lines is true.

4 Bregman scores and identifiability via Bregman information

Motivated by the connection between GFBS, global optimality, and the least squares loss, in this
section we establish a nice connection between the greedy algorithm and exponential families via the
well-known duality between Bregman divergences and partition functions in exponential families [J5].
This can then be used to prove identifiability and recovery guarantees for GFBS.



Bregman divergences and information Let ¢ : R — R be a strictly convex, differentiable function.
Let dy(z,y) = ¢(z) — ¢(y) — (z — y)¢'(y) be the Bregman divergence associated with ¢ and let
I4(D) = Egpldy(z, )] be the associated Bregman information. The Bregman-divergence is a
general notion of distance that generalizes squared Euclidean distance, logistic loss, Itakuro-Saito
distance, KL-divergence, Mahalanobis distance and generalized I-divergences, among others [S]. The
Bregman-information of a distribution is a measure of randomness of the distribution, that’s associated
with ¢. Among others, it generalizes the variance, the mutual-information and the Jensen-Shannon
divergence of Gaussian processes [15]. See Appendix [B|for a brief review of this material and a basic
treatment of Legendre duality, which will be used in the next section.

4.1 Bregman score functions, duality, and exponential families

By replacing the least squares loss in (I)) with a Bregman divergence d,,, we obtain the following
score function, which we call a Bregman score:

Se(W) = Z]EX%(Xi,E[Xi | paw (D)) =) min o Bxds (X, gi(payw (1)) (4)

— 91,..-,9d~
K3

Before we study the behaviour of GFBS on Bregman scores, it is worth taking a moment to interpret
this score function. To accomplish this, let us define the notion of an exponential random family
DAG:

Definition 4.1. A DAG W and a distribution D define an exponential random family (ERF) DAG
if (a) D is Markov with respect to W, and (b) The local conditional probabilities come from an
exponential family, i.e. P(X; | pay, (¢)) ~ ERF(g;, ¢;), where 1; is the log-partition function of an
exponential family with mean function g;(pay, (2)).

Since ERF(g;, 1;) parametrizes a conditional distribution, its mean parameter g; is a function instead
of vector, which explains our choice of notation. By the Markov property, any choice of local
exponential family ERF(g;, ;) gives a well-defined joint distribution. The following lemma makes
explicit the relationship between Bregman scores, exponential family DAGs, and the Bregman
information. Let ¢* denote the Legendre dual of ¢.

Lemma 4.2. Let ¢ be a strictly convex, differentiable function and let 1) := ¢*. Then

Se(W) =D Ells(Xi| payw (i))] = = > Ex logpg, 4 (Xi| paw (i) — C(X) ®)

i<d i<d

where C(X) depends only on X and not the underlying DAG W and pg, . is the density of an
ERF(gi, ) model.

The proof of this lemma, which can be found in Appendix [C] follows from the well-known correspon-
dence between Bregman divergences and exponential families, given by the dual map ¢ — ¢*: Given
a Bregman divergence ¢, there is a corresponding exponential family whose log-partition function is
given by ¢* [5] and vice versa.

Importantly, Lemma [4.2] shows that the Bregman score .S, is equivalent to the expected negative
log-likelihood of an exponential family DAG whose local conditional probabilities all have the same
log-partition function 1. This means that minimizing the Bregman score can be naturally associated
to maximizing the expected log likelihood of such a model. Similar observations had also been made
and used in prior works on PCA [15]], clustering [5]] and learning theory [18]].

4.2 Identifiability via Bregman information

Motivated by the connection between exponential family DAGs with the same local log-partition
maps, in this section, we state our main assumption that generalizes the equal variance assumptions
from prior works.

First, we will need a mild assumption on W that’s of similar flavor to causal minimality, but with
respect to the Bregman-information we are looking at. Denote Ay (7) to be the non-descendants of 4
in the graph W,

Assumption 4.3. For all i < d and all subsets Y C Ay (i) such that pa(i) € Y, E[I,(X;|Y)] >
E[I(Xi| pa(i))].



This assumption essentially asserts that no edge in W is superfluous with respect to the distribution
on X. Now, we state our main assumption.

Assumption 4.4 (Equal Bregman-information upon conditioning). Assume that for a constant T > 0,
E[ly(X;|pa(i))] = Ey[I4(X;| pa(i) = w)] =7 foralli <n
where pa(i) are the parents of i in the underlying DAG W.

Example 4.5 (Special case of ANMs). Suppose we are working with an ANM. That is, there is a DAG
W such that for all i < d, X; = f;(pa(i)) + €; for some function f;, where €; are jointly independent
noise variables. Then, the above assumption says that there is a constant T > 0 such that for all i,
Is(e;) = 7. When ¢(z) = a2, this is the well-known equal variance assumption.

We are now ready to state our main theorem.

Theorem 4.6. Consider a model satisfying Assumption .3 and Assumption Under the Bregman
score Sy(W), the GFBS algorithm with tolerance parameter vy = 0 will output the true model.

As stated, the theorem holds for the population setting. The case of finite samples is studied in detail
in Section 5] where we prove the same result given sufficient samples.

Corollary 4.7. A model satisfying Assumption and the Equal Bregman-information Assump-
tion[d.4)is identifiable.

We defer the proof of the main theorem to the supplement, where we prove it for an even more
general class of functionals that subsume the Bregman-information. Here, we make the following
remarks regarding this proof.

1. The proof is actually shown for general functionals for which "conditioning drops value".
Therefore, we don’t need to only work with Bregman-information and we can instead work
with many uncertainty measures of distributions that have this property. This is useful,
for example, to show that non-Bregman-type models such as the QVF model from [38]
are identifiable using our framework. As a result, Theorem @] subsumes several known
identifiability results such as EQVAR [10,40]], NPVAR [19], QVF-ODS [38]], and GHD [37].
See Appendix [D]for details.

2. A similar proof could be adapted for other functionals of distributions that measure the
randomness or uncertainty of the distribution. One class of examples could be generalized
entropies [2] such as the Shannon entropy, Rényi entropy or the Tsallis entropy. We leave
this for future work.

Remark 4.8. An important reason why our algorithm is efficient is because in line 4 of Algorithm
[7] we only compute a single score for each vertex not in the ordering so far. This works especially
nicely with the Bregman score, precisely because conditioning with respect to more variables only
lowers the Bregman information of a variable, as is exploited to prove the theorems above.

A natural score function for non-parametric multiplicative models We study multiplicative noise
models of the form X; = f(pa(i))e; from the perspective of the framework built so far. Examples of
such models include growth models from economics and biology [32]]. More specifically, we choose
¢(z) = —log x for which the Bregman divergence d; is the Itakuro-Saito distance commonly used
in the Signal and Speech processing community. The associated Bregman score is the Itakuro-Saito
score given by
Ss(W) = _(ElogE[X;| pa(i)] — Ellog X;]).
i<d

Interestingly, the equal Bregman-information assumption reduces purely to an assumption about
the noise variables, akin to the equal variance assumption in the case of additive noise models.
This suggests that for multiplicative models, the Itakuro-Saito score is naturally motivated from the
perspective of identifiability. This gives a new insight into the applicability of score-based learning
for multiplicative models, with theoretical foundations in our analysis. For details, see Appendix [E]

S Sample complexity

To derive a sample complexity bound for GFBS, we first need to compute the Bregman score Sy;
due to decomposability and (3), this reduces to estimating the Bregman information 7. Let the



samples be denoted (Xft)7 XQ(t)7 . 7Xc(llt)) fort =1,2,...,n. Denote the Bregman information of
X; conditioning on a set A with conditional mean plugged in as (after some calculation)

S(Xi|A) = E[l(Xi | A)] = Eo(X:) — ES(E(X; | A)) (6)

for some strictly convex, differentiable function ¢. To estimate this quantity, we can first apply
nonparametric regression to estimate f; 4 := E(X; | A) and then take the sample mean:

S(X;|A) = ZaﬁX(” ZMAA( (7)

t<n t<n

To show convergence rate of this estimator, we will need some some regularity conditions on f; 4 and
¢. These assumptions are standard in the nonparametric statistics literature, see e.g., [25, Chapters 1,
3]. First, we recall the definition of the Holder class of functions:

o Il
Definition 5.1. For any r = (r1,--- ,rq), s € N, let |r| = > . r; and D" = Bac;'?ui-ar;d' The

Hélder class Y.(s, L) is the set of functions satisfying
|D"f(x) = D"f(y)l < Llz—y[*"

for all v such that |r| < s and x,y € R,

Assumption 5.2. Suppose for all i and ancestor sets A of i, fia € X(s,L). And suppose ¢(X,;),
&(fia) and &' (f;4) all have finite second moments.

Denote Ay (i) to be the non-descendants of ¢ in graph W, then the following lemma says that we
have a uniform estimator for the Bregman score:

Lemma 5.3. Suppose the Bregman score and the conditional expectations satisfy Assumption
Using the estimator defined in (7)) yields

o ;
i, (B - s <) 215

—2s
where §2 = C(nz+d 4+ n~1) for some constant C.

Using this estimator, we can bound the sample complexity of the forward pass of GFBS as follows:
Theorem 5.4 (Forward phase of GFBS). Suppose the BN satisfies the identifiability condition in
TheoremH.6|land assumptions in Lemma[5.3| denote the gap

A= min S(X;|A)—7>0
1€[d]),ACAw (7)
pa(i)ZA

Let the ordering returned by the first phase of GFBS to be T = (71, -+ ,7q). If the sample size

d2 25tdvi

The causal minimality Assumption [f.3]is equivalent to stating A > 0. Theorem [5.4] shows that A
in fact controls the hardness of the estimation, which is the gap between the minimum Bregman
information when all parents are conditioned on and when some parents are missing.

then P(T is a valid ordering) > 1 — e.

In this section, to obtain strong bounds on sample complexity, we modify the backward phase of
GFBS to be as follows:

Definition 5.5. Let Aq = 0 and for j > 1, /Tj = {mli = 1,2,...j}. Foreach Tj1, we find its

parents from Ej in the following way, estimate S(Xz,,, |gj) and S(Xz,,, |A\J \ @) fori € //l\j.
Then, set

A(Xﬁﬂ-l |A\J) - §(Xﬁj+1 |‘Z] \Z)‘ < 7}- (8)



This says that we keep an edge (¢, 7,1) depending on its influence on the local score at the vertex
Tj+1. If the influence is low, then we discard that edge. For our analysis to work, we process
these low-influence edges in batches grouped according to the vertices they are oriented towards. In
contrast, Algorithm[T]did not batch the edges and simply processed them one at a time.

Theorem 5.6 (Backward phase of GFBS). Suppose the same conditions and sample size in Theo-
remholds, using the backward phase defined in (8) withy = A /2 guarantees P(W = W) > 1—e.

Proofs can be found in Appendix [Fin the supplement.

6 Experiments

We conduct experiments to show the performance of GFBS on optimizing the Bregman score. We
compare GFBS with existing score-based DAG learning algorithms: Gobnilp [[16], NOTEARS [39],
and GDS [40]. The implementation of these algorithms and data generating process are detailed in
Appendix [H| Although previous works have evaluated the structure learning performance of special
cases of GFBS such as equal variances, we also include these comparisons in the appendix for
completeness. Also, in Appendix |G} we investigate the performance of GFBS on models which
violate the identifiability Assumption

* Choice of ¢. To show the generality of the Bregman score (@), we investigate two convex
functions to define the score: ¢1(x) = 22 and ¢o(x) = — log x. They correspond to sum of
residual variances and sum of residual Itakuro-Saito (IS) distances respectively.

* Graph type. We generate three types of graphs: Markov chains (MC), Erdos-Rényi (ER)
graphs, Scale-Free (SF) graphs with different expected number of edges. We let the expected
number of edges scale with d, e.g. ER-2 stands for Erdos-Rényi with 2d edges.

* Model type. We simulate the data as X; = f;(pa(i)) + Z; or X; = fi(pa(i)) x Z;
for different ¢’s, where Z; is independently sampled from some distribution such that
Assumption .4]is satisfied. Then we consider the following forms of the parental functions
fi: linear (LIN), sine (SIN), additive Gaussian process (AGP), and non-additive Gaussian
process (NGP).

The main objective of these experiments is to evaluate the performance of these algorithms in
optimizing the score: For this, it is necessary to compute the globally optimal score as a benchmark,
which is computationally intensive. As a result, our experiments are restricted to d = 5. We use
Gobnilp [16] to compute the global minimizer. The results are shown in Figure[I] As expected,
GFBS returns a near-globally optimal solution in most cases when the sample size is large. Due to
finite-sample errors, in some cases (notably on the IS score), GFBS returns a slightly higher score
due to the backward phase, which allows the score to increase slightly in favour of sparser solutions.
At a technical level, the issue is that the score does not distinguish I-maps from minimal I-maps, and
this is exacerbated on finite samples. Better regularization and parameter tuning should resolve this,
which we leave to future work. Nonetheless, the close alignment between GFBS and the globally
optimal score suggest that GFBS—and hence the equal variance algorithm—is truly minimizing the
score.

7 Discussion

We introduced the generic GFBS (Greedy Forward-Backward Search) algorithm for score-based
DAG learning. It enjoys the guarantees of always outputting a DAG and running in time polynomial
in the input size and the time required to compute the score function. We also showed statistical
and sample complexity bounds for this algorithm for the generic Bregman score. We motivate this
score by formally connecting it to the negative log-likelihood for all exponential DAG models, and
considering the well-known approximation capabilities of exponential families, we expect that the
Bregman score and our theoretical results apply to a wide variety of settings. In particular, the
Bregman score generalizes the least squares score. For least-squares score, our sample complexity
results unify and match or improve existing results such as [10, |19} [22]]. For generic Bregman scores,
no sample complexity results were known prior to this work to the best of our knowledge and we
provide the first such results.
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Figure 1: Score of output DAG vs. sample size n for GFBS and 3 other algorithms. Left four columns:
¢1(x) = 22 and Z; is t-distribution with variance 1; Right three columns: ¢(x) = — log(x) and
Z,; is uniform distribution in [1, 2]. The two sets of columns have different Y-axis scales. The grey
dashed line is the score of the true graph.

The GFBS algorithm also generalizes several prior works on greedy order-based algorithms for DAG
learning, e.g., [10,[19,137, 138]]. Existing score-based greedy algorithms (such as GES or hill climbing)
are edge-based, whereas these recent order-based algorithms are vertex-based. GFBS shows that each
of these prior works can be re-interpreted as score-based greedy algorithms, each of which optimizes
a different score. This brings them back under the umbrella of score-based learning. In our statistical
guarantees, our assumptions generalize the equal variance assumption that has been studied in the
literature in the last decade. Moreover, as a byproduct of our work, we also propose a new score
function, the Itakuro-Saito score, for multiplicative SEM models and we leave it to future work to
further explore the properties of this score function.

For other future work, it would be insightful to compare Assumption [4.3]to the standard notions such
as causal minimality. Moreover, our experiments suggest that the various assumptions we make are
not strictly necessary, so an interesting future direction is to study weaker conditions under which
GFBS globally optimizes the score.

Broader impacts

Learning graphical models has important applications in causal inference, which is useful for
mitigating bias in ML models. At the same time, causal models can be easily misinterpreted
and provide a false sense of security, especially when they are subject to finite-sample errors. One
additional potential negative impact from this line of work is the environmental cost of training large
causal models, which can be expensive and time-consuming.
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