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Abstract

A popular assumption for out-of-distribution generalization is that the training data comprises sub-
datasets, each drawn from a distinct distribution; the goal is then to “interpolate” these distributions and
“extrapolate” beyond them—this objective is broadly known as domain generalization. A common belief is
that ERM can interpolate but not extrapolate and that the latter task is considerably more difficult, but
these claims are vague and lack formal justification. In this work, we recast generalization over sub-groups
as an online game between a player minimizing risk and an adversary presenting new test distributions.
Under an existing notion of inter- and extrapolation based on reweighting of sub-group likelihoods, we
rigorously demonstrate that extrapolation is computationally much harder than interpolation, though
their statistical complexity is not significantly different. Furthermore, we show that ERM—or a noisy
variant—is provably minimax-optimal for both tasks. Our framework presents a new avenue for the formal
analysis of domain generalization algorithms which may be of independent interest.

1 Introduction
Modern machine learning algorithms excel when the training and test distributions match but often fail under
even moderate distribution shift (Beery et al., 2018); learning a predictor which generalizes to distributions
which differ from the training data is therefore an important task. This objective, broadly referred to as
out-of-distribution (OOD) generalization, was classically explored in a setting where there is a single “source”
training distribution and a different “target” test distribution. Achieving good performance in this setting
is impossible in general, so researchers have formalized several possible frameworks to study. One common
choice is to make specific assumptions about covariate or label shift (Widmer & Kubat, 1996; Bickel et al.,
2009; Lipton et al., 2018); another approach is Distributionally Robust Optimization (DRO), where the
test distribution is assumed to lie in some uncertainty set around the training distribution (Bagnell, 2005;
Rahimian & Mehrotra, 2019).

There has been considerable recent interest in moving beyond a single source distribution, instead assuming
that the set of training data is comprised of a collection of “environments” (Blanchard et al., 2011; Muandet
et al., 2013; Peters et al., 2016) or “groups” (Hu et al., 2018; Duchi et al., 2019; Sagawa et al., 2020), each
representing a distinct distribution,1 where the group identity of each sample may be known. Such a setting is
referred to as domain generalization. The hope is that by cleverly training on such a collection of groups, one
can derive a robust predictor which will better transfer to unseen test data. Previous literature has focused
exclusively on worst-case domain generalization, where the test environment is chosen to be the worst choice
among a constrained set of possible test environments. It is useful to cast such a task as solving a one-shot
min-max game, where the learner selects the predictor and then an adversary selects the test environment.
A key specification for this game is how future test distributions depend on the training domains (i.e., the
action space for the adversary).

The most immediate choice for the set of possible test environments is simply the set of training environments.
∗Machine Learning Department, CMU. Email: elan@cmu.edu
†Machine Learning Department, CMU. Email: pradeepr@cs.cmu.edu
‡Machine Learning Department, CMU. Email: aristesk@andrew.cmu.edu
1Throughout this work, we use the terms “domain”, “distribution”, and “environment” interchangeably.
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More broadly, researchers have considered how to perform well when the adversary is allowed to present
test distributions which “interpolate” the training distributions or “extrapolate” beyond them, but it is
unclear what is the ideal formalization of such interpolations and extrapolations. A popular choice for
modeling interpolation is to allow any convex combination of the training environments—this is referred
to as group/sub-population shift, and the resulting objective is known as Group Distributionally Robust
Optimization (DRO). Duchi et al. (2019); Sagawa et al. (2020) give efficient algorithms for solving the Group
DRO objective, but a key point is that the resulting min-max objective is exactly equivalent to when the
adversary is limited to playing only the training environments. For modeling extrapolation, Krueger et al.
(2020) consider “extrapolating” the training likelihoods (we make this formal in Section 2), but in this game
the adversary’s choice will still always be a vertex of the playable region. Thus, solving the one-shot min-max
game under likelihood reweighting is always equivalent to simply minimizing worst-case risk on a discrete
set.

In addition to this, formal analyses of these games are sparse. A common belief is that Empirical Risk
Minimization (ERM) excels at interpolation but not extrapolation; it is also generally held as folklore
that extrapolation is a much harder task, which is why generalization is so difficult—but these claims are
understood intuitively, rather than mathematically. Further, Sagawa et al. (2020) find that when using
modern neural networks in the interpolation regime, explicitly solving the Group DRO objective does not
yield better solutions than simple ERM with strong regularization. Thus the relative optimality of ERM and
other domain generalization algorithms remains unclear. In light of these points, we begin by considering
the question: Is there an alternative to the single-round min-max game which might allow for
a more in-depth analysis of the statistical and algorithmic properties of the task of domain
generalization?

One final additional caveat with this line of research is its emphasis on worst-case optimality over all possible
test environments, which is often unnecessarily conservative. This is exemplified by empirical evaluations in
the OOD literature: these works train a predictor on the source data and then evaluate it on a single test
set which is chosen adversarially with respect to the predictor. Such a protocol often misses the mark for
realistically comparing the expected performance of different algorithms. For example, Gulrajani & Lopez-Paz
(2021) point out that many recent works deliberately evaluate on a single train/test environment split with an
unreasonably difficult distribution shift. When averaging performance over multiple environment splits, they
find that no algorithm outperforms ERM. This adversarial analysis can indeed be appropriate for quantifying
how an algorithm will perform in the worst possible case (particularly in safety-critical applications), but this
frequently does not reflect a predictor’s quality in the real world: when the test environments are not chosen
adversarially, a reasonable learning algorithm should be able to do significantly better. Thus the crucial
distinction is that existing frameworks are minimax because they demand good performance of
an algorithm even in the worst case, not because we actually expect the test environments to
be chosen adversarially.2 This suggests there is room for a more nuanced measure of OOD generalization,
one which adequately captures the purpose of such algorithms—to achieve consistently good performance on
all possible test distributions—and allows for a formal comparison of their performances.

In this work, we aim to address the two main gaps identified above: formalizing the difference, if any (statistical
and computational), between ERM and other OOD algorithms in both interpolation and extrapolation group
shift settings; and doing so in a framework that allows us to analyze a predictor’s performance on potentially
non-adversarial (e.g., stochastic) future test environments. To do this, we take inspiration from the literature
of online convex optimization (Hazan, 2016) and ask what can be achieved in a game where the learner is
allowed to repeatedly refine their predictor upon observing new environments. Our analysis therefore captures
an algorithm’s ability to learn and adapt from multiple training distributions to suffer less under distribution
shift and consequently perform better, on average, on future test sets. Our multi-round game generalizes
existing work on domain generalization, providing new insights into the quantifiable effects of observing
different environments as a function of both their number and their geometric diversity. Further, this new
perspective allows for a theoretical analysis of the computational and statistical complexity of interpolation
versus extrapolation, formalizing and verifying the answers to several outstanding questions which until now
have only been stated intuitively.

2This is a subtle point which we discuss in greater detail in Section 3.1.
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Concretely, this work makes the following contributions:

• We recast domain generalization as a repeated online game between an adversary presenting test
distributions and a player minimizing cumulative regret. This framework enables meaningful analysis
beyond the single-round minimax setting, and we expect it can serve as a new approach to the formal
study of the efficacy of robust OOD generalization algorithms.

• Under an existing notion of inter- and extrapolation, we tightly characterize their respective complexities.
Specifically, we prove that i) extrapolation is indeed exponentially more difficult than interpolation in a
computational sense, but ii) the statistical complexity of extrapolation is not significantly higher.

• For both inter- and extrapolation, we show that ERM—or a noisy variant—is provably minimax-optimal
with respect to regret, as a function of the number of environments observed. For minimizing regret
over any time horizon, it is impossible to improve over ERM without additional assumptions. This
result supplements recent works which support the same idea theoretically (Rosenfeld et al., 2021) and
empirically (Gulrajani & Lopez-Paz, 2021) for the single-round setting.

2 The Single-Round Domain Generalization Game
The key assumption of domain generalization is that the training set comprises a set of distinct domains
E = {ei}Ei=1, each of which indexes a probability distribution pe, and that the test environment will relate to
these domains in some pre-specified way. Let us denote the set of such possible test distributions by Etest.
It’s common to use a minimax formulation, wherein the learner’s goal is to minimize the worst-case error
over the possible test distributions Etest. For a set of predictors F and loss `, our goal is thus to solve the
objective

min
f∈F

max
e∈Etest

Ee[`(f)].

In an adversarial framework, Etest is the “playable region” of the adversary, similar to the uncertainty set
in traditional DRO. A critical ingredient of the game as noted earlier is how this set of test distributions
Etest depends on the training domains E . It is typically presented as belonging to one of two distinct settings:
interpolation and extrapolation. Intuitively, the interpolation setting should consist of environments which do
not vary “beyond” the observed training environments, while the extrapolation setting should allow for such
variation to some degree. However, these terms do not have a single agreed-upon meaning.

Formally modeling interpolation. Given a collection of environments, there are many possible ways to
consider interpolating them. In this work, we limit our analysis to the notion of likelihood reweighting which
has been used previously in several works (Duchi et al., 2019; Albuquerque et al., 2020; Sagawa et al., 2020).3
We model the interpolation of a set of domains as all convex combinations (i.e., mixtures) of their likelihoods.
Formally, an interpolation of the domains in E is any distribution which is written

pλ :=
∑
e∈E

λep
e, (1)

where λ ∈ ∆E is a vector of convex coefficients (∆E is the (E− 1)-simplex). This is a fairly natural definition,
as the space of interpolations is defined as the convex hull of the environments E in distribution-space. We
will denote this convex hull Conv(E).

Observe that this definition is mathematically equivalent to the set of environments which can be generated
via group shift, and solving the above min-max objective is precisely Group DRO. However, this notion of
single-round interpolation, while perhaps intuitive, does not actually induce a more meaningful playable
region for the adversary. This is because for any predictor, the optimal choice for the adversary will be
whichever training environment produces the highest risk; that is, the adversary will always play a vertex of
the simplex. Thus, these two games are equivalent:

3As another possibility, we could directly interpolate between two samples, but this is unlikely to be meaningful for highly
complex data such as images. If we were to pose a generative model, it would instead be natural to consider interpolations of
the generative parameters.
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Proposition 1 (Equivalence of interpolation and the discrete one-shot game).

min
f∈F

max
e∈Conv(E)

Ee[`(f)] = min
f∈F

max
e∈E

Ee[`(f)].

We note that in some prior work on Group DRO, learning models that minimize worst-case sub-population
risk is indeed the goal—that is, they only care about test domains that match one of the source domains.
In the broader domain generalization literature, however, it does not seem that this form of interpolation
provides any additional constraint on OOD learning without additional regularization (Hu et al., 2018).

Generalizing to extrapolation. It is not immediately obvious how to extend this concept to include
extrapolation. Krueger et al. (2020) suggest allowing for combinations in which the coefficients are still
restricted to sum to 1, but may be slightly negative, where the minimum coefficient is given as a hyperparameter
α:
∑
e∈E λe = 1, λe ≥ −α ∀e ∈ E . We refer to such combinations as “bounded affine” combinations, and

the objective they induce is equivalent to a fixed linear combination of the average loss plus the worst-case
loss. It is immediate that the adversary’s optimal choice is still on a vertex, so this game also reduces to
minimizing over a discrete set:

Proposition 2 (Equivalence of constraint set for extrapolation and the discrete one-shot game).

min
f∈F

max
e∈Extrα(E)

Ee[`(f)] = min
f∈F

max
e∈E

[
(1 + Eα)Ee[`(f)]− α

∑
e′∈E

Ee′ [`(f)]

]
,

where Extrα(·) is all α-bounded affine combinations.

Thus we find that for a single round, the precise meaning of these objectives is unclear: the adversary is still
choosing from a discrete set, and this model does not seem to capture the intuition that extrapolation should
be fundamentally “harder” than interpolation. This shortcoming motivates our modified approach based on
long-term regret, which we introduce shortly.

For extrapolating likelihoods, note that the resulting function is not guaranteed to be a probability distribution,
as it could result in negative measure—one can instead frame it as reweighting of the environment risks (thus
in Proposition 2 above, E[·] refers to general Lebesgue integration). We study this reweighting of risks in
Section 4.2, and we find that generalizing well over all such combinations is NP-hard. This provable difficulty
in extrapolating validates our proposed sequential game, but it also indicates that additional assumptions
may be necessary for modeling domain generalization. This raises interesting questions about what is the
correct or most useful model of “extrapolation”, which we do not address here.

3 The Sequential Domain Generalization Game
We consider recasting the task of domain generalization as a continuous game of online learning in which
the player is presented with sequential test domains and must refine their predictor at each round. We’re
therefore interested in the player’s ability to learn continuously and improve in each round. We would expect
that any good learning algorithm will suffer less per distribution as we observe more of them—that is, the
per-round regret should decrease over time. Specifically, we’d like to prove a rate at which our regret goes
down as a function of the number of distributions we’ve observed. Our game allows for an analysis of the
average loss (over time) of a learning algorithm across all possible test sequences—in order to bound this
performance, we consider the worst such sequence. In Section 3.1 we expound upon this idea, comparing in
detail our game to existing single-round minimax settings and discussing the benefits it affords.

We now describe the game which will allow a formal analysis of the efficacy of various domain generalization
strategies. The full game can be found in the box titled Algorithm 1. Note we describe a specific instance
where the adversary is limited to group mixtures as described in Section 2; the general game allows for
any formally specified action space for the adversary and we expect this will enable future analyses
involving rich classes of distribution shift threat models such as f -divergence or H-divergence balls (Bagnell,
2005; Ben-David et al., 2007).
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Algorithm 1 : Domain Generalization Game
(likelihood reweighting)

Input: Convex parameter space B, distributions {pe}e∈E over X × Y ,
strongly convex loss ` : B × (X × Y)→ R, playable region ∆.

for t = 1 . . . T do
1. Player chooses parameters β̂t ∈ B.
2. Adversary chooses coefficients λt ∈ ∆.
3. Define ft(β) := E(x,y)∼pλt [`(β, (x, y))] =

∑
e∈E λt,eE(x,y)∼pe [`(β, (x, y))].

end for
Player suffers regret

RT =
T∑
t=1

ft(β̂t)−min
β∈B

T∑
t=1

ft(β).

Game Setup. Before the game begins, we define a family of predictors parameterized by β lying in
a convex set B. For some observation space X and label space Y, nature provides a fixed loss function
` : B × (X × Y)→ R, strongly convex in the first argument, as well as a set of E environments E = {ei}Ei=1,
each of which indexes a distribution pe over X × Y. We assume that B is large enough such that for any
λ ∈ ∆E , the parameter which minimizes risk on pλ lies in B. We further assume that for all β ∈ B and e ∈ E ,
the expected loss of β under pe is finite. The game proceeds as follows:

On round t, the player chooses parameters β̂t ∈ B. Next, the adversary chooses a set of coefficients
λt := {λt,e}e∈E , which defines the distribution pλt as the weighted combination of the likelihoods of
environments in E with coefficients λt, as in Equation 1. For now, we assume that every choice of λ by
the adversary is a set of convex coefficients—that is, an interpolation—which ensures that pλt is a valid
probability distribution; we will relax this restriction in Section 4.2. At the end of the round, the player
suffers loss ft(β̂t) = Rλt(β̂t), defined as the risk of the predictor parameterized by β̂t on the adversary’s
chosen distribution:

Rλt(β) := E(x,y)∼pλt [`(β, (x, y))]

(we write fe = Re for the analogous risk on distribution pe). For clarity, when using the above notation we
will drop the subscript t when it is not necessary.

It’s important to note that in this game the player does not begin “training” until the first round; the initial
environments E serve only to define the playable region for the adversary. Thus to recover the existing notion
of single-round domain generalization, where the estimator has already seen the source environments E and
next faces an unseen test environment, the online game would actually begin with the adversary playing each
of the environment distributions in E once. As in standard online learning, our goal is to minimize regret
with respect to the best fixed predictor in hindsight after T rounds. That is, we hope to minimize

T∑
t=1

ft(β̂t)−min
β∈B

T∑
i=1

ft(β). (2)

Observe that this notion of regret straightforwardly generalizes previous work on single-round domain
generalization. By allowing T →∞, we have a meaningful measure of success: each time we are presented
with a new environment, we update our predictor in the hopes of improving our average performance. Crucially,
this modification allows us to ask questions about the rate at which our regret decreases as a function of the
number of environments observed. It also better reflects the idea that our algorithm’s performance should not
be evaluated in a vacuum: we aim to perform well relative to how we could have performed over all timesteps
with a single predictor.

3.1 The Benefits of Online Regret vs. Single-Round Loss
Our focus on regret in the online setting as opposed to loss in a single round is important; it will be instructive
to carefully consider the benefits to such an analysis.
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Significance of regret with respect to a fixed baseline. The second term in Equation 2 is crucial; the
comparison to the best fixed parameter prevents the adversary from forcing constant regret at each round
and reflects the idea that we hope to eventually perform favorably compared to a single predictor which does
reasonably well on all environments. Without this baseline, the player’s objective would be to simply minimize
the sum of the risks on all environments:

∑T
t=1 ft(β̂t). In the adversarial setting,4 the game therefore reduces

to repeated, independent instances of the single-round version; clearly, the best we can do to minimize worst-
case loss each single round is to play the minimax-optimal parameters β∗ := arg minβ∈B maxλ∈∆E

Rλ(β). In
response, the adversary would always choose λ∗ := arg maxλ∈∆E

Rλ(β∗). This game is uninteresting beyond
the first round and does not adequately capture an algorithm’s performance in a real-world setting where the
environments are not chosen adversarially. As mentioned in the introduction, the key observation here is that
the single-round minimax framework is used to guarantee good performance even in the worst-case scenario,
but we do not actually expect future test environments to be chosen in this way.

As a simple example, if we were to repeatedly play β∗ and repeatedly face the test distribution p∗, we
should consider it more likely that this is representative of future test environments (i.e., we will continue to
encounter p∗) than that Nature is actively trying to give us the largest possible loss. Consequently we should
switch strategies and play arg minβ∈BRp

∗
(β), which will have better performance if the pattern continues.

Thus, existing frameworks overemphasize minimax performance in individual rounds—even though in reality,
distribution shift is rarely adversarial—while ignoring possible improvements over time via adaptation to the
changing environments. In contrast, our longitudinal analysis allows for an algorithm to occasionally suffer
preventable loss in any given turn, so long as the per-turn regret is guaranteed to decrease over time.

One particular setting where the benefits of this new framework are readily apparent is under gradual
distribution shift. The single-round minimax formulation is intended for safety-critical applications where
even a tiny mistake is fatal; however, when this is not the case, such an approach is far too conservative, and
regret-based analyses provide a much clearer picture of expected performance. Our framework is thus not
intended to supplant the single-round setting, but rather to supplement it with a new, more realistic method
of formal analysis of domain generalization algorithms.

Implications of sublinear regret. For any sequence of environments, there will be some parameter β̃
which would have achieved the least possible cumulative loss. Sublinear regret implies that as T →∞ we will
eventually recover the per-round loss of β̃, but without committing beforehand and with no prior knowledge
of the test environment sequence. Thus in the limit we are guaranteeing the lowest possible average loss
against a fixed sequence of environments—at the same time, our analysis is minimax so as to guarantee our
regret bound holds even against the worst such sequence.

Further, sublinear regret is a very powerful guarantee when the environments are stochastic, as might be
expected in any real-world setting. For any prior over environment distributions π(pe), it is easy to see that
sublinear regret implies convergence to the performance of the parameter which minimizes loss over the
marginal distribution:

arg min
β∈B

∫
P
π(pe) Epe [`(β, (x, y))] dpe,

where P is the set of all distributions over X × Y. This is because as T → ∞, the π-weighted average of
the sum of losses will converge to the loss on the marginal distribution—the baseline will then be whatever
parameter minimizes this loss. Observe that this is strictly stronger than the guarantee of ERM, which ensures
the same result only in the limit: sublinear regret implies that for every T , our regret with respect to the best
predictor so far is bounded as o(T ). Thus if by chance the distributions we’ve seen are not representative of
the prior π (an oft-stated motivation for OOD generalization), we are still ensuring convergence to the loss of
the optimal fixed predictor in hindsight, whatever it may be. In particular, if the sequence of environments is
so unfavorable that the optimal predictor in hindsight is an invariant predictor (Peters et al., 2016; Arjovsky
et al., 2019; Rosenfeld et al., 2021), which ignores meaningful signal to ensure broad generalization, sublinear
regret guarantees that our algorithm’s loss converges to this invariant predictor’s loss.

4By this we mean the setting where the next environment is always the one which maximizes risk for the parameter chosen
by the player.
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We emphasize again that while the above example considers a stochastic adversary, we do not in general
assume a prior over environments. Instead, we perform a minimax analysis to guard against the worst
possible sequence of test distributions. We are measuring average regret with respect to time.

4 Theoretical Results
Before presenting our main theoretical results, we begin with a lemma which greatly simplifies the analysis
by recharacterizing the adversary’s playable region.

Lemma 1. Recall Re(β) is defined as the risk of β on the distribution pe. Then for all λ ∈ ∆E, it holds that
Rλ(β) =

∑
e∈E λeRe(β).

This reframing allows us to generalize our analysis to extrapolation without worrying that the resulting measure
is not a probability distribution. Lemma 1 implies that when the adversary chooses convex coefficients λt, they
are equivalently choosing a loss function ft which is a combination of {fe}Ee=1, the individual environments’
risks. Each choice of λt uniquely defines the resulting loss function ft; moving forward we will drop this
explicit dependency in our notation.

4.1 Convex Combinations
Similar to Abernethy et al. (2008), we evaluate the performance of an algorithm by defining the value of the
game after T timesteps as the player’s regret under optimal play by both player and adversary:

VT := min
β̂1∈B

max
λ1∈∆E

. . . min
β̂T∈B

max
λT∈∆E

(
T∑
t=1

ft(β̂t)−min
β∈B

T∑
t=1

ft(β)

)
.

For fixed T , this allows us to formalize minimax bounds on the regret. In the traditional literature, the
adversary is allowed to play losses ft from a much more general class, such as all strongly convex functions. In
this setting, the value of the game in any given round t is known to be exactly Vt =

∑t
s=1

G2
s

2sσmin
, where Gs is

the Lipshitz constant of fs at the parameter chosen by the player and σmin is the minimum curvature of f .5
This means the minimax-optimal rate for regret is Θ(log t) (Hazan et al., 2007; Bartlett et al., 2007).

In contrast to traditional online learning, where the adversary is free to choose its loss from a large non-
parametric class such as all strongly convex functions, our interpolation game severely restricts the adversary,
allowing only convex combinations of the risks of the E distributions. We might expect that such a restriction,
especially when known to the player, would allow for a faster convergence to zero regret, even if the strategy
which attains it is intractable. Our first result demonstrates that this is not the case.

Theorem 1. Suppose σmax ≥ σmin > 0 such that ∀e ∈ E , σminI � ∇2fe � σmaxI. Define g as the minimum
gradient norm that is guaranteed to be forceable by the adversary: g := minβ∈B maxλ∈∆E

‖∇f(β)‖2. Then
for all t ∈ N it holds that Vt > g2σmin

16σ2
max

log t.

Proof Sketch. The general idea of the proof is to lower bound the regret on round t by the optimal regret on
round t− 1 plus some additional loss suffered on round t. This loss depends on the distance from the chosen
parameter on round t to the regret minimizer for round t − 1, as well as the adversary’s choice on round
t, and it can be bounded as Ω(1/t). By unrolling the recursion we derive an overall lower bound of order∑t
i=1

1
i > log t. The full proof can be found in Appendix A.

Theorem 1 provides insight into how the statistical complexity of generalizing to domain interpolations
depends on the geometry of the source domains. Observe that the minimum forceable gradient norm g
encodes a sort of “radius” of the convex hull of loss gradients—it is easy to see that if a ball of radius r can
be embedded in Conv({∇fe(β)}Ee=1) then g > r. Thus, the restriction of the adversary to the convex hull
of distributions entails a restriction on the geometry of the convex hull of the corresponding loss gradients,

5We’ve omitted some details; see Abernethy et al. (2008) for the full result.
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which subsequently determines the regret our player can be forced to suffer. The bound does not directly
depend on the number of training environments E; rather it scales quadratically with the size of this region,
which appropriately captures the intuition that a smaller regret should be achievable for a collection of
sub-distributions whose optimal parameters are very similar to one another.

With respect to the asymptotic rate of regret, this theorem provides a somewhat surprising conclusion.
Even with full knowledge of the adversary’s limited selection, Theorem 1 shows that no algorithm can do
asymptotically better than if we were playing against the more powerful adversary playing any strongly
convex function. Even more interesting, this rate can be achieved with a very simple algorithm known as
Follow-The-Leader (FTL), which just plays the minimizer of the sum of all previously seen functions (Hazan
et al., 2007). In our game, this means playing the predictor which minimizes risk over all environments seen
so far—after observing t environments, FTL would therefore play

βFTL = arg min
β

t∑
s=1

fs(β).

Observe that this strategy is precisely ERM! In other words, ERM is provably minimax-optimal for interpola-
tion. As the adversary’s playable region is a strict subset of all strongly convex functions, it is immediate
that the regret suffered by playing ERM is upper bounded as

∑t
s=1G

2
s/2sσmin = O(log t). While Theorem 1

applies to the multi-round game, it has useful implications for the single-round setting. A simple corollary
provides a tight bound on the attainable regret as a function of the number of environments seen. To our
knowledge, this is the first such bound for single-round domain generalization.

Corollary 1. Suppose we’ve seen t environments. Then under the same setting as Theorem 1, the additional
regret suffered due to one more round is Ω

(
1
t

)
. This lower bound is attained by ERM.

4.2 Bounded Affine Combinations
One could argue that allowing the adversary only convex combinations of domains is perhaps too good to
hope for. Indeed, as we’ve seen, ERM is optimal for such a setting, but it has been widely observed that ERM
fails under minor distribution shift. We might expect that future environments would fall outside of this
hull—if combinations within the hull represent a formal notion of “interpolating” the training distributions,
then it seems our goal instead should be to “extrapolate” beyond them.

As discussed in Section 2, Krueger et al. (2020) consider allowing the adversary to play bounded affine
combinations of the environments; while they provide no formal results for their proposed algorithm, this
conceptualization of extrapolation seems a natural extension. Clearly, this game is no easier for the player—in
fact, we will demonstrate that it is significantly harder. For general Lipschitz functions, it is known that
against the worst-case sequence, no deterministic strategy can guarantee sublinear regret, and attaining
sublinear regret with a randomized strategy is NP-hard. Further, there is a regret lower bound of Ω(

√
T )

which was recently shown to be achievable with Follow-The-Perturbed-Leader (FTPL), assuming access to
an optimization oracle for approximately minimizing a non-convex function (Suggala & Netrapalli, 2020).
As in the previous subsection, we extend these results to the task of domain generalization—that is, we
demonstrate that despite the (seemingly restrictive) requirement that the adversary play bounded affine
combinations of strongly convex losses that are fully known to the player, the game remains equally hard.
These results are also surprising, as an adversary that can play arbitrary Lipschitz functions is significantly
more powerful than the adversary in our game.

Theorem 2. No algorithm can guarantee sublinear regret against bounded affine combinations of a finite set
of strongly convex losses.

Proof. We’ll show that for any algorithm, there exists a sequence of loss functions chosen in response by the
adversary for which the regret is bounded as Ω(T ). Assume the adversary can use coefficients greater than
−α. Define

fe1(β) = x2, fe2(β) = β4 +
1

2α
β2.
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On round t, our player will choose to play β ∈ R. We now describe our construction of the tth loss in the
sequence: If |β| < 1, then we choose ft = (1 + α)fe1 − αfe2 , and if |β| ≥ 1, we choose ft = fe1 . In the first
case, the player suffers loss ft(β) ≥ 0, and in the second case, the player suffers loss ≥ 1. Suppose the player
plays the first option a times and the second option b times, for a total of a+ b = T rounds, and suffers ≥ b
loss.

Consider the possible best actions in hindsight. If a ≤ T
2 , then β

∗ = 0 suffers 0 loss, meaning the player’s
regret is at least b = T − a ≥ T

2 . If, on the other hand, a > T
2 , then note that for any choice β the loss

suffered is

−aαβ4 + (a/2 + aα+ b)β2 ≤ aα(β2 − β4) + (a+ b)β2 =
(
aα(1− β2) + T

)
β2.

Choosing β∗ =
√

1 + 3
α results in regret ≥ T

2 . In either case, the player suffers Ω(T ) regret.

For completeness’s sake, in Appendix B we also include a proof of the existence of a regression task and a set
of environments which could give rise to such a set of loss functions.

Thus we find that just as in the general non-convex case, a weaker adversary is necessary. In the following we
consider a relaxed version with an “oblivious” adversary: this adversary is forced to select the entire sequence
of loss functions at the beginning of the game (our lower bounds hold despite this relaxation). We might
hope that against such a restricted adversary, the computational requirements of achieving sublinear regret
would be lessened—perhaps there would be no need for an optimization oracle. However, Theorem 3 proves
otherwise:

Theorem 3. Against an oblivious adversary playing bounded affine combinations, achieving sublinear regret
is NP-hard.

Proof. Consider the problem of identifying the maximum size of a stable set of a graph on |V | vertices; such
a problem is not approximable in polynomial time to within a factor |V |(1/2−ε) for any ε > 0 unless NP = P
(Håstad, 1999; De Klerk, 2008). We will demonstrate that solving this problem up to a constant factor
reduces to achieving sublinear regret on an online strongly convex game with bounded affine coefficients.
Let −α represent the minimum negative coefficient allowed for the adversary. Given the graph G on
|V | > 1 vertices, denote by A its adjacency matrix. Then the maximum stable set size γ(G) can be written

1
γ(G) = minβ∈∆|V | β

T (I +A)β by a result of Motzkin & Straus (1965). We define a game where the adversary
has two functions:

fe1(β) =
1

1 + α
βT (|V |I +A)β, fe2(β) =

|V | − 1

α
‖β‖22.

Note that fe1 is strongly convex because (|V | − 1)I + A is diagonally dominant and therefore PSD. Each
round, the player plays some β ∈ ∆|V |, and the (oblivious) adversary chooses the loss

(1 + α)fe1 − αfe2 = βT (|V |I +A)β − (|V | − 1)‖β‖22 = βT (I +A)β.

Define LT as the loss suffered by the player after T rounds. Clearly, the optimal choice would be to play
β such that βT (I + A)β = 1

γ(G) each round, implying that T
γ(G) ≤ LT and also that regret can be written

LT − T
γ(G) . Suppose there exists a polynomial-time strategy with regret growing sublinearly with T . Then by

definition, there exists a constant T0 ∈ poly(|V |) such that on all rounds T > T0, the player’s regret is upper
bounded as

LT −
T

γ(G)
≤ 1

|V |
T ≤ T

γ(G)
=⇒ LT ≤

2T

γ(G)
.

Putting these inequalities together, we get 1
γ(G) ≤

LT
T ≤

2
γ(G) , which implies 1

2γ(G) ≤ T
LT
≤ γ(G). Recall

that this holds for all T > T0, so our polynomial-time algorithm has attained a 2-approximation to the
maximum stable set size.
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Computationally, our game of extrapolation is just as difficult as achieving sublinear regret on arbitrary
Lipschitz functions. These results present, for the first time, proof of an exponential computational complexity
gap between interpolation and extrapolation in the domain generalization setting, formally verifying existing
intuition.

We now turn our attention to the statistical complexity of regret minimization under bounded affine
combinations. Recall that for the case of convex combinations (i.e. interpolations), Theorem 1 shows a
minimax lower bound of Ω(log t) which can be achieved with standard ERM. Before we consider the bounded
affine setting (i.e. extrapolations), we again note that for an adversary playing arbitrary Lipschitz functions,
Suggala & Netrapalli (2020) demonstrate that with access to a non-convex optimization oracle, FTPL can
achieve the minimax lower bound of Ω(

√
T ). The FTPL strategy is to play the parameter which minimizes

the sum of the observed environments plus a noise term—specifically, FTPL takes the sum of existing
risks, samples a random linear function of the parameters, and solves for the parameters which minimize
this “perturbed” sum. In our game, then, FTPL is just a noisy variant of ERM. Computational limitations
notwithstanding, the natural next question is if playing against an oblivious adversary is enough of a relaxation
that we can surpass this lower bound. That is, can we outperform ERM in this setting at all? Our final
result answers this question in the negative:

Theorem 4. Against an oblivious adversary playing bounded affine combinations, the achievable regret is
lower bounded as Ω(

√
T ).

Proof. For a fixed, convex loss ` and convex parameter space Θ, predicting with expert advice is known to
have an information-theoretic minimax regret lower bound of Ω(

√
T ) (Cesa-Bianchi & Lugosi, 2006, Theorem

3.7). We will give a reduction which demonstrates that the same lower bound holds for bounded affine
combinations of strongly convex losses.

Assume a fixed convex loss ` : Θ×Θ 7→ R over convex Θ and fix the adversary’s coefficient lower bound as −α.
Suppose on round t, we are presented with E experts’ predictions, which we imagine as an E-dimensional
vector θ̃t whose ith entry is the prediction of the ith expert. Define the following functions over elements
δ ∈ ∆E :

fe1(δ, θ∗) =
1

1 + α

[
`(δT θ̃t, θ

∗) + ‖δ‖22
]
, fe2(δ, θ∗) =

1

α
‖δ‖22.

Note that both these functions are both strongly convex in δ. Consider what happens if the adversary plays
(1 + α)fe1 − αfe2 = `. Suppose for the sake of contradiction there exists an algorithm playing δ̂t which
achieves o(

√
T ) regret with respect to δ∗, defined as the best fixed δ ∈ ∆E in hindsight:

δ∗ := arg min
δ∈∆E

T∑
t=1

`(δT θ̃t, θ
∗).

As this represents a convex combination of the experts’ predictions, it is clear that the loss suffered by δ∗ will
be less than or equal to the loss suffered by the best expert. This implies that by taking this algorithm’s
choice δ̂t each round and playing δ̂Tt θ̃t, we will achieve o(

√
T ) regret with respect to the best expert, defying

the known lower bound. It follows that the lower bound of Ω(
√
T ) holds even for bounded affine combinations

of strongly convex functions.

This theorem implies two crucial points: firstly, that ERM remains minimax optimal for this model of
extrapolation; and secondly, that proper regularization is essential for good OOD generalization. This provides
theoretical justification for the empirical findings of Sagawa et al. (2020) and complements existing results on
the value of explicit regularization for group shift (Hu et al., 2018). Additionally, we find that even though
there is an exponential computational complexity gap between the two tasks, the statistical gap is not too
large—Θ(log T ) versus Θ(

√
T ) regret.
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5 Related Work
Many works provide formal guarantees for OOD generalization by assuming invariances in the causal structure
of the data: a set of interventions is assumed to result in separate fixed environments (Peters et al., 2016;
Heinze-Deml et al., 2018; Heinze-Deml & Meinshausen, 2020; Christiansen et al., 2020) or distribution shift
over time (Tian & Pearl, 2001; Didelez et al., 2006), and the test distribution will likewise represent such an
intervention. Under sufficiently strong conditions it is then possible to identify which features have invariant
relationships with the target variable; recovery of these features ensures reasonable performance despite
arbitrary future interventions on the other variables. However, these works assume full or partial observation
of the covariates, and therefore they do not apply to the setting where the data is a complex function of
unobserved latent variables.

Works which eschew a direct causal formalization often still depend upon the intuition of “invariance” within
the context of causality. The IRM objective (Arjovsky et al., 2019) was designed for such a setting assuming
the target variables’ causal mechanisms remain invariant, but it lacked serious theoretical justification;
Krueger et al. (2020) likewise suggest an algorithm for extrapolation but similarly fail to provide any formal
guarantees. Rosenfeld et al. (2021) subsequently showed that, while these and other similar objectives
may work under strong conditions in the linear setting, the same cannot be said for more complex data.
Albuquerque et al. (2020) theoretically analyze extrapolation beyond the convex hull of domain likelihoods
and give generalization bound via H-divergences. Unfortunately, this bound scales linearly with both the
maximum discrepancy between pairs of training distributions and between the test distribution and training
environment hull.

This work relates the nascent study of domain generalization theory to prior work on online and lifelong
learning (Thrun, 1998; Mitchell et al., 2015; Hazan, 2016), for which there already exist provable regret
bounds and efficiency guarantees (Balcan et al., 2015; Alquier et al., 2017). The main difference is that those
works—which are for more general online learning—present new algorithms and give upper bounds, while
this work focuses on OOD generalization and proves lower bounds which match rates already known to be
achievable for more general classes of losses (Hazan et al., 2007; Abernethy et al., 2008; Suggala & Netrapalli,
2020) , implying that existing algorithms (ERM and a noisy variant) are already optimal.

6 Conclusion and Future Directions
This work presents the first formal results demonstrating an exponential computational gap between interpo-
lation and extrapolation in domain generalization, a claim which has until now only been given vague intuitive
justification. Perhaps more importantly, we’ve shown that ERM remains statistically minimax-optimal for
both tasks—given the observed failure of ERM in practice, this suggests that there is quite a bit more
subtlety to distribution shift in the real world. Taken together, our results present strong evidence that the
“likelihood reweighting” model of distribution shift, while perhaps appropriate for specific settings involving
sub-populations, might not be appropriate for the more general study of extrapolation to new domains. It
could instead be beneficial to reconsider existing notions of inter- and extrapolation—particularly those involv-
ing linearity or generic likelihood reweighting—in the context of online learning, where the notions of regret
and stochastic adversaries allow for more a nuanced study of statistical and algorithmic complexity.

We see two important directions for further research. First, the proposed domain generalization game serves
as a standalone framework for the theoretical analysis of learning algorithms. As discussed in Section 3.1,
considering regret in the online setting provides a more nuanced signal of an algorithm’s expected performance,
especially when we are not too worried about the literal worst case test distribution. We hope that this
new perspective will better enable future work to provide formal OOD generalization guarantees for their
proposed methods. We note that this work considers only strongly convex functions, but using the same
techniques one could extend the analysis to more general classes such as all convex losses; this setting might
eliminate the statistical complexity gap and could lead to additional insight into the differences between inter-
and extrapolation.

Second, there still remains significant flexibility in how we define “interpolation” and “extrapolation” with
respect to training environments; we consider one specific notion in this work, and we show that ERM remains
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optimal—implying that alternative formulations may be preferable. However, it seems likely that different
restrictions on the adversary could allow for stronger generalization guarantees. Furthermore, our analysis
reveals that the geometry of the environmental loss functions is a critical element for generalization. This
suggests additional improvements can be achieved with careful representation learning.
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A Proof of Theorem 1
Theorem 1. Suppose σmax ≥ σmin > 0 such that ∀e ∈ E , σminI � ∇2fe � σmaxI. Define g as the minimum
gradient norm that is guaranteed to be forceable by the adversary: g := minβ∈B maxλ∈∆E

‖∇f(β)‖2. Then
for all t ∈ N it holds that Vt > g2σmin

16σ2
max

log t.

Proof. Define Ft(z) =
∑t
s=1 fs(z); since each f is convex, this sum is convex as well. Let β∗t−1 be the minimizer

of Ft−1 (by Lemma 2, this will lie in B), and let z ∈ B be arbitrary. Finally, note that ∇2Ft � tσmaxI. Then
we have the following Taylor expansion:

Ft(z) = Ft−1(z) + ft(z)

= Ft−1(β∗t−1 + (z − β∗t−1)) + ft(z)

≤ Ft−1(β∗t−1) +∇Ft−1(β∗t−1)T (z − β∗t−1) +
(t− 1)σmax

2
‖z − β∗t−1‖22 + ft(z)

= Ft−1(β∗t−1) +
(t− 1)σmax

2
‖z − β∗t−1‖22 + ft(z),

where we have used the fact that ∇Ft−1(β∗t−1) = 0 by definition. Thus,

t∑
s=1

fs(β̂s)− Ft(z) ≥

(
t−1∑
s=1

fs(β̂s)− Ft−1(β∗t−1)

)
+ (ft(β̂t)− ft(z)− (t− 1)σmax

2
‖z − β∗t−1‖22). (3)

Then we can write

Vt = min
β̂1∈B

max
λ1

. . . min
β̂t∈B

max
λt,z∈B

(
t∑

s=1

ft(β̂t)− Ft(z)

)

≥ min
β̂1∈B

max
λ1

. . . min
β̂t−1∈B

max
λt−1

[(t−1∑
s=1

fs(β̂s)− Ft−1(β∗t−1)

)

+ min
β̂t∈B

max
λt,z∈B

(
ft(β̂t)− ft(z)− (t− 1)σmax

2
‖z − β∗t−1‖22

)]
.

Thus, by lower bounding the second term, we can unroll the recursion and lower bound the total regret. In
particular, showing a bound of Ω( 1

t ) will result in an overall regret lower bound of Ω(log T ), which would imply
that ERM achieves minimax-optimal rates for OOD generalization (this is also how we prove Corollary 1).

We proceed by lower bounding the inner optimization term. We consider two possibilities for the choice of
β̂t. Suppose ‖β̂t − β∗t−1‖22 ≥

g2

8tσ2
max

. Then by choosing z = β∗t−1 the inner term can be lower bounded by

minβ̂t∈B maxλt

(
ft(β̂t)− ft(β∗t−1)

)
. Taylor expanding ft around β∗t−1 gives

ft(β̂t)− ft(β∗t−1) ≥ ∇ft(β∗t−1)T (β̂t − β∗t−1) +
σmin

2
‖β̂t − β∗t−1‖22.

By Lemma 3, the adversary can always play λt such that ∇ft(β∗t−1) = 0. So plugging this in we get

min
β̂t∈B

max
λt

(
ft(β̂t)− ft(β∗t−1)

)
≥ σmin

2
‖β̂t − β∗t−1‖22

≥ g2σmin

16tσ2
max

.

Now consider the case where ‖β̂t − β∗t−1‖22 < g2

8tσ2
max

. Suppose the adversary plays any λt such that

‖∇ft(β̂t)‖2 ≥ g (by definition, such a choice is always possible). Here we again split on cases, considering the
possible values of ∇ft(β∗t−1)T (β̂t − β∗t−1):
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Case 1: ∇ft(β∗t−1)T (β̂t − β∗t−1) ≥ g2σmin

16tσ2
max

Following the same steps as previously, we find the lower bound

ft(β̂t)− ft(β∗t−1) ≥ ∇ft(β∗t−1)T (β̂t − β∗t−1) +
σmin

2
‖β̂t − β∗t−1‖22

≥ ∇ft(β∗t−1)T (β̂t − β∗t−1)

≥ g2σmin

16tσ2
max

.

Case 2: ∇ft(β∗t−1)T (β̂t − β∗t−1) < g2σmin

16tσ2
max

In this case the lower bound follows directly from Lemma 4.

Thus the lower bound is shown in all cases; it follows that

Vt ≥ min
β̂1∈B

max
λ1

. . . min
β̂t−1∈B

max
λt−1

[(
t−1∑
s=1

fs(β̂s)− Ft−1(β∗t−1)

)
+

g2σmin

16tσ2
max

]

= min
β̂1∈B

max
λ1

. . . min
β̂t−1∈B

max
λt−1

[
t−1∑
s=1

fs(β̂s)− Ft−1(β∗t−1)

]
+

g2σmin

16tσ2
max

= Vt−1 +
g2σmin

16tσ2
max

.

Expanding the recursion finishes the proof.

B Proof of Existence for Theorem 2
We restate Theorem 2 for convenience:

Theorem 2. No algorithm can guarantee sublinear regret against bounded affine combinations of a finite set
of strongly convex losses.

In the main body, we prove the primary claim. Here we include proof of the existence of a regression task
over a set of distributions which induces the loss functions we construct in our proof.

Proof. Suppose we are regressing labels y ∈ R on observations z ∈ R2 with squared loss. We’ll define our
classifier with a parameter β such that given an observation (z1, z2) we predict β2z1 + βz2. This is of course
an unusual regression setup, but we’re just giving an existence proof for a simple lower bound.

The first environment will assign all its probability mass to a single example (z1, z2, y) = (0, 1, 0). Thus, if we
choose a parameter β, in this environment we will suffer risk E[(βz2

1 + βz2 − y)2] = β2. This produces the
first environment, loss fe1(β) = β2.

We define the second environment as having two possible samples: one is (z1, z2, y) = (0,
√

2α+1
2α , 0) and the

other is (z1, z2, y) = (
√

2α+1
2α , 0, 0). Thus, the first sample induces loss 2α+1

2α β2, and the second induces loss
2α+1

2α β4. Now for the probabilities: we assign probability 1
2α+1 to the first point and 2α

2α+1 to the second
point. Clearly these sum to 1, and taking the expectation over losses we see that the overall risk is β4 + 1

2αβ
2,

as desired.

C Lemmas
Lemma 1. Recall Re(β) is defined as the risk of β on the distribution pe. Then for all λ ∈ ∆E, it holds that
Rλ(β) =

∑
e∈E λeRe(β).
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Proof. Using Fubini’s theorem, we have

Rλ(β) =

∫
X×Y

[∑
e∈E

λep
e(x, y)

]
`(β, (x, y)) d(x, y)

=
∑
e∈E

λe

∫
X×Y

pe(x, y)`(β, (x, y)) d(x, y)

=
∑
e∈E

λeRe(β).

Lemma 2. For any Ft =
∑t
s=1 ft, there exist convex coefficients λ̂ such that

Ft = t
∑
e∈E

λ̂efe.

Proof. Every loss function ft can be written as a convex combination of the original environment losses:

ft =
∑
e∈E

λt,efe.

So, write

Ft =
t∑

s=1

ft =
t∑

s=1

∑
e∈E

λt,efe =
∑
e∈E

(
t∑

s=1

λt,e

)
fe.

Clearly,
∑
e∈E

(∑t
s=1 λt,e

)
= t. So, defining λ̂e := 1

t

(∑t
s=1 λt,e

)
gives the desired result.

Lemma 3. For any solution β∗t−1 which minimizes the sum of previously seen losses Ft−1, there exists a
convex combination of losses ft playable by the adversary for which ∇ft(β∗t−1) = 0.

Proof. By Lemma 2, we can write Ft−1 = (t − 1)
∑
e∈E λ̂efe for some convex coefficients λ̂. Define ft =∑

e∈E λ̂efe = 1
t−1Ft−1. Since β∗t−1 minimizes Ft−1 it follows that

∇ft(β∗t−1) =
1

t− 1
∇Ft−1(β∗t−1) = 0.

Lemma 4. Let β̂t, λt be such that ‖β̂t − β∗t−1‖22 <
g2

8tσ2
max

and ‖∇ft(β̂t)‖2 ≥ g. Define z := β∗t−1 − c∇ft(β̂t),

where c := 1/2tσmax. If ∇ft(β∗t−1)T (β̂t − β∗t−1) < g2σmin

16tσ2
max

, then

ft(β̂t)− ft(z)− (t− 1)σmax

2
‖z − β∗t−1‖22 ≥

g2σmin

16tσ2
max

.

Proof. Expanding ft around β̂t,

ft(β̂t)− ft(z) ≥ −∇ft(β̂t)T (z − β̂t)−
σmax

2
‖z − β̂t‖22,

which gives

ft(β̂t)− ft(z)− (t− 1)σmax

2
‖z − β∗t−1‖22

≥ ∇ft(β̂t)T (β̂t − z)−
σmax

2

(
‖z − β̂t‖22 + (t− 1)‖z − β∗t−1‖22

)
= ∇ft(β̂t)T (β̂t − β∗t−1 + c∇ft(β̂t))−

σmax

2

(
‖β∗t−1 − β̂t − c∇ft(β̂t)‖22 + (t− 1)‖c∇ft(β̂t)‖22

)
. (4)
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By the triangle inequality,

‖β∗t−1 − β̂t − c∇ft(β̂t)‖2 ≤ ‖β∗t−1 − β̂t‖2 + c‖∇ft(β̂t)‖2,

and therefore

1

2
‖β∗t−1 − β̂t − c∇ft(β̂t)‖22 ≤ ‖β∗t−1 − β̂t‖22 + c2‖∇ft(β̂t)‖22.

Continuing with the lower bound in Equation 4,

≥ ∇ft(β̂t)T (β̂t − β∗t−1) + c‖∇ft(β̂t)‖22 − σmax

(
‖β∗t−1 − β̂t‖22 + c2‖∇ft(β̂t)‖22

)
− (t− 1)σmaxc

2

2
‖∇ft(β̂t)‖22

≥ ∇ft(β̂t)T (β̂t − β∗t−1) +

(
c− 1

8tσmax
− (t+ 1)c2σmax

2

)
‖∇ft(β̂t)‖22,

where we’ve used the upper bound on ‖β∗t−1 − β̂t‖22 and simplified. Recalling that c = 1
2tσmax

and noting that
t+1
t2 ≤

2
t ,

= ∇ft(β̂t)T (β̂t − β∗t−1) +

(
1

2tσmax
− 1

8tσmax
− (t+ 1)

8t2σmax

)
‖∇ft(β̂t)‖22

≥ ∇ft(β̂t)T (β̂t − β∗t−1) +
‖∇ft(β̂t)‖22

8tσmax

≥ ∇ft(β̂t)T (β̂t − β∗t−1) +
g2

8tσmax
.

By strong convexity,

(∇ft(β∗t−1)−∇ft(β̂t))T (β∗t−1 − β̂t) ≥ σmin‖β∗t−1 − β̂t‖22,

and therefore

∇ft(β̂t)T (β̂t − β∗t−1) ≥ σmin‖β∗t−1 − β̂t‖22 −∇ft(β∗t−1)T (β̂t − β∗t−1)

> − g2σmin

16tσ2
max

,

where the second inequality is due to the assumption in the Lemma statement. Plugging this in above gives

∇ft(β̂t)T (β̂t − β∗t−1) +
g2

8tσmax
> − g2σmin

16tσ2
max

+
g2

8tσmax

≥ g2σmin

8tσ2
max

− g2σmin

16tσ2
max

=
g2σmin

16tσ2
max

,

completing the proof.
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