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Abstract 
Representational Similarity Analysis (RSA) is a powerful tool 
for linking brain activity patterns to cognitive processes via 
similarity, allowing researchers to identify the neural 
substrates of different cognitive levels of representation. 
However, the ability to map between levels of representation 
and brain activity using similarity depends on underlying 
assumptions about the dynamics of cognitive processing. To 
demonstrate this point, we present three toy models that make 
different assumptions about the interactivity within the reading 
system, (1) discrete, feedforward, (2) cascading, feedforward 
and (3) fully interactive. With the temporal resolution of fMRI, 
only the discrete, feedforward model provides a 
straightforward mapping between activation similarity and 
level of representation. These simulations indicate the need for 
a cautious interpretation of RSA results, especially with 
processes that are highly interactive and with neuroimaging 
methods that have low temporal resolution. The study further 
suggests a role for fully-fleshed out computational models in 
RSA analyses. 

Keywords: representational similarity analysis; reading, 
computational models; interactive activation; cascading 
activation 

Introduction 
Representational Similarity Analysis (RSA) was first 
proposed by Kriegeskorte, Mur, and Bandettini in 2008 to 
bridge the major branches of systems neuroscience by 
calculating the second-order isomorphism of neural 
activation patterns, behavioral measures, and/or conceptual 
and computational models. The method is based on the 
assumption that items similar to each other at one level of 
representation should elicit similar neural activity patterns in 
the brain region responsible for processing that level of 
representation. One advantage of this technique has been its 
ability to understand the different kinds of representations the 
brain uses to process the same stimuli in the same task, by 
looking at changes in the representational dissimilarity 
matrix (RDM), or a matrix composed of the distance of neural 
responses for each stimulus pair, across different brain 

regions or at different points in time. RSA has been applied 
to a variety of neuroimaging methods including fMRI, EEG, 
MEG and ECoG (Kriegeskorte et al., 2008; Cichy & 
Pantazis, 2017; Chen et al., 2016), and has been widely used 
to study different cognitive capacities like vision, audition, 
language, memory, and emotion (see Kriegeskorte & Kievit, 
2013 for review). 
An appeal of RSA is that these differences in neural 

similarity structure can be related to different levels of 
processing in a cognitive model. As a result, RSA may be 
able to provide a powerful tool for linking brain activity to 
cognitive operation. Consider, for example, the relatively 
simple task of reading aloud a single word. This task requires 
different cognitive levels of representation associated with 
the stimulus, including an orthographic representation of its 
spelling, a semantic representation of its meaning, and a 
phonological representation of its associated pronunciation. 
At these different levels of representation, different word 
pairs are represented similarly to each other. The word 
DOUGH is similar to the word TOUGH at an orthographic 
level, the word BREAD at a semantic level, and the word 
SEW at a phonological level. If an fMRI experiment finds a 
cortical region whose RDM includes low distance – or high 
similarity – in the pattern of brain activity in response to 
DOUGH and in response to BREAD, we may be inclined to 
take this result as evidence that the region is engaged in 
semantic processing (Fischer-Baum et al., 2017).  
  However, what we will show in the current paper is that 

interpreting the link between neural similarity and cognitive 
level of processing using RSA critically depends on 
assumptions about the dynamics of cognitive processing. The 
logic described above holds for discrete, feedforward theories 
of cognitive processing, in which processing occurs at a 
single stage, until a selection event occurs and information 
moves forward to the next level of processing. However, 
contemporary theories of cognition rarely hold this stage-
wise view of processing (Rogers & McClelland, 2014). 
Instead, theories either assume cascading activation, in which 
representations at each level activate associated 
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representations at the next level prior to a selection event 
(e.g., Goldrick & Blumstein, 2006), or fully interactive 
activation, in which representations at each level can be 
activated by both bottom-up connections from earlier levels 
of representation and top-down connections from later levels 
of representation (e.g., McClelland & Rumelhart, 1981; 
Coltheart et al., 2001). As we will show in our modelling 
work below, with these more complex forms of cognitive 
dynamics, it becomes more challenging to use similarity to 
link cognitive levels and neural systems.  
This challenge is particularly great for neuroimaging 

methods that have coarse temporal resolution, like fMRI. 
Consider again the case of reading aloud a single word, which 
can be completed in approximately 600ms. Because of both 
the relatively slow acquisition of fMRI data and the temporal 
sluggishness of the BOLD signal, whatever measures of 
similarity we are collecting using this imaging modality are 
aggregating across the entire process. Interactions between 
levels of representation that may have different time 
signatures, for example a level that first receives bottom-up 
input from the lower-level features of the stimuli and later 
receives top-down input from later levels of representation, 
can be washed out in the aggregation process. Here, we focus 
on the domain of word reading and demonstrate how the 
interactive nature of cognitive processing and the use of 
temporally low-resolution neuroimaging methods can result 
in misleading conclusions based on RSA. 
Specifically, we examine recent results using RSA to 

understand the role of the visual word form area (VWFA) in 
word reading (Fischer-Baum et al., 2017; Taylor, Davis & 
Rastle, 2019). The VWFA, located in left ventral 
occipitotemporal gyrus (lvOT), has been demonstrated to 
respond to sequences of letters in written words and 
pseudowords in an abundance of univariate neuroimaging 
studies (e.g. Dehaene & Cohen, 2011), though there 
continues to be disagreement about the precise cognitive 
function that region subserves (e.g. Price & Devlin, 2011). In 
order to investigate the level of processing carried out by 
lvOT, Fischer-Baum et al. (2017) used RSA on fMRI data of 
word reading and found that the neural RDM in lvOT 
correlated with measures of both orthographic and semantic 
similarity (see also Wang et al., 2018 and Taylor, Davis & 
Rastle, 2019). From these results, shown in Figure 1, one may 
be tempted to conclude that lvOT instantiates both an 
orthographic and a semantic level of representation. 
However, Fischer-Baum and colleagues (2017) hypothesized 
that the correlation between activation patterns in lvOT and 
semantics could be explained by an interactive processing 
account in which the lvOT encodes only the cognitive level 
of orthographic lexical representations. Under this 
hypothesis, the semantic information feeds back to the 
orthographic level and activates orthographic lexical 
representation of semantically related words, over time 
changing the similarity structure of the space to appear 
semantic in nature. Fischer-Baum and colleagues further note 
that this kind of interactive processing is assumed by many 

computational models of word reading, dating back to the 
seminal work by McClelland and Rumelhart (1981). 
 

  
 

Figure 1: Results from Fischer-Baum et al., 2017. Note that 
the lvOT shows significant correlation with both 
orthographic and semantic measures of similarity. 
 
Here, we test this account computationally. We built three 

simplified models of the reading system, designed to 
maximally distinguish orthographic, phonological, and 
semantic representations. These models were identical in 
their underlying structure, but differ in their dynamics. We 
then applied RSA to each level of the model, both over time 
and in an aggregate measure that we take to reflect what is 
being collected with fMRI.  For our specific question of 
interest, we investigated whether an interactive model with 
feedback connections from the semantic layer to the 
orthographic layer would result in significant correlations 
between the activations in the orthographic layer and the 
underlying semantic similarity, as predicted by Fischer-
Baum et al. (2017). We more generally examined how 
different kinds of cognitive dynamics can complicate the use 
of similarity to identify the cognitive level of representation. 
These results have broad implications for how cognitive 
neuroscientists can use RSA as a tool for linking cognitive 
and neural theories – as correlations observed in RSA do not 
necessarily imply the level of processing carried out in the 
region analyzed, but could also be due to activation spreading 
from the downstream or upstream level representation which 
is localized in a different neural substrate. 

Simulation 

Model Design 
Three models were constructed with the same structure and 
mappings. The models included five layers: orthographic 
input units, orthographic lexicon, semantic units, 
phonological lexicon, and phonological output units 
(phonemes), as shown in Figure 2a, with connections 
between each of the subsequent layers as well as direct 
connections between the orthographic and phonological 
lexicon. It was roughly structured following the lexical route 
of the DRC model (Coltheart et al., 2001) though the details 
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of the model were extensively simplified. Figure 2b 
demonstrates how English words CALL and CELL would be 
represented in the current model structure, although the 
models only included artificial lexical items. All of the 
models included localist coding of 8 lexical items at the levels 
of the orthographic and phonological lexicon.  There were 12 
units at the orthographic input, semantic, and phonological 
output levels. Lexical items were connected to three units at 
each of these levels with a weight of one, and had no 
connections to the other nine units. Every unit at the 
orthographic input, semantic, and phonological output levels 
was connected to exactly two lexical items. The mappings 
were constructed in a way that maximally distinguished 
orthographic and phonological representations. This 
construction does not instantiate the orthographic-
phonological regularities of a semi-transparent language like 
English, but it allowed us to better account for the 
contribution of each level of representation in our analysis. 
The feature representations were constructed so that each 
lexical item had three neighbors that shared one of the three 
units at only one of the three theoretical levels, three 
neighbors that shared one unit each at two of the three levels, 
as well as one lexical item that did not have overlapping 
features with the target lexicon in all three levels. The 
theoretical RDMs of the orthography, phonology, and 
semantic representations are shown in Figure 2c, with a 

Spearman’s rank correlation of -0.167 between each two 
levels of representations. 
With this general structure in place, three models were 

constructed with different dynamics of activation. In the fully 
interactive model, the connections between layers were set to 
be bi-directional, so that an active unit in the orthographic 
lexicon could spread activation to its three associated 
semantic features, while at the same time each active 
semantic feature spread activation to its two associated items 
in the orthographic lexicon. The feedback connections from 
phonological output units to phonological lexicon level were 
set to 4 to account for the relatively low level of activation in 
the phonological units layer. In the feedforward, cascading 
activation model, there were only unidirectional, feedforward 
connections between layers, such that active units in the 
orthographic lexicon could spread their activation to the 
semantic features, but not vice-versa. In the feedforward, 
discrete model, there were only unidirectional, feedforward 
connections, but activation did not spread from one layer to 
the next until a selection event occurred. In addition, there 
was a level of orthographic input that had, in all models, 
feedforward only connections to the level of the orthographic 
units, with 12 nodes total and a one-to-one mapping between 
the nodes in orthographic input and the nodes at the level of 
the orthographic units. This level is set to resemble stimulus 
presentation.

 
Figure 2: (a) Model structure (b) Example of English words CALL and CELL under the current model structure. Note that 
these words are not actually included in the models. (c) Similarity between each of the 8 lexical items at each level, with 
brighter colors reflecting greater similarity between items. 
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Procedure and Analysis 
For the fully interactive and the feedforward cascading 
models, the process was run for 30 cycles. For the first cycle, 
the orthographic input was clamped on to a value of 1, after 
which those values were set to 0. The activation equations 
followed those of simple spreading activation models (e.g. 
Dell, 1986): 

𝐴(𝑗, 𝑡!) = [(1 + 𝑣)𝐴(𝑗, 𝑡!"#) +,𝐴(𝑐$ , 𝑡!"#)]	(1 − 𝑞)
%

$&#

 

where 𝐴(𝑗, 𝑡!) is the activation level of node 𝑗 at time 𝑡!. 𝑐$ 
denotes the nodes that are directly connected to node 𝑗.The 
model further included a normally distributed noise 𝑣 with a 
standard deviation of s, and a decay rate of 𝑞. 
For the feedforward, discrete model, information at each 

level accumulates for 5 time-cycles without spreading 
activation to other layers. For the phonological lexicon layer, 
which receives input from both the orthographic lexicon level 
and the semantic level, activation only begins to spread to this 
level after the selection event at both prior levels is completed. 
After the five cycles, the top item in the lexical layers or the 
top three items in the feature layers of orthographic input, 
semantic, and phonological output levels were selected and 
their activations set to 15 (for lexical layers) or 7.5, 5, and 2.5 
(for feature layers) while other items were all turned to zero. 
The information of the selected item is then sent to the next 
layer for the next five cycles.  
Simulation of all three models were performed with 1000 

trials per word with the s (the standard deviation of the noise) 
set at 0.12 and 𝑞 (the decay rate) set at 0.3. The parameters 
were selected so that we can simulate a low but observable 
error rate to be comparable to reading in healthy adults. After 
simulation, the activation RDMs at each level and cycle were 
calculated using Spearman’s rank correlation. Each of the 
five activation RDMs at each time point were then correlated 
with the three orthographic, semantic, and phonological 
RDMs based on the models’ intrinsic structure, again using 
Spearman’s rank correlation. 
Subsequently, we calculated an aggregate activation 

measure across the entire trial time of 30 cycles to provide a 
measure that is more comparable to the temporally 
insensitive fMRI results. To account for the difference in the 
magnitude of raw activations across time and layers, we 
divided the raw activations at each time point and layer by 
the mean activation in that layer, and calculated the average 
of the scaled activation across time. We then constructed an 
aggregate activation RDM for each of the five levels of 
representation in the model and correlated each with the three 
theoretical RDMs. 

Results 
Temporal Dynamics Figure 3 reports a table of plots 
showing the temporal dynamics of the Spearman’s 
correlation between each layer and theoretical RDM for the 
three models. 

For the two spreading activation models, the activation 
patterns of all layers highly correlate with only the 
orthographic RDM at the initial stage, confirming that the 
correct orthography of the input stimuli was successfully 
passed on to the upper layers. For the fully interactive model, 
different theoretical RDMs showed high correlation with the 
observed patterns of activity in different layers across time. 
The orthographic and semantic layers became correlated with 
the semantic RDM around 10-20 cycles, and subsequently 
evolved to be correlated with the phonological RDM. Among 
the three layers, high semantic correlation was first   in the 
semantic layer and was preserved for the longest time, 
followed by the orthographic lexicon layer. The orthographic 
units layer began to show semantic correlation at a later time 
point and the semantic correlation was present for only a brief 
period. The phonology layers became correlated with the 
phonological RDM at around 10 cycles, and the high 
correlations were preserved for the rest of the trial. 
Additionally, the phonology layers showed a small increase 
in semantic RDM at the first two cycles to a positive value, 
but subsequently remained relatively constant.  
In comparison, the cascading, feedforward model showed 

no qualitative temporal change in Spearman’s correlation 
after the first two cycles of processing. All layers were highly 
correlated with the orthographic RDM and the phonology 
layers were additionally correlated with the semantic RDM.  
Finally, the temporal dynamics of the feedforward, discrete 

model showed a distinct pattern from the previous two 
models.  In the three feature layers, the activation RDMs 
consistently correlated with the theoretical RDMs of the level 
of representation coded in the model, during processing and 
after selection. In contrast, for the two lexical layers, the 
activation RDM correlated with the theoretical RDM of the 
representation of the previous layer during the processing 
cycles, meaning that the orthographic lexical level was 
correlated with the orthographic RDM and the phonological 
lexical level was correlated with the semantic RDM. 
However, after lexical selection the activation RDMs became 
correlated with the orthographic RDM due to the few 
selection errors. 
 
Aggregate activation measure. In order to engage a more 
direct comparison between the high temporal resolution 
modeling results and the fMRI result, correlations between 
the theoretical RDMs and the aggregate activation RDM of 
each level were computed for the three models (Figure 4). For 
the fully interactive model, all layers except for the 
phonological output layer showed initial correlation with the 
orthographic RDM. The orthographic and semantic layers 
showed an additional correlation with the semantic RDM, 
whereas the phonological lexicon layer showed a correlation 
with the phonological RDM. The phonological units layer 
showed a primary correlation with the phonological RDM 
and a secondary correlation with the orthographic RDM. Of 
note is that, as predicted by Fischer-Baum and colleagues 
(2017), the level of the orthographic lexicon shows 
correlation with both orthographic and semantic similarity  
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Figure 3. Temporal dynamics of RSA in the fully interactive, cascading feedforward, and discrete feedforward models. 

 
 

 
 

Figure 4. RSA result with an aggregate activation measure. 

with the dynamics of interactive activation, though other 
levels show this pattern as well. 
In comparison, for the feedforward, cascading model, all 

layers showed activation patterns highly correlated with the 
orthographic RDM. The phonological layers additionally 
showed correlation with the semantic RDM. Because of the 
cascading nature, the structure of earlier level of processing 
is imposed on later levels. 
In contrast to the previous two spreading activation 

models, the discrete, feedforward model showed RSA results 
more in line with the assumption in neuroimaging literature 
where similarity in neural activation corresponds to the 
conceptual similarity of the representation in the target 
region. All feature layers showed activation RDMs with the 
expected high correlation to the theoretical RDM of their 
underlying representations, while the lexical layers showed 
high correlation with the RDM of the representation in the 
previous layer. The semantic and phonological units layers 
showed additional low, above-zero correlations to the 
orthographic and semantic RDM due to the occasional mis-
selection of lexical item in earlier layers. 
It is worth noting that the Spearman’s correlation measure 

in the current RSA result should not be understood at its face 
value. Because the theoretical RDMs are maximally 
independent and only included two values (similar or 
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dissimilar), the resulting rank correlation between activation 
and theoretical RDMs are constrained. This limitation 
contributes to the abrupt changes in the RSA dynamics, and 
the lack of phonological effect in aggregate measure despite 
present at the later stage in the temporal dynamic. Instead, the 
relative dynamics of the Spearman’s correlation is more 
informative. In addition, the result of the aggregate measure 
is dependent on the chosen time window. In particular, the 
phonological layers in the fully interactive model show 
correlation with semantics, rather than phonology, when 
focusing only on the earlier cycles. 

Discussion and Conclusion 
A promise of representational similarity analysis is its ability 
to link distributed patterns of neural activity to different 
levels of cognitive processing. The simulation work reported 
here demonstrates just how much the ability to make this link 
depends on underlying assumptions about the dynamics of 
interaction between different levels of processing. A set of 
simplified models of reading was designed with three 
different kinds of dynamics: fully interactive, cascading 
feedforward and discrete feedforward. With the discrete, 
feedforward model, similarity could clearly isolate different 
processing levels. But the relationship between similarity and 
level of representation is more complex in the more 
interactive models. In the cascading, feedforward model, 
orthographic similarity dominates all levels of representation, 
down to the level of phonological output. In the fully 
interactive model, the higher-level semantic and 
phonological patterns were observed in layers responsible for 
orthographic representation. Correlations with orthographic, 
semantic, and phonological RDMs at different time points 
were present in the activation dynamics of the lower layers 
responsible for orthographic and semantic processing, with 
semantic effects preceding phonological effects. Other 
models with within-layer inhibition and varying connection 
weights are beyond the scope of the current study, but are of 
interest for further pursuit. 
The results of the fully interactive model suggest that, as a 

result of interactivity, the same cognitive level can show a 
different similarity structure at different time point, evolving 
from an orthographic, to a semantic, to a phonological 
composition. However, with imaging techniques that have a 
low temporal resolution, like fMRI, this fine-grained 
temporal structure can be washed out. Therefore, if the 
underlying cognitive system is fully interactive, and if there 
is a single region that corresponds to a single level of a 
cognitive architecture, we would expect to see that region 
show significant correlation with multiple kinds of 
theoretical measures. This pattern is precisely what was 
observed in Fischer-Baum et al. (2017), with the lvOT 
showing significant correlation with both an orthographic 
and semantic measure of similarity between words in a 
reading task. While one may want to conclude from this 
pattern that the cortical region of interest contains neural 
representations that subserves both an orthographic level or 
processing and a semantic level of processing (e.g., Wang et 

al., 2018), our work shows that an alternative explanation is 
that this region is responsible solely for orthographic 
processing, in the context of a cognitive theory of reading 
with feedback interactivity from the semantics to the 
orthographic levels. Which of these interpretations of the 
RSA results from the lvOT during reading tasks is correct 
critically depends on underlying assumptions about the 
cognitive dynamics of the reading system. 
In the face of this problem, we have two suggestions to 

guide future RSA research. The first is to incorporate more 
work using neuroimaging modalities with high temporal 
resolution, like MEG or ECoG. As our simulations show, 
fully interactive models predict evolving similarity structure 
over time, which could potentially be observed with these 
alternative techniques. The second is that research using 
similarity to bridge cognitive and neural theories should be 
based on fully implemented computational models of the 
task. One of the benefits about using RSA in cognitive 
neuroscience research is that it forces researchers to be 
explicit about their theoretical assumptions on the underlying 
cognitive representations. The current work makes it clear 
that researchers must also be explicit about theoretical 
assumptions on the underlying dynamics of cognition. The 
models presented here were highly simplified, with only eight 
lexical items and a representational structure that maximally 
distinguished orthographic and phonology. Future work 
should rely on richer computational models that better 
capture the domain being studied, as other variables like word 
frequency, neighborhood size, or regularity of the spelling to 
sound correspondences may also have unintended 
consequences on similarity-based analyses.  
Finally, the fact that different underlying cognitive 

dynamics yield different results in a similarity analysis 
suggests that techniques like RSA could prove useful for 
testing questions of what the underlying cognitive dynamics 
are. Dubarry and colleagues (2017) used single trial ECoG 
data to suggest that cognitive processing is more serial and 
less parallel than most cognitive theories assume. Previous 
RSA research has shown selectivity in how the similarity 
structure in different cortical regions relate to measures based 
on cognitive levels of representation. Based on our 
simulations, such a pattern would be unlikely under a 
cascading, feedforward architecture. By pairing RSA with 
fully developed cognitive architectures, the technique may be 
useful for testing questions about the underlying dynamics of 
cognitive processing, along with questions about the 
underlying nature of the cognitive representations. 
The relationship between similarity structure and cognitive 

level of representation is complex and depends on questions 
of cognitive dynamics. Cognitive neuroscience researchers 
who use RSA to ask questions about the neural basis of 
different cognitive functions need to exercise caution in how 
they interpret the results of their study. However, with fully 
implemented computational models of the task being 
investigated and imaging techniques with higher temporal 
resolution, RSA can continue to be a powerful tool for 
bridging cognitive theories and neural systems. 

430



Acknowledgments 
This work was supported by the T.L.L. Temple Foundation 
Neuroplasticity Laboratory award to Rice University, and the 
National Science Foundation under Grant no. NSF CAREER 
SBE-1752751 to S.F-B. 

References  
Chen, Y., Shimotake, A., Matsumoto, R., Kunieda, T., 
Kikuchi, T., Miyamoto, S., Fukuyama, H., Takahashi, R., 
Ikeda, A., & Ralph, M. L. (2016). The ‘when’and 
‘where’of semantic coding in the anterior temporal lobe: 
Temporal representational similarity analysis of 
electrocorticogram data. Cortex, 79, 1-13. 

Cichy, R. M., & Pantazis, D. (2017). Multivariate pattern 
analysis of MEG and EEG: A comparison of 
representational structure in time and space. NeuroImage, 
158, 441-454. 

Coltheart, M., Rastle, K., Perry, C., Langdon, R., & Ziegler, 
J. (2001). DRC: a dual route cascaded model of visual word 
recognition and reading aloud. Psychological Review, 
108(1), 204. 

Dehaene, S., & Cohen, L. (2011). The unique role of the 
visual word form area in reading. Trends in Cognitive 
Sciences, 15, 254-262. 

Dell, G. S. (1986). A spreading-activation theory of retrieval 
in sentence production. Psychological Review, 93(3), 283. 

Dubarry, A. S., Llorens, A., Trébuchon, A., Carron, R., 
Liégeois-Chauvel, C., Bénar, C. G., & Alario, F. X. (2017). 
Estimating parallel processing in a language task using 
single-trial intracerebral electroencephalography. 
Psychological Science, 28(4), 414-426. 

Fischer-Baum, S., Bruggemann, D., Gallego, I. F., Li, D. 
S.P., & Tamez, E. R. (2017). Decoding levels of 
representation in reading: A representational similarity 
approach. Cortex, 90, 88-102. 

Goldrick, M., & Blumstein, S. E. (2006). Cascading 
activation from phonological planning to articulatory 
processes: Evidence from tongue twisters. Language and 
Cognitive Processes, 21(6), 649-683. 

Kriegeskorte, N., & Kievit, R. A. (2013). Representational 
geometry: integrating cognition, computation, and the 
brain. Trends in Cognitive Sciences, 17(8), 401-412. 

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). 
Representational similarity analysis – connecting the 
branches of systems neuroscience. Frontiers in Systems 
Neuroscience, 2, 4. 

McClelland, J. L., & Rumelhart, D. E. (1981). An interactive 
activation model of context effects in letter perception: I. 
An account of basic findings. Psychological Review, 88(5), 
375. 

Price, C. J., & Devlin, J. T. (2011). The interactive account 
of ventral occipitotemporal contributions to reading. 
Trends in Cognitive Sciences, 15, 246-253. 

Rogers, T. T., & McClelland, J. L. (2014). Parallel distributed 
processing at 25: Further explorations in the microstructure 
of cognition. Cognitive Science, 38(6), 1024-1077. 

Taylor, J. S. H., Davis, M. H., & Rastle, K. (2019). Mapping 
visual symbols onto spoken language along the ventral 
visual stream. Proceedings of the National Academy of 
Sciences, 116(36), 17723-17728. 

Wang, X., Xu, Y., Wang, Y., Zeng, Y., Zhang, J., Ling, Z., & 
Bi, Y. (2018). Representational similarity analysis reveals 
task-dependent semantic influence of the visual word form 
area. Scientific Reports, 8(1), 1-10. 

431




