Three Operator Splitting with Subgradients,
Stochastic Gradients, and Adaptive Learning Rates

Alp Yurtsever*
Umea University
alp.yurtseverQumu.se

Alex Gu* & Suvrit Sra
Massachusetts Institute of Technology
{gua,suvrit}Omit.edu

Abstract

Three Operator Splitting (TOS) (Davis & Yin, 2017) can minimize the sum of
multiple convex functions effectively when an efficient gradient oracle or proximal
operator is available for each term. This requirement often fails in machine learning
applications: (i) instead of full gradients only stochastic gradients may be available;
and (ii) instead of proximal operators, using subgradients to handle complex
penalty functions may be more efficient and realistic. Motivated by these concerns,
we analyze three potentially valuable extensions of TOS. The first two permit
using subgradients and stochastic gradients, and are shown to ensure a O(1/+/1)
convergence rate. The third extension ADAPTOS endows TOS with adaptive step-
sizes. For the important setting of optimizing a convex loss over the intersection
of convex sets ADAPTOS attains universal convergence rates, i.e., the rate adapts
to the unknown smoothness degree of the objective function. We compare our
proposed methods with competing methods on various applications.

1 Introduction

We study convex optimization problems of the form

min  6(z) = f(z) + g(x) + h(x), (1)

where f : R™ — R and g, h : R™ — R U {400} are proper, lower semicontinuous and convex func-
tions. Importantly, this template captures constrained problems via indicator functions. To avoid
pathological examples, we assume that the relative interiors of dom(f), dom(g) and dom(h) have a
nonempty intersection.

Problem (1) is motivated by a number of applications in machine learning, statistics, and signal
processing, where the three functions comprising the objective ¢ model data fitting, structural
priors, or decision constraints. Examples include overlapping group lasso (Yuan et al., 2011),
isotonic regression (Tibshirani et al., 2011), dispersive sparsity (El Halabi & Cevher, 2015), graph
transduction (Shivanna et al., 2015), learning with correlation matrices (Higham & Strabi¢, 2016),
and multidimensional total variation denoising (Barbero & Sra, 2018).

An important technique for addressing composite problems is operator splitting (Bauschke et al.,
2011). However, the basic proximal-(sub)gradient method may be unsuitable for Problem (1) since it
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requires the prox-operator of g + h, computing which may be vastly more expensive than individual
prox-operators of g and h. An elegant, recent method, Three Operator Splitting (TOS, Davis &
Yin (2017), see Algorithm 1) offers a practical choice for solving Problem (1) when f is smooth.
Importantly, at each iteration, TOS evaluates the gradient of f and the proximal operators of g and i
only once. Moreover, composite problems with more than three functions can be reformulated as an
instance of Problem (1) in a product-space and solved by using TOS. This is an effective method as
long as each function has an efficient gradient oracle or proximal operator (see Section 2).

Unfortunately, TOS is not readily applicable to many optimization problems that arise in machine
learning. Most important among those are problems where only access to stochastic gradients is
feasible, e.g., when performing large-scale empirical risk minimization and online learning. Moreover,
prox-operators for some complex penalty functions are computationally expensive and it may be more
efficient to instead use subgradients. For example, proximal operator for the maximum eigenvalue
function that appears in dual-form semidefinite programs (e.g., see Section 6.1 in (Ding et al.,
2019)) may require computing a full eigendecomposition. In contrast, we can form a subgradient by
computing only the top eigenvector via power method or Lanczos algorithm.

Contributions. With the above motivation, this paper contributes three key extensions of TOS. We
tackle nonsmoothness in Section 3 and stochasticity in Section 4. These two extensions enable us to
use subgradients and stochastic gradients of f (see Section 2 for a comparison with related work),
and satisfy a O(1/+/T') error bound in function value after T iterations. The third main contribution
is ADAPTOS in Section 5. This extension provides an adaptive step-size rule in the spirit of AdaGrad
(Duchi et al., 2011; Levy, 2017) for an important subclass of Problem (1). Notably, for optimizing a
convex loss over the intersection of two convex sets, ADAPTOS ensures universal convergence rates.
That is, ADAPTOS implicitly adapts to the unknown smoothness degree of the problem, and ensures a
O(1/+/t) convergence rate when the problem is nonsmooth but the rate improves to O(1/t) if the
problem is smooth and a solution lies in the relative interior of the feasible set.

In Section 6, we discuss empirical performance of our methods by comparing them against present
established methods on various benchmark problems from COPT Library (Pedregosa et al., 2020)
including the overlapping group lasso, total variation deblurring, and sparse and low-rank matrix
recovery. We also test our methods on nonconvex optimization by training a neural network model.
We present more experiments on isotonic regression and portfolio optimization in the supplements.

Notation. We denote a solution of Problem (1) by z, and ¢, := ¢(z,). The distance between
a point € R" and a closed and convex set G C R™ is dist(z,G) := minyeg ||z — yl|; the
projection of 2 onto G is given by projg () := argminyeg || — y||. The prox-operator of a function
g : R" — R U {+00} is defined by prox,(z) := arg min,ern{g(y) + 3llz — y[|*}. The indicator
function of G gives 0 for all # € G and +oc otherwise. Clearly, the prox-operator of an indicator
function is the projection onto the corresponding set.

2 Background and related work

TOS, proposed recently by Davis & Yin (2017), can be seen as a generic extension of various
operator splitting schemes, including the forward-backward splitting, Douglas-Rachford splitting,
forward-Douglas-Rachford splitting (Bricefio-Arias, 2015), and the generalized forward-backward
splitting (Raguet et al., 2013). It covers these aforementioned approaches as special instances when
the terms f, g and h in Problem (1) are chosen appropriately. Convergence of TOS is well studied
when f has Lipschitz continuous gradients. It ensures O(1/t) convergence rate in this setting, see
(Davis & Yin, 2017) and (Pedregosa, 2016) for details.

Other related methods that can be used for Problem (1) when f is smooth are the primal-dual hybrid
gradient (PDHG) method (Condat, 2013; Vii, 2013) and the primal-dual three operator splitting
methods in (Yan, 2018) and (Salim et al., 2020). These methods can handle a more general template
where g or h is composed with a linear map, however, they require f to be smooth. The convergence
rate of PDHG is studied in (Chambolle & Pock, 2016).

Nonsmooth setting. We are unaware of any prior result that permits using subgradients in TOS (or
in other methods that can use the prox-operator of g and h separately for Problem (1)). The closest
match is the proximal subgradient method which applies when h is removed from Problem (1), and it
is covered by our nonsmooth TOS as a special case.



Stochastic setting. There are multiple attempts to devise a stochastic TOS in the literature. Yurtsever
et al. (2016) studied Problem (1) under the assumption that f is smooth and strongly convex, and an
unbiased gradient estimator with bounded variance is available. Their stochastic TOS has a guaranteed
O(1/t) convergence rate. In (Cevher et al., 2018), they drop the strong convexity assumption, instead
they assume that the variance is summable. They show asymptotic convergence with no guarantees
on the rate. Later, Pedregosa et al. (2019) proposed a stochastic variance-reduced TOS and analyzed
its non-asymptotic convergence guarantees. Their method gets O(1/t) convergence rate when f is
smooth. The rate becomes linear if f is smooth and strongly convex and g (or h) is also smooth.
Recently, Yurtsever et al. (2021) studied TOS on problems where f can be nonconvex and showed that
the method finds a first-order stationary point with O(1/+/%) convergence rate under a diminishing
variance assumption. They increase the batch size over the iterations to satisfy this assumption.

None of these prior works cover the broad template we consider: f is smooth or Lipschitz continuous
and the stochastic first-order oracle has bounded variance. To our knowledge, our paper gives the
first analysis for stochastic TOS without strong convexity assumption or variance reduction.

Other related methods are the stochastic PDHG in (Zhao & Cevher, 2018), the decoupling method
in (Mishchenko & Richtérik, 2019), the stochastic primal-dual method in (Zhao et al., 2019), and
the stochastic primal-dual three operator splitting in (Salim et al., 2020). The method in (Zhao et al.,
2019) can be viewed as an extension of stochastic ADMM (Ouyang et al., 2013; Azadi & Sra, 2014)
from the sum of two terms to three terms in the objective. Similar to the existing stochastic TOS
variants, these methods either assume strong convexity or require variance-reduction.

Adaptive step-sizes. The standard writings of TOS and PDHG require the knowledge of the smooth-
ness constant of f for the step-size. Backtracking line-search strategies (for finding a suitable step-size
when the smoothness constant is unknown) are proposed for PDHG in (Malitsky & Pock, 2018) and
for TOS in (Pedregosa & Gidel, 2018). These line-search strategies are significantly different than
our adaptive learning rate. Importantly, these methods work only when f is smooth. They require
extra function evaluations, and are thus not suitable for stochastic optimization. And their goal is to
estimate the smoothness constant. In contrast, our goal is to design an algorithm that adapts to the
unknown smoothness degree. Our method does not require function evaluations, and it can be used in
smooth, nonsmooth, or stochastic settings.

At the heart of our method lie adaptive online learning algorithms (Duchi et al., 2011; Rakhlin &
Sridharan, 2013) together with online to offline conversion techniques (Levy, 2017; Cutkosky, 2019).
Similar methods appear in the literature for other problem templates with no constraint or a single
constraint in (Levy, 2017; Levy et al., 2018; Kavis et al., 2019; Cutkosky, 2019; Bach & Levy, 2019).
Our method extends these results to optimization over the intersection of convex sets. When f is
nonsmooth, ADAPTOS ensures a O(1/+/t) rate, whereas the rate improves to O(1/t) if f is smooth
and there is a solution in the relative interior of the feasible set.

TOS for more than three functions. TOS can be used for solving problems with more than three
convex functions by a product-space reformulation technique (Bricefio-Arias, 2015). Consider

q
min Y ¢(), )
i=1

zERY
where each component ¢; : R? — R U {+00} is a proper, lower semicontinuous and convex function.

Without loss of generality, suppose ¢1, ..., ¢, are prox-friendly. Then, we can reformulate (2) in the
product-space R?* (1) a5

P q
min i(x;) + i(x subjectto Tg =1 =...= x,. 3
(w07x17‘__,xp)E]Rd><(p+l) ;qb ( ) lg_l(b ( 0) )] 0 1 P ( )
This is an instance of Problem (1) with n = dx (p+1) and z = (20, 1, ..., x,). We can choose g(z)
as the indicator of the equality constraint, f(z) = Z;I:p 11 @i(x0), and h(z) = 37 | ¢i(x;). Then,
the (sub)gradient of f is the sum of (sub)gradients of ¢p11, ..., @3 prox, is a mapping that averages
20,1, - - -, Zp; and prox,, is the concatenation of the individual prox-operators of ¢1, ..., ¢p,.

To our knowledge, TOS has been studied only for problems with smooth f, and this forces us
to assign all nonsmooth components ¢; in (2) to the proximal term h in (3). In this work, by
enabling subgradient steps for nonsmooth f, we provide the flexibility to choose how to process each
nonsmooth component ¢; in (3), either by its proximal operator through h or by its subgradient via f.



Algorithm 1 Three Operator Splitting (TOS)

Input: Initial point yo € R™, step-size sequence {7 }7_,
fort =0,1,2,...,7T do
2 = prox, o (ye)
Choose an update direction u; € R™ {us = V f(z¢) captures the standard version of TOS}
Ty = prox.,, (22¢ — yr — Yeus)
Yir1 =Yt — 2 + Tt
end for
Return: Ergodic sequence Z; and z; defined in (5)

3 TOS for Nonsmooth Setting

Algorithm 1 presents the generalized TOS for Problem (1). It recovers the standard version in (Davis
& Yin, 2017) if we choose u; = V f(z;) when f is smooth. For convenience, we define the mapping

TOS, (y,u) := y — prox,,(y) + prox,, (2- prox. ,(y) —y — Yu) 4)
which represents one iteration of Algorithm 1.

The first step of the analysis is the fixed-point characterization of TOS. The following lemma is a
straightforward extension of Lemma 2.2 in (Davis & Yin, 2017) to permit subgradients. The proof is
similar to (Davis & Yin, 2017), we present it in the supplementary material for completeness.

Lemma 1 (Fixed points of TOS). Lety > 0. Then, there exists a subgradient u € O f(prox,,(y))
that satisfies TOS. (y,u) = y if and only if prox. ,(y) is a solution of Problem (1).

When f is L s-smooth, TOS with u; = V f(2;) is known to be an averaged operator' if v € (0,2/Ly)
(see Proposition 2.1 in (Davis & Yin, 2017)) and the analysis in prior work is based on this property.
In particular, averagedness implies Fejér monotonicity, i.e., that ||y; — ys|| is non-increasing, where
1« denotes a fixed point of TOS. However, when f is nonsmooth and w; is replaced with a subgradient,
TOS operator is no longer averaged and the standard analysis fails. One of our key observations is
that ||y; — ys|| remains bounded even-though we loose averagedness and Fejér monotonicity in this
setting, see Theorem S.6 in the supplements.

Ergodic sequence. Convergence of operator splitting methods are often given in terms of ergodic
(averaged) sequences. This strategy requires maintaining the running averages of z; and x;:

t t

1 _ 1
= — T, and Zp = ——
t+1 t+1

7=0 7=0

. (5)

Ty

Clearly, we do not need to store the history of z; and z; to maintain these sequences. In practice, the
last iterate often converges faster than the ergodic sequence. We can evaluate the objective function
at both points and return the one with the smaller value.

We are ready to present convergence guarantees of TOS for the nonsmooth setting.

Theorem 1. Consider Problem (1) and employ TOS (Algorithm 1) with the update directions and
step-size chosen as

Yo

VvVI+1

Assume that |(u.|| < Gy for all t. Then, the following guarantees hold:

u € 0f(z) and 5 =

for some vg >0, fort=20,1,...,T. (6)

D2
f(Zr) + 9(Zr) + h(@1) — ¢u < 2\/%“ <% + %G?> .

B B 2
and ||z — zr|| < Tl (D +vGy), where D =max{|yo— x|, llvo — v«l|}. (8)

'An operator T : R" — R™ is w-averaged if | Tz — Ty||* < ||z — y||* — 1=2||(z — Tz) — (y — Ty)||? for

some w € (0,1) forall z,y € R™.



Remark 1. The boundedness of subgradients is a standard assumption in nonsmooth optimization.
It is equivalent to assuming that f is G y-Lipschitz continuous on dom(g).

If D and Gy are known, we can optimize the constants in (7) by choosing 7o = D/G. This gives
f(zr) + g(zr) + h(zr) — ¢« < O(DG/VT) and ||z7 — 27|l < O(D/T).

Proof sketch. We start by writing the optimality conditions for the proximal steps for z; and z;.
Through algebraic modifications and by using convexity of f, g and h, we obtain

1 1
&)+ 9(z) + hiwe) = 60 < o llye = zal|* = oy 1941 = ® + gIIUtH2~ ©)

lue|l < Gy by assumption. Then, we average this inequality over ¢t = 0, 1,...,T and use Jensen’s
inequality to get (7).

The bound in (8) is an immediate consequence of the boundedness of ||y7+1 — y« || that we show in
Theorem S.6 in the supplementary material:

lyrs1 — vl < llyo — vl + 270Gy (10)

By definition, |77 — 21| = 7 llyr+1 — voll < 7 (lyr+1 — yall + Iy — voll)- H

Theorem 1 does not immediately yield convergence to a solution of Problem (1) because f + g and h
are evaluated at different points in (7). Next corollary solves this issue.

Corollary 1. We are interested in two particular cases of Theorem 1:

(1). Suppose h is G},-Lipschitz continuous. Then,

_ 1 D? 9 2G,
¢(ZT)¢*§W(% +70Gf>+T+1(D+’yon). (11

(i1). Suppose h is the indicator function of a convex set H C R™. Then,

_ _ 1 D? 9
. 2

Proof. (i). Since h is Gj-Lipschitz, ¢(zr) < f(zr) + g(zr) + h(Zr) + Grl|ZT — 21|
(ii). h(Zr) = 0 since Ty € H. Moreover, dist(zp, H) := infyzen [|2r — z|| < ||2r — Zr]|. O

Remark 2. We fix time horizon T for the ease of analysis and presentation. In practice, we use

Y =Y/Vt+ 1

Theorem 1 covers the case in which g is the indicator of a convex set G C R™. By definition, z; € G
and z, € G, hence g(zZr) = g(x,) = 0. If both g and h are indicator functions, TOS gives an
approximately feasible solution, in G, and close to 7. We can also consider a stronger notion of
approximate feasibility, measured by dist(Z7, G N H). However, this requires additional regularity
assumptions on G and H to avoid pathological examples, see Lemma 1 in (Hoffmann, 1992) and
Definition 2 in (Kundu et al., 2018).

Problem (1) captures unconstrained minimization problems when g = h = 0. Therefore, the
convergence rate in Theorem 1 is optimal in the sense that it matches the information theoretical
lower bounds for first-order black-box methods, see Section 3.2.1 in (Nesterov, 2003). Remark that
the subgradient method can achieve a O(1/t) rate when f is strongly convex. We leave the analysis
of TOS for strongly convex nonsmooth f as an open problem.



4 TOS for Stochastic Setting

In this section, we focus on the three-composite stochastic optimization template:

;gliRI}l o(x) = f(x) + g(x) + h(x) where f(x):= ng(aj,«f) (14)
and ¢ is a random variable. The following theorem characterizes the convergence rate of Algorithm 1
for Problem (14).

Theorem 2. Consider Problem (14) and employ TOS (Algorithm 1) with a fixed step-size v = v =
Yo/VT + 1 for some vy > 0. Suppose we are receiving the update directions u; from an unbiased
stochastic first-order oracle with bounded variance, i.e.,

Gy := Elug|z]) € 0f(2) and E[||luy — 0¢||*] < 02 for some o < +oc. (15)
Assume that ||4.|| < Gy for all t. Then, the following guarantees hold:

2
E[f(zr) + g(zr) + h(z7)] — ¢4 < 2\/%“ (SO + (0% + ch)) and (16)

)) , where D = max{|lyo — z«|, |lyo — v} (A7)

g

2
El|zr - z7|] £ <D+Wo (Gf +3

“T+1

Remark 3. Similar rate guarantees hold with some restrictions on the choice of vy if we replace
bounded subgradients assumption with the smoothness of f. We defer details to the supplements.

If we can estimate D, Gy and o, then we can optimize the bounds by choosing vy ~ D/ max{Gy,c}.
This gives f(2r) + g(2r) + h(Zr) — ¢ < O(Dmax{G,o}/VT) and ||Z7 — zr|| < O(D/T).

Analogous to Corollary 1, from Theorem 2 we can derive convergence guarantees when h is Lipschitz
continuous or an indicator function. As in the nonsmooth setting, the rates shown in this section are
optimal because Problem (14) covers g(z) = h(x) = 0 as a special case.

S TOS with Adaptive Learning Rates

In this section, we focus on an important subclass of Problem (1) where g and & are indicator functions
of some closed and convex sets:
m%xn f(x) subjectto z € GNH. (18)
zER™
TOS is effective for Problem (18) when projections onto G and H are easy but the projection onto their
intersection is challenging. Particular examples include transportation polytopes, doubly nonnegative
matrices, and isotonic regression, among many others.

We propose ADAPTOS with an adaptive step-size in the spirit of adaptive online learning algorithms
and online to batch conversion techniques, see (Duchi et al., 2011; Rakhlin & Sridharan, 2013; Levy,
2017; Levy et al., 2018; Cutkosky, 2019; Kavis et al., 2019; Bach & Levy, 2019) and the references
therein. ADAPTOS employs the following step-size rule:

Ve = e for some a, 5 > 0. (19)
t—1
B+2 o llurl?
3 in the denominator prevents -y, to become undefined. If D := ||yo — .|| and Gy are known, theory

suggests choosing &« = D and f = ch for a tight upper bound, however, this choice affects only the
constants and not the rate of convergence as we demonstrate in the rest of this section. Importantly,
we do not assume any prior knowledge on D or G . In practice, we often discard 8 and use vy = «
at the first iteration.

For ADAPTOS, in addition to (5), we will also use a second ergodic sequence with weighted averaging:
1 < 1 <
Ty = —g—— VoL and = Vo Zor (20)
ZT:O Yr TZ:O ZTIO Ir 7'220
This sequence was also considered for TOS with line-search in (Pedregosa & Gidel, 2018).



Theorem 3. Consider Problem (18) and TOS (Algorithm 1) with the update directions us € Of(z)
and the adaptive step-size (19). Assume that ||u|| < G for all t. Then, the estimates generated by
TOS satisfy

205Gf D2
f(Z)—f. <O <\/7T(4a2+1+f)) and Q1)
[ 2
dist(it,H)g(’)(\/]%(lJrf)) where D = ||yo — .]|. 22)

If D and Gy are known, we can choose a = D and 8 = G%. This gives f(2;) — fx < O(G;D/V1)
and dist(z¢, H) < O(D/\f)

The next theorem establishes a faster rate for the same algorithm when f is smooth and a solution
lies in the interior of the feasible set.

Theorem 4. Consider Problem (18) and suppose f is Lg-smooth on G. Use TOS (Algorithm 1) with
the update directions u, = V f(z,) and the adaptive step-size (19). Assume that ||u|| < G for all t.
Suppose Problem (18) has a solution in the interior of the feasible set. Then, the estimates generated
by TOS satisfy

f(z) — fo < O(il<4a21:f( +1+C§f)2+a\/[3(52+1+%§))) and  (23)

2

dist(z, H) < @(H .

( +1+\F)> where D = |lyo — 24]|. (24)

If D and Gy are known, we can choose v = D and 3 = G7. .

This gives f(2:) — f. < O((LyD?+ G¢D)/t) and dist(z;, H) < O(D/t).

Remark 4. When f is smooth, the boundedness assumption ||u|| < G holds automatically with
Gy < L¢Dg if G has a bounded diameter Dg.

We believe the assumption on the location of the solution is a limitation of the analysis and that the
method can achieve fast rates when f is smooth regardless of where the solution lies. Remark that
this assumption also appears in (Levy, 2017; Levy et al., 2018).

Following the definition in (Nesterov, 2015), we say that an algorithm is universal if it does not
require to know whether the objective is smooth or not yet it implicitly adapts to the smoothness
of the objective. ADAPTOS attains universal convergence rates for Problem (18). It converges to a
solution with O(1/+/%) rate (in function value) when f is nonsmooth. The rate becomes O(1/t) if f
is smooth and the solution is in the interior of the feasible set.

Finally, the next theorem shows that ADAPTOS can successfully handle stochastic (sub)gradients.

Theorem 5. Consider Problem (18). Use TOS (Algorithm 1) with the update directions u; from
an unbiased stochastic subgradient oracle such that E[ui|z;] € Of(z:) almost surely. Assume that
lluel| < Gy for all t. Suppose Problem (18) has a solution in the interior of the feasible set. Then,
the estimates generated by TOS satisfy

204Gf G2
E[f(z) - f] <O (m( a2+1+ﬁf>> and 25)
o (2
E[dlst(zt,m}<o<tf1( +1+f)> where D = ||yo — .. (26)

6 Numerical Experiments

This section demonstrates empirical performance of the proposed method on a number of convex
optimization problems. We also present an experiment on neural networks. Our experiments are
performed in Python 3.7 with Intel Core 19-9820X CPU @ 3.30GHz. We present more experiments
on isotonic regression and portfolio optimization in the supplementary materials. The source code for
the experiments is available in the supplements.



6.1 Experiments on Convex Optimization with Smooth f

In this subsection, we compare ADAPTOS with TOS, PDHG and their line-search variants TOS-LS
and PDHG-LS. Our experiments are based on the benchmarks described in (Pedregosa & Gidel,
2018) and their source code available in COPT Library (Pedregosa et al., 2020) under the new BSD
License. We implement ADAPTOS and investigate its performance on three different problems:

> Logistic regression with overlapping group lasso penalty:

N

. 1
min Zlog(l +exp(=bifai, x)) + A Y VIGllzall + A Y VIHzEll, @7
=1 Geg HcH
where {(a1,b1),...,(an,by)} is a given set of training examples, G and H are the sets of distinct
groups and | - | denotes the cardinality. The model we use (from COPT) considers groups of

size 10 with 2 overlapping coefficients. In this experiment, we use the benchmarks on synthetic
data (dimensions n = 1002, N = 100) and real-sim dataset (Chang & Lin, 2011) (n = 20958,
N = 172309).

> Image recovery with fotal variation penalty:

m n—1 n m-—1
Lhin Y- AXF+AAD D X = Xigl +AD D [ Xy — Xiyl,  (28)
i=1 j=1 j=1 i=1

where Y is a given blurred image and A : R™*" — R™*" is a linear operator (blur kernel). The
benchmark in COPT solves this problem for an image of size 153 x 115 with a provided blur kernel.

> Sparse and low-rank matrix recovery via ¢1 and nuclear-norm regularizations:

N
1
Juin ;huber(bi — (A, X))+ X[+ MNIX )1 (29)
We use huber loss. {(A1,b1),...,(An,by)} is a given set of measurements and || X || is the vector

¢1-norm of X. The benchmark in COPT considers a symmetric ground truth matrix X% € R20%20
and noisy synthetic measurements (N = 100) where A; has Gaussian iid entries. b; = (4;, X h) + w;
where w; is generated from a zero-mean unit variance Gaussian distribution.

At each problem, we consider two different values for the regularization parameter A\. We use all
methods with their default parameters in the benchmark. For ADAPTOS, we discard 8 and tune «
by trying the powers of 10. See the supplementary material for the behavior of the algorithm with
different values of «. Figure 1 shows the results of this experiment. In most cases, the performance
of ADAPTOS is between TOS-LS and PDHG-LS. Remark that TOS-LS is using the extra knowledge
of the Lipschitz constant of h.

6.2 Experiments on Convex Optimization with Nonsmooth f

We examine the empirical performance of ADAPTOS for nonsmooth problems on an image impainting
and denoising task from (Zeng & So, 2018; Yurtsever et al., 2018). We are given an occluded image
(i.e., missing some pixels) of size 517 x 493, contaminated with salt and pepper noise of 10% density.
We use the following template where data fitting is measured in terms of vector £,,-norm:

Xé%ig}xn JAX) =Y, subjectto [ X].<A 0<X <1, (30)
where Y is the observed noisy image with missing pixels. This is essentially a matrix completion
problem, A : R"*™ — R™*™ is a linear map that samples the observed pixels in Y. In particular,
we consider (30) with p = 1 and p = 2. The #5-loss is common in practice for matrix completion
(often in the least-squares form) but it is not robust against the outliers induced by the salt and pepper
noise. ¢1-loss is known to be more reliable for this task.

The subgradients in both cases have a fixed norm at all points (note that the subgradients are binary
valued for ¢;-loss and unit-norm for ¢5-loss), hence the analytical and the adaptive step-sizes are
same up to a constant factor.



Figure 2 shows the results. The empirical rates for p = 1 roughly match our guarantees in Theorem 1.
We observe a locally linear convergence rate when ¢5-loss is used. Interestingly, the ergodic sequence
converges faster than the last iterate for p = 1 but significantly slower for p = 2. The runtime of the
two settings are approximately the same, with 67 msec per iteration on average. Despite the slower
rates, we found ¢;-loss more practical on this problem. A low-accuracy solution obtained by 1000
iterations on ¢;-loss yields a high quality recovery with PSNR 26.21 dB, whereas the PSNR saturates
at 21.15 dB for the />-formulation. See the supplements for the recovered images and more details.

6.3 An Experiment on Neural Networks

In this section, we train a regularized deep neural network to test our methods on nonconvex
optimization. We consider a regularized neural network problem formulation in (Scardapane et al.,
2017). This problem involves a fully connected neural network with the standard cross-entropy loss
function, a ReLu activation for the hidden layers, and the softmax activation for the output layer. Two
regularizers are added to this loss function: The first one is the standard ¢; regularizer, and the second
is the group sparse regularizer where the outgoing connections of each neuron is considered as a
group. The goal is to force all outgoing connections from the same neurons to be simultaneously
zero, so that we can safely remove the neurons from the network. This is shown as an effective way
to obtain compact networks (Scardapane et al., 2017), which is crucial for the deployment of the
learned parameters on resource-constrained devices such as smartphones (Blalock et al., 2020).

We reuse the open source implementation (built with Lasagne framework based on Theano) published
in (Scardapane et al., 2017) under BSD-2 License. We follow their experimental setup and instructions
with MNIST database (LeCun, 1998) containing 70k grayscale images (28 x 28) of handwritten digits
(split 75/25 into train and test partitions). We train a fully connected neural network with 784 input
features, three hidden layers (400/300/100) and 10-dimensional output layer. Interested readers can
find more details on the implementation in the supplementary material or in (Scardapane et al., 2017).

Scardapane et al. (2017) use SGD and Adam with the subgradient of the overall objective. In contrast,
our methods can leverage the prox-operators for the regularizers. Figure 3 compares the performance
in terms of two measures: the sparsity of the parameters and the accuracy. On the left side, we see the
spectrum of weight and neuron magnitudes. The advantage of using prox-operators is outstanding:
More than 93% of the weights are zero and 68% of neurons are inactive when trained with ADAPTOS.
In contrast, subgradient based methods can achieve only approximately sparse solutions.

The third and the fourth subplots present the training and test accuracies. Remarkably, ADAPTOS
performs better than the state-of-the-art (both in train and test). Unfortunately, we could not achieve
the same performance gain in preliminary experiments with more complex models like ResNet (He
et al., 2016), where SGD with momentum shines. Interested readers can find the code for these
preliminary experiments in the supplements. We leave the technical analysis and a comprehensive
examination of ADAPTOS for nonconvex problems to a future work.

7 Conclusions

We studied an extension of TOS that permits subgradients and stochastic gradients instead of the
gradient step and established convergence guarantees for this extension. Moreover, we proposed an
adaptive step-size rule (ADAPTOS) for the minimization of a convex function over the intersection
of two convex sets. ADAPTOS guarantees a nearly optimal O(1/+/%) rate on the baseline setting,

and it enjoys the faster @(1 /t) rate when the problem is smooth and the solution is in the interior
of feasible set. We present numerical experiments on various benchmark problems. The empirical
performance of the method is promising.

We conclude with a short list of open questions and follow-up directions: (i) In parallel to the
subgradient method, we believe TOS can achieve O(1/t) rate guarantees in the nonsmooth setting
if f is strongly convex. The analysis remains open. (ii) The faster rate for ADAPTOS on smooth
f requires an extra assumption on the location of the solution. We believe this assumption can be
removed, and leave this as an open problem. (iii) We analyzed ADAPTOS only for a specific subclass
of Problem (1) in which g and h are indicator functions. Extending this result for the whole class is a
valuable question for future study.
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Figure 1: Empirical comparison of 5 algorithms for Problem (1) with smooth f. Dashed lines
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