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Abstract

We propose matrix norm inequalities that extend the Recht and Ré (2012) conjecture on a noncom-

mutative AM-GM inequality, by supplementing it with another inequality that accounts for single-

shuffle in stochastic finite-sum minimization. Single-shuffle is a popular without-replacement sam-

pling scheme that shuffles only once in the beginning, but has not been studied in the Recht-Ré

conjecture and the follow-up literature. Instead of focusing on general positive semidefinite ma-

trices, we restrict our attention to positive definite matrices with small enough condition numbers,

which are more relevant to matrices that arise in the analysis of SGD. For such matrices, we con-

jecture that the means of matrix products satisfy a series of spectral norm inequalities that imply

“single-shuffle SGD converges faster than random-reshuffle SGD, which is in turn faster than with-

replacement SGD and GD” in special cases.

1. Introduction: Recht-Ré matrix AM-GM inequality conjecture

Stochastic gradient descent (SGD) and its variants have become indispensable to solving finite-sum

optimization problems that arise in modern machine learning. At each iteration, these methods

evaluate the gradient of one component function sampled from the entire set of components and use

it as a noisy estimate of the full gradient.

Depending on how the components are chosen, SGD-based methods can broadly be classified

into two categories: with-replacement and without-replacement. In many theoretical studies the

indices of component functions are assumed to be chosen with replacement, making the choice at

each iteration independent of other iterations. In contrast, the vast majority of practical implemen-

tations use without-replacement sampling, where all the indices are randomly shuffled and are then

visited exactly once per epoch (i.e., one pass through all the components). There are two popular

variants of shuffling schemes: one that reshuffles the components at every epoch and another that

shuffles only once at the beginning and reuses that order every epoch.

Practitioners opt for without-replacement sampling schemes not only because they are easier

to implement, but also because they often result in faster convergence (Bottou, 2009). However,

analyzing algorithms based on without-replacement sampling is considerably trickier than their

with-replacement counterparts, because the component chosen at each iteration is dependent on the

previous iterates of an epoch. Despite the difficulty, recent results have shown tight convergence

bounds for without-replacement SGD that are faster than with-replacement SGD (Nagaraj et al.,

2019; Safran and Shamir, 2020; Rajput et al., 2020; Ahn et al., 2020; Mishchenko et al., 2020).
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In 2012, Recht and Ré (2012) proposed a conjecture that the mean of without-replacement

products of positive semidefinite (PSD) matrices has spectral norm no larger than the mean of their

with-replacement products. Formally, given n real PSD matrices A1, . . . ,An, they conjectured:
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where Sn is the set of all permutations σ : {1, . . . , n} → {1, . . . , n}. This so-called matrix AM-

GM inequality1 conjecture has drawn much attention because it can help explain why without-

replacement algorithms, such as SGD and the randomized Kaczmarz algorithm (Karczmarz, 1937;

Strohmer and Vershynin, 2009), may converge faster than with-replacement ones (see Section 2).

The conjecture (1) is true for n = 2 (Recht and Ré, 2012) and n = 3 (Zhang, 2018; Lai and

Lim, 2020). However, it was recently proven to be false for n ≥ 5. Lai and Lim (2020) disproved

the AM-GM inequality (1) by formulating the Positivstellensatz of the matrix polynomials from an

equivalent conjecture into a semidefinite program (SDP). By solving the SDP, they proved that (1)

does not hold for n = 5. The conjecture for higher n’s was settled by De Sa (2020), who constructed

concrete counterexamples to disprove the conjecture (1) for any n ≥ 5.

2. Motivations for a revised conjecture

Although this conjecture-and-disproof story seems inescapable, we point out important facts about

the conjecture (1) and its disproof, reigniting new hope for a revised/extended conjecture.

Disproofs of Recht-Ré conjecture break for well-conditioned matrices. Both disproofs (Lai

and Lim, 2020; De Sa, 2020) of the conjecture (1) leverage rank-deficient PSD matrices, and adding

a positive multiple of the identity matrix to each matrix makes them satisfy (1). This leaves open the

possibility that the conjecture may still be true for positive definite (PD) matrices with sufficiently

small condition numbers. Readers can refer to Yun et al. (2021) for details on breaking the disproofs.

Well-conditioned matrices arise in analysis of SGD. Suppose we want to minimize a finite-sum

function F : Rd → R of the form F (z) := 1
n

∑n
i=1 fi(z). For simplicity of illustration, consider

quadratic component functions fi(z) := 1
2z

TMiz, where Mi’s are d-by-d PSD matrices. We

consider running SGD with a constant step-size η > 0, with the following updates:

zt := zt−1 − η∇fi(t)(zt−1) = zt−1 − ηMi(t)zt−1 = (I − ηMi(t))zt−1, (2)

where i(t) ∈ {1, . . . , n} is the index at iteration t chosen by the algorithm.

With-replacement SGD, which we denote as SGD, chooses i(t) from the uniform distribution

over all indices at each iteration. In contrast, without-replacement SGD shuffles the n indices and

makes a complete pass through the shuffled indices, which we call an epoch. Two different vari-

ants are popular in practice: RANDOMSHUFFLE reshuffles the indices after each epoch, whereas

SINGLESHUFFLE shuffles in the beginning and adheres to that order for all the epochs.

1. Developing a matrix counterpart of the well-known scalar arithmetic-geometric means inequality has been a long-

standing research topic. Different geometric means and their corresponding AM-GM inequalities have been proposed

and studied in the literature (Bhatia and Davis, 1993; Horn, 1995; Bhatia and Kittaneh, 2000; Ando et al., 2004; Bha-

tia and Holbrook, 2006; Bini et al., 2010; Bhatia and Karandikar, 2012).
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Suppose we run nK iterations (K epochs) of the three variants of SGD initialized at z0. It is

straightforward to derive that the expected iterates after nK iterations are written as follows:

E[zSGD
nK ] = Ei∼Unif({1,...,n})[I − ηMi]
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Comparing (3) and (4), we can notice their connection to the original AM-GM inequality con-

jecture (1), with Ai = I − ηMi. If true, inequality (1) would imply that in the special case

fi(z) =
1
2z

TMiz, the expected iterate of RANDOMSHUFFLE is closer to the global minimum than

that of SGD or gradient descent (GD),2 if we compare upper bounds.

In many recent theoretical advances on without-replacement SGD (Haochen and Sra, 2019;

Nagaraj et al., 2019; Rajput et al., 2020; Ahn et al., 2020), η = O( log(nK)
nK

) is chosen as the step-

size to prove tight convergence rates of RANDOMSHUFFLE and SINGLESHUFFLE that are faster

than SGD. Note that such choices of η make the matrices Ai = I − ηMi close to identity; in

other words, the matrices Ai that arise in the analysis of SGD are well-conditioned. Therefore, it is

evident that understanding the conjecture for well-conditioned PD matrices is of great importance.

Recht-Ré conjecture (1) fails to account for SINGLESHUFFLE. It is important to note from (3),

(4), and (5) that Recht-Ré conjecture (1) only implies faster convergence of RANDOMSHUFFLE than

SGD. It does not provide any useful insights towards the analysis of SINGLESHUFFLE, an equally

(if not more) popular scheme in practice. This begs the question: is there an additional inequality

that we can add to the conjecture (1) in order to account for SINGLESHUFFLE?

SINGLESHUFFLE beats RANDOMSHUFFLE and SGD in linear regression. Consider solving an

underdetermined linear regression problem F (z) = 1
2

∑n
i=1(x

T
i z − yi)

2 with a random Gaussian

dataset {(xi, yi)}
n
i=1 using the variants of SGD and GD. Perhaps surprisingly, experiments show a

quite consistent trend that given the same initialization z0 and step-size η, SINGLESHUFFLE mini-

mizes F (z) faster than RANDOMSHUFFLE, which in turn outperforms SGD and GD. We observe a

similar trend if we plot t vs. the spectral norm of matrix products
∏1

j=t(I − ηxi(j)x
T
i(j)) (note from

(2) that this matrix product multiplied with z0 appears in zt). See Yun et al. (2021) for more details.

This inspiring empirical observation motivates an extension of the AM-GM inequality conjec-

ture (1), which corresponds to “RANDOMSHUFFLE ≤ SGD/GD,” to a new conjecture by adding a

new inequality “SINGLESHUFFLE ≤ RANDOMSHUFFLE.”

3. New conjecture: SS-RS-GD inequalities

Based on the motivations discussed so far, we now formally state our new conjecture in Conjec-

ture 1, which we refer to as the SS-RS-GD inequalities conjecture. Conjecture 1 extends the AM-

GM inequality conjecture (1) by adding the SINGLESHUFFLE algorithm to the picture. It also refines

the original conjecture to a setting that is more relevant to the convergence analysis of SGD.

2. Note that the RHS of (3) coincides with the nK-th iterate of GD: zt := zt−1−η∇F (zt−1) = (I− η

n

∑
i
Mi)zt−1.
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Conjecture 1 For any n ≥ 2, K ≥ 1, and d ≥ 1, there exists a step-size constant ηn,K ∈
(0, 1] such that the following statement holds: Suppose d-by-d real symmetric matrices A1, . . . ,An

satisfy (1− ηn,K)I � Ai � I for all i ∈ {1, . . . , n}. Then, for matrices
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the following spectral norm inequalities hold:3 ‖WSS‖ ≤ ‖WRS‖ ≤ ‖WGD‖.

Requirements on “scaling” are not strict. Although we require (1 − ηn,K)I � Ai � I , the

specific scaling is not strictly necessary, because the norm inequalities do not break when we scale

all Ai’s with the same factor. Also, for the first inequality ‖WSS‖ ≤ ‖WRS‖, individual scale of

Ai is not important because scaling a single Ai does not change the sign of the inequality; rather,

the actual requirement is that Ai’s have condition numbers at most 1
1−ηn,K

.

Matrices that commute. For matrices A1, . . . ,An that commute, Conjecture 1 is true with

ηn,K = 1. The product
∏n

i=1Aσ(i) is identical for all σ ∈ Sn, so the first inequality of the

conjecture holds with equality. The second inequality boils down to the scalar AM-GM inequality.

Doesn’t Conjecture 1 contradict matrix convexity of A 7→ A2? While ‖WRS‖ ≤ ‖WGD‖ is

the Recht-Ré conjecture (1) with restrictions on Ai’s, the new inequality ‖WSS‖ ≤ ‖WRS‖ may

look questionable at first glance. It is of the form ‖Eσ[P
K
σ ]‖ ≤ ‖Eσ[Pσ]

K‖, whose sign is the

opposite of Jensen’s inequality. In particular, it is well-known that the map A 7→ A2 on symmetric

matrices is matrix convex, which may seem to contradict ‖WSS‖ ≤ ‖WRS‖. Here, the key is that

the product
∏n

i=1Aσ(i) is not necessarily symmetric; hence, there is no contradiction.

Does Conjecture 1 alone imply that SINGLESHUFFLE always converges faster? The short

answer is, in general, no. For the special case of fi(z) = 1
2z

TMiz, the conjectured inequalities

indeed imply faster convergence of SINGLESHUFFLE. However, for general quadratic functions

fi(z) =
1
2z

TMiz+ bTi z+ ci, linear coefficients bi introduce “noise” terms and SGD iterates read

zt =
(
∏1

j=t
(I − ηMi(j))

)

z0 − ηbi(t) − η
(
∑t−1

l=1

(
∏l+1

j=t
(I − ηMi(j))

)

bi(l)

)

, (7)

and the terms involving bi’s become a dominant factor that determines the convergence speed.4

Although Conjecture 1 alone does not prove superior performance of SINGLESHUFFLE over other

algorithms, proving it provides a versatile tool for the analysis of without-replacement sampling

methods in general, since the matrix products in Conjecture 1 naturally arise in other setups too.

Preliminary progress. We invite readers to refer to Yun et al. (2021) for some initial progress.

Yun et al. (2021) prove ‖WSS‖ ≤ ‖WRS‖ for Ai = I − ηMi, when η is small enough (but depen-

dent on Mi’s). Together with Theorem 1 of De Sa (2020), this proves ‖WSS‖ ≤ ‖WRS‖ ≤ ‖WGD‖
for small enough η. Although this result provides some evidence, it does not prove Conjecture 1

itself because we conjecture that ηn,K’s are independent of d and Ai’s. Other theorems in Yun et al.

(2021) prove Conjecture 1 for special cases and suggest that ηn,K=O(1/nK) may be sufficient. This

may look like a strong restriction, but we emphasize that this choice of ηn,K matches (up to log fac-

tors) the order of the step-sizes chosen in analyses on without-replacement SGD (see Section 2).

We believe ηn,K=O(1/nK) is not strictly necessary, although ηn,K has to decay with n and K.

3. The inequalities may also hold for other matrix norms induced from some ellipsoidal norms defined with Ai’s.

4. For strongly convex quadratic F , RANDOMSHUFFLE converges faster than SINGLESHUFFLE (Ahn et al., 2020)

because the noise terms “cancel out” better. Still, this does not contradict Conjecture 1 which is independent of bi’s.
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