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Abstract

We consider the problem of minimizing the sum

of three functions, one of which is nonconvex

but differentiable, and the other two are convex

but possibly nondifferentiable. We investigate the

Three Operator Splitting method (TOS) of Davis

& Yin (2017) with an aim to extend its theoretical

guarantees for this nonconvex problem template.

In particular, we prove convergence of TOS with

nonasymptotic bounds on its nonstationarity and

infeasibility errors. In contrast with the existing

work on nonconvex TOS, our guarantees do not

require additional smoothness assumptions on the

terms comprising the objective; hence they cover

instances of particular interest where the nondif-

ferentiable terms are indicator functions. We also

extend our results to a stochastic setting where

we have access only to an unbiased estimator of

the gradient. Finally, we illustrate the effective-

ness of the proposed method through numerical

experiments on quadratic assignment problems.

1. Introduction

We study nonconvex optimization problems of the form:

min
x∈Rn

φ(x) := f(x) + g(x) + h(x), (1)

where f : Rn → R is continuously differentiable and poten-

tially nonconvex, whereas g and h : Rn → R ∪ {+∞} are

proper lower-semicontinuous convex functions (potentially

nonsmooth). Further, we assume that the domain of g, that

is, dom(g) = {x ∈ R
n : g(x) < +∞}, is bounded.

Template (1) enjoys a rich number of applications in op-

timization, machine learning, and statistics. Nonconvex

losses arise naturally in several maximum likelihood estima-

tion (McLachlan & Krishnan, 1996) and M-estimation prob-

lems (Ollila & Tyler, 2014; Maronna et al., 2019), in prob-

lems with a matrix factorization structure (Zass & Shashua,
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2007), in certain transport and assignment problems (Koop-

mans & Beckmann, 1957; Peyré et al., 2019), among count-

less others. The nonsmooth terms in (1) can be used as

regularizers, e.g., to promote joint behavior such as sparsity

and low-rank (Richard et al., 2012). Moreover, we can also

split a complex regularizer into simpler terms for computa-

tional advantages, e.g., in group lasso with overlaps (Jacob

et al., 2009), structured sparsity (El Halabi & Cevher, 2015),

or total variation (Barbero & Sra, 2018).

We obtain an important special case by choosing the nons-

mooth terms g and h in (1) as indicator functions of closed

and convex sets G and H ⊆ R
n. In this case, (1) turns into

min
x∈Rn

f(x) subject to x ∈ G ∩H. (2)

We are particularly interested in the setting where G and

H are simple in the sense that we can project onto these

sets efficiently, but not so easily onto their intersection.

Some examples include learning with correlation matri-

ces (Higham & Strabić, 2016), power assignment in wireless

networks (De Berg et al., 2010), graph transduction (Shiv-

anna et al., 2015), graph matching (Zaslavskiy et al., 2008),

and quadratic assignment (Koopmans & Beckmann, 1957;

Loiola et al., 2007).

An effective way to solve (1) for convex f with Lip-

schitz gradients is the Three Operator Splitting (TOS)

method (Davis & Yin, 2017), whose convergence has been

well-studied (see §1.1). But for nonconvex f , convergence

properties of TOS are less understood (again, see §1.1).

This gap motivates us to develop nonasymptotic conver-

gence guarantees for TOS. Beyond theoretical progress, we

highlight the potential empirical value of TOS by evaluat-

ing it on a challenging nonconvex problem, the quadratic

assignment problem (QAP).

Contributions. We summarize our contributions towards

the convergence analysis of nonconvex TOS below.

⊲ We first discuss how to quantify convergence of TOS to

first-order stationary points for both templates (1) and (2).

Specifically, we propose to measure approximate station-

arity based on a variational inequality. Thereafter, we

prove that the associated non-stationarity error is smaller

than ǫ (in expectation over a random iteration counter)

after T = O(1/ǫ3) iterations (and gradient evaluations).
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⊲ We extend our analysis to stochastic optimization where

we have access only to an unbiased estimate of the gra-

dient ∇f . In this case, we prove that the error is smaller

than ǫ (in expectation) after T = O(1/ǫ3) iterations. The

corresponding algorithm requires drawing O(1/ǫ5) i.i.d.

stochastic gradients.

Finally, we evaluate TOS on the quadratic assignment

problem using the well-known QAPLIB benchmark li-

brary (Burkard et al., 1997). Remarkably, TOS performs

significantly better than the theory suggests: we find that

it converges locally linearly. Understanding this behavior

could be a potentially valuable question for future study.

1.1. Related Works

Davis & Yin (2017) introduce TOS for solving the monotone

inclusion of three operators, one of which is co-coercive.

TOS gives us a simple algorithm for (1) when f is smooth

and convex, since the gradient of a smooth convex function

is co-coercive. At each iteration, TOS evaluates the gradient

of f and the proximal operators of g and h once, separately.

TOS extends various previous operator splitting schemes

such as the forward-backward splitting, Douglas-Rachford

splitting, Forward-Douglas-Rachford splitting (Briceño-

Arias, 2015), and the Generalized Forward-Backward split-

ting (Raguet et al., 2013).

The original algorithm of Davis & Yin (2017) requires

knowledge of the smoothness constant of f ; Pedregosa &

Gidel (2018) introduce a variant of TOS with backtracking

line-search that bypasses this restriction. Zong et al. (2018)

analyze convergence of TOS with inexact oracles where

both the gradient and proximity oracles can be noisy.

Existing work on TOS applied to nonconvex problems limits

itself to the setting where at least two terms in (1) have Lip-

schitz continuous gradients. Under this assumption, Liu &

Yin (2019) identify an envelope function for TOS, which per-

mits one to interpret TOS as gradient descent for this enve-

lope under a variable metric. Their envelope generalizes the

well-known Moreau envelope as well as the envelopes for

Douglas-Rachford and Forward-Backward splitting intro-

duced in (Patrinos et al., 2014) and (Themelis et al., 2018).

Bian & Zhang (2020) present convergence theory for TOS

under the same smoothness assumptions. They show that

the sequence generated by TOS with a carefully chosen step-

size converges to a stationary point of (1). They also prove

asymptotic convergence rates under the assumption that the

Kurdyka-Łojasiewicz property holds (see Definition 2.3 in

(Bian & Zhang, 2020)).

Our focus is significantly different from these prior works

on nonconvex TOS. In contrast to the settings of (Liu & Yin,

2019) and (Bian & Zhang, 2020), we do not impose any

assumption on the smoothness of g and h. However, we do

assume that the nonsmooth terms g and h are convex and

the problem domain is bounded.

In particular, our setting includes nonconvex minimization

over the intersection of two simple convex sets, which cov-

ers important applications such as the quadratic assignment

problem and graph matching. Note that these problems are

challenging for TOS even in the convex setting, because

the intermediate estimates of TOS can be infeasible and the

known guarantees on the convergence rate of TOS fail, see

the discussion in Section 3.2 in (Pedregosa & Gidel, 2018).

Finally, Yurtsever et al. (2016), Cevher et al. (2018), Zhao

& Cevher (2018), and Pedregosa et al. (2019) propose and

analyze stochastic variants of TOS and related methods in

the convex setting. We are unaware of any prior work on

nonconvex stochastic TOS.

Notation. Before moving onto the theoretical development,

let us summarize here key notation used throughout the

paper. We use 〈·, ·〉 to denote the standard Euclidean inner

product associated with the norm ‖·‖. The distance between

a point x ∈ R
n and a set G ⊆ R

n is defined as dist(x,G) :=
infy∈G ‖x − y‖; the projection of x onto G is given by

projG(x) := argminy∈G ‖x− y‖. We denote the indicator

function of G by ιG : Rn → {0,+∞}, that takes 0 for any

x ∈ G and +∞ otherwise. The proximal operator (or prox-

operator) of a function g : Rn → R ∪ {+∞} is defined by

proxg(x) := argminy∈Rn{g(y)+ 1
2‖x−y‖2}. Recall that

the prox-operator for the indicator function is the projection,

i.e., proxιG (x) = projG(x).

2. Basic Setup: Approximate Stationarity

We begin our analysis by setting up the notion of approxi-

mate stationarity that we will use to judge convergence. For

unconstrained minimization of smooth functions, gradient

norm is a widely used standard measure. But the gradient

norm is unsuitable in our case because of the presence of

constraints and nonsmooth terms in the cost.

Related work on operator splitting for nonconvex optimiza-

tion typically considers the norm of a proximal gradient, or

uses some other auxiliary differentiable function that con-

verges to zero as we get closer to a first-order stationary

point. See, for instance, the envelope functions introduced

by Patrinos et al. (2014), Themelis et al. (2018) and Liu

& Yin (2019), or the energy function defined by Bian &

Zhang (2020). However, these functions can characterize

stationary points of (1) only under additional smoothness

assumptions on g and h. They fail to capture important

applications where both g and h are nonsmooth.

In contrast, we consider a simple measure based on the vari-

ational inequality characterization of first-order stationarity.
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Definition 1 (Stationary point). z̄ ∈ dom(φ) is a first-order

stationary point of (1) if, for all x ∈ dom(φ),

〈∇f(z̄), z̄ − x〉+ g(z̄)− g(x) + h(z̄)− h(x) ≤ 0. (3)

See Lemma 4 in the supplementary material for the technical

details on condition (3).

We consider a perturbation of the bound in (3) to define an

approximately stationary point.

Definition 2 (ǫ-stationary point). We say z̄ ∈ dom(φ) is an

ǫ-stationary point of (1) if, for all x ∈ dom(φ),

〈∇f(z̄), z̄ − x〉+ g(z̄)− g(x) + h(z̄)− h(x) ≤ ǫ. (4)

This is a natural extension of the notion of suboptimal solu-

tions in terms of function values used in convex optimization.

Similar measures for stationarity appear in the literature for

various problems; see e.g., (He & Yuan, 2015; Nouiehed

et al., 2019; Malitsky, 2019; Song et al., 2020).

TOS is particularly advantageous for (1) when the proximal

operators of g and h are easy to evaluate separately but the

proximal operator of their sum is difficult. For (2), this corre-

sponds to optimization over G∩H by using only projections

onto the individual sets and not onto their intersection. In

this setting, we can achieve a feasible solution only in an

asymptotic sense. Finding a feasible ǫ-stationary solution is

an unrealistic goal. Thus, for (2), we consider a relaxation of

Definition 2 that permits approximately feasible solutions.

Definition 3 (ω-feasible ǫ-stationary point). We say z̄ ∈ G
is an ω-feasible ǫ-stationary point of (2) if

dist(z̄,H) ≤ ω, and (5)

〈∇f(z̄), z̄ − x〉 ≤ ǫ, ∀x ∈ G ∩H. (6)

Remark 1. For simplicity, we measure infeasibility of z̄
via dist(z̄,H). This is suitable because the estimates of

TOS remain in G by definition. We can also consider a

slightly stronger notion of approximate feasibility given by

dist(z̄,G ∩H). However, this requires additional regularity

conditions on G and H to avoid pathological examples. See,

for instance, Lemma 1 in (Hoffmann, 1992) or Definition 2

in (Kundu et al., 2018).

The directional derivative condition (6) is often used in the

analysis of conditional gradient methods, and it is known

as the Frank-Wolfe gap in this literature. See (Jaggi, 2013;

Lacoste-Julien, 2016; Reddi et al., 2016b; Yurtsever et al.,

2019) for some examples.

Approximately feasible solutions are widely considered in

the analysis of primal-dual methods (but usually in the con-

vex setting), see (Yurtsever et al., 2018; Kundu et al., 2018)

and the references therein. Remark that TOS can also be

viewed as a primal-dual method (Pedregosa & Gidel, 2018).

Problem (2) is challenging for TOS because of the infeasi-

bility of the intermediate estimates, even when f is convex.

Davis & Yin (2017) avoid this issue by evaluating the terms

h and (f + g) at two different points, x ∈ H and z ∈ G.

However,
(

f(z)+ g(z)
)

+h(x) can be equal to the optimal

objective value even when neither x nor z is close to a solu-

tion. We can address this issue by introducing a condition

on the distance between x and z. The following definition

of an α-close and β-stationary pair of points is crucial for

our analysis.

Definition 4 (α-close β-stationary pair). We say that

(x̄, z̄) ∈ dom(h) × dom(g) are α-close and β-stationary

points of (1) if, for all x ∈ dom(φ),

‖z̄ − x̄‖ ≤ α, and (7)

〈∇f(z̄), x̄− x〉+ g(z̄)− g(x) + h(x̄)− h(x) ≤ β. (8)

α-close β-stationary points (x̄, z̄) yield approximate solu-

tions to (1) and (2) under appropriate assumptions.

Observation 1. (i). Let h be Lipschitz continuous on R
n

with constant Lh. Assume that ‖∇f(z)‖ is bounded by Gf

for all x ∈ dom(g). Suppose that the points (x̄, z̄) are α-

close and β-stationary. Then, z̄ is an ǫ-stationary point with

ǫ = α(Gf + Lh) + β as per Definition 2.

(ii). Let g and h be indicators of closed convex sets G and H
respectively. Assume that ‖∇f(z)‖ is bounded by Gf for all

x ∈ G. Suppose that the points (x̄, z̄) ∈ H × G are α-close

and β-stationary. Then, z̄ is an α-feasible ǫ-stationary point

with ǫ = αGf + β as per Definition 3.

Proof. (i). Since h is Lipschitz, we have

h(x̄)− h(x) ≥ h(z̄)− h(x)− Lh‖z̄ − x̄‖. (9)

And since ‖∇f(z)‖ is bounded, we have

〈∇f(z̄), x̄− x〉 ≥ 〈∇f(z̄), z̄ − x〉 −Gf‖z̄ − x̄‖. (10)

We get (4) with ǫ = α(Gf + Lh) + β by using (9) and (10)

in (8) and bounding ‖z̄ − x̄‖ by (7).

(ii). We get (5) with ω = α since

dist(z̄,H) = inf
x∈H

‖z̄ − x‖ ≤ ‖z̄ − x̄‖. (11)

h(x̄) = g(z̄) = h(x) = g(x) = 0 since x̄ ∈ H, z̄ ∈ G, and

x ∈ G ∩H. Then, (6) follows from (8) by using (10).

We are now ready to present and analyze the algorithm.

3. TOS with a Nonconvex Loss Function

This section establishes convergence guarantees of TOS for

solving Problems (1) and (2). The method is detailed in

Algorithm 1.
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Algorithm 1 Three Operator Splitting (TOS)

Input: Initial point y1 ∈ R
n, step-size sequence {γt}Tt=1

for t = 1, 2, . . . , T do

zt = proxγtg(yt)

xt = proxγth(2zt − yt − γt∇f(zt))

yt+1 = yt − zt + xt

end for

Return: Draw τ uniformly at random from {1, 2, . . . , T}
and output zτ .

Theorem 1. Consider Problem (1) under the following as-

sumptions:

(i) The domain of g has finite diameter Dg ,

‖x− y‖ ≤ Dg, ∀x, y ∈ dom(g).

(ii) g is Lg-Lipschitz continuous on its domain,

g(x)− g(y) ≤ Lg‖x− y‖, ∀x, y ∈ dom(g).

(iii) The gradient of f is bounded by Gf on the domain of g,

‖∇f(x)‖ ≤ Gf , ∀x ∈ dom(g).

(iv) h is Lh-Lipschitz continuous on R
n,

h(x)− h(y) ≤ Lh‖x− y‖, ∀x, y ∈ R
n.

Choose y1 ∈ dom(g). Then, zτ returned by TOS (Algo-

rithm 1) after T iterations with the fixed step-size γt = γ =
Dg

2(Gf+Lg+Lh)T 2/3 satisfies

Eτ [〈∇f(zτ ), zτ − x〉+ g(zτ )− g(x) + h(zτ )− h(x)]

≤ 4Dg(Gf + Lg + Lh)

T 1/3
, ∀x ∈ dom(g). (12)

Proof sketch. We start by writing the optimality conditions

for the proximal steps on xt and zt. Through algebraic

modifications, we show that, for all x ∈ dom(φ),

〈∇f(zt), xt − x〉+ g(zt)− g(x) + h(xt)− h(x)

≤ 1

2γ

(

‖yt − x‖2 − ‖yt+1 − x‖2 − ‖xt − zt‖2
)

.
(13)

We take the average of this inequality over t = 1, 2, . . . T .

The inverted terms with yt and yt+1 cancel out since the

step-size is fixed. As a result, we know that (xτ , zτ ) satisfy

(8) with β = D2
g/(2γT ) in expectation.

We also need to show that (xτ , zτ ) satisfy the proximity

condition (7). To this end, we extend (13) as

− (Gf + Lh)‖xt − zt‖ − (Gf + Lg + Lh)Dg

≤ 1

2γ

(

‖yt − x‖2 − ‖yt+1 − x‖2 − ‖xt − zt‖2
)

,
(14)

by using the boundedness of the domain (i), boundedness of

the gradient norm (iii), and Lipschitz continuity of g and h
(ii, iv). Again, we take the average over t and eliminate the

inverted terms. This leads to a second order inequality of

Eτ [‖zτ − xτ‖]. By solving this inequality, we get an upper

bound on Eτ [‖zτ − xτ‖] in terms of the problem constants

Gf , Lg, Lh, Dg , total number of iterations T , and step-size

γ. By choosing γ carefully, we ensure that (xτ , zτ ) are

close and approximately stationary as per Definition 4. We

complete the proof by using Observation 1 (i).

Our proof is a nontrivial extension of the convergence guar-

antees of TOS to the nonconvex problems. The prior analy-

sis for the convex setting is based on a fixed point charac-

terization of TOS and on Fejér monotonicity of ‖yt − y⋆‖,

where y⋆ denotes the fixed point of TOS, see Proposition 2.1

in (Davis & Yin, 2017). Unfortunately. this desirable fea-

ture is lost when we drop the convexity of f . Our approach

of proving proximity between xτ and zτ via second-order

inequality (14) is nonstandard.

Remark 2. We highlight several points about Theorem 1:

1. When Dg, Gf , Lg, or Lh is not known, one can use γt =
γ0

T 2/3 for any γ0 > 0. The convergence rate in (12) still

holds but with different constants. We chose the specific

step-size in Theorem 1 in order to simplify the bounds.

2. Assumption (iii) holds automatically if f is smooth since

dom(g) is bounded.

3. We can relax assumption (iv) as follows: h is Lh-Lipschitz

continuous on dom(h), and dom(h) ⊇ dom(g).

4. We can slightly tighten the constants in (12). We defer the

details to the supplementary material.

5. Our guarantees hold in expectation for the estimation at

a randomly drawn iteration. This is a common technique

in the nonconvex analysis. For example, see (Reddi et al.,

2016b;a; Yurtsever et al., 2019) and the references therein.

Corollary 1. Consider Problem (1) under the following

assumptions:

(i) g is the indicator function of a convex closed bounded set

G ⊆ R
n with a finite diameter DG := supx,y∈G ‖x− y‖.

(ii) ∇f is bounded on G, i.e., ‖∇f(x)‖ ≤ Gf , ∀x ∈ G.

(iii) h is Lh-Lipschitz continuous on R
n.

Choose y1 ∈ G. Then, zτ returned by TOS after T iterations

with the fixed step-size γt =
DG

2(Gf+Lh)T 2/3 satisfies

Eτ [〈∇f(zτ ), zτ−x〉+ h(zτ )− h(x)]

≤ 4DG(Gf + Lh)

T 1/3
, ∀x ∈ G.

(15)

Proof. Corollary 1 follows from Theorem 1 with dom(g) =
dom(φ) = G. Assumptions (i) and (ii) in Theorem 1 hold

with Dg = DG and Lg = 0. We have g(zτ ) = g(x) = 0
because zτ and x belong to G.
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Remark 3. The ǫ-approximate solution (in expectation)

that we consider in (12) and (15) reminds the Frank-Wolfe

gap (in expectation) used in (Reddi et al., 2016b; Yurt-

sever et al., 2019). When h is missing and g is the indi-

cator function, the Frank-Wolfe gap quantifies the error by

Eτ

[

maxx∈G 〈∇f(zτ ), zτ − x〉
]

. (15) holds for all x ∈ G
so we can take the maximum over x and get the bound on

maxx∈G Eτ [〈∇f(zτ ), zτ − x〉+ h(zτ )− h(x)]. Note that

maxx∈G Eτ [ · ] ≤ Eτ [maxx∈G( · )]. We leave the question

whether similar guarantees hold for Eτ [maxx∈G( · )] open.

Theorem 1 does not apply to Problem (2) because indicator

functions fail Lipschitz continuity assumption (iv) in Theo-

rem 1. The next theorem establishes convergence guarantees

of TOS for Problem (2).

Theorem 2. Consider Problem (2) under the following as-

sumptions:

(i) G ⊆ R
n is a bounded closed convex set with a finite

diameter DG := supx,y∈G ‖x− y‖.

(ii) ∇f is bounded on G, i.e., ‖∇f(x)‖ ≤ Gf , ∀x ∈ G.

(iii) H ⊆ R
n is a closed convex set.

Then, zτ returned by TOS (Algorithm 1) after T iterations

with the fixed step-size γt =
DG

2GfT 2/3 satisfies

Eτ [dist(zτ ,H)] ≤ 3DG

T 1/3
, (16)

Eτ [〈∇f(zτ ), zτ − x〉] ≤ 4GfDG

T 1/3
, ∀x ∈ G ∩H.

Proof sketch. The analysis is similar to the proof of Theo-

rem 1. We use Observation 1 (ii) once we show that (xτ , zτ )
are close and approximately stationary.

3.1. Extensions for More Than Three Functions

Consider the extension of Problem (1) with an arbitrary

number of nonsmooth terms (equivalently, an extension of

Problem (2) with an arbitrary number of constraints):

min
x∈Rn

f(x) +

m
∑

i=1

gi(x). (17)

One can solve this problem with TOS via a product-space

formulation (see Section 6.1 in (Briceño-Arias, 2015)). We

introduce slack variables x(0), x(1), . . . , x(m) ∈ R
n and

reformulate Problem (17) as

min
x(i)∈Rn

f(x(0)) +

m
∑

i=1

gi(x
(i))

subj. to x(0) = x(1) = . . . = x(m).

(18)

Problem (18) is an instance of Problem (1) in R
(m+1)n. We

can use TOS for solving this problem. Algorithm 2 in the

supplementary material describes the algorithm steps.

4. Stochastic Nonconvex TOS

In this section, the differentiable term is the expectation of

a function of a random variable, i.e., f(x) = Eξ f̃(x, ξ),
where ξ is a random variable with distribution P:

min
x∈Rn

φ(x) := Eξ f̃(x, ξ) + g(x) + h(x). (19)

This template covers a large number of applications in ma-

chine learning and statistics, including the finite-sum formu-

lations that arise in M-estimation and empirical risk mini-

mization problems.

In this setting, we replace ∇f(zt) in Algorithm 1 with the

following estimator:

ut :=
1

|Qt|
∑

ξ∈Qt

∇f̃(zt, ξ), (20)

where Qt is a set of |Qt| i.i.d. samples from distribution P .

Theorem 3. Consider Problem (19). Instate the assump-

tions of Theorem 1. Further, assume that the following

conditions hold:

(v) ∇f̃(x, ξ) is an unbiased estimator of ∇f(x),

Eξ[∇f̃(x, ξ)] = ∇f(x), ∀x ∈ R
n.

(vi) ∇f̃(x, ξ) has bounded variance: For some σ < +∞,

Eξ[‖∇f̃(x, ξ)−∇f(x)‖2] ≤ σ2, ∀x ∈ R
n.

Consider TOS (Algorithm 1) with the stochastic gradient

estimator (20) instead of ∇f(zt). Choose the algorithm

parameters

γt =
Dg

2(Gf + Lg + Lh)T 2/3
and

|Qt| =
⌈ T 2/3

2(Gf + Lg + Lh)2

⌉

.

Then, zτ returned by the algorithm after T iterations satis-

fies, ∀x ∈ dom(φ),

EτE[〈∇f(zt), zt − x〉+ g(zt)− g(x) + h(zt)− h(x)]

≤ Dg(Gf + Lg + Lh)

(
√
4 + 2σ2

T 1/2
+

4 +
√
2 + σ2

T 1/3

)

.

Similar to Corollary 1, we can specify guarantees for the

case where g is an indicator function and h is Lh-Lipschitz

continuous. We skip the details.

Next, analogous to Problem (2), we consider the nonconvex

expectation minimization problem over the intersection of

convex sets:

min
x∈Rn

f(x) := Eξ f̃(x, ξ) subj. to x ∈ G ∩H. (21)

The next theorem presents convergence guarantees of TOS

for this problem.
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Theorem 4. Consider Problem (21). Instate the assump-

tions of Theorems 2 and 3. Consider TOS (Algorithm 1) with

the stochastic gradient estimator (20) instead of ∇f(zt).
Choose the algorithm parameters

γt =
DG

2GfT 2/3
and |Qt| =

⌈T 2/3

2G2
f

⌉

.

Then, zτ returned by the algorithm after T iterations satis-

fies, ∀x ∈ G ∩H,

EτE[dist(zτ ,H)] ≤ DG

(
√
4+2σ2

T 1/2
+
2+

√
2

T 1/3

)

,

EτE[〈∇f(zτ ), zτ−x〉] ≤ GfDG

(
√
4+2σ2

T 1/2
+
4+

√
2+σ2

T 1/3

)

.

Corollary 2. Under the assumptions listed in Theorem 3

(resp. Theorem 4), TOS returns an ǫ-stationary point in

expectation as per Definition 2 (resp. ǫ-feasible ǫ-stationary

point as per Definition 3) after T ≤ O(1/ǫ3) iterations. In

total, this algorithm requires drawing O(1/ǫ5) i.i.d. sam-

ples from distribution P .

Proof. ǫ ≤ O(1/T 1/3) implies T ≤O(1/ǫ3) iteration com-

plexity. At each iteration, we use |Qt| = Ω(T 2/3) stochas-

tic gradients, so the total stochastic gradients complexity is
∑T

t=0 |Qt| = (T + 1)|Qt| = Ω(T 5/3) ≤ O(1/ǫ5).

Reducing the stochastic gradient complexity of TOS (Algo-

rithm 1) via variance reduction techniques (see, for example,

(Roux et al., 2012; Johnson & Zhang, 2013; Defazio et al.,

2014; Nguyen et al., 2017; Fang et al., 2018)) can be a

valuable extension. We leave this for a future study.

5. Numerical Experiments

This section demonstrates the empirical performance of

TOS on the quadratic assignment problem (QAP).

QAP is a challenging formulation in the NP-hard problem

class (Sahni & Gonzalez, 1976). We focus on the relax-and-

round strategy proposed in (Vogelstein et al., 2015). This

strategy requires solving a nonconvex optimization problem

over the Birkhoff polytope (i.e., the set of doubly stochastic

matrices). First, we will summarize the main steps of this

relax-and-round strategy and explain how we can use TOS

in this procedure. Then, we will compare the performance

of TOS against the Frank-Wolfe method (FW) (Frank &

Wolfe, 1956; Jaggi, 2013; Lacoste-Julien, 2016) used in

(Vogelstein et al., 2015).

5.1. Problem Description

Given the cost matrices A and B ∈ R
n×n, the goal in QAP

is to align these matrices by finding a permutation matrix

that minimizes a quadratic objective:

min
X∈Rn×n

trace(AXB⊤X⊤)

subj. to X ∈ {0, 1}n×n, X1n = X⊤1n = 1n,
(22)

where 1n denotes the n-dimensional vector of ones.

The challenge comes from the combinatorial nature of the

feasible region. (22) is NP-Hard, so Vogelstein et al. (2015)

focus on its continuous relaxation:

min
X∈Rn×n

trace(AXB⊤X⊤)

subj. to X ∈ [0, 1]n×n, X1n = X⊤1n = 1n.
(23)

(23) is a quadratic optimization problem over the Birkhoff

polytope. Remark that the quadratic objective is nonconvex

in general.

The relax-and-round strategy of (Vogelstein et al., 2015)

involves two main steps:

1. Finding a local optimal solution of (23).

2. Rounding the solution to the closest permutation matrix.

Solving (23). Projecting an arbitrary matrix onto the

Birkhoff polytope is computationally challenging and the

standard algorithms in the constrained nonconvex optimiza-

tion literature are inefficient for (23).

Vogelstein et al. (2015) employ the FW algorithm to over-

come this challenge. FW does not require projections. In-

stead, at each iteration, it requires solving a linear assign-

ment problem (LAP). The arithmetic cost of LAP by using

the Hungarian method or the Jonker-Volgenant algorithm

(Kuhn, 1955; Munkres, 1957; Jonker & Volgenant, 1987) is

O(n3).

In this paper, we suggest TOS for solving (23) instead of

FW. To apply TOS, we can split the Birkhoff polytope in

two different ways.

One, we can consider the intersection of row-stochastic

matrices and column-stochastic matrices:

G = {X ∈ [0, 1]n×n : X1n = 1n}
H = {X ∈ [0, 1]n×n : X⊤1n = 1n}.

(Split 1)

In this case, the projector onto G (resp., H) requires pro-

jecting each row (resp., column) onto the unit simplex sep-

arately. The arithmetic cost of projecting each row (resp.,

column) is O(n) (Condat, 2016), and we can project multi-

ple rows (resp., columns) in parallel.

Two, we can consider the following scheme studied in (Zass

& Shashua, 2006; Lu et al., 2016; Pedregosa & Gidel, 2018):

G = [0, 1]n×n

H = {X ∈ R
n×n : X1n = X⊤1n = 1n}.

(Split 2)
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In this case, the projection onto G truncates the entries and

the projection onto H has a closed-form solution:

projH(X)=X+

(

1

n
I+

1⊤nX1n
n2

I− 1

n
X

)

1n1
⊤
n − 1

n
1n1

⊤
nX,

where I denotes the identity matrix. We present a derivation

of this projection operator in the supplementary material.

Rounding. The solution of (23) does not immediately yield

a feasible point for QAP (22). We need a rounding step.

Suppose Xτ is a solution to (23). A natural strategy is

choosing the closest permutation matrix to Xτ . We can find

this permutation matrix by solving

max
X∈Rn×n

〈Xτ , X〉

subj. to X ∈ [0, 1]n×n, X1n = X⊤1n = 1n.
(24)

We present the derivation of this folklore formulation in

the supplementary material. (24) is an instance of LAP.

Hence, it can be solved in O(n3) arithmetic operations via

the Hungarian method or the Jonker-Volgenant algorithm.

5.2. Numerical Results

Implementation details. For FW, we use the exact line-

search (greedy) step-size as in (Vogelstein et al., 2015). For

solving LAP, we employ an efficient implementation of the

Hungarian method (Ciao, 2011).

For TOS (Algorithm 1), we output the last iterate instead

of the random variable xτ . We use γt = 1/Lf step-size

(Lf denotes the smoothness constant of f ) instead of the

more conservative step-size that our theory suggests (which

depends on T ). 1/Lf is the standard rule in convex opti-

mization, and in our experience, it works well for nonconvex

problems too.

We start both methods from the same initial point y1. We

construct y1 by projecting a random matrix with i.i.d. stan-

dard Gaussian entries onto the Birkhoff polytope via 1000
iterations of the alternating projections method.

Quality of solution. Given a prospective solution Xt ∈ G,

we compute the following errors:

infeasibility err. =
dist(Xt,H)√

n
(25)

nonstationarity err. =
|maxX∈G∩H〈∇f(Xt), Xt −X〉|

max{f(Xt), 1}

Infeasibility error is always 0 for FW. We evaluate these

errors only at iterations t = 1, 2, 4, 8, . . . to avoid extra

computation.

We evaluate the quality of the rounded solution X̃t by using

the following formula:

assignment err. =
f(X̃t)− f(X̃best)

max{f(X̃best), 1}
, (26)

where X̃best is the best solution known for (22). X̃best is un-

known in normal practice, but it is available for the QAPLIB

benchmark problems.

Observations. Figure 1 compares the empirical perfor-

mance of TOS and FW for solving (23) with chr12a and

esc128 datasets from QAPLIB. In particular, TOS exhibits

locally linear convergence, whereas FW converges with

sublinear rates. We observed qualitatively similar behavior

also with the other datasets in QAPLIB.

Computing the gradient dominates the runtime of TOS. In-

stead, for FW, the bottleneck is solving the LAP subprob-

lems. As a result, TOS is especially advantageous against

FW when A and B are sparse.

Next, we examine the quality of the rounded solutions we

obtain after solving (23) with TOS and FW. We initialize

both methods from the same point and we stop them at the

same level of accuracy, when infeasibility and nonstation-

arity errors drop below 10−5 (recall that the infeasibility

error is always 0 for FW). We round the final estimates to

the closest permutation matrix and evaluate the assignment

error (26). Figure 2 presents the results of this experiment

for the 134 datasets in QAPLIB.

Remarkably, TOS gets a better solution on 83 problems;

TOS and FW perform the same on 16; and FW outperforms

TOS on 35 instances. The largest margin appears on the

chr15b dataset where TOS scores 0.744 lower assignment

error than FW. On the other extreme, the assignment error

of the FW solution is 0.253 lower than TOS on the chr15c

dataset. On average (over datasets), TOS outperforms FW

in assignment error by a margin of 0.046.

Computational environment. Experiments are performed

in MATLAB R2018a on a MacBook Pro Late 2013 with 2.6

GHz Quad-Core Intel Core i7 CPU and 16 GB 1600 MHz

DDR3 memory. The source code is available online1.

Other solvers for QAP. The literature covers numerous

approaches for tackling QAP, including (i) exact solution

methods with branch-and-bound, dynamic programming,

and cutting plane methods, (ii) heuristics and metaheuris-

tics based on local and tabu search, simulated annealing,

genetic algorithms, and neural networks, and (iii) lower

bound approximation methods via spectral bounds, mixed-

integer linear programming, and semidefinite programming

relaxations. An extensive comparison with these methods is

beyond the scope of our paper. We refer to the comprehen-

sive survey of Loiola et al. (2007) for more details.

1https://github.com/alpyurtsever/NonconvexTOS
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Figure 1. Empirical convergence of TOS for two different formulations ((Split 1) and (Split 2)) compared against FW for solving the

relaxed QAP formulation (23). The [top] row corresponds to the results for the chr12a dataset and the [bottom] row for the esc128

dataset (from QAPLIB). In both cases, TOS exhibits locally linear convergence whereas FW converges sublinearly.

Figure 2. Assignment cost (see (26)) achieved by FW and TOS with the relax-and-round strategy for solving QAP. Smaller values are

better, zero means a perfect estimation. Out of 134 QAP instances in the QAPLIB library, TOS outperforms FW on 83 problems; FW is

better on 35; and the two methods get the same results on 16 instances.
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6. Conclusions

We establish the convergence guarantees of TOS for min-

imizing the sum of three functions, one differentiable but

potentially nonconvex and two convex but potentially non-

smooth. In contrast with the existing results, our analysis

permits both nonsmooth terms to be indicator functions.

Moreover, we extend our analysis for stochastic problems

where we have access only to an unbiased estimator of the

gradient of the differentiable term.

We present numerical experiments on QAPs. The empirical

performance of the proposed method is promising. In our

experience, the method converges to a stationary point with

locally linear rates.

We conclude our paper with a short list of open questions

and follow-up directions:

(i) We assume that dom(g) is bounded. This assumption is

needed in our analysis since Definition 2 requires (4) to hold

for all x in dom(g). We can potentially drop this assump-

tion by adopting a relaxed notion of stationarity where the

inequality holds only on a feasible neighborhood of z̄. Such

measures are used in recent works for different problem

models, e.g., see Definition 2.3 in (Nouiehed et al., 2019)

and Definition 1 in (Song et al., 2020).

(ii) We did not explicitly use the smoothness of the differen-

tiable term in our analysis. One can potentially derive tighter

guarantees by using the smoothness or under additional as-

sumptions such as the Kurdyka-Łojasiewicz property.

(iii) For the stochastic setting, we can improve the stochastic

gradient complexity by using variance reduction techniques.

(iv) Developing an efficient implementation (that benefits

from parallel computation) with an aim to investigate the

full potential of TOS for solving QAP and other nonconvex

problems such as the constrained and regularized neural

networks is an important piece of future work.
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