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Abstract

We study online learning in unknown Markov

games, a problem that arises in episodic multi-

agent reinforcement learning where the actions

of the opponents are unobservable. We show that

in this challenging setting, achieving sublinear

regret against the best response in hindsight is sta-

tistically hard. We then consider a weaker notion

of regret by competing with the minimax value of

the game, and present an algorithm that achieves

a sublinear Õ(K2/3) regret after K episodes. This

is the first sublinear regret bound (to our knowl-

edge) for online learning in unknown Markov

games. Importantly, our regret bound is indepen-

dent of the size of the opponents’ action spaces.

As a result, even when the opponents’ actions are

fully observable, our regret bound improves upon

existing analysis (e.g., (Xie et al., 2020)) by an

exponential factor in the number of opponents.

1. Introduction

Multi-agent reinforcement learning (MARL) helps us model

strategic decision making problems in an interactive envi-

ronment with multiple players. It has witnessed notable

recent success (with two or more agents), e.g., in Go (Silver

et al., 2016; 2017), video games (Vinyals et al., 2019), Poker

(Brown & Sandholm, 2018; 2019), and autonomous driving

(Shalev-Shwartz et al., 2016).

When studying MARL, often Markov games (MGs) (Shap-

ley, 1953) are used as the computational model. Compared

with Markov decision processes (MDPs) (Puterman, 2014),

Markov games allow the players to influence the state tran-

sition and returns, and are thus capable of modeling compet-

itive and collaborative behaviors that arise in MARL.

A fundamental problem in MGs is sample efficiency. Unlike

MDPs, there are at least two key ways to measure perfor-

mance in MGs: (1) the offline (self-play) setting, where we
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control both/all players and aim to minimize the number of

episodes required to find a good policy; and (2) the online

setting, where we can only control one player (which we

refer to as our player), treat other players as opponents, and

judge how our player performs in the whole process using

regret. The offline setting is more useful when training play-

ers in a controllable environment (e.g., a simulator) and the

online setting is more favorable for life-long learning.

When ensuring sample efficiency for MARL, key challenges

arise from the observation model. We distinguish between

two online settings. When learning in informed MGs, our

player can observe the actions taken by the opponents. For

learning in unknown MGs (Cesa-Bianchi & Lugosi, 2006),

such observations are unavailable; information flows to our

player only through the revealed returns and state transi-

tions. We emphasize that both informed games and unknown

games are describing the observation process instead of our

prior knowledge of the parameters: We always assume zero

knowledge of the transition function of the MG.

Learning in unknown MGs is harder, more general, and

potentially of greater practical relevance than informed MGs.

It is thus important to discover algorithms that can guarantee

low regret. However, theoretical understanding for unknown

MGs is rather limited. Even the following fundamental

question for analyzing online learning in unknown MGs

is open:

Q1. Is sublinear regret achievable?

To see why learning in unknown MGs is challenging, notice

that without observing an opponents’ actions, we cannot

learn the transition function of the MG, even with infinitely

many episodes to collect data. Therefore, explore-then-

commit type of algorithms cannot achieve sublinear regret.

Another concern arises when the number of players involved

increases, as then the effective size of the opponents’ action

space grows exponentially in it. Therefore, the following

question is also crucial, even in (easier) informed MGs:

Q2. Can the regret be independent of the size of the

opponents’ action space?

Contributions. We answer both questions Q1 and Q2 affir-

matively in this paper. At the heart of our answers lies an

Optimistic Nash V-learning algorithm for online learning
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(V-OL) that we develop. This algorithm is significant in the

following aspects:

• It achieves Õ(K2/3) regret, the first sublinear regret

bound for online learning in unknown MGs. This bound

is nontrivial because without observing opponents’ ac-

tions, we cannot learn the transition function of the MG,

even with infinitely many episodes to collect data.

• Its regret does not depend on the size of the opponents’

action space. This regret bound is also the first of this

kind in the online setting, even for the (easier) informed

MG setting. For m-player MGs, the effective size of

the opponents’ action space is Am−1 with A the size

of each player’s action space. Therefore, compared

with existing algorithms (Xie et al., 2020) even in the

informed setting, we save an exponential factor.

• It is computationally efficient. The computational com-

plexity does not scale up as the number of players m
increases; existing algorithms such as (Xie et al., 2020)

suffer space and time complexities exponential in m.

Also, in existing algorithms, a subprocedure to find

a Nash equilibrium in two-player zero-sum games is

called in each step, which becomes the computational

bottleneck. In sharp contrast, our algorithm does not

require calling any such subprocedures.

The idea of Nash V-learning first appears in (Bai et al., 2020).

We denote their original Nash V-learning algorithm by V-SP

(SP is an acronym for self-play) to distinguish it from our

algorithm V-OL. See the discussion at the end of Section 4

for a detailed comparison of the two algorithms.

Furthermore, although the weaker notion of regret (see Sec-

tion 2) that we use has appeared in prior works (Brafman &

Tennenholtz, 2002; Xie et al., 2020), it is not clear why this

choice is statistically reasonable. We justify this notion of

regret by showing that competing with the best response in

hindsight is statistically hard (Section 3). Specifically, the

regret can be exponential in the horizon H . This result also

strengthens the computational lower bound in (Bai et al.,

2020) for online learning in unknown MGs. As an interme-

diate step, we prove that competing with the optimal policy

in hindsight is also statistically hard in MDPs with adversar-

ial transitions under bandit feedback, which strengthens the

computational lower bound in (Yadkori et al., 2013) under

bandit feedback and is a result of independent interest.

1.1. Related work

Learning in MGs without strategic exploration. A large

body of literature focuses on solving known MGs (Littman,

1994; Hansen et al., 2013) or learning with a generative

model (Jia et al., 2019; Sidford et al., 2020; Zhang et al.,

2020a), using which we can sample transitions and returns

for arbitrary state-action pairs. Littman (2001); Hu & Well-

man (2003); Wei et al. (2017) do not assume a generative

model, but their results only apply to communicating MGs.

Online MGs. Brafman & Tennenholtz (2002) propose R-

max, which does not provide a regret guarantee in general.

Xie et al. (2020) study this setting for two-player zero-sum

games with linear function approximation using the same

weaker definition of regret. They use a value iteration (VI)

based algorithm and achieve Õ(
√
H4A3B3S3K) regret

when translated into the tabular language, where A and B
are number of actions for the two players, S is the number

of states and H is the horizon. In Appendix C, we adapt

the Optimistic Nash Q-learning algorithm (Q-SP) (Bai et al.,

2020) to the online setting (Q-OL, Algorithm 3) and prove

for Q-OL a Õ(
√
H5ABSK) regret (Theorem 4). All the

three algorithms require observing the opponents’ actions

and thus cannot be applied to learning in unknown MGs.

Self-play. There is a recent line of work focusing on achiev-

ing near-optimal sample complexity in offline two-player

zero-sum MGs (Bai & Jin, 2020; Xie et al., 2020; Bai

et al., 2020; Liu et al., 2020). The goal is to find an

ǫ-approximate Nash equilibrium within K episodes. VI-

based methods (Bai & Jin, 2020; Xie et al., 2020) achieve

K = Õ(S2AB/ǫ2). Q-SP (Bai et al., 2020) achieves

K = Õ(SAB/ǫ2), and the V-SP algorithm (Bai et al., 2020)

achieves the best existing result K = Õ(S(A + B)/ǫ2),
matching the lower bound w.r.t. the dependence on S, A,

B and ǫ. Note that in the self-play setting, we need to find

good policies for both players, so the dependence on B is

inevitable. Extensions to multi-player general-sum games

are discussed in (Liu et al., 2020) but the dependence on the

number of players is exponential.

MDPs with adversarial transitions. Online MGs are

closely related to adversarial MDPs. In general, competing

with the optimal policy in hindsight in MDPs with adver-

sarial transitions is intractable. With full-information feed-

back, the problem is computationally hard (Yadkori et al.,

2013). With bandit feedback, the problem is statistically

hard (Lemma 1). However, under additional structural as-

sumptions, one can achieve low regret (Cheung et al., 2019).

MDPs with adversarial rewards. We can ensure sublinear

regret if the transition is fixed (but unknown) and only the

reward is chosen adversarially (Zimin & Neu, 2013; Rosen-

berg & Mansour, 2019; Jin et al., 2019). This yields another

useful model for adversarial MDPs. The best existing re-

sult in adversarial episodic MDPs with bandit feedback and

unknown transition is achieved in (Jin et al., 2019) with

Õ(
√
H3S2AK) regret, where H is the horizon.

Single-agent RL. Finally, there is an abundance of works

on sample efficient learning in MDPs. Jaksch et al. (2010)

first adopt optimism to achieve efficient exploration in

MDPs and Jin et al. (2018) extend this idea to model-free
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methods. Azar et al. (2017) and Zhang et al. (2020b) achieve

minimax regret bounds (up to log-factors) Õ(
√
H3SAK)

for model-based and model-free methods, respectively.

2. Background and problem setup

For simplicity, we formulate the problem of two-player

zero-sum MGs in this section and provide our algorithmic

solution in Section 4. Please see Section 5 for extensions to

multi-player general-sum MGs.

2.1. Markov games: setup and notation

Model. We consider episodic two-player zero-sum MGs,

where the max-player (min-player) aims to maximize (mini-

mize) its cumulative return. Let [H] := {1, 2, . . . , H} for

positive integer H , and let ∆(X ) be the set of probability

distributions on set X . Then such an MG is denoted by

MG(S,A,B,P, r,H), where

– H ∈ N+ is the number of steps in each episode,

– S =
⋃

h∈[H+1] Sh is the state space,

– A =
⋃

h∈[H]Ah (B =
⋃

h∈[H] Bh) is the action space

of the max-player (min-player, resp.).

– P is a collection of unknown transition functions {Ph :
Sh ×Ah × Bh → ∆(Sh+1)}h∈[H], and

– r is a collection of return functions {rh : Sh × Ah ×
Bh → [0, 1]}h∈[H].

The return r is usually called reward in MDPs, which a

player aims to maximize. We will use the term “return” for

MGs and reserve the term “reward” for (adversarial) MDPs.

With a subscript h let Sh,Ah,Bh,Ph, rh denote the corre-

sponding objects at step h. Let | · | denote cardinality of a

set; then define the following terms:

S := sup
h∈[H]

|Sh|, A := sup
h∈[H]

|Ah|, B := sup
h∈[H]

|Bh|.

Interaction protocol. In each episode, the MG starts at

an adversarially chosen initial state s1 ∈ S1. At each step

h ∈ [H], the two players observe the state sh ∈ Sh and si-

multaneously take actions ah ∈ Ah, bh ∈ Bh; then the envi-

ronment transitions to the next state sh+1 ∼ Ph(·|sh, ah, bh)
and outputs the return rh(sh, ah, bh). The max-player’s pol-

icy µ specifies a distribution on Ah at each step h. Con-

cretely, µ = {µh}h∈[H] where µh : Sh → ∆(Ah). Simi-

larly we define the min-player’s policy ν.

Value functions. Analogously to MDPs, for a policy pair

(µ, ν), step h ∈ [H], state s ∈ Sh, and actions a ∈ Ah, b ∈
Bh, define the state value function and Q-value function as:

V µ,ν
h (s) := Eµ,ν [

∑H

h′=h
rh′(sh′ , ah′ , bh′)|sh = s],

Qµ,ν
h (s, a, b)

:= Eµ,ν [
∑H

h′=h
rh′(sh′ , ah′ , bh′)|sh = s, ah = a, bh = b].

For compactness of notation, define the operators:

PhV (s, a, b) := Es′∼Ph(·|s,a,b)[V (s′)],

Dµ,ν [Q](s) := Ea∼µ(·|s),b∼ν(·|s)[Q(s, a, b)].

Then we have the following Bellman equations:

V µ,ν
h (s) = Dµh,νh

[Qµ,ν
h ](s),

Qµ,ν
h (s, a, b) = (rh + PhV

µ,ν
h+1)(s, a, b).

For convenience define V µ,ν
H+1(s) := 0 for s ∈ SH+1.

Optimality. For a given min-player’s policy ν, there exists

a best response µ†(ν) to it, such that for any step h ∈ [H]
and state s ∈ Sh,

V †,ν
h (s) ≡ V

µ†(ν),ν
h (s) := sup

µ
V µ,ν
h (s).

Again, a symmetric discussion applies to the best response

to a max-player’s policy. The following minimax theorem

holds for two-player zero-sum MGs: for any step h ∈ [H]
and state s ∈ Sh,

max
µ

min
ν

V µ,ν
h (s) = min

ν
max
µ

V µ,ν
h (s).

Moreover, the best policies against the best responses

µ∗ ∈ argmax
µ∈M

V µ,†
1 , ν∗ ∈ argmin

ν∈N
V †,ν
1

attain the minimax value. Such a policy pair is known as

a Nash equilibrium (NE). We use V ∗
h (s) := V µ∗,ν∗

h (s) to

denote the value at the NE, which is unique for the MG and

we call the minimax value of the MG.

2.2. Problem setup

We are now ready to formally define the problem of online

learning in an unknown MG: we control the max-player and

in each step, only the state sh and return rh are revealed,

but not the action of the min-player bh. Recall that if bh is

also accessible, we call it the informed setting.

Our goal is to maximize the expected cumulative return,

or equivalently, to minimize the regret. The conventional

definition of regret is to compete against the best fixed policy

in hindsight:

Regret′(K) := sup
µ

K
∑

k=1

(

V µ,νk

1 (sk1)− V µk,νk

1 (sk1)
)

, (1)

where the superscript k denotes the corresponding objects

in the kth episode. Although we use this compact notation,

the regret depends on both µk and νk.
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Figure 1. Illustration of the MDP MX,Y . For y ∈ {0, 1}, y′ stands for 1− y.

However, even in the informed setting, achieving sublinear

regret in this form is computationally hard (Bai et al., 2020).

For online learning in unknown MGs, the problem is statis-

tically hard (Section 3), thus is still intractable even if we

have infinite computational power.

Therefore, by noting

max
µ∈M

V µ,νk

1 (sk1) ≥ V µ∗,νk

1 (sk1) ≥ V ∗
1 (s

k
1),

we consider a more modest goal. That is, to compete against

the minimax value of the game, which has appeared in (Braf-

man & Tennenholtz, 2002). Specifically, we define the fol-

lowing regret (as used by Xie et al. (2020)):

Regret(K) :=
∑K

k=1

(

V ∗
1 (s

k
1)− V µk,νk

1 (sk1)
)

. (2)

As a special case, if the opponent is omniscient and plays

the best response νk = ν†(µk), then a sublinear regret

guarantee for (2) implies a sample complexity guarantee to

approximate a Nash equilibrium policy.

3. Statistical hardness of online learning in

unknown MGs

As mentioned above, we use the minimax value of the game

as the benchmark for online learning in unknown MGs. In

contrast, in adversarial MDPs (Jin et al., 2019), it is more

common to compete against the best policy in hindsight

(using regret (1)). In this section, we justify our usage of

the weaker notion of regret (2) by showing that, in general,

competing against the best policy in hindsight is statistically

intractable. In particular, we show that in this case, the

regret has to be either linear in K or exponential in H .

Theorem 1 (Statistical hardness for online learning in un-

known MGs). For any H ≥ 2 and K ≥ 1, there exists

a two-player zero-sum MG with horizon H , |Sh| ≤ 2,

|Ah| ≤ 2, |Bh| ≤ 4 such that any algorithm for unknown

MGs suffers the following worst-case one-sided regret:

sup
µ

∑K

k=1

(

V µ,νk

1 (s1)− EµkV µk,νk

1 (s1)
)

≥Ω
(

min
{

√
2HK,K

})

.

In particular, any algorithm has to suffer linear regret unless

K ≥ Ω(2H).

Here we give a sketch of our proof, while the full proof is

deferred to Appendix A.

We start by considering online learning in (single-agent)

MDPs, where the reward and transition function in each

episode are adversarially determined, and the goal is to

compete against the best (fixed) policy in hindsight. In the

following lemma we show that this problem is statistically

hard; see Lemma 1 in the appendix for its formal statement.

Lemma (informal). For any algorithm, there exists a se-

quence of single agent MDPs with horizon H , S = O(H)
states and A = O(1) actions, such that the regret defined

against the best policy in hindsight is Ω(min{
√
2HK,K}).

Remark 1. The above lemma is different from a previous

hardness result in (Yadkori et al., 2013), which states that

this problem is computationally hard.

We now briefly explain how this family of hard MDPs is

constructed, which is inspired by the “combination lock”

MDP (Du et al., 2019). Every MDP MX,Y is specified

by two H-bit strings: X,Y ∈ {0, 1}H . The states are

{s0,0, s0,1, s1,1, · · · , s0,H , s1,H}. As shown in Figure 1,

MX,Y has a layered structure, and the reward is nonzero

only at the final layer. The only way to achieve the high

reward is to follow the path s0,0 → sy1,1 → · · · syH ,H .

Thus, the corresponding optimal policy is π(sw,h) = xh⊕w,

which is only a function of X . Here, ⊕ denotes the bitwise

exclusive or operator.

Now, in each episode, Y is chosen from a uniform distri-

bution over {0, 1}H while X is fixed. When the player

interacts with MX,Y , since Y is uniformly random, it gets

no effective feedback from the observed transitions, and the

only informative feedback is the reward at the end. However,

achieving the high reward requires guessing every bit of X
correctly. This “needle in a haystack” situation makes the

problem as hard as a multi-armed bandit problem with 2H

arms. The regret lower bound immediately follows.

Next, we use the hard family of MDPs in Lemma 1 to

prove Theorem 1 by reducing the adversarial MDP problem

to online learning in unknown MGs. The construction is
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straightforward. The state space and the action space for the

max-player are the same as that in the original MDP family.

The min-player has control over the transition function and

reward at each step, and executes a policy such that the

induced MDP for the max-player is the same as MX,Y .

This is possible using only B = O(1) actions as MX,Y

has a layered structure. Online learning in unknown MGs

then simulates the online learning in the adversarial MDP

problem, and thus has the same regret lower bound.

Classes of policies. In Section 2, we define the policy µ by

mappings from Sh to a distribution on Ah at each step h.

Such policies are called Markov policies (Bai et al., 2020).

The policies induced by the algorithms in the remaining

part of this paper are always Markov policies. However,

our lower bound also holds for general policies (Bai et al.,

2020). Here, for an informed max-player the input of µh

can be the history (s1, a1, b1, r1, · · · , sh), while for a max-

player in an unknown MG the input of µh can be the history

(s1, a1, r1, · · · , sh). In words, the lower bound holds even

for policies that depend on histories.

Regret minimization in self-play. We emphasize that

our lower bound applies to online learning in unknown

MGs. For the self-play setting, people indeed minimize

the strong regret (1) as an intermediate step toward PAC

guarantees (Bai & Jin, 2020; Bai et al., 2020; Xie et al.,

2020). This is possible because in self-play both players

are running the policies specified by the algorithm designer.

Therefore, they do not need to worry about the adversarial

scenario described in the lower bound here.

We emphasize that our lower bound applies to online learn-

ing in unknown MGs. In self-play, as an intermediate step

toward PAC guarantees, people indeed minimize an even

stronger notion called duality gap (Bai & Jin, 2020; Bai

et al., 2020; Xie et al., 2020), which is defined as

Gap(K) :=
∑K

k=1

(

V †,νk

1 (sk1)− V µk,†
1 (sk1)

)

=
∑K

k=1

(

V †,νk

1 (sk1)− V µk,νk

1 (sk1)
)

+
∑K

k=1

(

V µk,νk

1 (sk1)− V µk,†
1 (sk1)

)

,

where the two terms in the last equality are no smaller than

the stronger regrets (1) of the two players respectively. This

is possible because in self-play both players are running the

policies specified by the algorithm. Therefore, they do not

need to worry about the adversarial scenario described in

the lower bound here.

4. The V-OL algorithm

In this section, we introduce the V-OL algorithm and its

regret guarantees for online learning in two-player zero-

sum unknown Markov games. We show that not only can

Algorithm 1 Optimistic Nash V-learning for Online Learn-

ing (V-OL)

1: Require: Learning rate {αt}t≥1, exploration bonus

{βt}t≥1, policy update parameter {ηt}t≥1

2: Initialize: for any h ∈ [H], s ∈ Sh, a ∈ Ah, Vh(s)←
H , Lh(s, a)← 0, Nh(s)← 0, µh(a|s)← 1/|Ah|.

3: for episode k = 1, . . . ,K do

4: Receive s1
5: for step h = 1, . . . , H do

6: Take action ah ∼ µh(·|sh)
7: Observe return rh and next state sh+1

8: Increase counter t = Nh(sh)← Nh(sh) + 1
9: Vh(sh)← (1−αt)Vh(sh)+αt(rh+Vh+1(sh+1)+

βt)
10: for all actions a ∈ Ah do

11: lh(sh, a) ← (H − rh − Vh+1(sh+1))I(ah =
a)/(µh(ah|sh) + ηt)

12: Lh(sh, a)← (1− αt)Lh(sh, a) + αtlh(sh, a)
13: end for

14: Update policy µ by

µh(·|sh)←
exp{−ηtLh(sh, ·)/αt}

∑

a exp{−ηtLh(sh, a)/αt}

15: end for

16: end for

we achieve a sublinear regret in this challenging setting,

but the regret bound can be independent of the size of the

opponent’s action space as well.

The V-OL algorithm. V-OL is a variant of V-learning

algorithms. Bai et al. (2020) first propose V-SP as a near-

optimal algorithm for the self-play setting of two-player

zero-sum MGs. See the discussion at the end of this section

for a detailed comparison between V-OL and V-SP.

In V-OL (Algorithm 1), at each time step h, the player

interacts with the environment, performs an incremental

update to Vh, and updates its policy µh. Note that the

estimated value function Vh is only used for the intermediate

loss lh(sh, ·) in this time step, but not used in decision

making. To encourage exploration in less visited states, we

add a bonus term βt. As we will see in Section 6, this update

rule is optimistic, i.e., Vh is an upper confidence bound

(UCB) on the minimax value V ∗
h of the MG. Then the player

samples the action according to the exponentially weighted

averaged loss Lh(sh, ·), which is a popular decision rule in

adversarial environments (Auer et al., 1995).

Intuition behind V-learning. Most existing provably effi-

cient tabular RL algorithms learn a Q-table (table consisting

of Q-values). However, since state-action pairs are neces-

sary for updating the Q-table, for online learning in MGs,
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algorithms based on it inevitably require observing the op-

ponent’s actions and are thus inapplicable to unknown MGs.

By contrast, V-OL does not need to maintain the Q-table at

all and bypasses this challenge naturally.

Moreover, learning a Q-value function in two-player Markov

games usually results in a regret or sample complexity that

depends on its size SAB, whether in the self-play setting,

such as VI-ULCB (Bai & Jin, 2020) and Q-SP (Bai et al.,

2020), OMNI-VI-offline (Xie et al., 2020), or in the online

setting, such as OMNI-VI-online (Xie et al., 2020) and

Q-OL (Appendix C). By contrast, V-learning removes the

dependence on B, as formalized in Theorem 2.

Note that we analyze Q-OL in Appendix C to more clearly

demonstrate V-OL’s advantage of avoiding learning a Q-

table. Q-OL is a Q-learning-type algorithm for online MGs

adapted from Q-SP. It updates the Q-values by a termporal

difference method like V-OL but makes decisions based on

the Q-values instead. Therefore, Q-OL applies only to the

informed setting and its regret depends on AB (Theorem 4).

Favoring more recent samples. Despite the above noted

advantages of V-learning, the V-SP algorithm (Bai et al.,

2020) may have a regret bound that is linear in K, as in-

dicated by (4) in Theorem 2 and discussed in Section 6 in

more detail. To resolve this problem, we adopt a different

set of hyperparameters to learn more aggressively by giv-

ing more weight to more recent samples. Concretely, for

the self-play setting, Bai et al. (2020) specify the following

hyperparameters for V-SP:

αt =
H+1
H+t , βt = c

√

H4Aι
t , ηt =

√

logA
At ,

where ι is a log factor defined later and c > 0 is a constant.

For the online setting, we set these hyperparameters as:

αt =
GH+1
GH+t , βt = c(

√

GH3Aι
t + GH2ι

t ), ηt =
√

GHι
At ,

(3)

where G ≥ 1 is a quantity that we tune and c > 0 is a

constant. Ostensibly, these changes may appear small, but

they are essential to attaining a sublinear regret.

Remark 2. Compared with αt = 1/t, the learning rate

αt = H+1/H+t first proposed in (Jin et al., 2018) already

favors more recent samples. Here we go one step further:

our algorithm learns even more aggressively by taking αt =
GH+1/GH+t with G ≥ 1. Moreover, we choose a larger

ηt to make our algorithm care more about more recently

incurred loss. βt is set accordingly to achieve optimism.

We call this variant of V-learning V-OL, for which we prove

the following regret guarantees.

Theorem 2 (Regret bounds). For any p ∈ (0, 1), let ι =
log(HSAK/p). If we run V-OL with our hyperparameter

specification (3) for some large constant c > 0 and G ≥ 1
in an online two-player zero-sum MG, then with probability

at least 1− p, the regret in K episodes satisfies

Regret(K) = O
(

GH3Sι2 +
√
GH5SAKι+G−1KH

)

.
(4)

In particular, by taking G = 1
H ( K

SA )1/3 if K ≥ H3SA and

G = K1/3 otherwise, with probability at least 1 − p, the

regret satisfies

Regret(K) =

{

Õ
(

H2S
1

3A
1

3K
2

3

)

, if K ≥ H3SA,

Õ
(
√
H5SAK

2

3 +H3SK
1

3

)

, otherwise.

Theorem 2 shows that a sublinear regret against the mini-

max value of the MG is achievable for online learning in

unknown MGs. As expected, the regret bound does not

depend on the size of the opponent’s action space B. This

independence of B is particularly significant for large B, as

is the case where our player plays with multiple opponents.

Note that although in Theorem 2 setting the parameter G
requires knowledge of K beforehand, we can use a standard

doubling trick to bypass this requirement.

Remark 3. In V-SP the parameter G is set to be 1. Then

our choice of ηt and βt become

√

Hι
At and c(

√

H3Aι
t +H2ι

t ).

If the other player also adopts the corresponding new policy

update parameter and exploration bonus, then the sample

complexity of V-SP can actually be improved upon (Bai

et al., 2020) by an H factor to Õ(H5S(A+B)/ǫ2).

Comparison between V-OL and V-SP. Apart from the

difference in parameter choices, we now point out other

differences between V-OL and V-SP.

1. To achieve near-optimal sample complexity in the self-

play setting, V-SP needs to construct upper and lower

confidence bounds not only for the minimax value of

the game, but also for the best response values. As a

result, it uses a complicated certified policy technique,

and must store the whole history of states and policies

in the past K episodes for resampling. By comparing

with the minimax value directly, we can make V-OL

provably efficient without extracting a certified policy.

Therefore, V-OL only needsO(HSA) space instead of

O(HSAK), and the resampling procedure is no more

necessary.

2. A key feature of the proof in (Bai et al., 2020) is to

make full use of a symmetric structure, which naturally

arises because in the self-play setting we can control

both players to follow the same learning algorithm.

However, this property no longer holds for the online

setting, and we must take a different proof route. Al-

gorithmically, V-OL learns more aggressively to be

provably efficient.
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3. V-OL also works in multi-player general-sum MGs;

see Section 5.

5. Multi-player general-sum games

In this section, we extend the regret guarantees of V-OL to

multi-player general-sum MGs, demonstrating the general-

ity of our algorithm. Notably, the result in multi-player MGs

highlights the significance of removing the dependence on

B in the regret bound, which is now an exponential factor

in the number of opponents.

Formally, consider the m-player general-sum MG

MGm(S, {Ai}mi=1,P, {ri}mi=1, H), (5)

where S, H follow from the same definition in two-player

zero-sum MGs, and

– for each i ∈ [m], player i has its own action space

Ai =
⋃

h∈[H]Ai,h and return function ri = {ri,h :

Sh ×
⊗m

i=1Ai,h → [0, 1]}mi=1, and aims to maximize

its own cumulative return (here
⊗

denotes the Cartesian

product of sets);

– P is a collection of transition functions {Ph : Sh ×
⊗m

i=1Ai,h → ∆(Sh+1)}h∈[H].

Like in two-player MGs, let

S := sup
h∈[H]

|Sh|, Ai := sup
h∈[H]

|Ai,h| for all i ∈ [m].

Online learning in an unknown multi-player general-sum

MG can be reduced to that in a two-player zero-sum MG.

Concretely, suppose we are player 1, then online learning

in unknown MGs (5) is indistinguishable from that in the

two-player zero-sum MG specified by (S,A1,B,P, r1, H)
where B =

⊗m
i=2Ai, since we only observe and care about

player 1’s return. For all states s ∈ S1, define the value

function using r1 as

V µ,ν
h (s) := Eµ,ν [

∑H

h′=h
r1,h′(sh′ , ah′ , bh′)|sh = s],

and define the minimax value of player 1 as

V ∗
1 (s) := max

µ
min
ν

V µ,ν
1 (s) = min

ν
max
µ

V µ,ν
1 (s),

which is no larger than the value at any Nash equilibrium

of the multi-player general-sum MG. Then we define the

regret against the minimax value of player 1 as

Regret(K) :=
∑K

k=1

(

V ∗
1 (s

k
1)− V µk,νk

1 (sk1)
)

.

We argue that this notion of regret is reasonable since we

have control of only player 1 and all opponents may collude

to compromise our performance. Then immediately we

obtain the following corollary from Theorem 2.

Corollary 3 (Regret bound in multi-player MGs). For any

p ∈ (0, 1), let A = A1 and ι = log(HSAK/p). If we run V-

OL with our hyperparameter specification (3) for some large

constant c > 0 and the choice of G in Theorem 2 for player

1 in the online multi-player general-sum MG (5), then with

probability at least 1− p, the regret in K episodes satisfies

Regret(K) =

{

Õ
(

H2S
1

3A
1

3

1 K
2

3

)

, if K ≥ H3SA1,

Õ
(√

H5SA1K
2

3 +H3SK
1

3

)

, otherwise.

In a multi-player MG, the size of the opponents’ joint action

space B grows exponentially in the number of opponents.

Corollary 3 shows that the regret of V-OL only depends on

the size of our player’s action space A1. The savings arise

because V-OL bypasses the need to learn Q-tables, and the

multi-player setting makes no real difference in our analysis.

In the online informed setting, the same equivalence to a

two-player zero-sum MG holds, since the other players’

actions we observe can be seen as a single action (ai)
m
i=2,

and whether we observe the other players’ returns does not

help us decide our policies to maximize our own cumulative

return. In this setting, the regret bound in (Xie et al., 2020)

becomes Õ(
√

H4S3
∏m

i=1 A
3
iK), which depends exponen-

tially on m. On the other hand, since the online informed

setting has stronger assumptions than online learning in

unknown MGs, the Õ(H2S1/3A
1/3
1 K2/3) regret bound of

V-OL carries over, which has no dependence on m. This

sharp contrast highlights the importance of achieving a re-

gret independent of the size of the opponent’s action space.

Furthermore, since in V-OL we only need to update the

value function (which has HS entries), rather than update

the Q-table (which has HS
∏m

i=1 Ai entries) as in (Xie et al.,

2020), we can also improve the time and space complexity

by an exponential factor in m.

6. Proof sketch of Theorem 2

In this section, we sketch the proof of Theorem 2. We

also highlight an observation that V-OL can perform much

better than claimed in Theorem 2. Moreover, we expose

the problem with V-SP in the online setting, which explains

why we favor more recent samples in V-OL.

In the analysis below, we use a superscript k to signify the

corresponding quantities at the beginning of the kth episode.

To express V k
h in Algorithm 1 compactly, we introduce the

following quantities.

α0
t :=

∏t

j=1
(1− αj), αi

t := αi

∏t

j=i+1
(1− αj).

Let t := Nk
h (s) and suppose s is previously visited at

episodes k1, . . . , kt ≤ k. Then we can express V k
h (s) as

α0
tH +

∑t

i=1
αi
t

(

rh(s, a
ki

h , bk
i

h ) + V ki

h+1(s
ki

h+1) + βi

)

.
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It is easy to verify that {αi
t}ti=1 satisfies the normalization

property that
∑t

i=1 α
i
t = 1 for any sequence {αt}t≥1 and

any t ≥ 1. Moreover, for {αt}t≥1 specified in (3), {αi
t}

has several other desirable properties (Lemma 2), resem-

bling (Jin et al., 2018, Lemma 4.1).

Upper confidence bound (UCB). In Algorithm 1, by

bonus βt we ensure that V k
h is an entrywise UCB on V ∗

h

using standard techniques (Bai et al., 2020), building on the

normalization property of {αi
t}ti=1 and the key V-learning

lemma (Lemma 3) based on the regret bound of the adver-

sarial bandit problem we solve to derive the policy update.

Remark 4. A main difference from the previous UCB frame-

work (e.g., Azar et al. (2017)) is that here the gap between

V k
h and V ∗

h is not necessarily diminishing, which partially

explains why we do not achieve the conventional Õ(
√
T ) re-

gret. Concretely, by taking µ = µ∗ in the V-learning lemma

(Lemma 3), we have

V k
h (s)− V ∗

h (s)

≥
∑t

i=1
αi
tDµ∗

h
,νki

h

[rh + PhV
ki

h+1](s)

− Dµ∗
h
,ν∗

h
[rh + PhV

∗
h+1](s)

=
∑t

i=1
αi
tDµ∗

h
,νki

h

[Ph(V
ki

h+1 − V ∗
h+1)](s)

+
∑t

i=1
αi
t(Dµ∗

h
,νki

h

− Dµ∗
h
,ν∗

h
)[rh + PhV

∗
h+1](s)

(i)

≥
∑t

i=1
αi
t(Dµ∗

h
,νki

h

− Dµ∗
h
,ν∗

h
)[rh + PhV

∗
h+1](s),

where (i) follows from the above UCB. If the opponent

is weak at some step h ∈ [H] such that for all episodes

k ∈ [K],

(Dµ∗
h
,νk

h

− Dµ∗
h
,ν∗

h
)[rh + PhV

∗
h+1](s) ≥ C,

then
∑K

k=1(V
k
h (s) − V ∗

h (s)) ≥ CK. This indicates that

the gap between the sum of the UCBs and that of the mini-

max values can be linear in K. As proved below, we actu-

ally show that
∑K

k=1(V
k
1 − V µk,νk

1 )(skh) is sublinear in K,

which is much stronger than that merely the regret is sublin-

ear if the opponent is weak. In words, V-OL performs much

better than claimed in Theorem 2 against a weak opponent.

Regret bounds. Note that the above proof of the UCB

holds for any G > 0. We now illustrate what problem

appears if G = 1 and where the constraint G ≥ 1 comes

from. Let “.” denote “≤” up to multiplicative constants.

Define δkh := (V k
h − V µk,νk

h )(skh). Then by the UCB,

Regret(K) ≤∑K
k=1 δ

k
1 . It then suffices to bound

∑K
k=1 δ

k
1 .

By the decomposition of V k
h , the standard concentration

inequality and our choice of βt, we have (with some lower-

order terms hidden)

δkh .

√

GH3Aι
t + GH2ι

t − Dµk

h
,νk

h

[rh + PhV
µk,νk

h+1 ](skh)

+
∑t

i=1
αi
tDµki ,νki [rh + PhV

ki

h+1](s
k
h).

To treat the last term, we need the regrouping technique

(see, e.g., (Jin et al., 2018)): for any quantity fk indexed by

k ∈ [K],

∑K

k=1

∑t

i=1
αi
tf

ki ≤
∑K

k′=1
fk′

∑∞

t=nk′

h

α
nk

′

h

t

≤ (1 + 1
GH )

∑K

k=1
fk.

Taking Dµki ,νki [rh + PhV
ki

h+1](s
k
h) as f i yields (with some

lower-order terms hidden)

∑K

k=1
δkh .

∑K

k=1

(

(1 + 1
GH )δkh+1

+

√

GH3Aι
t + GH2ι

t + 1
G

)

,

where 1
G (not arising in the proof of V-SP) results from

1
GHDµk

h
,νk

h

[rh + PhV
µk,νk

h+1 ](skh) ≤ 1
GH ·H = 1

G .

Since
∑K

k=1 δ
k
H+1 = 0, a recursion over h ∈ [H] for

∑K
k=1 δ

k
h yields

K
∑

k=1

δk1 . (1 + 1
GH )H

K
∑

k=1

H
∑

h=1

(

√

GH3Aι
t + GH2ι

t + 1
G

)

.

To bound the coefficient (1 + 1
GH )H ≤ e, we need G ≥ 1.

By standard pigeonhole arguments,

∑K

k=1

√

1
t =

∑

s∈Sh

∑nK

h
(s)

n=1

√

1
n .
√
SK,

∑K

k=1

1
t =

∑

s∈Sh

∑nK

h
(s)

n=1

1
n . S logK ≤ Sι.

Hence, we obtain

K
∑

k=1

δk1 . GH3Sι2 +
√
GH5SAKι+G−1KH.

If we take G = 1 as in V-SP, the regret is linear in K and

therefore useless. To address this problem, we introduced

the tunable parameter G ≥ 1 that balances the
√
K and K

terms in the above bound to yield a sublinear regret.

7. Conclusion and Future Work

In this paper, we study online learning in unknown Markov

games using V-OL, which is based on the V-SP algorithm

of Bai et al. (2020). V-OL achieves Õ(K2/3) regret after

K episodes. Furthermore, the regret bound is independent

of the size of opponents’ action space. It is still unclear

whether one can achieve a sharper regret bound, which is
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a question worthy of future study. We briefly comment on

two other future directions.

Toward Õ(K1/2) regret in MDPs. A key reason why we

need to learn more aggressively in online learning is that a

symmetric structure (like that in the proof of V-SP) is absent.

However, it exists if the opponent plays a fixed policy, in

which case the Markov game becomes an MDP. To see why,

we can imagine the opponent is also executing V-OL, which

makes no difference since B = 1. However, even in that

case, a gap remains: we can only upper and lower bound

V ∗
h but not V µk,νk

h . Figuring out how to fill this gap will

make V-OL become the first policy-based algorithm without

an estimation of Q-value functions that achieves Õ(K1/2)
regret for tabular RL.

Strong regret for MDPs with adversarial rewards. An-

other special case is MDPs with adversarial rewards, where

the transitions are fixed across episodes. In this case, achiev-

ing sublinear regret using strong regret (1) is possible (Jin

et al., 2019). A question is then: does V-OL (or its variants)

achieve sublinear regret using the strong regret? Given the

many technical differences between MDPs with adversarial

rewards and online Markov games, it is desirable to resolve

these problems in a unified manner. In addition, the form

of the model-free update in V-OL should be of independent

interest for MDPs with adversarial rewards.
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