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Abstract

We propose the first global accelerated gradient method for Riemannian manifolds. Toward estab-
lishing our results, we revisit Nesterov’s estimate sequence technique and develop a conceptually
simple alternative from first principles. We then extend our analysis to Riemannian acceleration,
localizing the key difficulty into “metric distortion.” We control this distortion via a novel geometric
inequality, which enables us to formulate and analyze global Riemannian acceleration.

1. Introduction

Non-convex optimization is in general intractable. But occasionally, special problem structure can
enable tractability. An important instance of such structure is that of geodesic convexity (g-convexity),
a generalization of convexity that is defined along geodesics in a metric space (Gromov, 1978;
Burago et al., 2001; Bridson and Haefliger, 2013). Tractability through the lens of g-convexity has
been fruitful in several applications (e.g., see (Zhang and Sra, 2016, §1.1)) and also some purely
theoretical questions (Biirgisser et al., 2019; Goyal and Shetty, 2019) (see also §1.2 of this paper).

Paralleling the theory and applications of g-convexity is the progress on algorithms, primarily set
in Riemannian manifolds (Udriste, 1994; Absil et al., 2009) and CAT(0) spaces (Bacdk, 2014). Earlier
studies focus on asymptotic analysis, while Zhang and Sra (2016) obtain the first non-asymptotic
iteration complexity analysis for Riemannian (stochastic) gradient methods. Subsequent works
establish iteration complexity for Riemannian proximal-point methods (Bento et al., 2017), Frank-
Wolfe (Weber and Sra, 2019), variance reduced methods (Zhang et al., 2016; Kasai et al., 2016;
Zhang et al., 2018; Zhou et al., 2019), trust-region methods (Agarwal et al., 2018), among others.

Despite this progress, a landmark result of Euclidean optimization has eluded the Riemannian
setting: namely, a Riemannian analog of Nesterov’s accelerated gradient method (Nesterov, 1983).
This gap motivates the central question of our paper:

Is it possible to develop accelerated gradient methods for Riemannian manifolds?

This natural question turns out to be highly non-trivial: Nesterov’s analysis relies deeply on the linear
structure of Euclidean space, and recent efforts could make only partial progress—see §1.2 for details.

1.1. Overview of our main results

We take a major step toward answering the above question by developing the first global accelerated
first-order method for Riemannian manifolds, informally stated as Theorem 1.1; the formal statement
is Theorem 4.1. Toward establishing Theorem 1.1 we first revisit Nesterov’s (Euclidean) estimate
sequence technique (§2) and develop an alternative analysis based on potential functions (Lyapunov
functions (Lyapunov, 1992)). See §5 for precise positioning of our approach within existing work.

© 2020 K. Ahn & S. Sra.
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Theorem 1.1 (Informal) Let f be L-smooth and p-strongly convex in a geodesic sense. Then, there
exists a computationally tractable optimization algorithm satisfying

flxe) = flz) =0((1 =&)L= &)--- (1= &),
where {&} satisfies (i) {:}>1 > #/L (strictly faster than gradient descent); and (ii) 3\ € (0,1)

such that Ve > 0, |& — \/#/L| < ¢, fort > Q(llsg((ll //f\))) (eventually achieves full acceleration).

Remarkably, the parameters of the algorithm determined—from first principles—by our analysis
exactly satisfy the complicated recursive relations derived by Nesterov, thereby offering a simple,
new alternative to his techniques (§2.3). Moreover, we develop a simple fixed-point iteration that
reveals how accelerated convergence rates can be obtained from such complicated recursive relations
(§2.4), again providing an elementary alternative to Nesterov’s original analysis.

Building on this new viewpoint, we extend our approach to the Riemannian setting (§3 and §4).
Here, we introduce a crucial but a priori non-obvious modification to the potential function (§3.2).
Specifically, we propose using “projected distances” instead of Riemannian distances in the potential
function, which helps us localize the main difficulty caused by Riemannian geometry into “metric
distortion.” Already for the simplified setting of constant metric distortion, our analysis implies the
local acceleration results of (Zhang and Sra, 2018) (Corollary 3.2). To tackle global acceleration, we
establish a novel metric distortion inequality based on comparison theorems in Riemannian geometry
(§4.1). We then show how distortion can be estimated at each iteration based, which proves critical
to obtain a computationally tractable algorithm (Algorithm 1). We show that distortion decreases
over iterations (§4.2), which ultimately leads to Theorem 1.1 (formal result, Theorem 4.1).

1.2. Related work
A few recent works also seek to answer the main question of this paper. The first attempt (Liu
et al., 2017) reduces the task to solving nonlinear equations, but it is unclear whether these equations
are even feasible or tractably solvable. Alimisis et al. (2020) establish a Riemannian analog of the
differential-equation approach to acceleration (Su et al., 2014), and they analyze second-order ODEs
on Riemannian manifolds. Then, they employ discretization from the Euclidean case (Betancourt
et al., 2018; Shi et al., 2019) to derive first-order methods. But it is unclear whether these methods
achieve acceleration, as such discretization does not directly yield Nesterov’s method even in the
Euclidean case. Moreover, as we shall see (Remark 4.2), their global control of metric distortion
cannot capture full acceleration; one must control metric distortions locally. See § 4.1 for details.
The most concrete progress is in (Zhang and Sra, 2018) that proves accelerated convergence,
albeit only locally in a neighborhood whose radius vanishes as the condition number and the curvature
bound grow. They do not characterize how the algorithm behaves outside such a local neighborhood,
in stark contrast with our global acceleration result. See §3.2 for a detailed comparison.

2. Warm up in the Euclidean case: alternative analysis of Nesterov’s optimal method
As a building block for the Riemannian setting, let us revisit the Euclidean setting. In particular, we
consider Nesterov’s optimal method which is derived based on an ingenious construction called an
estimate sequence (2018, Ch. 2.2.1): For ¢t > 0, the iterates are updated as

T < Ye + o1 (20 — yr) (2.1a)
Yir1 < Tip1 — Vi1 VI (Ti41) (2.1b)
Zi41 4 e + P11 (20 — Teg1) — e VI (@41), (2.1¢)
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for given initial iterates yo = z9 € R"™. This construction yields optimal first-order methods that
achieve the lower bounds under the black-box complexity model (Nemirovski and Yudin, 1983).
Note that the updates (2.1) can be also derived without resorting to estimate sequences: for instance,
see Appendix A for a derivation based on the linear coupling framework due to Allen-Zhu and
Orecchia (2017) and see (Ahn, 2020) for a derivation based on the proximal point method.

Despite its fundamental nature, there is a well-known puzzling aspect of Nesterov’s construction:
To guarantee the standing assumption of the estimate sequence technique (2018, (2.2.3)), Nesterov’s
original analysis (2018, page 87) finds complicated recursive relations between parameters «, 3,7y, n
via some non-trivial algebraic “tricks.” These tricks are carried out in a fortuitous manner, obscuring
the driving principle and the scope of the underlying technique. Notably, Zhang and Sra (2018) favor
estimate sequences over other approaches, but still achieve only local acceleration.

Therefore, in our search for global acceleration, we first revisit Euclidean acceleration from
first-principles. In particular, we provide an alternative analysis of iteration (2.1) that sheds new light
on the scope of Nesterov’s original analysis. Our analysis employs a potential function', a classical
tool from control theory (Lyapunov, 1992) that has received a resurgence of interest recently (see §5).
Roughly, the potential-function analysis proceeds as follows:

1. Choose potential: First, choose an error measure &, that “measures” how close the iterates at
step t are to the optimal solution; then define the potential function as ®; := A;&;.

2. Ensure potential decrease: Choose an increasing sequence A; so that ®, is decreasing.

Once @, is chosen as above, it implies that & < &/A,, yielding a convergence rate of O (1/A;).
2.1. Choosing the potential function

The key to potential function based analysis is to choose the “correct” performance measure. For an
iterate u; at step ¢, two prototypical choices are (i) the suboptimality & = f(u;) — f(x4); and (ii)
the distance to an optimal point ||u; — x||. Indeed, many existing analyses correspond to choosing
either one as the performance measure, as explicitly noted in (Bansal and Gupta, 2019).

For iteration (2.1), it turns out that a weighted sum of the suboptimality f(y;) — f(z.) and the
distance ||z — x,]|* is the “correct” performance measure, i.e., we choose the potential function as

Oy = Ay (f(ye) — fl@) + B 2 — 2, 2.2)

for some A; > 0 and B; > 0. By taking a weighted sum of the two measures, this performance
measure does not require either one to be monotonically decreasing over iterations. This property,
also known as non-relaxational property, was a key innovation in Nesterov’s landmark work (1983).
Why we choose y; for the cost and z; for the distance will become clearer soon (see Remark 2.3).
We note that the current form of the potential (2.2) is not new; it also appears in prior works (Wil-
son et al., 2016; Diakonikolas and Orecchia, 2019; Bansal and Gupta, 2019), although with different
motivations; see §5 for a detailed perspective; see also Appendix A for additional connections.

2.2. Potential difference calculations

Having chosen the potential function (2.2), the main goal now is to choose the parameters A; 1,
Bit1, ag1, Bet1s Vi1, i1 SO that the potential decreases, i.e., ;41 — ®; < 0. To that end, we

! Also known as Lyapunov function in control theory or invariant in theoretical computer science and mathematics.
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first express the potential difference ®;,; — ®; more simply and derive a manageable upper bound
using first principles. Using definition (2.2), the difference ;1 — ®; can be split into two parts:

Avrr - (f(yern) = flz)) = Ae - (f(ye) = f(24)) (2.3)
+ Bii1 - [|zt41 — UU*HZ — Bt - ||zt — UU*HZ . (2.4)

Since «, 8, v, n will only appear with index ¢ 4 1, we drop their subscripts for simplicity. We first
relate the terms for step ¢ + 1 with those for step ¢. To do that, we recast (2.1). Using the notation
Grads.v(z) := x — s -V, we rewrite the updates (2.1b) and (2.1c) as

yt+1 = Grad'y~Vf(mt+1)(1:t+l) (21b/)
241 = Grad,. v f(zp ) (Te+1 + Bzt — 2e41)) (2.1¢")

respectively. Now the difference between (2.1b") and (2.1¢") is clear: the first is an exact gradient

step in the sense that V = V f(z), while the second step is inexact. Hence, in relating the terms for

step t + 1 with those for step ¢, we need to invoke different analyses for two different gradient steps.
We begin with two folklore results for gradient steps corresponding to exact and inexact steps.

Proposition 2.1 (Descent lemma) Assume V = V f(x), and let y = Gradg.v(z). If f is L-smooth,
then the gradient step decreases cost: f(y) — f(z) < —s (1 — Ls/2) | V|

Proposition 2.2 Let z = Grad,.v(x). Then, for any x., ||z — z.||* — ||z — z.]|* = s2||V|]* +
2s(V,x, — x), Le., (inexact) gradient step decreases the distance to x, as long as direction —V is
well aligned with the vector x,. — x and has sufficiently small norm.

Remark 2.3 The two steps above reveal why we use y; for the cost term and z; for the distance
term in (2.2): Proposition 2.1 deals with the cost, while Proposition 2.2 deals with the distance.

Now we apply Proposition 2.1 to (2.1b’) and Proposition 2.2 to (2.1¢"). For clarity, we denote:
Ayi=v(1—-Lv/2), V:=Vf(ri1), X =x41 -2, andW =2 —x441. (2.5)

With this notation, Propositions 2.1 and 2.2 imply: f(yi+1) < f(zi41)—4y |V[[? and || 241 — 2 |* =
| X + BW > +n?||V|]> = 21 (V, X 4+ SW). Plugging these two back into to (2.3) and (2.4), one
can derive the following upper bound on ®;,; — ®; in terms of the vectors V, X, W from first
principles (i.e., using only smoothness and (strong) convexity; see Appendix E.1):

By — By < C-|[WP+Co-| X |2 +C3 |V |P4+Cy- (W, X)4+Cs- (W, V) +Cs- (X, V), (2.6)
Ci:= By — By — %uféii)zAt , Cy:=DBiy1 — By — 5(Ap1 — Ay,

where ¢ C5 :=1?Byy1 — Ay - Agyq Cy:=2-(BBsy1 — By) ,
05 = ﬁAt — 2677315—1-1 s and 06 = (At+1 — At) — 27’]Bt+1 .

Notice that the three vectors V,X,W are rooted at x;1. This choice is deliberate; it proves crucial
in the Riemannian case where we will need them to lie in the same tangent space. See Appendix E.3.

2.3. Ensuring potential decrease

Having established the bound (2.6), our goal is to now choose As11, Biy1, a, 5,7, 7 given Az, By so
that (2.6) is non-positive (recall that we have dropped indices of avyy1, Bt+1,Vi+1, e+1)- In general,
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it is difficult to ensure non-positivity of a symbolic expression; but since (2.6) is a quadratic form,
one avenue might be to turn it into a negative sum of squares (“—S0S”’). The simplest strategy to
make it “—So0S” would be to try to make the coefficients Cy, C5, C of the cross terms 0, while
making (', Cy, C'3 non-positive. It turns out this strategy fully determines the parameters, as follows:

m Coefficients of cross terms characterize o, 3,7 in terms of Ay11, Biy+1: From Cg = 0, we get
n = (A1 — Ar)/(2B¢41), and from Cy = 0, we get § = B;/Byy1. Plugging these choices
into C5 = 0, we obtain the equation 2, Ay = (A1 — A¢) Bt/ Byiy1. To summarize:

_ A —As _ B a _ (Arp1—A)By
= 5B 8= B and Tea = 4B 2.7
m For a fixed v, coefficients of squared terms determines A;y1, Bi+1 based on given Ay, By:

Beginning with C3 < 0, we replace 7 with the one from (2.7) to obtain the inequality

(App1 — A)?/(4A, - Ap1) < By (2.8)
Plugging (2.8) into Cs < 0, we get an inequality only in terms of A;,; (assuming -y is fixed):
(App1 — A)? /(A0 - Apr) — (A — A < By (2.9)

Recall that we need to choose A1 as large as possible; it turns out that the largest possible A1
satisfies (2.9) with equality (hence (2.8) as well). To see why, let us follow Nesterov’s notation
and use the suboptimality shrinking ratio 1 — ¢ := At/ A, ,,.> With this, inequality (2.9) becomes:

§(6—2uA,)/(1 = &) <4A, - By/As. (2.10)

In (2.10) note that the RHS is a nonnegative constant (assuming A, > 0 is already chosen) and
the LHS is an increasing function on [2uA.,, 1) whose value is 0 at 21A, and approaches +oo
as £ — 1. Hence, the largest £ (equivalently, the largest A, 1) satisfies (2.10) (or equivalently,
(2.9)) with equality. Consequently, this choice of £ also satisfies (2.8) with equality. One can
then verify that this choice satisfies 32B;,1 < B; and hence implies C; < 0 (see Appendix E.2).

m Lastly, choose v from (0,2/L): Now the last variable to determine is . The above calculations
are valid as long as A, > 0, so we can arbitrarily choose v in (0, 2/L). Note that most accelerated
methods in the literature choose v = 1/L since it is the maximizer of A.,.

Combining the above identities, we can express A11, Bry1,a, 8,7 in terms of &, v, u, L; see
Appendix E.2. After recovering the indices of «, 3,7, 7, our findings can be summarized in the main
result of this section as follows (see Appendix E.2 for the proof):

Theorem 2.1 (Parameter choice for potential decrease) Given y,, z; and Ay, By > 0 and ;11 €
(0,2/L), let Ay := ypp1(1 — Lyeq1/2) and &§ := \/4A., - Bt/A,. Then, choose parameters as per:

1. Compute &1 € 2, 1) satisfying %ﬂf“% = &2, (2.11)
2]
2. Determine parameters based on &11: Ayl = 17217;1, Byl = 1§tg+t1+1 . 4‘22, g =

—2u — _
%ﬁ, By1=1— 2MA7§H.11; and My = 2A'y£t+11-
Then, yiy1, z¢+1 defined as per iteration (2.1) satisfy @41 < Dy (see (2.2)), or equivalently,

@) = F@a) + 552 Nz — @’ < (1= ) - [Fn) — (@) + 25 - 120 — 2]

*Nesterov’s analysis finds o € (0,1) s.t. f(ye) — f(@+) < [Ti_, (1 — ) - [f(mo) — f(zs) + C [lzo — x*HQ] for
a constant C' > 0 and iterate xo (2018, Thm. 2.2.1)). These o;’s exactly correspond to our suboptimality shrinking ratios.
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Remarkably the parameter choices obtained by Theorem 2.1 exactly match those of Nesterov’s
“General Scheme for Optimal Method” (2018, (2.2.1)). Hence, our approach recovers Nesterov’s
optimal method that encompasses both strongly and non-strongly convex costs, without requiring the
estimate sequence technique. Another byproduct of our analysis is the convergence of z; to x, for
w1 > 0 (in which case, £ > 0), a property otherwise proved via additional analysis (see e.g., (Gasnikov
and Nesterov, 2018, Corollary 1)). This convergence plays a crucial role in the Riemannian setting
(see §4.2). Observe that upon applying Theorem 2.1 recursively, we can deduce that

) = f() =0 (1= &)1 = &) (1—&)). (2.12)

Thus, to identify the convergence rate of iteration (2.1) with parameters chosen via Theorem 2.1, we
only need to study how the sequence {;} evolves. This evolution is the focus of the next subsection.

2.4. Identifying the convergence rate of (2.1): a simple analysis based on fixed-point iteration

We study evolution of &; for the strongly convex case ( > 0) assuming that - is fixed to a constant
v € (0,2/L); this assumption is not stringent as most works in the literature choose v = 1/L.

Our approach offers an alternative to its counterpart in Nesterov’s book (2018, Lemma 2.2.4).
In contrast to Nesterov’s analysis based on clever algebraic manipu-
lations, our approach directly analyzes the evolution of the sequence !
by studying a simple fixed point iteration. More importantly, our
fixed-point based approach generalizes better to the Riemannian set-
ting. As byproduct of our approach, we can also remove a technical
condition on &y required by Nesterov’s analysis. See Remark 2.4. 04l ,

Now let us examine the recursive relation satisfied by &;. Recall
from Theorem 2.1 the following nonlinear recursive relation on &;’s:

Eiat (a1 = 2u05) /(1 = &41) = & (2.13)

0.2 b

0(] 0.2 0.4 0.6 0.8 1

L. . . . Figure 1: Anillustration of the evo-
Our objective is to characterize the evolution of &;. Intuitively, (2.13) 1jution of (2.13) for 2uA., = 0.25.

can be construed as a recursive relation for computing the root of  We plot ¢ %
#(v) = P(v), where ¢(v) := 7“2}3’2?” and ¢(v) := v2. Since the ¥(v) = v? in red.

root is equal to v = /211, one can guess that §; — /2pA.,. See

Figure 1 for illustration. The following lemma confirms this guess.

in blue and

Lemma 2.1 (Evolution of (2.13)) For an arbitrary initial value & > 0, let & (t > 1) be the
sequence of numbers defined as per (2.13). Then, & € [2uA\.,, 1) for all t > 1. Furthermore, if

o > /2uA, & N\ V2uA  ast — 0.
& = 2ul,, thenlé& = \/2uA,. In particular, the convergences are geometric.

o < \2uA, & A 2uly ast — 00

Proof The proof and the formal statement (Lemma D.1) are provided in Appendix D. |

Lemma 2.1 delivers the desired accelerated convergence rate:

Corollary 2.1 If§ > \/2uA\, then f(y:)—f(z ) (Hf 1(1 QNAW)) = O(exp(—t\/2uA4)).
In particular, setting v = 1/L, f(y) — f(z+) = O(exp(—t+\/#/
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Remark 2.4 (Removing technical conditions in Nesterov’s analysis) Nesterov’s original analy-
sis requires a technical condition on the initial value &y: \/M% < & < 2B+u/L))/(344/21+4u/L)
(Nesterov, 2018, (2.2.21)). In contrast, our analysis reveals that the upper bound on &y is not needed;
the lower bound is also not needed in the sense that & converges to \/ 1/ L, the accelerated rate.

3. Generalization to the non-Euclidean case: Riemannian potential function analysis

This section develops the first key ingredient towards obtaining our main theorem (Theorem 4.1),
namely, Theorem 3.1 that is a Riemannian analog of Theorem 2.1.

3.1. Riemannian geometry and Riemannian analog of Nesterov method

We begin by recalling some basic concepts from Riemannian geometry, and defer to textbooks
(e.g., (Jost, 2008; Burago et al., 2001)) for more. A Riemannian manifold is a smooth manifold M
equipped with a smoothly varying inner product (-, -) . (the Riemannian metric) defined for each
x € M on the tangent space T, M. With the concept of length of curves, one can introduce a distance
d on M, and consequently, view (M, d) as a metric space. Length also allows us to define analogs of
straight lines, namely geodesics: A curve is a geodesic if it is locally distance minimizing. The notion
of curvature that we will need is sectional curvature, which characterizes curvature by measuring
Gaussian curvatures of 2-dimensional submanifolds of M. We make the following key assumption:

Assumption 1 We assume that the sectional curvature is lower bounded by —k for some nonnegative
constant k. This is a widely used standard assumption in Riemannian geometry; see e.g., (Burago

et al., 2001, Chapter 10) and (Perelman, 1995).

Operations on manifolds. We can define analogs of vector addition and subtraction on Riemannian
manifolds via exponential maps. An exponential map Exp, : T, M — M maps v € T, M to
g(1) € M for a geodesic g with g(0) = x and ¢’(0) = v. Notice that Exp, (v) € M is an analog
of vector addition “z + v.” Similarly, the inverse map Exp,, Y(y) € T, M is an analog of vector
subtraction “y — . For Exp, ! to be well-defined for each z, we assume that any two points on M
are connected by a unique geodesic. This property is called uniquely geodesic, and is valid locally
for general Riemannian manifolds and globally for non-positively curved manifolds (more precisely,
manifolds with globally non-positive sectional curvatures). We assume further that Exp,,, Exp, ! can
be computed at each x, as is the case for many widely used matrix manifolds (Absil et al., 2009).’

Convexity. The notion of convexity can be extended to Riemannian manifolds using geodesics where
convex combinations of two points are defined along geodesics connecting them. This generalized
notion of convexity is called geodesic convexity (g-convexity for short) (Gromov, 1978). One can
also define geodesic-smoothness and (strong) g-convexity akin to their Euclidean counterparts.

Assumption 2 We assume that the cost function f is geodesically L-smooth and pi-strongly convex
(formal definitions in Appendix E.3; see also (Zhang and Sra, 2016, Section 2.3)).

Using the above noted Riemannian analogs of vector operations, Nesterov’s method (2.1) turns into:

Ti41 + Expy, (ars1Expy, (24)) (3.1a)
Yer1 < Expy, | (=741 VS (2141)) (3.1b)
241 < Exp,, | (B Bxpy), (20) — mea Vi (ze41)) - (3.1¢)

3For computational reasons, exponential maps are often approximated by cheaper approximations (e.g., retractions).
Analyzing the effect of such approximations is not addressed in this paper and is left as an open question.
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See Figure 2 for an illustration of (3.1). Note that updates (3.1b) and (3.1c) are well-defined since
V f(2+1) lies in the tangent space T, M. We are now ready to analyze the Riemannian iteration (3.1).

3.2. Riemannian potential function analysis and metric distortion

Since (3.1) is a direct analog of its Euclidean counterpart (2.1), one may be tempted to use the
potential function ¥; := A; - (f(y) — f(z«)) + Bt - d(2,7.)? that is a direct analog of the
potential (2.2). However, it turns out that the following less direct choice is much more advantageous:

Wy = Ay (fy) — F(2) + By - ||[Expy, (20) — Expy,! ()|[, - (32)

The distance term in (3.2) is preferable to d(z;, x.)? because it lets us use Euclidean geometry (since
it is defined on the tangent space Ty, M = R") to control it. To simplify notation, we define:

Definition 3.1 (Projected distance) For any three points u,v,w € M, the projected distance
between v and w with respect to w is defined as d,, (v, w) = HEXp,;1 (v) — Expy ! (w) Hu

There is, however, one fundamental hurdle inherent to comparing distances in the Riemannian
setting: we need to handle the incompatibility of metrics between two different points. A key
advantage of the potential function analysis is that one only needs to focus on comparing the distances
appearing in adjacent terms, namely ¥, and ., which simplifies the argument considerably.
Motivated by the potential (3.2), we define the following quantity for comparing distances:

Definition 3.2 (Valid distortion rate) We say d, is a valid distortion rate at iteration t > 1 if the
following inequality holds: dg,(z—1,7)* < 6 - du,_, (201, 74)%

Assuming the existence of valid distortion rates at each iteration, we can analyze iteration (3.1)
analogously to the analysis in §2.2 and §2.3 to obtain the main result of this section.

Theorem 3.1 (Riemannian analog of Theorem 2.1) Given y;, 2 and Ay, By > 0 and 41 €

(0,2/L), let Ay := y441(1 — Lyp41/2) and & = /4D - Bt/A,. Assume that ;1 > 1 is a valid
distortion rate at iteration t + 1. Let us choose parameters as per:
o /8.0 —2uA
1. Compute &1 € [2pA, 1) satisfying %ﬂﬂ“”) = ﬁﬁf . (3.3)
2. Compute Ayi1, Bit1, oy, Brs1, Mis1 as in Theorem 2.1.

Then, Y11, z1+1 generated via iteration (3.1) satisfy Vi1 < Uy (see (3.2)), or equivalently,

F@Wer1) — f(ze) + ff}vl (241, 70)° < (1= &) - [flwe) — flzs) + % g, (21, 24)7] -

Proof We sketch the proof here, deferring precise details to Appendix E.3. The proof resembles the
arguments in §2.2 and §2.3, except for the appearance of valid distortion rates in (3.3). Using the
Riemannian analogs of Propositions 2.1 and 2.2, the following vectors lying in the same tangent
space 17, , M constitute counterparts of (2.5):

W=Exp, !, (2), X:i=—Exp;!, (z.), and V:=Vf(z41), (34

With these vectors, akin to (2.6), it is again straightforward to derive the following upper bound on
U;11 — Uy in terms of the vectors V, X, W (here, ||-|| denotes ||-|| and (-, -) denotes (-,+)_  ):

Tt41 Tt41
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\I}t-‘rl_\llt < élHWHQ—’_C’QHXH2+C~(3”€H2+C’4<W’X>+65<W7 @>+06<X7 @>7 (35)

2
. 32 _ Bt _p_ %4 S _ Bt _p _
Cl T ﬁt+1Bt+1 Sit1 2 T—ast1)? At ) CV2 T Bt+1 Stt+1 2 (AtJrl At) )

where ¢ Cs :=n?, | Bryr — Ay - Ay, Cyi=2- (ﬂt+1Bt+1 - fﬁ) :
C~’5 = 1ft0é+tir1 At — 26t+1nt+lBt+1 y and éﬁ = (At+1 — At) — 2nt+1Bt+1 .

See Appendix E.3.1 for details. Notice the similarity between (3.5) and (2.6): the only difference is
that the B;’s in (2.6) are replaced with By /d,1’s here. This difference is attributed to the definition
of valid distortion rate (Definition 3.2); also, in the derivation of (3.5), we use — By - dg, (2, :1:*)2 <
% ~dy,, (21, 2+)?, which precisely accounts for the appearance of B; /&, instead of B.
Having this counterpart (3.5) of (2.6), we follow §2.3 to make (3.5) a negative sum of squares.
It turns out that due to similarity between (3.5) and (2.6), the same derivation holds modulo the

appearance of d;41 in the denominator of (3.3). See Appendix E.3.2 for precise details. |

As before, we can deduce from Theorem 3.1 the suboptimality gap bound (2.12). Hence, to identify
the convergence rate we only need to determine the evolution of {&;}. We provide an illustrative
example below, before moving onto the full accelerated algorithm in §4.

Illustrative example: constant distortion rate. Assume that y is positive*, and consider the
simplified case where 6; = § > 1 for all ¢ > 0. Under this constant distortion condition, similarly to
recursion (2.13), one can obtain a recursive relation on {£; } by choosing v; = ~:

1 (G — 2u0,) /(1 = &41) = E2/6. (3.6)

Analogously to Lemma 2.1, we can establish geometric convergence of & to the fixed point £(0)
of (3.6) (see Lemma D.1). Solving for £(§) explicitly, we obtain the following analog of Corollary 2.1:
Corollary 3.1 Assume 11 > 0. If & > £(6) = 1/(6 —1)2+80uA, — 1(6 — 1), then the
following convergence rate holds: f(y;) — f(x+) = O( [T, — £(8))) = O(exp(—t-£(8))). In
particular, setting v = 1/L, f(y) — f(zx) = O((exp(=3{\/(6 — 1)2 +46w/L — L(6 — 1)})).

A notable aspect of Corollary 3.1 is that it characterizes a trade-off between the metric distortion and
the convergence rate of the resulting algorithm. This point is elaborated by the following remark:

Remark 3.3 (Properties of {(0)) When there is no distortion, i.e., § = 1, then {(1) = \/2uA,
since (3.6) becomes (2.13). Moreover, one can verify that £(0) is (strictly) decreasing in 0, implying
that the algorithm’s performance gets worse as the distortion gets severer (see Appendix D.1 for
verification). Hence, £(0) > lims_,o0 £(0) = 2uA, for all § > 1, implying that the convergence
rate is always strictly better than gradient descent no matter how severe the distortion is.

The above example already recovers the local acceleration result of Zhang and Sra (2018). More
specifically, they showed that if d(zg, ) is bounded by 1/20 - £'/2(L/,)~3/%, then the distortion is
bounded by § = 1+ 1/5 - (L/)~/?; see Appendix F therein. Simplifying &(&) for this choice of &,
we obtain the following strengthening of their main result (Zhang and Sra, 2018, Theorem 3):

Corollary 3.2 (Local acceleration) Let § = 1+ % - (/L)% v = 1/L and & > &(0). Then,

assuming d (zo, ) < o - KY2(/L)34, we have f(ys) — f(xs) = O(exp(—+5t\/1/L)). In
particular, § = £(9) for all t > 0, recovers (Zhang and Sra, 2018, Algorithm 2).

*One can also obtain the results for the case 4 = 0 from the case x> 0 through well-known folklore reductions, e.g.,
(Gasnikov and Nesterov, 2018, Theorem 4); see Appendix H.
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4. Riemannian Accelerated Gradient Method

Thus far, the analysis assumed existence of valid distortion rates. But the key question is: are
valid distortion rates available to the method? We provide a positive answer below and therewith
propose a new Riemannian accelerated gradient method. For clarity, we will focus on Riemannian
manifolds with globally non-positive sectional curvatures unless stated otherwise; the development
for positively-curved manifolds is analogous and is deferred to Appendix 1.

4.1. Valid distortion rates and Riemannian accelerated gradient method

We estimate metric distortion by first invoking a classical comparison theorem of Rauch (1951).

Proposition 4.1 Letx,y, z € M, a Riemannian manifold with curvature lower bounded by —r < 0.

Let S, (r) := (%)2 then, we have d (y, 2)* < S,(max{d (z,y) ,d (x,2)}) - do(y, 2)%

Proof A direct consequence of the Rauch comparison theorem; see Appendix C. |

Applying Proposition 4.1 to the points x¢, 2¢, T, it is straightforward to conclude:

ey , &) ,
Ao r (26, @) < d(2,24)° < Se(max{d (x4, 2¢), d (x4, 24)}) - doy (22, 24)7

where (&) is due to Topogonov’s comparison theorem (see e.g., (Burago et al., 2001, Section 6.5));
and () is due to Proposition 4.1. Hence, §; = Sy (max{d (x4, z) , d (x4, z4)}) is a valid distortion
rate. Unfortunately, this distortion rate depends on d(z¢, z), which is in general unavailable to the
algorithm. We overcome this crucial issue by developing a new distortion inequality.

Lemma 4.1 (Improved metric distortion inequality) Let xz,y, z be points on Riemannian mani-
fold M with sectional curvatures lower bounded by —k < 0. Then for T, : R>o — R>1 defined as

{max{l—i—él(mm‘ﬂ{%—l), (Smgi}#)z}, ifr >0,

1, ifr =0,
the following inequality holds: d (y, z)* < Ti(d (x,v)) - da(y, 2)2.

T.(r) = .1

Proof The proof uses Proposition 4.1 and a Riemannian trigonometric inequality due to (Zhang and
Sra, 2016, Lemma 6). See Appendix C for a formal statement and the proof. |

Note that T}, behaves similarly to S,.. Most importantly, lim,_,o+ 7};(r) = 1, implying that the effect
of distortion diminishes as the distance decreases. Hence, one can essentially regard Lemma 4.1
as a version of Proposition 4.1 in which the term max{d (z,y),d (x, z) } is replaced with d (z, y).
Thanks to Lemma 4.1, now we have T (d (¢, z¢)) as a valid distortion rate, which is accessible to
the algorithm at iteration ¢. Therefore, we propose the following algorithm:

Algorithm 1 (Riemannian accelerated gradient method) Input: zo = yo = 29 € M, constant
& > 0;v€(0,2/L); Ay :=~(1 — Lv/2); integer T.
fort=0,1,2,...,T"
Compute the distortion rate 0141 := T,;(d (z, z¢)) as per (4.1).
Find &1 € 2uly, 1) such that §11(§41 — 20A,) /(1 = &41) = 5152/5“1.
Compute o1 = %, Bry1:=1— 2MA7§;+11, and 41 = 2A7§“t_+11.
Update the next step iterates as per (3.1) with yiy1 := 7.
end for

10
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Remark 4.2 (Innovations relative to previous methods) A noticeable innovation in Algorithm 1
lies in its use of the adaptive metric distortion rate T,,(d (x, z;)). This is in stark contrast with
previous approaches Zhang and Sra (2016, 2018); Alimisis et al. (2020) that use a global metric
distortion rate based on the diameter of the domain. As we shall we in § 4.2, our adaptive metric
distortion control is a crucial ingredient for achieving full acceleration.

Remark 4.3 Note that Ty, (d (x, 2¢)) is a worst-case upper bound on the valid distortion rate, and
hence, if additional information on local geometry is accessible, one can possibly come up with a
better estimate and replace T;(d (x¢, z;)) in Algorithm 1 with the estimate.

4.2. Convergence rate analysis of the proposed method

Having proposed the algorithm, our final task is to analyze its convergence rate. From Remark 3.3,
we know the algorithm achieves a full acceleration when §; is close to 1. Due to the property
lim, 04 Ty (r) = 1, one therefore needs to show that d (z, z;) is close to 0. Although d (x4, z;) = 0
for t = 0, one can quickly notice that it is not true for ¢ > 1.

Now one natural follow-up question is whether d (¢, z¢) shrinks over iterations. As we have seen
in §2.3, the convergence of the iterates to the optimal point is a direct consequence of our potential
function analysis. Similarly, one can immediately see that d, (z;, x.) — 0. It turns out that from
this shrinking projected distance, one can also deduce d (x¢, z;) — 0 under mild conditions:

Lemma 4.2 (Shrinking d (z;, z;)) Assume pi > 0and let Do := f(x0)— f () +&/40,-d (g, x, ).
If1 <~yL <2 =& and & > 2uA., hold at iteration t > 1, then Algorithm 1 satisfies: d (x¢, z;) <

Cu,L~ [Do H;;ll (1-— fj)] 1/2, where C,, 1., > 0 is a constant depending only on i, L, 7.

Proof The proof relies on elementary geometric inequalities (see Appendix F). |

Note that the assumption 7L € (1,2 — &] can be roughly read as “yL € (1,2 — y/#/L]” because
Remark 3.3 ensures that £(§) < \/2uA., < /#/L for all § > 1. More precisely, since & quickly
converges to the fixed point, one can easily ensure §; < \/#/L after few iterations. Formalizing this
argument, we finally obtain our main theorem (which formalizes Theorem 1.1):

Theorem 4.1 (Global acceleration of Algorithm 1) Assume 0 < u < L andyL € (1,2 — \/#/L].
Let Ay := (1 — Ly/2) and X := 1 — 818y/(5+v/5) € (0,1). Then for any & > 0, Algorithm 1
satisfies the following accelerated convergence:

fye) = fla) =0 (1= &)1 = &) (1 -&)) , 4.2)
& — \/2uA,| <€

whenever t = () (llgg((ll //f\))) where the constant involved in §)(-) depends only on u, L,~, k.

where {&} is a sequence such that (i) § > 2 Vt > 0 and (ii) for all € > 0,

Proof (4.2) is immediate from Theorem 3.1. For the convergence of {;}, see Appendix G. [ |

Since A, — 1/(2L) as v — 1/L, one can achieve the convergence rate arbitrarily close to the full
acceleration rate by choosing «y bigger but sufficiently close to 1/L. This concludes our main results.

11




FROM NESTEROV’S ESTIMATE SEQUENCE TO RIEMANNIAN ACCELERATION

5. Comparison with other potential function analyses

In this section, we compare existing potential function analyses with our approach. We discuss here
the most directly relevant works; for additional related work, please see Appendix B and also (Taylor
and Bach, 2019, Appendix B).

The potential function (2.2) has appeared in prior works on accelerated methods, corroborating
its suitability. Compared with our analysis, the main difference is that the existing analyses either
work for (i) the case & = 0, or (ii) just the fixed-step case &; = \/MTL We highlight that our analysis
is the first to recover—from first principles—Nesterov’s general scheme that smoothly interpolates the
cases o = 0 and p > 0. Moreover, our analysis allows &; to vary, which is crucial in the Riemannian
case where the recursive relation changes over iterations.

Function (2.2) appears in (Wilson et al., 2016, Proposition 4) within the context of a continuous
dynamics approach to acceleration. That work studies methods for discretizing accelerated ODEs
derived in (Su et al., 2014; Wibisono et al., 2016) to transform the continuous dynamics into discrete
methods. In that context, they show that (2.2) is a discretization of a canonical Lyapunov function.
Another appearance is in (Diakonikolas and Orecchia, 2019), where they extend the continuous
dynamics view via an approximate duality gap technique. Roughly, to analyze a first-order method,
they consider an upper bound U; and a lower bound L; on the optimal value f(z.). Their analysis
then proceeds by showing the gap G := Uy — L; diminishes with the rate o, i.e., oy GGy is decreasing,
which corresponds to showing A;&; is decreasing in our language (§2). Although motivated mostly
for continuous dynamics, their techniques cover discrete methods with some modifications. In
particular, their choice of G for accelerated method corresponds to (2.2) (see §4.2 therein).

Yet another appearance of (2.2) is (Bansal and Gupta, 2019, (5.50)), wherein the motivation was
to modify the potential function analyses for gradient descent to design and analyze accelerated
methods. They propose the idea of running rwo different gradient steps and linearly combining them
to achieve desired accelerated convergence. Following their argument, it turns out (2.2) is the right
choice. Indeed, their approach bears resemblance to the linear coupling framework (Allen-Zhu and
Orecchia, 2017), in which (2.2) has even more canonical interpretations; see Appendix A.

6. Conclusion

In this paper, we establish the first global accelerated gradient method for (strongly convex) Rie-
mannian optimization. To that end, we first revisit the Euclidean case and present an alternative
approach to Nesterov’s estimate sequences, shedding new light on the scope of his technique that has
puzzled researchers for many years. We then consider the Riemannian case and propose a method
that converges strictly faster than gradient descent, quickly attaining the full accelerated convergence
rate within a few iterations. While results for the non-strongly convex setting are also developed
via a well-known reduction argument, discovering a direct approach remains open. We believe our
results mark fundamental progress toward understanding acceleration in non-Euclidean settings, and
hope that our work motivates a richer study of Riemannian acceleration, while contributing to the
goal of bringing our understanding of Riemannian optimization at par with the Euclidean setting.
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Appendix A. Interpretations via linear coupling

Recently, Allen-Zhu and Orecchia (2017) established a framework of designing fast first-order
methods called linear coupling. The principal observation therein is that the two most fundamental
first-order methods, namely gradient and mirror descent, have complementary performances, and
one might therefore design faster first-order methods by linearly coupling the two methods. In this
section, we will discuss how one can derive from linear coupling (i) Nesterov’s optimal method
iterations (2.1); and (ii) our choice of potential function (2.2) (which offers an alternative way to
motivate the potential function; we omit mentioning this connection in the main text because the
“coupling” idea does not admit an easy Riemannian analogue).

A.1. Nesterov’s iteration from linear coupling

Let us now see how to obtain the main iteration (2.1) via linear coupling. Denote by Grads.v(z) and
Mirrs.v(x) a gradient step and a mirror step, respectively. If we choose the Bregman divergence
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associated with mirror descent to be D(u,v) = 2 |lu — v

=3 g then (2.1) can be rewritten as follows:

Tpr1 < a1zt + (1 — 1)y
Wig1 < Beyrze + (1= Bes1)ye
Viy1 < Vf(we41)

Yip1 < Grady, v, (Te41)
Zp1 < Mirry, v, (wegr)

where Bt+1 = ay41 + (1 — a¢41)Be+1- Note that these steps clearly respect linear coupling: for each
step, we compute two different linear combinations of z; and 1 and run gradient and mirror steps
from each combination to obtain the next iterates ;41 and 211, respectively. Indeed, the original
algorithm considered in (Allen-Zhu and Orecchia, 2017) chooses 3’ = 1 and is hence a special case
of the above steps. One concrete advantage of viewing iteration (2.1) in the above form is that then it
can be naturally generalized to other settings where the smoothness of f is defined with respect to a
norm different from ¢5.

A.2. Choosing a potential function via linear coupling

Another advantage of the linear coupling view is that one can derive our choice of potential function
(2.2) naturally. To see this, first note that the folklore analysis of gradient descent deals with the
cost value f(y), while that of mirror descent deals with the distance to an optimal point, or more
generally, the Bregman divergence D(z,x,). (See e.g. (Allen-Zhu and Orecchia, 2017, §2) for
details.) Since the algorithm is a linear combination of the two methods, it is then natural to consider
a linear combination of the two performance measures, arriving at (2.2) since our case corresponds
to the setting where the Bregman divergence is chosen to be D(z,z,) = 3 ||z — . 3.

Appendix B. Comparison with SDP-based potential function analysis

Another prominent approaches related to potential function analysis are developed based on solving
SDPs (Drori and Teboulle, 2014; Lessard et al., 2016; Taylor et al., 2018; Taylor and Bach, 2019).
The primary distinction between our approach and most SDP-based approaches is that our analysis is
analytical, whereas the analyses therein are numerical. More specifically, the existing works require
numeric values of parameters (e.g., a, 3, L, i) because they find suitable potential functions via
solving SDPs. Note that one cannot solve SDPs unless the numeric coefficients are given. Abstractly,
our choice of parameters in Theorem 2.1 can be interpreted as an analytical solution to the symbolic
versions of SDPs formulated in the prior works.

Notable exceptions are (Kim and Fessler, 2016; Hu and Lessard, 2017; Safavi et al., 2018; Cyrus
et al., 2018; Aybat et al., 2019), in which small SDPs are solved analytically. Specifically, some
optimized step sizes for Nesterov’s method are derived via solving small SDPs explicitly in (Kim
and Fessler, 2016; Safavi et al., 2018); robust versions of gradient methods are derived analytically
via classical control-theoretic arguments in (Cyrus et al., 2018; Aybat et al., 2019), and Nesterov’s
method is reinterpreted using dissipativity theory in (Hu and Lessard, 2017). Indeed borrowing the
dissipativity interpretation from (Hu and Lessard, 2017), one can interpret our calculations in §2.3 as
finding an analytic solution to a dissipation inequality (Theorem 2 therein) for our case.
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Appendix C. Some inequalities from Riemannian geometry (proof of Lemma 4.1)

This section is devoted to proving Lemma 4.1. The proof requires two ingredients: Proposition 4.1
and a (Riemannian) trigonometric inequality due to (Zhang and Sra, 2016, Lemma 6).

We begin with the first key ingredient: Proposition 4.1. Its proof is based on the following version
of the Rauch comparison theorem (Chavel, 2006, Theorem 1X.2.3):

Proposition C.1 (Rauch comparison theorem) Ler M be a Riemannian manifold with sectional
curvatures lower bounded by —x < 0. Then, for any x € M and u € T, M, the following upper
bound on the operator norm of the differential of the exponential map holds:

sinh(v/k [|ul])

v
Proof Let ug := u/ ||ul|. First, it follows from the definition that the exponential map is radially
isometric, i.e., ||d(Exp,).(uo)|| = 1. Next, due to Rauch comparison theorem (Chavel, 2006,

Theorem 1X.2.3), for any v orthogonal to u, we have ||d(Exp, ) (v)]| < Sin%@w”) |v]|. Since any

Hd(EXpJ})Uan S

vector in T, (7, M) can be represented as a linear combination of ug and vectors orthogonal to ug,
the proof follows. |

Now, we are ready to prove Proposition 4.1:

Proposition C.2 (Restatement of Proposition 4.1) Let x, y, z be points on Riemannian manifold
M with sectional curvatures lower bounded by —k < 0. Then, the following inequality holds:

sinh(y/Fmax{d (x,9) d(x,2)})

Vemax{d(z,y),d(z,2)}
Proof To upper bound the distance d (y, z) in terms of the projected distance d,(y, z), consider a path
p:[0,1] — T, M defined as p(t) = (1 —t)-Exp; ' (y) +t-Exp, ' (2). Then, its image Exp,(p) is
a path on M connecting y to z. By definition of the distance on the manifold, d (y, z) is clearly upper
bounded by the length of Exp,.(p). On the other hand, using Proposition C.1, the length of Exp,.(p)
can be upper bounded as follows (since [|p/(t)|| = ||Exp; ' (y) — Exp; ' (2)|| = da(y, 2)):

/

d(y,z) <

(Y, 2) -

1
)] [ T e T
_ sinh(y/&max{d (@) d (¢.2)})
= T rmax{d (@, y) (3, 2)}

where the last inequality follows from the fact that ||p(¢)|| is upper bounded by max{||p(0)|| , [|lp(1)||} =
max{d (z,y) ,d (z, 2)}. m

. dm(y7 Z) 9

We now move on to the second key ingredient, namely a Riemannian trigonometric inequality:

Proposition C.3 (Riemannian trigonometric inequality) Let M be a Riemannian manifold with
sectional curvatures lower bounded by —r < 0. Let x,y, z be the vertices of a geodesic triangle
with the lengths of the opposite side being a, b, c, respectively, and A be the angle of the triangle at
the vertex x, then we have the following inequality:

Vke

a?< —Y " p?4+¢?—2bccos A.

tanh(y/kc)
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Proof See (Zhang and Sra, 2016, §3.1) and (Cordero-Erausquin et al., 2001, Lemma 3.12). |

With these ingredients we now prove Lemma 4.1; we actually prove the following strengthening:

Lemma C.1 Let x,y,z be points on Riemannian manifold M with sectional curvatures lower
bounded by —r < 0. Define the function T,; : R>g — R>1 as

2
e . “1\2 N sinh((1+e)\/ﬁ-r) .
To(r) = mines.g max {1 + (1 +e€ ) (tanh(\fr) 1) , <(1+€)\/E.T ifr >0,
1, ifr=0.

Then, the following inequality holds: d (y, z)* < ﬁ(d (z,y)) - ds(y, 2)2

Note that C//’; (r) < T, (r) forall » > 0 (T} is equal to choosing € = 1 in the definition of I/’;.) Hence,
Lemma C.1 immediately implies Lemma 4.1.

Proof [Proof of Lemma C.1] Let us fix an arbitrary constant € > 0. We will separately handle two
cases: (1) (1 +¢)-d(z,y) < d(z,z);and (i) (1 +¢) - d(z,y) > d(z,2).

Case (i). Applying Proposition C.3 to Azxyz, and letting ¢ := mﬁ/(g\df%’ we obtain:

d(y,2)* <d(z,y)” + (- d(2,2)* — 2 (Exp, ' (y), Exp; ' (2))
=(¢—1)-d(z,2) +d(z,y)* +d(2,2)* — 2(Exp, ' (y) , Exp, ' (2))
=(C—1)-d(2,2)° + duly, 2)?,

where the last line follows from the Euclidean law of cosines. On the other hand, from the Euclidean
triangle inequality (consider the triangle Axyz in the tangent space T, M), d,(y,z) > (d (z, z) —
d(z,y)) > 15 - d(z, ). Hence, combining these two, we get

d(y,2)” < (¢-1)- ( ) +da(y,2)°
1+ (C— 1) de(y, 2)® + duly, 2)?
[1+ (1+e—1 (C— 1)} Cdy(y,2)? . (C.1)

IN

Case (ii). For the case (1 + €) - d (x,y) > d (x, z), Proposition C.2 implies:

sinh (1 + €)yv/E - d (z,9))) > 9
d 2 < ’ -d . C.2
Therefore, combining (C.1) and (C.2), the proof is completed. |

Appendix D. Analysis of the key recursive relations ((2.13) and (3.6))

To ease notation, we replace 2uA., with a constant a € (0, 1) and consider:

n§n=a) 1 o (D.1)
1 =&

18
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In particular, when 6 = 1 and a = 2, equation (D.1) recovers (2.13). The parameter 6 > 1 is
present to cover the recursion (3.6) for the Riemannian case. Below, we state and prove the following
general statement of Lemma 2.1.

Lemma D.1 For any constants 6 > 1 and a € (0,1), and an initial value &, > 0, the followings
properties are true about the recursive relation (D.1):

1. £(8) := 1\/(6 = 1)2+40a — (6 — 1) is the unique fixed point of (D.1).
2. Jim &} £(9) if €0 > €(0); & = €(0) if €0 = £(9); and lim & T £(0) if 0 < o < £(9)-

3. 1& —€(0)] < (% (1 — ﬁ . %))t_l &1 — &(9)| forall t > 1.

Proof Define ¢(v) := ”(1”__;) and ¢ (v) := }v?. Then, recursion (D.1) can be rewritten as

¢(&r+1) = (&) - (D.2)

Now, in order to understand (D.2), let us study the properties of the two functions. First, note that v
is increasing on R>( and ¢ is increasing on [a, 1) with ¢(a) = 0 and lim, 1 ¢(v) = co. Indeed, ¢
is increasing since %qﬁ(v) = (11_;532 1> -1>0.

Hence, one can consider the inverse function of the restriction ¢| [a,1)- We will simply denote the
inverse function by ¢—!. Letting 7 := ¢! o 1, (D.2) can be rewritten as:

&1 =7(&). (D.3)

Note that 7 : R>¢9 — [a, 1), and hence, & € [a, 1) for all ¢ > 1. Since 7 is increasing, there is at
most one fixed point, i.e., v > 0 s.t. 7(v) = v. Solving 7(v) = v, or equivalently, ¢(v) = 1)(v) on
v € [a, 1) yields v = £(0). Hence, £(0) is the unique fixed point of (D.3).

From this observation and the fact that ¢ and v are both increasing on the respective domains,
we have ¢ < v for z € [a,£(9)), and ¢ > 9 for x € (£(J),1). Consequently, {& } is increasing if
& € 10,£(9)) and decreasing if £y > £(9).

Now we prove the geometric convergence of (D.3) to £(¢). To that end, let us first express 7
explicitly. One can easily verify that the closed form expression of ¢! is equal to

1

o) =5 (V—aP+hv-(w—a) .

Therefore, we have

7(v) = ¢~ (Y(v) = ¢~ (v?/8) = % (\/(v2/6 —a)2 + W26 — (v¥)6 — a)) .

Due to mean value theorem, the key ingredient for showing the geometric convergence is to bound
the derivative of 7. Indeed, if we can establish that |7/(v)| < K < 1 for v € [a, 1), then we have

[§e1 = £(0)| = [7(&) — 7(£(0))] < K - & — £(9)] - (D4
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- — _v(v’—a)+2v o : .
Letting 0(v) := Tor—ayiie v, one can express the derivative 7/ in terms of 6:
v v U ()2 A
T,(U): 3(1)2/(5—60—1—23 _EZL' \/g(v/é_a)+2\/g _L
VI —a)2+ 425 0 Vo \ /(v —a)2 + 425 Vo

1
= 75 0/V5)

Hence, it suffices to show that §(v) < 1 for v € (0, 1). Proposition D.1 below shows this claim.

Proposition D.1 0 <60(v) <1-— 5+4\/5 - v holds forv € (0,1).

Proof 6(v) > 0 trivially holds since 7 is increasing (recall that 7 is a composition of increasing
functions). Now let us prove the upper bound. We first consider the case a < v < /a. Since v? < a,

0(v) = —v(a —v?) +2v < 2v <l w
V(02 —a)? + 42 V(0% —a)? + 42 - .
Next, consider the case v > /a. Then, v2 > a, and hence
o) v(v? —a) + 2v 20 V(02 —a)? + 402 — (v - a)
V)= — vV = — -
V(2 —a)? + 4o? V(2 —a)? + 402 V(02 —a)? + 402
2v 4v?
= - v *
V(0% = a)? + 402 VI — )2+ &2 (\/(Uz “ 2 F AR (02— a))
2v 4o
= - U *
V(02 —a)? + 402 (02 — a)? + 402 + (v2 — a)\/(v2 — a)? + 40?2
gn 42 4
<l-vw-

=1—-— 0.
v2 4 402 + vV v? + 402 5++5

where (&) follows since v € (y/a, 1); in particular, we have 0 < v? — a < v? < v. Combining the
two cases, we complete the proof. |

From Proposition D.1 and inequality (D.4), the proof of the geometric convergence follows. |

D.1. Justification of Remark 3.3

In this section, we verify that for any fixed a € (0, 1),

" 12t déa—(5—1
£(0) := (O-1°+ 2(5@ (0=1) is decreasing in § > 1.
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Note that for § > 1 we have

d 20 —1)+4a 1 2(0—1)+4a—2y/(6 —1)2+4da
%5(5): =

4,/ —1)2+4da 2 4,/(6 —1)% + 46a
24/((6 — 1) +2a)* = 2,/(6 — 1)2 + 4da

44/(0 — 1)%2 + 4éa
2¢/(6 —1)2+4a(d — 1) + 4a% — 21/(6 — 1)? + 4da

= <07
(0 —1)2+4da

where the last inequality is due to the fact that —4a + 4a® < 0 since a < 1.

Appendix E. Potential function analyses (Theorems 2.1 and 3.1)
E.1. Derivation of the upper bound on the potential difference (2.6)
We recall the notations (2.5): A, := (1 — Lvy/2), V := Vf(zi1), X = z441 — 4, and
W := 2z — x441. Let us first express (2.4) in terms of the vectors V, X, W using Proposition 2.2:
24) = Biy1 - lmep1 + Bz — 2011) — 2l* + Bigan® - |V f (w4012
+ 2By 1 - (Vf(@41), T — 231 — Bzt — 2e41)) — By ||z — 2|
= Biy1 - | X + BW|* + Bipan® - IVII° = 2Bian - (V, X + W) — B, - [W + X ||?
= (Ber1 = B) - [IX|° + (8Biy1 — Bi) - [WI* + 0 Ber - [[V])?

1
+2(BBi41 — By) (X, W) = 28nB11 (W, V) = 2nBy11 - (X, V) . ED
For (2.3), we apply Proposition 2.1 and rearrange terms to obtain:
(23) = App1 - (f (yt+1) f(@) = Ae- (f(y) — f(z4))
< Ay (f (@) — f(22)) — At+1A IV f@e)l? = A (fye) = f(z)
= A (f(@e41) — f(yt)) (Arp1 = A) - (f (@) = F(@2) = Ay Apgr - [V f (o) |
(%)
< Ar V(@) o1 — ye) + (At+1 = Ap) - (Vf(@t41), Te1 — 24) (E.2)

= A Nl = wil? = (A = 405 - e = 2 = Ay v - [V @)

where (&) follows from p-strong convexity of f (in particular, f(u ) f (v) <(Vf(u),u—v)—
Ellu— v||*). Now using the identity ;1 — y; = 125 (2t — w411) = 195 W, one can express (E.2)
in terms of V, X, W

(B2) = —=—A; - (VW) + (Ao — A1) - (V,X)

1—

2
H o 1
T2 <1 —a> A WP = S (A = A0 - IX]* = Ay Ave V)P

(E.3)

Combining (E.1) and (E.3), we obtain the desired upper bound (2.6).
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E.2. Proof of Theorem 2.1

We seek to express parameters A; i1, Biy1, Qi1 Bi1, M1 in terms of €41 and y441. From the
equality version of (2.8), i.e.,
(A1 — Ap)?

B =
t+1 4A’Y ] At+1 )

By+1 can be easily expressed in terms of &1 1: using the relation 1 — &1 := A;/A¢41, we have

(7‘4?‘2;’% )2 = &2, and hence
A1 — At>2 Ay o AJA=&1) §a A
i ( A 4N, St 4N, 1— &1 4A, E4)

From this identity we can also conclude that

A
A Tam 44,
B & A, £ (E.5)
+ St Ay
1-§ip1 44, bl
Let us recall the expressions (2.7) for the step sizes:
A1 — Ay
= - E-6
Mt+1 2B (E.6)
B
Brin =5~ and (E.7)
t+1
A1 — Ay)B
Qi1 (At t) Bt ‘ (E.8)
1—ogq1 AiBiiq
Let us also recall the recursive relation:
—2uA B
1 (§r1 — 2u8) e =4A,. (E.9)
1—=&n At

Using the relations above, we can now express a1, Bi+1, Me+1 in terms of &y 1:

€6 Atr1 — A Avpn — A A ®5) 27,

1
M+1 = 2B, = A : 2B;11 =" &1 ?H = 2A75t+17
Biy1 ED) B]il E4D 1 ffft;rl 4A, - i’i €9 €t+1§t+21NAv =1- 2HA’Y§t_+11 , and
a1 @®8) (A1 —AYBy A — A By A
1— a1 AyBi A Ay By
EILESD o §or1(Sr1 — 2u0,) 4Dy &1 — 2ud, '
AN (1= &y1) &Ry 1 =&

With the above choices of parameters, one can easily check that oy 1, 541 both lie in [0, 1] since
§t+1 € [QMA% 1)

One last thing we need to check is ?B;11 < By. Indeed, since Si41 € [0,1] 57,1 By <
Bi+1Biy1 = By (due to (E.7)), implying C < 0.
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E.3. Proof of Theorem 3.1

We first introduce the definitions of geodesic (strong) convexity and smoothness. For simplicity, we
assume that the function f : M — R is differentiable throughout the definitions, and we denote by
V f(x) € T, M the gradient of f at x.

Definition E.1 (Geodesic (strong) convexity) f is said to be geodesically pi-strongly convex if
- M
fy) > f(x) +(Vf(z),Exp;' (v)), + 5" d(z,y)* foranyz,y € M,

where (-, -) denotes the inner product in the tangent space of x induced by the Riemannian metric.

Definition E.2 (Geodesic smoothness) f : M — R is said to be geodesically L-smooth if

F() < £(@) + (V@) Bxpz (1), + 5 d(e,)® foranya,y € M.

An equivalent definition is
HVf(ﬂz) - F”yEVf(y)HI < L-d(z,y) foranyx,y€ M,
where Iy is the parallel transport from y to x.

With these definitions, we can establish Riemannian analogues of Propositions 2.1 and 2.2:

Proposition E.3 Let y = Exp, (—s -V f(z)). If f is geodesically L-smooth, then f(y) — f(x) <
—5 (1= Ls/2) |V f()]3.

Proof By the geodesic L-smoothness of f, we have f(y) < f(z) + (Vf(x), Exp,* (), + L.
d(z,y)* = f(z) + (Vf(2), =sV (), + § |-sVf (@)} = fz) —s (1= 5) [Vf(2)|;. ™

Proposition E4 Let z = Exp, (v — sV f(u)) for some vector v € T, M. Then, for any x.,
du(2,2.)° — du(Expy (1) ,2.)° = 82 [V 1 ()2 + 25 (V[ (u), Expy (2.) — v)..

Proof The proof follows immediately from the definition of the projected distances (Definition 3.1):

du(z2.)? = [[Expyt (2) = Bxpy ! (22 = [lo = 5 - Vf(w) = Bxp, " ()]
= [Jv = Expy ! (@) + =5 - V@2 +2(=s - Vf(w),v - Bxp, " (z.))

u

which recovers the conclusion of Proposition E.4. |

Now we prove Theorem 3.1. It turns out one can establish an upper bound on the potential
difference W, — W, analogously to (2.6). The key difference in the Riemannian case is that instead

of W, X, V, we now have the following three vectors in the same tangent space 17, , M:

W= Exp;tl+1 (), X:= —Exp;tl+1 (z2), and V := Vf(241) - (E.10)

As pointed out in §2.2, the fact that these three vectors lie in the same tangent space is crucial for
the analysis to follow. Using Propositions E.3 and E.4, one can derive the following upper bound
similarly to Appendix E.1 (hereafter, ||-|| denotes ||-|| and (-, -) denotes (-,-) )

Tt+1 Tt+1
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Ci-|[W|?+Co-||X|2+Cs||[V|[?+Cs- (W, X)+C5- (W, V) +Cs - (X,V), (E.I1)

~ o2 ~

Cy = B3 Bii1 — 5%1 — St A, Coi=Bia - JtBTtl — (At — Ay,
where { C3 :=n2, | By — Ay - Agyr Cy:=2- (Bt+1Bt+1 - 55:1) ;

Cs = 12 Ay — 2B 1141 By, and  Cg = (Appq — Ay) — 241 B4 -

1—atq1

E.3.1. DERIVATION OF THE UPPER BOUND ON RIEMANNIAN POTENTIAL DIFFERENCE (E.11)

Recall the definition of the Riemannian potential function (3.2):
Uy o= Ay (f(ye) — f(4) + By - duy (20, 24)° (E.12)

From the definition, one can write the potential difference Wy, — Wy as follows:

Appr - (f(err) = f@a) — A - (F(ye) — f() (E.13)
+ Bt-‘rl : dxt_»,_l (Zt-i-].) x*)z - Bt : d:l?t (Zt7 I'*)2 . (E14)

First, we use the valid distortion rate (Definition 3.2) to upper bound (E.14) in order to express it in
terms of projected distances relative to the same reference point x4 1:

(E14) < Bt+1 : d$t+1 (Zt+17 x*>2 B dl‘tJrl (zta x*)z . (EIS)

St41

Now, similarly to Section E.1, one can use Proposition E.4 to express the right hand side of (E.15) in
terms of the vectors V, X, W

B

2
Sir1 : dxt+1 (Zt, .T*)

Bt+1 : dxt+1 (Zt+17 ZL'*)2

2
= B - | BiBxpy, () = Bxpgl, @)+ Braands [V F ()|
+ 2B 11 <Vf($t+1); EXp;tL (74) — 5t+1EXP;t1+1 (Zt)> - 5%1 “day 4 (21 x*)Q
= Bty - HX + Bt WP + Bipangyy - HW\Z — 2B - (V, X + B W) —
= (Bes1 — 525) - |1 X1? + (BBt — 325) - WP + 071 By - IV E16)
+2(Bit1 Bt — 525) (X, W) = 28010001 Biet (W, V) = 2041 Beyr - (X, V). .

W+ X

5t+1

6t+1 5t+1

For (E.13), the derivation is identical to that of (E.3), except that now we use Proposition E.3 in place
of Proposition 2.1 and p-geodesic strong convexity in place of p-strong convexity. In particular,

(E13) < 5 » 1A AV, W+ (A1 — Ay) - (V, X)
— Oty
« ~ . (E.17)
2 <1 —t;I > AW - (At+1 —Ap) - IX? = Ay A - V)P

Combining (E.16) and (E.17), we obtain the desired upper bound (E.11).
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E.3.2. ENSURING RIEMANNIAN POTENTIAL DECREASE

We now follow §2.3 to make (E.11) a negative sum of squares. We recall the expression of the
coefficients for reader’s convenience:

~ o2 ~

Ci = B Bry1 — J?Ttl - %7(1_;1;11)2&, Co:= Byy1 — 5%1 — 5(Ai1 — Ay),
Cs =07 1Bry1 — Ay - Agya, Cy:=2- (/Bt-‘rlBt—i-l - J?Ttl) ,

Cs = e Ar — 2811 By, and Co := (Ap11 — Ar) — 2111 By -

First, from 6‘4 = C’5 = C’G = 0, we get:

A1 — Ay

= (E.18)

N+ 9By1

By

Bti1 = ———, and (E.19)

T 8B
arp1 2B By (A — Ay By (E20)

1 — oy Ay Ot41A:Bri1 ‘
~ 2

Next, from C'5 < 0, we have % < Agyq. Substituting (E.18) to this inequality and rearranging,

we obtain the following inequality:

(App1 — Ap)?
Vi 7 2 - p (E21)
1A, Ay t+1
From C5 < 0, we have Biy1 — 5(Ap1 — Ap) < 55:1. Together with (E.21), we obtain:
(At+1 - At)2 M By
- (A — A= < —. E.22
1A, A (Ap+1 t) 2 = b (E.22)

Again, using the suboptimality shrinking ratio 1 — &1 := A /A1, (E.22) becomes

S (Eer1 — 2pAy) < 4A, B

1—&41 T 0 A

(E.23)

Then, due to the left hand side of (E.23) being increasing (as a function of &11) on [2uA, 1), the
largest £;1 (or equivalently, the largest A1 1) satisfies (E.23) (or equivalently, (E.22)) with equality:

§ev1(§1 —2pd,)  4A, By

1 =& B 01 Ar

Consequently, such a choice of ;1 (or corresponding Ay, 1) also satisfies (E.21) with equality.

Now, one can follow the calculations in Appendix E.2 to express parameters in terms of &4 1.

From the equality version of (E.21), i.e. %7;?32 = By41, one can derive the following:

(E.24)

(A - AN A AJA-G) & Ay
By = : =&iy1- '

_ _ E.25
Ay A, A, 1= &, 4A, E2)
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From (E.25), one can also derive:

Ay

Arpr T 44, (E.26)
By §e1 | A & '
1-&41 444

Combining all the relations above, we can express a1, B¢+1, ¢+1 in terms of &1. It turns out that
the final expressions do not depend on ;41 and are identical to those in Appendix E.2:

npy B A1 — Ay A — Ar - Arpr 820 ”y 200 _ 5 g1
2Bi1 Ayt 2B &, I
€®19 By @®@25 1 & 44, Bi ©24) §1 — 204,
Brer "= Ser1Bi1 &2, 5t+1 A §t1 by, and
a1 ®20) (A1 —A)By A — Ay B A
l—amn 6mABin Aga 0 Ar B
EWLEL) o §or1(§rn — 2u) 4Dy &1 — 2ud
AN, (1= &1) &4 1= &1

With the above choices of parameters, one can again check that a1, 8,41 both lie in [0, 1] since
i1 € 2145, 1). .

One last thing to check is C'; < 0. Indeed, since ;41 € [0, 1], we have 5152+1Bt+1 < Biy1Bii1 =
By /41 (due to (E.19)), implying C; < 0. Therefore, the above choices of parameters satisfy
C’l, 02, ég < 0and 6’4, 05, 6‘6 = 0, and consequently, ¥;; < U, since ¥, — ¥, < (E.11). This
completes the proof of Theorem 3.1.

Appendix F. Proofs of distance shrinking lemma (Lemma 4.2)
We first analyze the convergence distances (which is a direct consequence of Theorem 3.1) below.

Proposition F.1 Let M be a Riemannian manifold with sectional curvatures lower bounded by
—k < 0 and upper bounded by 0. Assume that i > 0 and let Dy := f(x¢) — f(x.) + ﬁfg .

d (xo, x*)Q. Then, for x4, yi, z¢ (t > 1) generated by Algorithm 1 the following bounds hold:

1. dg, (2, 24) \/DOH] (1 =&) /s
2. yt7$* \/DO 5]) \/>
3. dy, (y1, 22) \/DOH _0-&)- (2 + /i),

Proof By recursively applying Theorem 3.1, we have the following for any ¢ > 1:

t
) = Fo) 568 duen)? < TTO =) | fl) = F0) + 735652
.
t
=[]t -¢&)- Do,
j=1
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where the equality follows since xo = yo = zo (which implies d,, (20, z«) = d (20, Zx)).

Hence, the bound on d,, (2, z) follows immediately due to & € [2uA, 1), while the bound on
d (y¢, ) follows from the p-strong g-convexity of f (Definition E.1), which implies & - d (ys, 2,)? <
f(ys) — f(x). Lastly, the bound on dg, (y¢, z¢) follows upon noting that

drt(yt7 Zt) S dxt(yt,ﬁ*) + dxt(2t7$*) S d(ytvl"*) + dxt(ztu JI*) ) (Fl)

which is a consequence of the (Euclidean) triangle inequality together with the fact that the projected

distances are shorter than the actual distances (a property of non-postively curved manifolds; see e.g.
(Burago et al., 2001, §6.5)). |

Proposition F.1 above establishes that the projected distance dy, (¢, 2¢) is shrinking over iterations.
From this, we can also show that d (y;, 2;) is shrinking under mild conditions:

Proposition F.2 Let Dy := f(zo) — f(x.) + 4A €2 - d (w0, z)% If YL > 1, 7L < 2 — &4 and
§i41 > 2pA hold for t > 0, then Algorithm 1 satlsﬁes
(Vi i)
m

'yL—l)(’yL—1+2,uA )

1 —2uA,

d(ye,z) < ———— -
120,600

DoJJ(1-¢)-
j=1

Remark F.3 A careful reader might realize that the appearance of the term 1 — QMAvf;rll in the
denominator of the bound could be potentially problematic since this term could be arbitrarily
small in general when &1 is very close to 2uA. However, as we shall see shortly, this term gets
canceled out with the algorithm parameter 5,41 = 1 — 2,uA7§t_+11 (see Algorithm 1) when we use
Proposition F.2 to bound the distance of our interest d (zy, ).

s Exp,., (20)e
1= B ‘\ ._,,....__,....---y-EXPa,t_H (z¢41)
. . =1 N et et V /’/
oy Ber1Expy, (2t) \ Ne+1V f(ye) p
Brm \ o
o R #Bxp L (i)
v 0(=Bwg), (@) e "INV f(y,)
[e72N] ':. \\
. Exp_l (ye)
Figure 2: An illustration of the update rule (3.1) on the tangent space T3, , M.
Proof We first recall the following assumption from the proposition statement:
1 <yL <2—¢&41and §41 > 2pA,,. (F2)
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First, from (3.1b) and (3.1c) together with the triangle inequality (see Figure 2),

Ay oy (Yer1, 2641) = HEngZiH (yer1) — Expzl, (2e41) N
t+1

= =791 @) = B BxpzL, () + e V(i)

Tt41

> B [Bxpzl, (|| = e =3l V@),
t+1
= Bey1 - d (@1, 2) — e — |- IV (@), -

Rearranging the above inequality we have

Br1 - d(@eq1, 2t) < doyyy (Yer1, 2e41) + e = IV F (@) 5, - (F.3)

We first simplify the left hand side with the update rules (3.1). First, note that (3.1a) implies that x4
lies on the geodesic connecting y; and z;. Therefore, when representing the iterates on the tangent
space T, , M, the points Exp;irl (z), Exp;irl (y;) and 0 (= Exp;tl+1 (x¢+1)) on the same line as
depicted in Figure 2. Therefore, it is easy to see from Figure 2 that

d (41, 2t) = day oy (Te1, ) = (L — ug1)day 1y (Y, 26) = (1 — agr) - d (yr, 21) -

Substituting this identity to the left hand side of (F.3), (F.3) becomes:

Bry1(1 — aurr) - d (ye, 2t)

Sdyyyy (Yer1, 2e1) + e =] IV (@),
()
< dflft+1 (yt+1a thrl) + L|77t+1 - 7‘ -d (xtJrl? l’*)

(®)
=dyyyy (Y15 2601) + L1 — ) - d (D41, 24)

©)
<dyyyy (Yet1, 2041) + LNer1 — ) - d (@41, 98) + L(epr — ) - d (y, o)

=du,py (Y415 2641) + Lowpr(epr — ) - d (Y, 20) + L(esr — ) - d (ye, )

where (&) follows from the geodesic L-smoothness of f: ||V f(xi41)]| < L - d(xp41,24);

Tt+1 —

and (&) is due to the fact that 441 — v = 2A7§t_+11 —y = fyf;rll(Z — Ly — &41) > 0 since
2 — &41 — vL > 0 from (E.2); (V) follows from the Riemannian triangle inequality d (2441, z+) <
d (x¢41,y¢) + d (ye, x+); and the last line follows from the identity d (x¢+1,y:) = 41 - d (Ye, 2t)
(see Figure 2).

Moving the term Loy y1(ni+1 — ) - d (yt, 2¢) to the LHS, we then obtain:

[Bre1(1 — apg1) — Logr (e — )] - d (ye, 2) < dayyy (Yig1, 2e41) + L(eer — ) - d (ye, 24 -
(F4)

Since we have seen from Proposition F.1 that the both terms on the right hand side of (F.4) are
shrinking, one can prove that d (y;, 2;) is shrinking as long as one can guarantee that 3;,1(1 —
ar+1) — Laygrq (41 — ) > 0. More formally, Proposition F.2 is a direct consequence the following
two statements:
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1. The RHS of (F.4) is upper bounded by \/ Dy H ([ %) .

1-2uA &) .
2. Bi1(1— agsr) — Logsr (st — ) > JT”&H (YL = 1)(7L — 1 + 2uA.). Indeed, with
this lower bound one can guarantee that B;11(1 — a¢4+1) — Laygt1 (41 — ) is positive due to
(F2): yL > Land 1 — 2uA & > 1 —2uA, - (2uA,) "1 = 0.

Now let us prove the above two statements. From the third conclusion of Proposition F.1, we have

Aoy (Yi415 Ze41) \/ Dy ]_[1“rl 1-¢&)- <\/g + //FIAW ) Moreover, from the second conclusion

of Proposition F.1, we have:

L(ner1r =) - d(ye, 2) < Lnegr - d (ye, w2) < Lopeyr - \/Do [T (1 -¢) \/%
< DIl (1-)- £, /2,

where the last inequality uses Ln;y; = 2LA7£;+11 < 2LA,(2pA,) 7t < % Hence, the first
statement follows.
Now, let us prove the second statement. We first recall the parameters in Algorithm 1 for

reader’s convenience: For A, 1= ~y(1 — Lvy/2), apq1 = % Bry1=1— 2,u,A7§t_+11, and

N4+l = 2A7§t_+11. Now substitutmg these parameters to the coefficient, we have:

Bry1(1 — aq1) — Lagy1(nerr — )

1y 1 =&4 §t41 — 2uA —1
=(1—2uA,&5t —L 7 (2A —
( 12 ’Y€t+1)1 . 2MA’Y 1— QHA’Y ( “/gt+l "Y)
1 - 2/‘Aw§t_+11

= 77T 1 — —2LA L

Further simplifying the last expression, one obtains the second statement:

1—2uA &5t
Ber1(1 — aug1) — Lo (g1 — ) = 2F L [(yL — 1)? + (YL — 1)é441]
1—2uA,

1—2uA 67

e S (VTR R

where the last line follows from the facts {1 > 2uA, and vL — 1 > 0. |

Now, we are finally ready to provide the formal statement and the proof of Lemma 4.2:

Lemma F.1 (Formal statement of Lemma 4.2) Assume that i > 0. Let Dy := f(x¢) — f(z4) +
ﬁfg cd (wo, )% IfyL > 1, vL < 2 — &4 and £ > 2uA, then Algorithm 1 satisfies:

d(wer1,2001) < Cu,Ly

(\f [ 7 [) 2LA,+1-2uA)

_ L /2
where Cyi,1y = (YL=1)(vL—1+2pAy) T \/;
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Proof We again recall the parameters in Algorithm 1 for reader’s convenience: For A, := (1 —
—2uA _ _

Lv/2), cy1 = %, Bii1=1— 2,uAﬂ,§t+11, and 1,41 = 2A7§t+11. Now, one can use the

Euclidean triangle inequality on T, , M (see Figure 2) to obtain:

d(Tet1, 2041) = dayyy (T4, 2041)
< Begr - d (@1, 2) + nesr - [V f (@),
(;) Bev1 - d (@41, 2) + Ly - d (T41, 74)
(;) Bi1 - d (@1, 2) + Lopgr - d (241, 9e) + Liegr - d (Y, 24
2 (Be41(1 = ug1) + Liprrongr) - d (Yo, 20) + Ly - d (ye, o)

© . 12006
= (1 575.1,.1 + 2LA7)—1 — QMA,Y

d (ye, ze) + 2LA7§5_+11 d (Y, 74)
where (&) is due to the geodesic L-smoothness of f, which implies ||V f(z41)|| < L - d (2441, T4);
(#) is due to Riemannian triangle inequality; () is due to (3.1a) (see Figure 2); and (¢) follows from
the choice of parameters in Algorithm 1.

Now after we apply Propositions F.1 and F.2 to the last upper bound, and use the fact {,1 €
[2pA, 1) to upper bound & 41’s in the resulting upper bound, Lemma F.1 readily follows. |

Appendix G. Proof of global acceleration (Theorem 4.1)

We first recall the assumptions in the theorem statement for reader’s convenience:

O0<pu<Land~L € (1,2 — /#/L].

We first demonstrate that regardless of what initial value £y > 0 we choose, & becomes less than
\/ 11/ L after a few iterations. Before the demonstration, we denote by &1 = 741 (&;) the recursion
{&:} in Algorithm 1 follows. In other words, given & > 0, &.+1 = T1+1(&) is defined as the unique
&4+1 > 0 satisfying:
Ee1(&r1 — 2pAS) _ &
(1 =&+ Ot1

Proposition G.1 If&y > /u/L, then & < \/pu/L for all t whenever
. log (%0 — v/218,)/(/1/L — \/2188))
log (1/(1 - %))

If§o < \/H/L, then § < \/#/L for all t > 0.

Proof At some iteration ¢, we consider two cases depending on whether & < |/2uA, or not:

(G.1)

1. First, if & < \/2uA, then we evidently have {y < /2uA, for all ' > t. This is due to the
fact that the fixed point £(d;) is always less than /2uA., together with Lemma D.1.
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2. Next, consider the case { > /2uA,. We may assume that {11 > /2uA, (otherwise,
& < \/2puA for t' > t + 1 due to the first case). Then, the mean value theorem implies:

St+1 — \/m =71(&) — Tt+1(Tt+1(\/2,uT))
@ 1 < 4 2uA,

5+5 \/5157+1> ( 7'7:+1(\/2,UA ))
< (1= 535 208) - (6 - V2B,

where (&) is due to Proposition D.1 together with §41 > /2uA, = & > 7'1;11(\ /2uA);

(a) follows since %(1 - ﬁ 26? ) for § > 1 is maximized when 6 = 1 and /2uA, <

Tt+1(w /2pA,) due to \/2uA, > €(d441) and Lemma D.1. Hence, the distance between &;
and /2pA., shrinks geometrically.

Combining the two cases, we conclude the proof. |

Ot41

We now study the rate of convergence of {¢;}. To that end, we first study the convergence of
{&(d¢)}. For simplicity, we assume that §y < /u/L. By Proposition G.1, the arguments below
remain true for £y > +/u/ L after we replace ¢t with ¢ + (G.1). We first characterize £(J) near § = 1:

Proposition G.2 Let&(6) := 3 (\/(5 —1)2+80puA, — (6 — 1))f0r5 > 1. Then, 0 < \/2puA—
£(6) < 56— 1) for1 <8 <1+3/(1+ (4ud,)™h).

Proof For simplicity, let us write 6 = 1+d. Then, £(1+d) = (\/d2 + 8uA, (1 + d) d) Using
the inequality /1 +7r > 1+ r for 0 < r < 3, we get the following as long as d + 8 al2 <3

1 )\ 1
> . s _ -
E(1+d) > \/2uA, <1+3d+24,uA d) 2d
/21A
2\/2uA7—<;— g Af)d.

Now all we need to check is that d < 3/(1 + 4#1%) implies d + 8 d2 < 3. Indeed, if d <
3/(1 + ?ﬁ), then we lllave d < 3/(1+ ﬁ) < 3/(3/2) = 2, and hence d + 8uA7d2 =
d(1+—8ww) gd(1+—4ww) <3. [ |

Next, we characterize the behaviour of the function 7 (r) near r = 1.

Proposition G.3 T, (r) <1+ 2kr?for0 <r < \F

Proof Using Taylor expansion, one easily easily verify for 0 < r < 5=~ that

2f
NG and (sinh(Q\/Er)
tanh(y/kr) 2\/kr

Hence, from the definition of 7 (see (4.1)), we obtain the desired bound on 7. |

Sl—kgrz > §1+2m“2.

Combining Propositions G.2 and G.3, we obtain the following results:
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Proposition G.4 /2uA., — &(T,(r)) < kr? for0 <r < /1T 4qu T AT 2f

3 3 /
Proof Note that (@A) T < 2L /n < 1, and hence, 1+(4MA —_ Q\F < 2\f Thus, one

can apply Proposition G.3 for 0 < r < m . 7 and obtain Ty (r) < 1 + 2kr2

Hence, T} (r) <1+ % . ﬁ within the range. Hence, by Proposition G.2, one then obtains

2 3 1
2uAy — ) <rkrcfor0<r< @A) ayn |

IN

Let Dy pyy = 4 /W . ﬁ Then by Lemma F.1, we can deduce that d (x;1, 214+1)

10g(C#,L7’Y' vV Do/Drpv)
log(1/(1—245,))

, the following bound holds:

V

Dy iy Whenever ¢ > 2

9 IOg(Cu,L,’y'\/DiO/'DMHq’Y)
log(1/(1-2p4+)))

«/QIUA f( (d ($t+1,2’t+1))) < ’%CuL'yDO(l - QMAW)t.
From this bound, it follows that & (T} (d (2441, 2e41) ) ) € [\/21Ay — €/2, /2] whenever

t > max log( Loy~ VD0/Dryiy) IOg(QRCZ L»yDo/ﬁ)
2 log(1/(1—2uA,))) " log(1/(1-2u45))) .

. Therefore, Proposition G.4 implies that for ¢

Now having established the convergence rate of {£(J;)}, we translate it into the convergence rate
of {¢;}. Similarly to the proof of Proposition G.1, one can prove that for any 7" > 0,

KTH-—ngnf;(l—»;jf,) er — €(67)].

From this, one can conclude that {1 € [\/2uA, — €, 1/21A, | whenever

i > o d 2198Cinty - VD0/Drepy) 108(26C; 1, Do/e) | log(2y/2uld,/e)
i oe0/-2a, ) k02 )) | g (y(-223))

concluding the proof of the the convergence rate of {¢;} in Theorem 4.1.

Appendix H. Extension to the non-strongly geodesically convex case

In the Euclidean case, it is well-known that one can obtain acceleration guarantees for the non-strongly
convex case from the strongly convex case; see e.g., (Gasnikov and Nesterov, 2018, Theorem 4). In
this section, we extend such an argument to the Riemannian setting and use it to establish accelerated
guarantees for the non-strongly g-convex case under the constant distortion assumption.

To that end, we will need the following properties of the distance function:

Proposition H.1 Let M be a Riemannian manifold with sectional curvatures lower bounded by
—k < 0. Then, for a fixed p € M, the distance function d(z) := 3d (z,p)% : M — R satisfies:

1. dis 1-strongly g-convex in the entire M with Vd(x) = —Exp, ! (p).
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2. For D >0, d is geodesically tan;}(%-smooth within the domain {u € M : d(u,p) < D}.

Proof Let us first verify the strong g-convexity. Let x, y be arbitrary points on M. Then,
d(y,p)? > do(y,p)® = d(2,p)* +d (z,y)* — 2(Exp, ' (p) ,Exp, ' (1)), -

Using the notation d(-) and noting that Vd(z) := —Exp, ! (p), we get

_ 1
d(y) > d(x) +(Vd(x), Exp; ' (1)), + 5 - d(z.9)
which is precisely the definition of geodesic 1-strong convexity (see Definition E.1). Next, we verify
the geodesic smoothness. From the global trigonometry inequality (Proposition C.3),

Vd (2, p)

d(y:p)" Sd(@.p)’ + o s

~d (2,y)* — 2 (Exp, ' (p) , Exp; ' (y)),

which can be rewritten as

L Vrd(@.p)
¢ 2tanh(y/kd (z,p))

d(y) < d(z) + (Vd(z),Exp, " (y)) cd(z,y)? .

From this, one can deduce geodesic tan;{%—smoothness of d (see Definition E.2). |

The next ingredient is the extension of the folklore reduction argument to the Riemannian case:

Proposition H.2 (Reduction argument) Given an accuracy ¢ > 0, a Riemannian manifold M,
and a point xy € M, let ;n > 0 be a constant satisfying p < €/d(z.,z0)%. Suppose that xso) € M is an
€/2-suboptimal solution to mini%ize (f(z) +n/2-d(z, z0)? ). Then, f(zso1) — f(zs) < e

xe

Proof By the definition of 1, we have f(xs1) < f(@s) + 5d (2, x0)2 +5<e [ |

Using Propositions H.1 and H.2, Corollary 3.1 can be extended to the non-strongly g-convex

case by perturbing the cost function. More specifically, when f is geodesically L-smooth, then
f+5-d(x, 20)? is geodesically L + utanﬁ(ﬁ%—smooth and p-strongly convex within {u €
M : d(u,z) < D}. Hence, as long as the algorithm iterates stay within the bounded domain, one

can use the reduction argument to obtain accelerated rate for non-strongly convex costs:
Corollary H.1 Let € € (0, 1) be an arbitrary accuracy, and f be a geodesically L-smooth function.
Assume that there exists D > 0 such that

2 tanh(yv/kD)
VED

2. All iterates of (3.1) with parameters chosen as per Theorem 3.1 with v, = 1/L, pp =

and 6y = Sx(2D) = (%)2 stay within {u € M : d(u,z¢) < D}.

1L e<%.d(z,20)

€
d(zw,z0)?

Then, one can find an e-suboptimal solution to minirﬁize f(z), within O (6*1/ %log(1/€)) iterations,
ze

where the constant involved in O (-) depends only on k, D, L.
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Remark H.3 It is important to note that Corollary H.1 is not a complete result but rather a proof of
concept as it assumes that all iterates with a certain parameter choices stay within a bounded domain.
In particular, it would be interesting to see if such an assumption can be guaranteed following
the arguments in Appendix F. Moreover, compared to the acceleration result from the Euclidean
case (Nesterov, 1983), Corollary H.1 is not fully satisfactory: the target accuracy € > 0 needs to
be chosen beforehand, and an extra log(1/¢€) term appears in the iteration complexity. It would be
interesting to see if one can overcome such shortcomings of the reduction argument, and we leave it
as an open question.

Proof Let us take 1 = €/d(x.,20)?>. Then, Proposition H.2 implies that arbitrary €/2-suboptimal
solution x4, € M to minirj\njize (f(z) +n/2-d(z, 1'0)2) satisfies f(xgo1) — f(z4) <.
e

On the other hand, note that f + § - d (=, 20)? is geodesically L + ,utan;l{%—smooth and

u-strongly convex within {u € M : d(u,z9) < D}. Hence, by choosing v, = 1/L, we have

e VED
A — l 1 L+ d(:}c*,aco)2 ' tanh(y/kD) > l 1 L+ % _ i
T 2L ~ L 2L 4L’
where the inequality follows due to the assumption € < % - d (2, :co)2 . %.

Since all the iterates stay within a subset of diameter DD, Rauch comparison theorem (Proposi-
tion 4.1) implies that the constant distortion condition holds with § = S, (2D). Hence, Corollary 3.1
implies that (3.1) with finds an €/2-suboptimal solution within iterations bounded by

-1
O <\/(5—1)2—|—6-Ld(x(5$0)z—(5—1)> log(2/€) | ,

which is of O (6_1/2 log(1/e)). [ |

Appendix I. Extension to positively-curved manifolds

Let us now assume that the sectional curvatures of M is upper bounded by o > 0. In particular, the
case with o = 0 corresponds to the non-positively curved case. We first pinpoint the main differences:
unlike the the non-positively curved case, M now may not be uniquely geodesic. Instead, one can
only guarantee the property within a local neighborhood of M. Consequently, the notion of geodesic
convexity can be guaranteed only within a local neighborhood of M. For instance, manifolds with
positive sectional curvatures (e.g. spheres) are compact, and hence, they do not admit globally
geodesically convex functions other than the constant functions. Following the prior arts (Dyer et al.,
2015; Zhang and Sra, 2018), we make the following assumptions to avoid any further complications:

™

Assumption 3 The domain N C M of f is uniquely geodesic with the diameter bounded by ENGE

Assumption 4 (Bounded iterates assumption) All the iterates of Algorithm 1 (whose parameters
will be chosen later) remain in N.
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The analysis for the positively curved case is identical to that for the non-positively curved case,
modulo an additional geometric inequality due to (Zhang and Sra, 2018):

Proposition 1.1 ((Zhang and Sra, 2018, Lemma 7)) Let x, y, z be points on Riemannian manifold

M with sectional curvatures upper bounded by o > 0. If d(x, z) < ﬁ, then

do(y,2)° < (1+20-d(2,9)*) - d (y, 2)°

Applying Proposition I.1 to Lemma C.1, we obtain the following metric distortion inequality:

Lemma I.1 (Modification of Lemma C.1) Ler x,2’,y, z be points on Riemannian manifold M
with sectional curvatures upper and lower bounded by o and —r < 0, respectively. If d(x’, z) < ﬁ

then for T, : R>0 — R>1 defined as in Lemma C.1, we have

do(y,2)? < Teld (2,)) - (1+20 - d (2',9)°) - du(y, 2)° .

From Lemma 1.1, one can conclude that at iteration ¢ > 1,
To(d (24, 2)) - (1 + 20 - d (y, 2)%) (I.1)

is a valid distortion rate. Thus, one can use (I.1) in lieu of T (d (¢, z;)) for the valid distortion
rate in Algorithm 1. Then, one can invoke Theorem 3.1 with the chosen valid distortion rate (I.1)
to guarantee the potential decrease. To show that Algorithm 1 with (I.1) eventually achieves full
acceleration, the last ingredient is to show that the distances d (x¢, z;) and d (y;, z;) shrink over
iterations. Indeed, one can prove that the distances shrink following the arguments in Appendix F.
The only difference is that in proving Proposition F.1, one now has the following in place of (F.1):

dxt (yta Zt) S d:ct(?/tvl“*) + dxt(ztax*) S (1 + 772/2) : d(ytvx*) + dxt(2t7$*) ) (12)

where the last inequality is due to Proposition 1.1 together with the bounded iterates assumption
(Assumption 4). Hence the third statement of Proposition F.1 now holds with an additional multipli-
cation constant of 1 + 72 /2. With this modification, the rest follows in exactly the same manner. We
skip the details as they significantly overlap with the non-positively curved case.
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