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Abstract

We propose the first global accelerated gradient method for Riemannian manifolds. Toward estab-

lishing our results, we revisit Nesterov’s estimate sequence technique and develop a conceptually

simple alternative from first principles. We then extend our analysis to Riemannian acceleration,

localizing the key difficulty into “metric distortion.” We control this distortion via a novel geometric

inequality, which enables us to formulate and analyze global Riemannian acceleration.

1. Introduction

Non-convex optimization is in general intractable. But occasionally, special problem structure can

enable tractability. An important instance of such structure is that of geodesic convexity (g-convexity),

a generalization of convexity that is defined along geodesics in a metric space (Gromov, 1978;

Burago et al., 2001; Bridson and Haefliger, 2013). Tractability through the lens of g-convexity has

been fruitful in several applications (e.g., see (Zhang and Sra, 2016, §1.1)) and also some purely

theoretical questions (Bürgisser et al., 2019; Goyal and Shetty, 2019) (see also §1.2 of this paper).

Paralleling the theory and applications of g-convexity is the progress on algorithms, primarily set

in Riemannian manifolds (Udriste, 1994; Absil et al., 2009) and CAT(0) spaces (Bacák, 2014). Earlier

studies focus on asymptotic analysis, while Zhang and Sra (2016) obtain the first non-asymptotic

iteration complexity analysis for Riemannian (stochastic) gradient methods. Subsequent works

establish iteration complexity for Riemannian proximal-point methods (Bento et al., 2017), Frank-

Wolfe (Weber and Sra, 2019), variance reduced methods (Zhang et al., 2016; Kasai et al., 2016;

Zhang et al., 2018; Zhou et al., 2019), trust-region methods (Agarwal et al., 2018), among others.

Despite this progress, a landmark result of Euclidean optimization has eluded the Riemannian

setting: namely, a Riemannian analog of Nesterov’s accelerated gradient method (Nesterov, 1983).

This gap motivates the central question of our paper:

Is it possible to develop accelerated gradient methods for Riemannian manifolds?

This natural question turns out to be highly non-trivial: Nesterov’s analysis relies deeply on the linear

structure of Euclidean space, and recent efforts could make only partial progress–see §1.2 for details.

1.1. Overview of our main results

We take a major step toward answering the above question by developing the first global accelerated

first-order method for Riemannian manifolds, informally stated as Theorem 1.1; the formal statement

is Theorem 4.1. Toward establishing Theorem 1.1 we first revisit Nesterov’s (Euclidean) estimate

sequence technique (§2) and develop an alternative analysis based on potential functions (Lyapunov

functions (Lyapunov, 1992)). See §5 for precise positioning of our approach within existing work.

c© 2020 K. Ahn & S. Sra.
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Theorem 1.1 (Informal) Let f be L-smooth and µ-strongly convex in a geodesic sense. Then, there

exists a computationally tractable optimization algorithm satisfying

f(xt)− f(x∗) = O ((1− ξ1)(1− ξ2) · · · (1− ξt)) ,
where {ξt} satisfies (i) {ξt}t≥1 > µ/L (strictly faster than gradient descent); and (ii) ∃λ ∈ (0, 1)

such that ∀ǫ > 0, |ξt −
√

µ/L| ≤ ǫ, for t ≥ Ω
( log(1/ǫ)
log(1/λ)

)
(eventually achieves full acceleration).

Remarkably, the parameters of the algorithm determined—from first principles—by our analysis

exactly satisfy the complicated recursive relations derived by Nesterov, thereby offering a simple,

new alternative to his techniques (§2.3). Moreover, we develop a simple fixed-point iteration that

reveals how accelerated convergence rates can be obtained from such complicated recursive relations

(§2.4), again providing an elementary alternative to Nesterov’s original analysis.

Building on this new viewpoint, we extend our approach to the Riemannian setting (§3 and §4).

Here, we introduce a crucial but a priori non-obvious modification to the potential function (§3.2).

Specifically, we propose using “projected distances” instead of Riemannian distances in the potential

function, which helps us localize the main difficulty caused by Riemannian geometry into “metric

distortion.” Already for the simplified setting of constant metric distortion, our analysis implies the

local acceleration results of (Zhang and Sra, 2018) (Corollary 3.2). To tackle global acceleration, we

establish a novel metric distortion inequality based on comparison theorems in Riemannian geometry

(§4.1). We then show how distortion can be estimated at each iteration based, which proves critical

to obtain a computationally tractable algorithm (Algorithm 1). We show that distortion decreases

over iterations (§4.2), which ultimately leads to Theorem 1.1 (formal result, Theorem 4.1).

1.2. Related work

A few recent works also seek to answer the main question of this paper. The first attempt (Liu

et al., 2017) reduces the task to solving nonlinear equations, but it is unclear whether these equations

are even feasible or tractably solvable. Alimisis et al. (2020) establish a Riemannian analog of the

differential-equation approach to acceleration (Su et al., 2014), and they analyze second-order ODEs

on Riemannian manifolds. Then, they employ discretization from the Euclidean case (Betancourt

et al., 2018; Shi et al., 2019) to derive first-order methods. But it is unclear whether these methods

achieve acceleration, as such discretization does not directly yield Nesterov’s method even in the

Euclidean case. Moreover, as we shall see (Remark 4.2), their global control of metric distortion

cannot capture full acceleration; one must control metric distortions locally. See § 4.1 for details.

The most concrete progress is in (Zhang and Sra, 2018) that proves accelerated convergence,

albeit only locally in a neighborhood whose radius vanishes as the condition number and the curvature

bound grow. They do not characterize how the algorithm behaves outside such a local neighborhood,

in stark contrast with our global acceleration result. See §3.2 for a detailed comparison.

2. Warm up in the Euclidean case: alternative analysis of Nesterov’s optimal method

As a building block for the Riemannian setting, let us revisit the Euclidean setting. In particular, we

consider Nesterov’s optimal method which is derived based on an ingenious construction called an

estimate sequence (2018, Ch. 2.2.1): For t ≥ 0, the iterates are updated as

xt+1 ← yt + αt+1(zt − yt) (2.1a)

yt+1 ← xt+1 − γt+1∇f(xt+1) (2.1b)

zt+1 ← xt+1 + βt+1(zt − xt+1)− ηt+1∇f(xt+1), (2.1c)
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for given initial iterates y0 = z0 ∈ R
n. This construction yields optimal first-order methods that

achieve the lower bounds under the black-box complexity model (Nemirovski and Yudin, 1983).

Note that the updates (2.1) can be also derived without resorting to estimate sequences: for instance,

see Appendix A for a derivation based on the linear coupling framework due to Allen-Zhu and

Orecchia (2017) and see (Ahn, 2020) for a derivation based on the proximal point method.

Despite its fundamental nature, there is a well-known puzzling aspect of Nesterov’s construction:

To guarantee the standing assumption of the estimate sequence technique (2018, (2.2.3)), Nesterov’s

original analysis (2018, page 87) finds complicated recursive relations between parameters α, β, γ, η
via some non-trivial algebraic “tricks.” These tricks are carried out in a fortuitous manner, obscuring

the driving principle and the scope of the underlying technique. Notably, Zhang and Sra (2018) favor

estimate sequences over other approaches, but still achieve only local acceleration.

Therefore, in our search for global acceleration, we first revisit Euclidean acceleration from

first-principles. In particular, we provide an alternative analysis of iteration (2.1) that sheds new light

on the scope of Nesterov’s original analysis. Our analysis employs a potential function1, a classical

tool from control theory (Lyapunov, 1992) that has received a resurgence of interest recently (see §5).

Roughly, the potential-function analysis proceeds as follows:

1. Choose potential: First, choose an error measure Et that “measures” how close the iterates at

step t are to the optimal solution; then define the potential function as Φt := AtEt.
2. Ensure potential decrease: Choose an increasing sequence At so that Φt is decreasing.

Once Φt is chosen as above, it implies that Et ≤ E0/At, yielding a convergence rate of O (1/At).

2.1. Choosing the potential function

The key to potential function based analysis is to choose the “correct” performance measure. For an

iterate ut at step t, two prototypical choices are (i) the suboptimality Et = f(ut)− f(x∗); and (ii)

the distance to an optimal point ‖ut − x∗‖. Indeed, many existing analyses correspond to choosing

either one as the performance measure, as explicitly noted in (Bansal and Gupta, 2019).

For iteration (2.1), it turns out that a weighted sum of the suboptimality f(yt)− f(x∗) and the

distance ‖zt − x∗‖2 is the “correct” performance measure, i.e., we choose the potential function as

Φt := At · (f(yt)− f(x∗)) +Bt · ‖zt − x∗‖2 , (2.2)

for some At > 0 and Bt ≥ 0. By taking a weighted sum of the two measures, this performance

measure does not require either one to be monotonically decreasing over iterations. This property,

also known as non-relaxational property, was a key innovation in Nesterov’s landmark work (1983).

Why we choose yt for the cost and zt for the distance will become clearer soon (see Remark 2.3).

We note that the current form of the potential (2.2) is not new; it also appears in prior works (Wil-

son et al., 2016; Diakonikolas and Orecchia, 2019; Bansal and Gupta, 2019), although with different

motivations; see §5 for a detailed perspective; see also Appendix A for additional connections.

2.2. Potential difference calculations

Having chosen the potential function (2.2), the main goal now is to choose the parameters At+1,

Bt+1, αt+1, βt+1, γt+1, ηt+1 so that the potential decreases, i.e., Φt+1 − Φt ≤ 0. To that end, we

1Also known as Lyapunov function in control theory or invariant in theoretical computer science and mathematics.
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first express the potential difference Φt+1 − Φt more simply and derive a manageable upper bound

using first principles. Using definition (2.2), the difference Φt+1 − Φt can be split into two parts:

At+1 · (f(yt+1)− f(x∗))−At · (f(yt)− f(x∗)) (2.3)

+ Bt+1 · ‖zt+1 − x∗‖2 −Bt · ‖zt − x∗‖2 . (2.4)

Since α, β, γ, η will only appear with index t+1, we drop their subscripts for simplicity. We first

relate the terms for step t+ 1 with those for step t. To do that, we recast (2.1). Using the notation

Grads·∇(x) := x− s · ∇, we rewrite the updates (2.1b) and (2.1c) as

yt+1 = Gradγ·∇f(xt+1)(xt+1) (2.1b′)

zt+1 = Gradη·∇f(xt+1)(xt+1 + β(zt − xt+1)) , (2.1c′)

respectively. Now the difference between (2.1b′) and (2.1c′) is clear: the first is an exact gradient

step in the sense that ∇ = ∇f(x), while the second step is inexact. Hence, in relating the terms for

step t+ 1 with those for step t, we need to invoke different analyses for two different gradient steps.

We begin with two folklore results for gradient steps corresponding to exact and inexact steps.

Proposition 2.1 (Descent lemma) Assume∇ = ∇f(x), and let y = Grads·∇(x). If f is L-smooth,

then the gradient step decreases cost: f(y)− f(x) ≤ −s (1− Ls/2) ‖∇‖2.

Proposition 2.2 Let z = Grads·∇(x). Then, for any x∗, ‖z − x∗‖2 − ‖x− x∗‖2 = s2 ‖∇‖2 +
2s 〈∇, x∗ − x〉, i.e., (inexact) gradient step decreases the distance to x∗ as long as direction −∇ is

well aligned with the vector x∗ − x and has sufficiently small norm.

Remark 2.3 The two steps above reveal why we use yt for the cost term and zt for the distance

term in (2.2): Proposition 2.1 deals with the cost, while Proposition 2.2 deals with the distance.

Now we apply Proposition 2.1 to (2.1b′) and Proposition 2.2 to (2.1c′). For clarity, we denote:

∆γ := γ(1− Lγ/2) , ∇ := ∇f(xt+1) , X := xt+1 − x∗ , and W := zt − xt+1 . (2.5)

With this notation, Propositions 2.1 and 2.2 imply: f(yt+1) ≤ f(xt+1)−∆γ ‖∇‖2 and ‖zt+1 − x∗‖2 =
‖X + βW‖2 + η2 ‖∇‖2 − 2η 〈∇, X + βW 〉. Plugging these two back into to (2.3) and (2.4), one

can derive the following upper bound on Φt+1 − Φt in terms of the vectors ∇, X,W from first

principles (i.e., using only smoothness and (strong) convexity; see Appendix E.1):

Φt+1−Φt ≤ C1·‖W‖2+C2·‖X‖2+C3 ‖∇‖2+C4·〈W,X〉+C5·〈W,∇〉+C6·〈X,∇〉 , (2.6)

where





C1 := β2Bt+1 −Bt − µ
2

α2

(1−α)2At , C2 := Bt+1 −Bt − µ
2 (At+1 −At) ,

C3 := η2Bt+1 −∆γ ·At+1 , C4 := 2 · (βBt+1 −Bt) ,

C5 := α
1−α

At − 2βηBt+1 , and C6 := (At+1 −At)− 2ηBt+1 .

Notice that the three vectors∇,X ,W are rooted at xt+1. This choice is deliberate; it proves crucial

in the Riemannian case where we will need them to lie in the same tangent space. See Appendix E.3.

2.3. Ensuring potential decrease

Having established the bound (2.6), our goal is to now choose At+1, Bt+1, α, β, γ, η given At, Bt so

that (2.6) is non-positive (recall that we have dropped indices of αt+1, βt+1, γt+1, ηt+1). In general,
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it is difficult to ensure non-positivity of a symbolic expression; but since (2.6) is a quadratic form,

one avenue might be to turn it into a negative sum of squares (“−SoS”). The simplest strategy to

make it “−SoS” would be to try to make the coefficients C4, C5, C6 of the cross terms 0, while

making C1, C2, C3 non-positive. It turns out this strategy fully determines the parameters, as follows:

� Coefficients of cross terms characterize α, β, η in terms of At+1, Bt+1: From C6 = 0, we get

η = (At+1 − At)/(2Bt+1), and from C4 = 0, we get β = Bt/Bt+1. Plugging these choices

into C5 = 0, we obtain the equation α
1−αAt = (At+1 −At)Bt/Bt+1. To summarize:

η = At+1−At

2Bt+1
, β = Bt

Bt+1
and α

1−α = (At+1−At)Bt

AtBt+1
. (2.7)

� For a fixed γ, coefficients of squared terms determines At+1, Bt+1 based on given At, Bt:

Beginning with C3 ≤ 0, we replace η with the one from (2.7) to obtain the inequality

(At+1 −At)
2/(4∆γ ·At+1) ≤ Bt+1 . (2.8)

Plugging (2.8) into C2 ≤ 0, we get an inequality only in terms of At+1 (assuming γ is fixed):

(At+1 −At)
2/(4∆γ ·At+1)− (At+1 −At)

µ
2 ≤ Bt . (2.9)

Recall that we need to choose At+1 as large as possible; it turns out that the largest possible At+1

satisfies (2.9) with equality (hence (2.8) as well). To see why, let us follow Nesterov’s notation

and use the suboptimality shrinking ratio 1− ξ := At/At+1.2 With this, inequality (2.9) becomes:

ξ(ξ − 2µ∆γ)/(1− ξ) ≤ 4∆γ ·Bt/At . (2.10)

In (2.10) note that the RHS is a nonnegative constant (assuming ∆γ > 0 is already chosen) and

the LHS is an increasing function on [2µ∆γ , 1) whose value is 0 at 2µ∆γ and approaches +∞
as ξ → 1. Hence, the largest ξ (equivalently, the largest At+1) satisfies (2.10) (or equivalently,

(2.9)) with equality. Consequently, this choice of ξ also satisfies (2.8) with equality. One can

then verify that this choice satisfies β2Bt+1 ≤ Bt and hence implies C1 ≤ 0 (see Appendix E.2).

� Lastly, choose γ from (0, 2/L): Now the last variable to determine is γ. The above calculations

are valid as long as ∆γ > 0, so we can arbitrarily choose γ in (0, 2/L). Note that most accelerated

methods in the literature choose γ = 1/L since it is the maximizer of ∆γ .

Combining the above identities, we can express At+1, Bt+1, α, β, η in terms of ξ, γ, µ, L; see

Appendix E.2. After recovering the indices of α, β, γ, η, our findings can be summarized in the main

result of this section as follows (see Appendix E.2 for the proof):

Theorem 2.1 (Parameter choice for potential decrease) Given yt, zt and At, Bt > 0 and γt+1 ∈
(0, 2/L), let ∆γ := γt+1(1− Lγt+1/2) and ξt :=

√
4∆γ · Bt/At. Then, choose parameters as per:

1. Compute ξt+1 ∈ [2µ∆γ , 1) satisfying
ξt+1(ξt+1−2µ∆γ)

1−ξt+1
= ξ2t . (2.11)

2. Determine parameters based on ξt+1: At+1 = At

1−ξt+1
, Bt+1 =

ξ2t+1

1−ξt+1
· At

4∆γ
, αt+1 =

ξt+1−2µ∆γ

1−2µ∆γ
, βt+1 = 1− 2µ∆γξ

−1
t+1, and ηt+1 = 2∆γξ

−1
t+1.

Then, yt+1, zt+1 defined as per iteration (2.1) satisfy Φt+1 ≤ Φt (see (2.2)), or equivalently,

f(yt+1)− f(x∗) +
ξ2t+1

4∆γ
· ‖zt+1 − x∗‖2 ≤ (1− ξt+1) ·

[
f(yt)− f(x∗) + ξ2t

4∆γ
· ‖zt − x∗‖2

]
.

2Nesterov’s analysis finds αi ∈ (0, 1) s.t. f(yt)− f(x∗) ≤
∏t

i=1(1− αi) ·
[

f(x0)− f(x∗) + C ‖x0 − x∗‖
2]

for

a constant C > 0 and iterate x0 (2018, Thm. 2.2.1)). These αi’s exactly correspond to our suboptimality shrinking ratios.
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Remarkably the parameter choices obtained by Theorem 2.1 exactly match those of Nesterov’s

“General Scheme for Optimal Method” (2018, (2.2.1)). Hence, our approach recovers Nesterov’s

optimal method that encompasses both strongly and non-strongly convex costs, without requiring the

estimate sequence technique. Another byproduct of our analysis is the convergence of zt to x∗ for

µ > 0 (in which case, ξ > 0), a property otherwise proved via additional analysis (see e.g., (Gasnikov

and Nesterov, 2018, Corollary 1)). This convergence plays a crucial role in the Riemannian setting

(see §4.2). Observe that upon applying Theorem 2.1 recursively, we can deduce that

f(yt)− f(x∗) = O ((1− ξ1)(1− ξ2) · · · (1− ξt)) . (2.12)

Thus, to identify the convergence rate of iteration (2.1) with parameters chosen via Theorem 2.1, we

only need to study how the sequence {ξt} evolves. This evolution is the focus of the next subsection.

2.4. Identifying the convergence rate of (2.1): a simple analysis based on fixed-point iteration

We study evolution of ξt for the strongly convex case (µ > 0) assuming that γt is fixed to a constant

γ ∈ (0, 2/L); this assumption is not stringent as most works in the literature choose γt ≡ 1/L.

Our approach offers an alternative to its counterpart in Nesterov’s book (2018, Lemma 2.2.4).
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Figure 1: An illustration of the evo-

lution of (2.13) for 2µ∆γ = 0.25.

We plot φ =
v(v−2µ∆γ)

(1−v)
in blue and

ψ(v) = v2 in red.

In contrast to Nesterov’s analysis based on clever algebraic manipu-

lations, our approach directly analyzes the evolution of the sequence

by studying a simple fixed point iteration. More importantly, our

fixed-point based approach generalizes better to the Riemannian set-

ting. As byproduct of our approach, we can also remove a technical

condition on ξ0 required by Nesterov’s analysis. See Remark 2.4.

Now let us examine the recursive relation satisfied by ξt. Recall

from Theorem 2.1 the following nonlinear recursive relation on ξt’s:

ξt+1(ξt+1 − 2µ∆γ)/(1− ξt+1) = ξ2t . (2.13)

Our objective is to characterize the evolution of ξt. Intuitively, (2.13)

can be construed as a recursive relation for computing the root of

φ(v) = ψ(v), where φ(v) :=
v(v−2µ∆γ)

(1−v) and ψ(v) := v2. Since the

root is equal to v =
√

2µ∆γ , one can guess that ξt →
√
2µ∆γ . See

Figure 1 for illustration. The following lemma confirms this guess.

Lemma 2.1 (Evolution of (2.13)) For an arbitrary initial value ξ0 ≥ 0, let ξt (t ≥ 1) be the

sequence of numbers defined as per (2.13). Then, ξt ∈ [2µ∆γ , 1) for all t ≥ 1. Furthermore, if










ξ0 >
√

2µ∆γ ,

ξ0 =
√

2µ∆γ ,

ξ0 <
√

2µ∆γ ,

then











ξt ց
√

2µ∆γ as t→ ∞ .

ξt ≡
√

2µ∆γ .

ξt ր
√

2µ∆γ as t→ ∞ .

In particular, the convergences are geometric.

Proof The proof and the formal statement (Lemma D.1) are provided in Appendix D.

Lemma 2.1 delivers the desired accelerated convergence rate:

Corollary 2.1 If ξ0 ≥
√

2µ∆γ , then f(yt)−f(x∗) = O(
∏t

i=1(1−
√
2µ∆γ)) = O(exp(−t

√
2µ∆γ)).

In particular, setting γ = 1/L, f(yt)− f(x∗) = O(exp(−t
√

µ/L)).
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Remark 2.4 (Removing technical conditions in Nesterov’s analysis) Nesterov’s original analy-

sis requires a technical condition on the initial value ξ0:
√

µ/L ≤ ξ0 ≤ (2(3+µ/L))/(3+
√

21+4µ/L)

(Nesterov, 2018, (2.2.21)). In contrast, our analysis reveals that the upper bound on ξ0 is not needed;

the lower bound is also not needed in the sense that ξt converges to
√
µ/L, the accelerated rate.

3. Generalization to the non-Euclidean case: Riemannian potential function analysis

This section develops the first key ingredient towards obtaining our main theorem (Theorem 4.1),

namely, Theorem 3.1 that is a Riemannian analog of Theorem 2.1.

3.1. Riemannian geometry and Riemannian analog of Nesterov method

We begin by recalling some basic concepts from Riemannian geometry, and defer to textbooks

(e.g., (Jost, 2008; Burago et al., 2001)) for more. A Riemannian manifold is a smooth manifold M
equipped with a smoothly varying inner product 〈·, ·〉x (the Riemannian metric) defined for each

x ∈M on the tangent space TxM . With the concept of length of curves, one can introduce a distance

d on M , and consequently, view (M,d) as a metric space. Length also allows us to define analogs of

straight lines, namely geodesics: A curve is a geodesic if it is locally distance minimizing. The notion

of curvature that we will need is sectional curvature, which characterizes curvature by measuring

Gaussian curvatures of 2-dimensional submanifolds of M . We make the following key assumption:

Assumption 1 We assume that the sectional curvature is lower bounded by−κ for some nonnegative

constant κ. This is a widely used standard assumption in Riemannian geometry; see e.g., (Burago

et al., 2001, Chapter 10) and (Perelman, 1995).

Operations on manifolds. We can define analogs of vector addition and subtraction on Riemannian

manifolds via exponential maps. An exponential map Expx : TxM → M maps v ∈ TxM to

g(1) ∈ M for a geodesic g with g(0) = x and g′(0) = v. Notice that Expx (v) ∈ M is an analog

of vector addition “x + v.” Similarly, the inverse map Exp−1
x (y) ∈ TxM is an analog of vector

subtraction “y − x.” For Exp−1
x to be well-defined for each x, we assume that any two points on M

are connected by a unique geodesic. This property is called uniquely geodesic, and is valid locally

for general Riemannian manifolds and globally for non-positively curved manifolds (more precisely,

manifolds with globally non-positive sectional curvatures). We assume further that Expx,Exp
−1
x can

be computed at each x, as is the case for many widely used matrix manifolds (Absil et al., 2009).3

Convexity. The notion of convexity can be extended to Riemannian manifolds using geodesics where

convex combinations of two points are defined along geodesics connecting them. This generalized

notion of convexity is called geodesic convexity (g-convexity for short) (Gromov, 1978). One can

also define geodesic-smoothness and (strong) g-convexity akin to their Euclidean counterparts.

Assumption 2 We assume that the cost function f is geodesically L-smooth and µ-strongly convex

(formal definitions in Appendix E.3; see also (Zhang and Sra, 2016, Section 2.3)).

Using the above noted Riemannian analogs of vector operations, Nesterov’s method (2.1) turns into:

xt+1 ← Expyt
(
αt+1Exp

−1
yt (zt)

)
(3.1a)

yt+1 ← Expxt+1
(−γt+1∇f(xt+1)) (3.1b)

zt+1 ← Expxt+1

(
βt+1Exp

−1
xt+1

(zt)− ηt+1∇f(xt+1)
)
. (3.1c)

3For computational reasons, exponential maps are often approximated by cheaper approximations (e.g., retractions).

Analyzing the effect of such approximations is not addressed in this paper and is left as an open question.
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See Figure 2 for an illustration of (3.1). Note that updates (3.1b) and (3.1c) are well-defined since

∇f(xt+1) lies in the tangent space TxM . We are now ready to analyze the Riemannian iteration (3.1).

3.2. Riemannian potential function analysis and metric distortion

Since (3.1) is a direct analog of its Euclidean counterpart (2.1), one may be tempted to use the

potential function Ψt := At · (f(y) − f(x∗)) + Bt · d(zt, x∗)2 that is a direct analog of the

potential (2.2). However, it turns out that the following less direct choice is much more advantageous:

Ψt := At · (f(yt)− f(x∗)) +Bt ·
∥∥Exp−1

xt
(zt)− Exp−1

xt
(x∗)

∥∥2
xt
. (3.2)

The distance term in (3.2) is preferable to d(zt, x∗)2 because it lets us use Euclidean geometry (since

it is defined on the tangent space TxtM
∼= R

n) to control it. To simplify notation, we define:

Definition 3.1 (Projected distance) For any three points u, v, w ∈ M , the projected distance

between v and w with respect to u is defined as du(v, w) :=
∥∥Exp−1

u (v)− Exp−1
u (w)

∥∥
u
.

There is, however, one fundamental hurdle inherent to comparing distances in the Riemannian

setting: we need to handle the incompatibility of metrics between two different points. A key

advantage of the potential function analysis is that one only needs to focus on comparing the distances

appearing in adjacent terms, namely Ψt and Ψt+1, which simplifies the argument considerably.

Motivated by the potential (3.2), we define the following quantity for comparing distances:

Definition 3.2 (Valid distortion rate) We say δt is a valid distortion rate at iteration t ≥ 1 if the

following inequality holds: dxt(zt−1, x∗)2 ≤ δt · dxt−1(zt−1, x∗)2.

Assuming the existence of valid distortion rates at each iteration, we can analyze iteration (3.1)

analogously to the analysis in §2.2 and §2.3 to obtain the main result of this section.

Theorem 3.1 (Riemannian analog of Theorem 2.1) Given yt, zt and At, Bt > 0 and γt+1 ∈
(0, 2/L), let ∆γ := γt+1(1− Lγt+1/2) and ξt :=

√
4∆γ · Bt/At. Assume that δt+1 > 1 is a valid

distortion rate at iteration t+ 1. Let us choose parameters as per:

1. Compute ξt+1 ∈ [2µ∆γ , 1) satisfying
ξt+1(ξt+1−2µ∆γ)

1−ξt+1
= 1

δt+1δt+1δt+1
ξ2t . (3.3)

2. Compute At+1, Bt+1, αt+1, βt+1, ηt+1 as in Theorem 2.1.

Then, yt+1, zt+1 generated via iteration (3.1) satisfy Ψt+1 ≤ Ψt (see (3.2)), or equivalently,

f(yt+1)− f(x∗) +
ξ2t+1

4∆γ
· dxt+1(zt+1, x∗)

2 ≤ (1− ξt+1) ·
[
f(yt)− f(x∗) + ξ2t

4∆γ
· dxt(zt, x∗)

2
]
.

Proof We sketch the proof here, deferring precise details to Appendix E.3. The proof resembles the

arguments in §2.2 and §2.3, except for the appearance of valid distortion rates in (3.3). Using the

Riemannian analogs of Propositions 2.1 and 2.2, the following vectors lying in the same tangent

space Txt+1M constitute counterparts of (2.5):

W̃ := Exp−1
xt+1

(zt) , X̃ := −Exp−1
xt+1

(x∗) , and ∇̃ := ∇f(xt+1) , (3.4)

With these vectors, akin to (2.6), it is again straightforward to derive the following upper bound on

Ψt+1 −Ψt in terms of the vectors ∇̃, X̃, W̃ (here, ‖·‖ denotes ‖·‖xt+1
and 〈·, ·〉 denotes 〈·, ·〉xt+1

):
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Ψt+1−Ψt ≤ C̃1·‖W̃‖2+C̃2·‖X̃‖2+C̃3‖∇̃‖2+C̃4·〈W̃ , X̃〉+C̃5·〈W̃ , ∇̃〉+C̃6·〈X̃, ∇̃〉, (3.5)

where





C̃1 := β2
t+1Bt+1 − Bt

δt+1δt+1δt+1
− µ

2

α2
t+1

(1−αt+1)2
At , C̃2 := Bt+1 − Bt

δt+1δt+1δt+1
− µ

2 (At+1 −At) ,

C̃3 := η2t+1Bt+1 −∆γ ·At+1 , C̃4 := 2 ·
(
βt+1Bt+1 − Bt

δt+1δt+1δt+1

)
,

C̃5 := αt+1

1−αt+1
At − 2βt+1ηt+1Bt+1 , and C̃6 := (At+1 −At)− 2ηt+1Bt+1 .

See Appendix E.3.1 for details. Notice the similarity between (3.5) and (2.6): the only difference is

that the Bt’s in (2.6) are replaced with Bt/δt+1’s here. This difference is attributed to the definition

of valid distortion rate (Definition 3.2); also, in the derivation of (3.5), we use −Bt · dxt(zt, x∗)
2 ≤

− Bt

δt+1
· dxt+1(zt, x∗)

2, which precisely accounts for the appearance of Bt/δt+1 instead of Bt.

Having this counterpart (3.5) of (2.6), we follow §2.3 to make (3.5) a negative sum of squares.

It turns out that due to similarity between (3.5) and (2.6), the same derivation holds modulo the

appearance of δt+1 in the denominator of (3.3). See Appendix E.3.2 for precise details.

As before, we can deduce from Theorem 3.1 the suboptimality gap bound (2.12). Hence, to identify

the convergence rate we only need to determine the evolution of {ξt}. We provide an illustrative

example below, before moving onto the full accelerated algorithm in §4.

Illustrative example: constant distortion rate. Assume that µ is positive4, and consider the

simplified case where δt ≡ δ ≥ 1 for all t ≥ 0. Under this constant distortion condition, similarly to

recursion (2.13), one can obtain a recursive relation on {ξt} by choosing γt ≡ γ:

ξt+1(ξt+1 − 2µ∆γ)/(1− ξt+1) = ξ2t /δδδ . (3.6)

Analogously to Lemma 2.1, we can establish geometric convergence of ξt to the fixed point ξ(δ)
of (3.6) (see Lemma D.1). Solving for ξ(δ) explicitly, we obtain the following analog of Corollary 2.1:

Corollary 3.1 Assume µ > 0. If ξ0 ≥ ξ(δ) := 1
2

√
(δ − 1)2 + 8δµ∆γ − 1

2(δ − 1), then the

following convergence rate holds: f(yt)− f(x∗) = O
(∏t

i=1(1− ξ(δ))
)
= O

(
exp(−t · ξ(δ))

)
. In

particular, setting γ = 1/L, f(yt)− f(x∗) = O
(
(exp

(
− t

2{
√
(δ − 1)2 + 4δµ/L− t

2(δ − 1)}
))

.

A notable aspect of Corollary 3.1 is that it characterizes a trade-off between the metric distortion and

the convergence rate of the resulting algorithm. This point is elaborated by the following remark:

Remark 3.3 (Properties of ξ(δ)) When there is no distortion, i.e., δ = 1, then ξ(1) =
√
2µ∆γ

since (3.6) becomes (2.13). Moreover, one can verify that ξ(δ) is (strictly) decreasing in δ, implying

that the algorithm’s performance gets worse as the distortion gets severer (see Appendix D.1 for

verification). Hence, ξ(δ) > limδ→∞ ξ(δ) = 2µ∆γ for all δ > 1, implying that the convergence

rate is always strictly better than gradient descent no matter how severe the distortion is.

The above example already recovers the local acceleration result of Zhang and Sra (2018). More

specifically, they showed that if d(x0, x∗) is bounded by 1/20 · κ1/2(L/µ)−3/4, then the distortion is

bounded by δ = 1 + 1/5 · (L/µ)−1/2; see Appendix F therein. Simplifying ξ(δ) for this choice of δ,

we obtain the following strengthening of their main result (Zhang and Sra, 2018, Theorem 3):

Corollary 3.2 (Local acceleration) Let δ = 1 + 1
5 · (µ/L)1/2, γ = 1/L and ξ0 ≥ ξ(δ). Then,

assuming d (x0, x∗) ≤ 1
20 · κ1/2(µ/L)3/4, we have f(yt) − f(x∗) = O(exp(− 9

10 t
√

µ/L)). In

particular, ξt = ξ(δ) for all t ≥ 0, recovers (Zhang and Sra, 2018, Algorithm 2).

4One can also obtain the results for the case µ = 0 from the case µ > 0 through well-known folklore reductions, e.g.,

(Gasnikov and Nesterov, 2018, Theorem 4); see Appendix H.
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4. Riemannian Accelerated Gradient Method

Thus far, the analysis assumed existence of valid distortion rates. But the key question is: are

valid distortion rates available to the method? We provide a positive answer below and therewith

propose a new Riemannian accelerated gradient method. For clarity, we will focus on Riemannian

manifolds with globally non-positive sectional curvatures unless stated otherwise; the development

for positively-curved manifolds is analogous and is deferred to Appendix I.

4.1. Valid distortion rates and Riemannian accelerated gradient method

We estimate metric distortion by first invoking a classical comparison theorem of Rauch (1951).

Proposition 4.1 Let x, y, z ∈M , a Riemannian manifold with curvature lower bounded by−κ < 0.

Let Sκ(r) :=
( sinh(√κr)√

κr

)2
; then, we have d (y, z)2 ≤ Sκ(max{d (x, y) , d (x, z)}) · dx(y, z)2.

Proof A direct consequence of the Rauch comparison theorem; see Appendix C.

Applying Proposition 4.1 to the points xt, zt, x∗, it is straightforward to conclude:

dxt+1(zt, x∗)
(♣)

≤ d (zt, x∗)
2
(♠)

≤ Sκ(max{d (xt, zt) , d (xt, x∗)}) · dxt(zt, z∗)
2 ,

where (♣) is due to Topogonov’s comparison theorem (see e.g., (Burago et al., 2001, Section 6.5));

and (♠) is due to Proposition 4.1. Hence, δt = Sκ(max{d (xt, zt) , d (xt, x∗)}) is a valid distortion

rate. Unfortunately, this distortion rate depends on d(xt, x∗), which is in general unavailable to the

algorithm. We overcome this crucial issue by developing a new distortion inequality.

Lemma 4.1 (Improved metric distortion inequality) Let x, y, z be points on Riemannian mani-

fold M with sectional curvatures lower bounded by −κ < 0. Then for Tκ : R≥0 → R≥1 defined as

Tκ(r) :=

{
max

{
1 + 4

( √
κr

tanh(
√
κr)
− 1
)
,
( sinh(2√κ·r)

2
√
κ·r

)2}
, if r > 0,

1, if r = 0,
(4.1)

the following inequality holds: d (y, z)2 ≤ Tκ(d (x, y)) · dx(y, z)2.

Proof The proof uses Proposition 4.1 and a Riemannian trigonometric inequality due to (Zhang and

Sra, 2016, Lemma 6). See Appendix C for a formal statement and the proof.

Note that Tκ behaves similarly to Sκ. Most importantly, limr→0+ Tκ(r) = 1, implying that the effect

of distortion diminishes as the distance decreases. Hence, one can essentially regard Lemma 4.1

as a version of Proposition 4.1 in which the term max{d (x, y) , d (x, z)} is replaced with d (x, y).
Thanks to Lemma 4.1, now we have Tκ(d (xt, zt)) as a valid distortion rate, which is accessible to

the algorithm at iteration t. Therefore, we propose the following algorithm:

Algorithm 1 (Riemannian accelerated gradient method) Input: x0 = y0 = z0 ∈ M ; constant

ξ0 > 0; γ ∈ (0, 2/L); ∆γ := γ(1− Lγ/2); integer T .

for t = 0, 1, 2, . . . , T :

Compute the distortion rate δt+1 := Tκ(d (xt, zt)) as per (4.1).

Find ξt+1 ∈ [2µ∆γ , 1) such that ξt+1(ξt+1 − 2µ∆γ)/(1− ξt+1) = ξ2t /δt+1.

Compute αt+1 :=
ξt+1−2µ∆γ

1−2µ∆γ
, βt+1 := 1− 2µ∆γξ

−1
t+1, and ηt+1 := 2∆γξ

−1
t+1.

Update the next step iterates as per (3.1) with γt+1 := γ.

end for
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Remark 4.2 (Innovations relative to previous methods) A noticeable innovation in Algorithm 1

lies in its use of the adaptive metric distortion rate Tκ(d (xt, zt)). This is in stark contrast with

previous approaches Zhang and Sra (2016, 2018); Alimisis et al. (2020) that use a global metric

distortion rate based on the diameter of the domain. As we shall we in § 4.2, our adaptive metric

distortion control is a crucial ingredient for achieving full acceleration.

Remark 4.3 Note that Tκ(d (xt, zt)) is a worst-case upper bound on the valid distortion rate, and

hence, if additional information on local geometry is accessible, one can possibly come up with a

better estimate and replace Tκ(d (xt, zt)) in Algorithm 1 with the estimate.

4.2. Convergence rate analysis of the proposed method

Having proposed the algorithm, our final task is to analyze its convergence rate. From Remark 3.3,

we know the algorithm achieves a full acceleration when δt is close to 1. Due to the property

limr→0+ Tκ(r) = 1, one therefore needs to show that d (xt, zt) is close to 0. Although d (xt, zt) = 0
for t = 0, one can quickly notice that it is not true for t ≥ 1.

Now one natural follow-up question is whether d (xt, zt) shrinks over iterations. As we have seen

in §2.3, the convergence of the iterates to the optimal point is a direct consequence of our potential

function analysis. Similarly, one can immediately see that dxt(zt, x∗) → 0. It turns out that from

this shrinking projected distance, one can also deduce d (xt, zt)→ 0 under mild conditions:

Lemma 4.2 (Shrinking d (xt, zt)) Assume µ > 0 and letD0 := f(x0)−f(x∗)+ξ20/4∆γ·d (x0, x∗)2.

If 1 < γL < 2− ξt and ξt > 2µ∆γ hold at iteration t ≥ 1, then Algorithm 1 satisfies: d (xt, zt) ≤
Cµ,L,γ

[
D0
∏t−1

j=1(1− ξj)
]1/2

, where Cµ,L,γ > 0 is a constant depending only on µ,L, γ.

Proof The proof relies on elementary geometric inequalities (see Appendix F).

Note that the assumption γL ∈ (1, 2 − ξt] can be roughly read as “γL ∈ (1, 2 −
√

µ/L]” because

Remark 3.3 ensures that ξ(δ) ≤
√

2µ∆γ <
√

µ/L for all δ ≥ 1. More precisely, since ξt quickly

converges to the fixed point, one can easily ensure ξt ≤
√

µ/L after few iterations. Formalizing this

argument, we finally obtain our main theorem (which formalizes Theorem 1.1):

Theorem 4.1 (Global acceleration of Algorithm 1) Assume 0 < µ < L and γL ∈ (1, 2−
√

µ/L].
Let ∆γ := γ(1 − Lγ/2) and λ := 1 − 8µ∆γ/(5+

√
5) ∈ (0, 1). Then for any ξ0 > 0, Algorithm 1

satisfies the following accelerated convergence:

f(yt)− f(x∗) = O ((1− ξ1)(1− ξ2) · · · (1− ξt)) , (4.2)

where {ξt} is a sequence such that (i) ξt > 2µ∆γ ∀t ≥ 0 and (ii) for all ǫ > 0, |ξt −
√
2µ∆γ | ≤ ǫ

whenever t = Ω
(

log(1/ǫ)
log(1/λ)

)
, where the constant involved in Ω(·) depends only on µ,L, γ, κ.

Proof (4.2) is immediate from Theorem 3.1. For the convergence of {ξt}, see Appendix G.

Since ∆γ → 1/(2L) as γ → 1/L, one can achieve the convergence rate arbitrarily close to the full

acceleration rate by choosing γ bigger but sufficiently close to 1/L. This concludes our main results.
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5. Comparison with other potential function analyses

In this section, we compare existing potential function analyses with our approach. We discuss here

the most directly relevant works; for additional related work, please see Appendix B and also (Taylor

and Bach, 2019, Appendix B).

The potential function (2.2) has appeared in prior works on accelerated methods, corroborating

its suitability. Compared with our analysis, the main difference is that the existing analyses either

work for (i) the case µ = 0, or (ii) just the fixed-step case ξt =
√

µ/L. We highlight that our analysis

is the first to recover–from first principles–Nesterov’s general scheme that smoothly interpolates the

cases µ = 0 and µ > 0. Moreover, our analysis allows ξt to vary, which is crucial in the Riemannian

case where the recursive relation changes over iterations.

Function (2.2) appears in (Wilson et al., 2016, Proposition 4) within the context of a continuous

dynamics approach to acceleration. That work studies methods for discretizing accelerated ODEs

derived in (Su et al., 2014; Wibisono et al., 2016) to transform the continuous dynamics into discrete

methods. In that context, they show that (2.2) is a discretization of a canonical Lyapunov function.

Another appearance is in (Diakonikolas and Orecchia, 2019), where they extend the continuous

dynamics view via an approximate duality gap technique. Roughly, to analyze a first-order method,

they consider an upper bound Ut and a lower bound Lt on the optimal value f(x∗). Their analysis

then proceeds by showing the gap Gt := Ut−Lt diminishes with the rate αt, i.e., αtGt is decreasing,

which corresponds to showing AtEt is decreasing in our language (§2). Although motivated mostly

for continuous dynamics, their techniques cover discrete methods with some modifications. In

particular, their choice of Gt for accelerated method corresponds to (2.2) (see §4.2 therein).

Yet another appearance of (2.2) is (Bansal and Gupta, 2019, (5.50)), wherein the motivation was

to modify the potential function analyses for gradient descent to design and analyze accelerated

methods. They propose the idea of running two different gradient steps and linearly combining them

to achieve desired accelerated convergence. Following their argument, it turns out (2.2) is the right

choice. Indeed, their approach bears resemblance to the linear coupling framework (Allen-Zhu and

Orecchia, 2017), in which (2.2) has even more canonical interpretations; see Appendix A.

6. Conclusion

In this paper, we establish the first global accelerated gradient method for (strongly convex) Rie-

mannian optimization. To that end, we first revisit the Euclidean case and present an alternative

approach to Nesterov’s estimate sequences, shedding new light on the scope of his technique that has

puzzled researchers for many years. We then consider the Riemannian case and propose a method

that converges strictly faster than gradient descent, quickly attaining the full accelerated convergence

rate within a few iterations. While results for the non-strongly convex setting are also developed

via a well-known reduction argument, discovering a direct approach remains open. We believe our

results mark fundamental progress toward understanding acceleration in non-Euclidean settings, and

hope that our work motivates a richer study of Riemannian acceleration, while contributing to the

goal of bringing our understanding of Riemannian optimization at par with the Euclidean setting.
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Appendix A. Interpretations via linear coupling

Recently, Allen-Zhu and Orecchia (2017) established a framework of designing fast first-order

methods called linear coupling. The principal observation therein is that the two most fundamental

first-order methods, namely gradient and mirror descent, have complementary performances, and

one might therefore design faster first-order methods by linearly coupling the two methods. In this

section, we will discuss how one can derive from linear coupling (i) Nesterov’s optimal method

iterations (2.1); and (ii) our choice of potential function (2.2) (which offers an alternative way to

motivate the potential function; we omit mentioning this connection in the main text because the

“coupling” idea does not admit an easy Riemannian analogue).

A.1. Nesterov’s iteration from linear coupling

Let us now see how to obtain the main iteration (2.1) via linear coupling. Denote by Grads·∇(x) and

Mirrs·∇(x) a gradient step and a mirror step, respectively. If we choose the Bregman divergence
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associated with mirror descent to be D(u, v) = 1
2 ‖u− v‖

2
2, then (2.1) can be rewritten as follows:

xt+1 ← αt+1zt + (1− αt+1)yt

wt+1 ← β̃t+1zt + (1− β̃t+1)yt

∇t+1 ← ∇f(xt+1)

yt+1 ← Gradγt+1∇t+1(xt+1)

zt+1 ← Mirrηt+1∇t+1(wt+1) ,

where β̃t+1 = αt+1 + (1−αt+1)βt+1. Note that these steps clearly respect linear coupling: for each

step, we compute two different linear combinations of zt and yt and run gradient and mirror steps

from each combination to obtain the next iterates yt+1 and zt+1, respectively. Indeed, the original

algorithm considered in (Allen-Zhu and Orecchia, 2017) chooses β′ ≡ 1 and is hence a special case

of the above steps. One concrete advantage of viewing iteration (2.1) in the above form is that then it

can be naturally generalized to other settings where the smoothness of f is defined with respect to a

norm different from ℓ2.

A.2. Choosing a potential function via linear coupling

Another advantage of the linear coupling view is that one can derive our choice of potential function

(2.2) naturally. To see this, first note that the folklore analysis of gradient descent deals with the

cost value f(y), while that of mirror descent deals with the distance to an optimal point, or more

generally, the Bregman divergence D(z, x∗). (See e.g. (Allen-Zhu and Orecchia, 2017, §2) for

details.) Since the algorithm is a linear combination of the two methods, it is then natural to consider

a linear combination of the two performance measures, arriving at (2.2) since our case corresponds

to the setting where the Bregman divergence is chosen to be D(z, x∗) = 1
2 ‖z − x∗‖

2
2.

Appendix B. Comparison with SDP-based potential function analysis

Another prominent approaches related to potential function analysis are developed based on solving

SDPs (Drori and Teboulle, 2014; Lessard et al., 2016; Taylor et al., 2018; Taylor and Bach, 2019).

The primary distinction between our approach and most SDP-based approaches is that our analysis is

analytical, whereas the analyses therein are numerical. More specifically, the existing works require

numeric values of parameters (e.g., α, β, L, µ) because they find suitable potential functions via

solving SDPs. Note that one cannot solve SDPs unless the numeric coefficients are given. Abstractly,

our choice of parameters in Theorem 2.1 can be interpreted as an analytical solution to the symbolic

versions of SDPs formulated in the prior works.

Notable exceptions are (Kim and Fessler, 2016; Hu and Lessard, 2017; Safavi et al., 2018; Cyrus

et al., 2018; Aybat et al., 2019), in which small SDPs are solved analytically. Specifically, some

optimized step sizes for Nesterov’s method are derived via solving small SDPs explicitly in (Kim

and Fessler, 2016; Safavi et al., 2018); robust versions of gradient methods are derived analytically

via classical control-theoretic arguments in (Cyrus et al., 2018; Aybat et al., 2019), and Nesterov’s

method is reinterpreted using dissipativity theory in (Hu and Lessard, 2017). Indeed borrowing the

dissipativity interpretation from (Hu and Lessard, 2017), one can interpret our calculations in §2.3 as

finding an analytic solution to a dissipation inequality (Theorem 2 therein) for our case.
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Appendix C. Some inequalities from Riemannian geometry (proof of Lemma 4.1)

This section is devoted to proving Lemma 4.1. The proof requires two ingredients: Proposition 4.1

and a (Riemannian) trigonometric inequality due to (Zhang and Sra, 2016, Lemma 6).

We begin with the first key ingredient: Proposition 4.1. Its proof is based on the following version

of the Rauch comparison theorem (Chavel, 2006, Theorem IX.2.3):

Proposition C.1 (Rauch comparison theorem) Let M be a Riemannian manifold with sectional

curvatures lower bounded by −κ < 0. Then, for any x ∈ M and u ∈ TxM , the following upper

bound on the operator norm of the differential of the exponential map holds:

‖d(Expx)u‖op ≤
sinh(

√
κ ‖u‖)√

κ ‖u‖ .

Proof Let u0 := u/ ‖u‖. First, it follows from the definition that the exponential map is radially

isometric, i.e., ‖d(Expx)u(u0)‖ = 1. Next, due to Rauch comparison theorem (Chavel, 2006,

Theorem IX.2.3), for any v orthogonal to u, we have ‖d(Expx)u(v)‖ ≤ sinh(
√
κ‖u‖)√

κ‖u‖ ‖v‖. Since any

vector in Tu(TxM) can be represented as a linear combination of u0 and vectors orthogonal to u0,

the proof follows.

Now, we are ready to prove Proposition 4.1:

Proposition C.2 (Restatement of Proposition 4.1) Let x, y, z be points on Riemannian manifold

M with sectional curvatures lower bounded by −κ < 0. Then, the following inequality holds:

d (y, z) ≤ sinh(
√
κmax{d (x, y) , d (x, z)})√

κmax{d (x, y) , d (x, z)} · dx(y, z) .

Proof To upper bound the distance d (y, z) in terms of the projected distance dx(y, z), consider a path

p : [0, 1]→ TxM defined as p(t) = (1− t) ·Exp−1
x (y)+ t ·Exp−1

x (z). Then, its image Expx(p) is

a path on M connecting y to z. By definition of the distance on the manifold, d (y, z) is clearly upper

bounded by the length of Expx(p). On the other hand, using Proposition C.1, the length of Expx(p)
can be upper bounded as follows (since ‖p′(t)‖ =

∥∥Exp−1
x (y)− Exp−1

x (z)
∥∥ = dx(y, z)):

∫ 1

0

∥∥∥∥
d

dt
Expx

(
p(t)

)∥∥∥∥ dt ≤
∫ 1

0

∥∥d(Expx)p(t)
∥∥

op
·
∥∥p′(t)

∥∥ dt

≤ sinh(
√
κmax{d (x, y) , d (x, z)})√

κmax{d (x, y) , d (x, z)} · dx(y, z) ,

where the last inequality follows from the fact that ‖p(t)‖ is upper bounded by max{‖p(0)‖ , ‖p(1)‖} =
max{d (x, y) , d (x, z)}.

We now move on to the second key ingredient, namely a Riemannian trigonometric inequality:

Proposition C.3 (Riemannian trigonometric inequality) Let M be a Riemannian manifold with

sectional curvatures lower bounded by −κ < 0. Let x, y, z be the vertices of a geodesic triangle

with the lengths of the opposite side being a, b, c, respectively, and A be the angle of the triangle at

the vertex x, then we have the following inequality:

a2 ≤
√
κc

tanh(
√
κc)
· b2 + c2 − 2bc cosA .
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Proof See (Zhang and Sra, 2016, §3.1) and (Cordero-Erausquin et al., 2001, Lemma 3.12).

With these ingredients we now prove Lemma 4.1; we actually prove the following strengthening:

Lemma C.1 Let x, y, z be points on Riemannian manifold M with sectional curvatures lower

bounded by −κ < 0. Define the function T̂κ : R≥0 → R≥1 as

T̂κ(r) :=




minǫ>0max

{
1 +

(
1 + ǫ−1

)2 ( √
κr

tanh(
√
κr)
− 1
)
,

(
sinh((1+ǫ)

√
κ·r)

(1+ǫ)
√
κ·r

)2
}

if r > 0,

1, if r = 0.

Then, the following inequality holds: d (y, z)2 ≤ T̂κ(d (x, y)) · dx(y, z)2.

Note that T̂κ(r) ≤ Tκ(r) for all r ≥ 0 (Tκ is equal to choosing ǫ = 1 in the definition of T̂κ.) Hence,

Lemma C.1 immediately implies Lemma 4.1.

Proof [Proof of Lemma C.1] Let us fix an arbitrary constant ǫ > 0. We will separately handle two

cases: (i) (1 + ǫ) · d (x, y) < d (x, z); and (ii) (1 + ǫ) · d (x, y) ≥ d (x, z).
Case (i). Applying Proposition C.3 to△xyz, and letting ζ :=

√
κd(x,y)

tanh(
√
κd(x,y))

, we obtain:

d (y, z)2 ≤ d (x, y)2 + ζ · d (x, z)2 − 2
〈
Exp−1

x (y) ,Exp−1
x (z)

〉

= (ζ − 1) · d (x, z)2 + d (x, y)2 + d (x, z)2 − 2
〈
Exp−1

x (y) ,Exp−1
x (z)

〉

= (ζ − 1) · d (x, z)2 + dx(y, z)
2 ,

where the last line follows from the Euclidean law of cosines. On the other hand, from the Euclidean

triangle inequality (consider the triangle△xyz in the tangent space TxM ), dx(y, z) ≥ (d (x, z)−
d (x, y)) > ǫ

1+ǫ · d (x, z). Hence, combining these two, we get

d (y, z)2 ≤ (ζ − 1) · d (x, z)2 + dx(y, z)
2

≤
(
1 + ǫ−1

)2 · (ζ − 1) · dx(y, z)2 + dx(y, z)
2

=
[
1 +

(
1 + ǫ−1

)2 · (ζ − 1)
]
· dx(y, z)2 . (C.1)

Case (ii). For the case (1 + ǫ) · d (x, y) ≥ d (x, z), Proposition C.2 implies:

d (y, z)2 ≤
(
sinh ((1 + ǫ)

√
κ · d (x, y))

(1 + ǫ)
√
κ · d (x, y)

)2

· dx(y, z)2 . (C.2)

Therefore, combining (C.1) and (C.2), the proof is completed.

Appendix D. Analysis of the key recursive relations ((2.13) and (3.6))

To ease notation, we replace 2µ∆γ with a constant a ∈ (0, 1) and consider:

ξt+1(ξt+1 − a)
1− ξt+1

=
1

δ
· ξ2t . (D.1)
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In particular, when δ = 1 and a = 2µ∆γ , equation (D.1) recovers (2.13). The parameter δ > 1 is

present to cover the recursion (3.6) for the Riemannian case. Below, we state and prove the following

general statement of Lemma 2.1.

Lemma D.1 For any constants δ ≥ 1 and a ∈ (0, 1), and an initial value ξ0 ≥ 0, the followings

properties are true about the recursive relation (D.1):

1. ξ(δ) := 1
2

√
(δ − 1)2 + 4δa− 1

2(δ − 1) is the unique fixed point of (D.1).

2. lim
t→∞

ξt ↓ ξ(δ) if ξ0 > ξ(δ); ξt ≡ ξ(δ) if ξ0 = ξ(δ); and lim
t→∞

ξt ↑ ξ(δ) if 0 ≤ ξ0 < ξ(δ).

3. |ξt − ξ(δ)| ≤
(

1√
δ

(
1− 4

5+
√
5
· a√

δ

))t−1
|ξ1 − ξ(δ)| for all t ≥ 1.

Proof Define φ(v) := v(v−a)
1−v and ψ(v) := 1

δ v
2. Then, recursion (D.1) can be rewritten as

φ(ξt+1) = ψ(ξt) . (D.2)

Now, in order to understand (D.2), let us study the properties of the two functions. First, note that ψ
is increasing on R≥0 and φ is increasing on [a, 1) with φ(a) = 0 and limv→1− φ(v) =∞. Indeed, φ
is increasing since d

dvφ(v) =
1−a

(1−v)2
− 1 ≥ 1

1−a − 1 > 0.

Hence, one can consider the inverse function of the restriction φ|[a,1). We will simply denote the

inverse function by φ−1. Letting τ := φ−1 ◦ ψ, (D.2) can be rewritten as:

ξt+1 = τ(ξt) . (D.3)

Note that τ : R≥0 → [a, 1), and hence, ξt ∈ [a, 1) for all t ≥ 1. Since τ is increasing, there is at

most one fixed point, i.e., v ≥ 0 s.t. τ(v) = v. Solving τ(v) = v, or equivalently, φ(v) = ψ(v) on

v ∈ [a, 1) yields v = ξ(δ). Hence, ξ(δ) is the unique fixed point of (D.3).

From this observation and the fact that φ and ψ are both increasing on the respective domains,

we have φ < ψ for x ∈ [a, ξ(δ)), and φ > ψ for x ∈ (ξ(δ), 1). Consequently, {ξt} is increasing if

ξ0 ∈ [0, ξ(δ)) and decreasing if ξ0 > ξ(δ).
Now we prove the geometric convergence of (D.3) to ξ(δ). To that end, let us first express τ

explicitly. One can easily verify that the closed form expression of φ−1 is equal to

φ−1(v) =
1

2

(√
(v − a)2 + 4v − (v − a)

)
.

Therefore, we have

τ(v) = φ−1(ψ(v)) = φ−1(v2/δ) =
1

2

(√
(v2/δ − a)2 + 4v2/δ − (v2/δ − a)

)
.

Due to mean value theorem, the key ingredient for showing the geometric convergence is to bound

the derivative of τ . Indeed, if we can establish that |τ ′(v)| ≤ K < 1 for v ∈ [a, 1), then we have

|ξt+1 − ξ(δ)| = |τ(ξt)− τ(ξ(δ))| ≤ K · |ξt − ξ(δ)| . (D.4)
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Letting θ(v) := v(v2−a)+2v√
(v2−a)2+4v2

− v, one can express the derivative τ ′ in terms of θ:

τ ′(v) =
v
δ (v

2/δ − a) + 2v
δ√

(v2/δ − a)2 + 4v2/δ
− v

δ
=

1√
δ
·
( v√

δ
(v2/δ − a) + 2 v√

δ√
(v2/δ − a)2 + 4v2/δ

− v√
δ

)

=
1√
δ
· θ(v/

√
δ)

Hence, it suffices to show that θ(v) < 1 for v ∈ (0, 1). Proposition D.1 below shows this claim.

Proposition D.1 0 ≤ θ(v) < 1− 4
5+

√
5
· v holds for v ∈ (0, 1).

Proof θ(v) ≥ 0 trivially holds since τ is increasing (recall that τ is a composition of increasing

functions). Now let us prove the upper bound. We first consider the case a < v ≤ √a. Since v2 ≤ a,

θ(v) =
−v(a− v2) + 2v√
(v2 − a)2 + 4v2

− v ≤ 2v√
(v2 − a)2 + 4v2

− v ≤ 1− v .

Next, consider the case v >
√
a. Then, v2 > a, and hence

θ(v) =
v(v2 − a) + 2v√
(v2 − a)2 + 4v2

− v =
2v√

(v2 − a)2 + 4v2
− v ·

√
(v2 − a)2 + 4v2 − (v2 − a)√

(v2 − a)2 + 4v2

=
2v√

(v2 − a)2 + 4v2
− v · 4v2

√
(v2 − a)2 + 4v2

(√
(v2 − a)2 + 4v2 + (v2 − a)

)

=
2v√

(v2 − a)2 + 4v2
− v · 4v2

(v2 − a)2 + 4v2 + (v2 − a)
√
(v2 − a)2 + 4v2

(♣)

≤ 1− v · 4v2

v2 + 4v2 + v
√
v2 + 4v2

= 1− 4

5 +
√
5
· v .

where (♣) follows since v ∈ (
√
a, 1); in particular, we have 0 ≤ v2 − a ≤ v2 ≤ v. Combining the

two cases, we complete the proof.

From Proposition D.1 and inequality (D.4), the proof of the geometric convergence follows.

D.1. Justification of Remark 3.3

In this section, we verify that for any fixed a ∈ (0, 1),

ξ(δ) :=

√
(δ − 1)2 + 4δa− (δ − 1))

2
is decreasing in δ ≥ 1.
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Note that for δ ≥ 1 we have

d

dδ
ξ(δ) =

2(δ − 1) + 4a

4
√
(δ − 1)2 + 4δa

− 1

2
=

2(δ − 1) + 4a− 2
√

(δ − 1)2 + 4δa

4
√
(δ − 1)2 + 4δa

=
2
√
((δ − 1) + 2a)2 − 2

√
(δ − 1)2 + 4δa

4
√

(δ − 1)2 + 4δa

=
2
√
(δ − 1)2 + 4a(δ − 1) + 4a2 − 2

√
(δ − 1)2 + 4δa

4
√

(δ − 1)2 + 4δa
< 0 ,

where the last inequality is due to the fact that −4a+ 4a2 < 0 since a < 1.

Appendix E. Potential function analyses (Theorems 2.1 and 3.1)

E.1. Derivation of the upper bound on the potential difference (2.6)

We recall the notations (2.5): ∆γ := γ(1 − Lγ/2), ∇ := ∇f(xt+1), X := xt+1 − x∗, and

W := zt − xt+1. Let us first express (2.4) in terms of the vectors∇, X,W using Proposition 2.2:

(2.4) = Bt+1 · ‖xt+1 + β(zt − xt+1)− x∗‖2 +Bt+1η
2 · ‖∇f(xt+1)‖2

+ 2Bt+1η · 〈∇f(xt+1), x∗ − xt+1 − β(zt − xt+1)〉 −Bt · ‖zt − x∗‖2

= Bt+1 · ‖X + βW‖2 +Bt+1η
2 · ‖∇‖2 − 2Bt+1η · 〈∇, X + βW 〉 −Bt · ‖W +X‖2

= (Bt+1 −Bt) · ‖X‖2 + (β2Bt+1 −Bt) · ‖W‖2 + η2Bt+1 · ‖∇‖2

+ 2(βBt+1 −Bt) · 〈X,W 〉 − 2βηBt+1 〈W,∇〉 − 2ηBt+1 · 〈X,∇〉 .
(E.1)

For (2.3), we apply Proposition 2.1 and rearrange terms to obtain:

(2.3) = At+1 · (f(yt+1)− f(x∗))−At · (f(yt)− f(x∗))
≤ At+1 · (f(xt+1)− f(x∗))−At+1∆γ · ‖∇f(xt+1)‖2 −At · (f(yt)− f(x∗))
= At · (f(xt+1)− f(yt)) + (At+1 −At) · (f(xt+1)− f(x∗))−∆γAt+1 · ‖∇f(xt+1)‖2 .
(♣)

≤ At · 〈∇f(xt+1), xt+1 − yt〉+ (At+1 −At) · 〈∇f(xt+1), xt+1 − x∗〉
−At

µ

2
· ‖xt+1 − yt‖2 − (At+1 −At)

µ

2
· ‖xt+1 − x∗‖2 −∆γAt+1 · ‖∇f(xt+1)‖2 ,

(E.2)

where (♣) follows from µ-strong convexity of f (in particular, f(u) − f(v) ≤ 〈∇f(u), u− v〉 −
µ
2 ‖u− v‖

2
). Now using the identity xt+1 − yt = α

1−α(zt − xt+1) =
α

1−αW , one can express (E.2)

in terms of ∇, X,W :

(E.2) =
α

1− αAt · 〈∇,W 〉+ (At+1 −At) · 〈∇, X〉

− µ

2

(
α

1− α

)2

At · ‖W‖2 −
µ

2
(At+1 −At) · ‖X‖2 −∆γAt+1 · ‖∇‖2

(E.3)

Combining (E.1) and (E.3), we obtain the desired upper bound (2.6).
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E.2. Proof of Theorem 2.1

We seek to express parameters At+1, Bt+1, αt+1, βt+1, ηt+1 in terms of ξt+1 and γt+1. From the

equality version of (2.8), i.e.,

Bt+1 =
(At+1 −At)

2

4∆γ ·At+1
,

Bt+1 can be easily expressed in terms of ξt+1: using the relation 1 − ξt+1 := At/At+1, we have

(At+1−At

At+1
)2 = ξ2t+1, and hence

Bt+1 =

(
At+1 −At

At+1

)2

· At+1

4∆γ
= ξ2t+1 ·

At/(1− ξt+1)

4∆γ
=

ξ2t+1

1− ξt+1
· At

4∆γ
. (E.4)

From this identity we can also conclude that

At+1

Bt+1
=

At

(1−ξt+1)

ξ2t+1

1−ξt+1
· At

4∆γ

=
4∆γ

ξ2t+1

. (E.5)

Let us recall the expressions (2.7) for the step sizes:

ηt+1 =
At+1 −At

2Bt+1
, (E.6)

βt+1 =
Bt

Bt+1
and (E.7)

αt+1

1− αt+1
=

(At+1 −At)Bt

AtBt+1
. (E.8)

Let us also recall the recursive relation:

ξt+1(ξt+1 − 2µ∆γ)

1− ξt+1
= ξ2t = 4∆γ ·

Bt

At
(E.9)

Using the relations above, we can now express αt+1, βt+1, ηt+1 in terms of ξt+1:

ηt+1
(E.6)
=

At+1 −At

2Bt+1
=
At+1 −At

At+1
· At+1

2Bt+1

(E.5)
= ξt+1 ·

2∆γ

ξ2t+1

= 2∆γξ
−1
t+1 ,

βt+1
(E.7)
=

Bt

Bt+1

(E.4)
=

1− ξt+1

ξ2t+1

· 4∆γ ·
Bt

At

(E.9)
=

ξt+1 − 2µ∆γ

ξt+1
= 1− 2µ∆γξ

−1
t+1 , and

αt+1

1− αt+1

(E.8)
=

(At+1 −At)Bt

AtBt+1
=
At+1 −At

At+1
· Bt

At
· At+1

Bt+1

(E.9)&(E.5)
= ξt+1 ·

ξt+1(ξt+1 − 2µ∆γ)

4∆γ(1− ξt+1)
· 4∆γ

ξ2t+1

=
ξt+1 − 2µ∆γ

1− ξt+1
.

With the above choices of parameters, one can easily check that αt+1, βt+1 both lie in [0, 1] since

ξt+1 ∈ [2µ∆γ , 1).
One last thing we need to check is β2Bt+1 ≤ Bt. Indeed, since βt+1 ∈ [0, 1] β2t+1Bt+1 ≤

βt+1Bt+1 = Bt (due to (E.7)), implying C1 ≤ 0.
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E.3. Proof of Theorem 3.1

We first introduce the definitions of geodesic (strong) convexity and smoothness. For simplicity, we

assume that the function f :M → R is differentiable throughout the definitions, and we denote by

∇f(x) ∈ TxM the gradient of f at x.

Definition E.1 (Geodesic (strong) convexity) f is said to be geodesically µ-strongly convex if

f(y) ≥ f(x) +
〈
∇f(x),Exp−1

x (y)
〉
x
+
µ

2
· d (x, y)2 for any x, y ∈M ,

where 〈·, ·〉x denotes the inner product in the tangent space of x induced by the Riemannian metric.

Definition E.2 (Geodesic smoothness) f :M → R is said to be geodesically L-smooth if

f(y) ≤ f(x) +
〈
∇f(x),Exp−1

x (y)
〉
x
+
L

2
· d (x, y)2 for any x, y ∈M .

An equivalent definition is

∥∥∇f(x)− Γx
y∇f(y)

∥∥
x
≤ L · d (x, y) for any x, y ∈M ,

where Γx
y is the parallel transport from y to x.

With these definitions, we can establish Riemannian analogues of Propositions 2.1 and 2.2:

Proposition E.3 Let y = Expx (−s · ∇f(x)). If f is geodesically L-smooth, then f(y)− f(x) ≤
−s (1− Ls/2) ‖∇f(x)‖2x.

Proof By the geodesic L-smoothness of f , we have f(y) ≤ f(x) +
〈
∇f(x),Exp−1

x (y)
〉
x
+ L

2 ·
d (x, y)2 = f(x) + 〈∇f(x),−s∇f(x)〉x + L

2 ‖−s∇f(x)‖
2
x = f(x)− s

(
1− Ls

2

)
‖∇f(x)‖2x.

Proposition E.4 Let z = Expu (v − s · ∇f(u)) for some vector v ∈ TxM . Then, for any x∗,

du(z, x∗)2 − du(Expu (v) , x∗)2 = s2 ‖∇f(u)‖2u + 2s
〈
∇f(u),Exp−1

u (x∗)− v
〉
u
.

Proof The proof follows immediately from the definition of the projected distances (Definition 3.1):

du(z, x∗)
2 =

∥∥Exp−1
u (z)− Exp−1

u (x∗)
∥∥2
u
=
∥∥v − s · ∇f(u)− Exp−1

u (x∗)
∥∥2
u

=
∥∥v − Exp−1

u (x∗)
∥∥2
u
+ ‖−s · ∇f(u)‖2u + 2

〈
−s · ∇f(u), v − Exp−1

u (x∗)
〉
u

which recovers the conclusion of Proposition E.4.

Now we prove Theorem 3.1. It turns out one can establish an upper bound on the potential

difference Ψt+1 −Ψt analogously to (2.6). The key difference in the Riemannian case is that instead

of W,X,∇, we now have the following three vectors in the same tangent space Txt+1M :

W̃ := Exp−1
xt+1

(zt) , X̃ := −Exp−1
xt+1

(x∗) , and ∇̃ := ∇f(xt+1) . (E.10)

As pointed out in §2.2, the fact that these three vectors lie in the same tangent space is crucial for

the analysis to follow. Using Propositions E.3 and E.4, one can derive the following upper bound

similarly to Appendix E.1 (hereafter, ‖·‖ denotes ‖·‖xt+1
and 〈·, ·〉 denotes 〈·, ·〉xt+1

):
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C̃1 · ‖W̃‖2 + C̃2 · ‖X̃‖2 + C̃3‖∇̃‖2 + C̃4 · 〈W̃ , X̃〉+ C̃5 · 〈W̃ , ∇̃〉+ C̃6 · 〈X̃, ∇̃〉, (E.11)

where





C̃1 := β2t+1Bt+1 − Bt

δt+1δt+1δt+1
− µ

2

α2
t+1

(1−αt+1)2
At , C̃2 := Bt+1 − Bt

δt+1δt+1δt+1
− µ

2 (At+1 −At) ,

C̃3 := η2t+1Bt+1 −∆γ ·At+1 , C̃4 := 2 ·
(
βt+1Bt+1 − Bt

δt+1δt+1δt+1

)
,

C̃5 :=
αt+1

1−αt+1
At − 2βt+1ηt+1Bt+1 , and C̃6 := (At+1 −At)− 2ηt+1Bt+1 .

E.3.1. DERIVATION OF THE UPPER BOUND ON RIEMANNIAN POTENTIAL DIFFERENCE (E.11)

Recall the definition of the Riemannian potential function (3.2):

Ψt := At · (f(yt)− f(x∗)) +Bt · dxt(zt, x∗)
2 . (E.12)

From the definition, one can write the potential difference Ψt+1 −Ψt as follows:

At+1 · (f(yt+1)− f(x∗))−At · (f(yt)− f(x∗)) (E.13)

+ Bt+1 · dxt+1(zt+1, x∗)
2 −Bt · dxt(zt, x∗)

2 . (E.14)

First, we use the valid distortion rate (Definition 3.2) to upper bound (E.14) in order to express it in

terms of projected distances relative to the same reference point xt+1:

(E.14) ≤ Bt+1 · dxt+1(zt+1, x∗)
2 − Bt

δt+1
· dxt+1(zt, x∗)

2 . (E.15)

Now, similarly to Section E.1, one can use Proposition E.4 to express the right hand side of (E.15) in

terms of the vectors ∇̃, X̃, W̃ :

Bt+1 · dxt+1(zt+1, x∗)
2 − Bt

δt+1
· dxt+1(zt, x∗)

2

= Bt+1 ·
∥∥∥βt+1Exp

−1
xt+1

(zt)− Exp−1
xt+1

(x∗)
∥∥∥
2
+Bt+1η

2
t+1 ‖∇f(xt+1)‖

+ 2Bt+1ηt+1

〈
∇f(xt+1),Exp

−1
xt+1

(x∗)− βt+1Exp
−1
xt+1

(zt)
〉
− Bt

δt+1
· dxt+1(zt, x∗)

2

= Bt+1 · ‖X̃ + βt+1W̃‖2 +Bt+1η
2
t+1 · ‖∇̃‖2 − 2Bt+1ηt+1 · 〈∇̃, X̃ + βt+1W̃ 〉 − Bt

δt+1
· ‖W̃ + X̃‖2

= (Bt+1 − Bt

δt+1
) · ‖X̃‖2 + (β2t+1Bt+1 − Bt

δt+1
) · ‖W̃‖2 + η2t+1Bt+1 · ‖∇̃‖2

+ 2(βt+1Bt+1 − Bt

δt+1
) · 〈X̃, W̃ 〉 − 2βt+1ηt+1Bt+1〈W̃ , ∇̃〉 − 2ηt+1Bt+1 · 〈X̃, ∇̃〉 .

(E.16)

For (E.13), the derivation is identical to that of (E.3), except that now we use Proposition E.3 in place

of Proposition 2.1 and µ-geodesic strong convexity in place of µ-strong convexity. In particular,

(E.13) ≤ αt+1

1− αt+1
At · 〈∇̃, W̃ 〉+ (At+1 −At) · 〈∇̃, X̃〉

− µ

2

(
αt+1

1− αt+1

)2

At · ‖W̃‖2 −
µ

2
(At+1 −At) · ‖X̃‖2 −∆γAt+1 · ‖∇̃‖2

(E.17)

Combining (E.16) and (E.17), we obtain the desired upper bound (E.11).
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E.3.2. ENSURING RIEMANNIAN POTENTIAL DECREASE

We now follow §2.3 to make (E.11) a negative sum of squares. We recall the expression of the

coefficients for reader’s convenience:





C̃1 := β2t+1Bt+1 − Bt

δt+1δt+1δt+1
− µ

2

α2
t+1

(1−αt+1)2
At , C̃2 := Bt+1 − Bt

δt+1δt+1δt+1
− µ

2 (At+1 −At) ,

C̃3 := η2t+1Bt+1 −∆γ ·At+1 , C̃4 := 2 ·
(
βt+1Bt+1 − Bt

δt+1δt+1δt+1

)
,

C̃5 :=
αt+1

1−αt+1
At − 2βt+1ηt+1Bt+1 , and C̃6 := (At+1 −At)− 2ηt+1Bt+1 .

First, from C̃4 = C̃5 = C̃6 = 0, we get:

ηt+1 =
At+1 −At

2Bt+1
, (E.18)

βt+1 =
Bt

δt+1δt+1δt+1Bt+1
, and (E.19)

αt+1

1− αt+1
=

2βt+1ηt+1Bt+1

At
=

(At+1 −At)Bt

δt+1δt+1δt+1AtBt+1
. (E.20)

Next, from C̃3 ≤ 0, we have
η2t+1Bt+1

∆γ
≤ At+1. Substituting (E.18) to this inequality and rearranging,

we obtain the following inequality:

(At+1 −At)
2

4∆γ ·At+1
≤ Bt+1 (E.21)

From C̃2 ≤ 0, we have Bt+1 − µ
2 (At+1 −At) ≤ Bt

δt+1δt+1δt+1
. Together with (E.21), we obtain:

(At+1 −At)
2

4∆γ ·At+1
− (At+1 −At)

µ

2
≤ Bt

δt+1δt+1δt+1
. (E.22)

Again, using the suboptimality shrinking ratio 1− ξt+1 := At/At+1, (E.22) becomes

ξt+1(ξt+1 − 2µ∆γ)

1− ξt+1
≤ 4∆γ

δt+1δt+1δt+1
· Bt

At
. (E.23)

Then, due to the left hand side of (E.23) being increasing (as a function of ξt+1) on [2µ∆γ , 1), the

largest ξt+1 (or equivalently, the largest At+1) satisfies (E.23) (or equivalently, (E.22)) with equality:

ξt+1(ξt+1 − 2µ∆γ)

1− ξt+1
=

4∆γ

δt+1δt+1δt+1
· Bt

At
. (E.24)

Consequently, such a choice of ξt+1 (or corresponding At+1) also satisfies (E.21) with equality.

Now, one can follow the calculations in Appendix E.2 to express parameters in terms of ξt+1.

From the equality version of (E.21), i.e.
(At+1−At)2

4∆γ ·At+1
= Bt+1, one can derive the following:

Bt+1 =

(
At+1 −At

At+1

)2

· At+1

4∆γ
= ξ2t+1 ·

At/(1− ξt+1)

4∆γ
=

ξ2t+1

1− ξt+1
· At

4∆γ
. (E.25)
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From (E.25), one can also derive:

At+1

Bt+1
=

At

(1−ξt+1)

ξ2t+1

1−ξt+1
· At

4∆γ

=
4∆γ

ξ2t+1

. (E.26)

Combining all the relations above, we can express αt+1, βt+1, ηt+1 in terms of ξt+1. It turns out that

the final expressions do not depend on δt+1 and are identical to those in Appendix E.2:

ηt+1
(E.18)
=

At+1 −At

2Bt+1
=
At+1 −At

At+1
· At+1

2Bt+1

(E.26)
= ξt+1 ·

2∆γ

ξ2t+1

= 2∆γξ
−1
t+1 ,

βt+1
(E.19)
=

Bt

δt+1δt+1δt+1Bt+1

(E.25)
=

1− ξt+1

ξ2t+1

· 4∆γ

δt+1δt+1δt+1
· Bt

At

(E.24)
=

ξt+1 − 2µ∆γ

ξt+1
= 1− 2µ∆γξ

−1
t+1 , and

αt+1

1− αt+1

(E.20)
=

(At+1 −At)Bt

δt+1AtBt+1
=
At+1 −At

At+1
· Bt

δt+1At
· At+1

Bt+1

(E.24)&(E.26)
= ξt+1 ·

ξt+1(ξt+1 − 2µ∆γ)

4∆γ(1− ξt+1)
· 4∆γ

ξ2t+1

=
ξt+1 − 2µ∆γ

1− ξt+1
.

With the above choices of parameters, one can again check that αt+1, βt+1 both lie in [0, 1] since

ξt+1 ∈ [2µ∆γ , 1).
One last thing to check is C̃1 ≤ 0. Indeed, since βt+1 ∈ [0, 1], we have β2t+1Bt+1 ≤ βt+1Bt+1 =

Bt/δt+1δt+1δt+1 (due to (E.19)), implying C̃1 ≤ 0. Therefore, the above choices of parameters satisfy

C̃1, C̃2, C̃3 ≤ 0 and C̃4, C̃5, C̃6 = 0, and consequently, Ψt+1 ≤ Ψt since Ψt+1 −Ψt ≤ (E.11). This

completes the proof of Theorem 3.1.

Appendix F. Proofs of distance shrinking lemma (Lemma 4.2)

We first analyze the convergence distances (which is a direct consequence of Theorem 3.1) below.

Proposition F.1 Let M be a Riemannian manifold with sectional curvatures lower bounded by

−κ < 0 and upper bounded by 0. Assume that µ > 0 and let D0 := f(x0) − f(x∗) + 1
4∆γ

ξ20 ·
d (x0, x∗)

2
. Then, for xt, yt, zt (t ≥ 1) generated by Algorithm 1 the following bounds hold:

1. dxt(zt, x∗) ≤
√
D0
∏t

j=1(1− ξj) ·
√

1
µ2∆γ

.

2. d (yt, x∗) ≤
√
D0
∏t

j=1(1− ξj) ·
√

2
µ .

3. dxt(yt, zt) ≤
√
D0
∏t

j=1(1− ξj) ·
(√

2
µ +

√
1

µ2∆γ

)
.

Proof By recursively applying Theorem 3.1, we have the following for any t ≥ 1:

f(yt)− f(x∗) +
1

4∆γ
ξ2t · dxt(zt, x∗)

2 ≤
t∏

j=1

(1− ξj) ·
[
f(y0)− f(x∗) +

1

4∆γ
ξ20 · dx0(z0, x∗)

2

]

=
t∏

j=1

(1− ξj) ·D0 ,
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where the equality follows since x0 = y0 = z0 (which implies dx0(z0, x∗) = d (x0, x∗)).
Hence, the bound on dxt(zt, x∗) follows immediately due to ξt ∈ [2µ∆γ , 1), while the bound on

d (yt, x∗) follows from the µ-strong g-convexity of f (Definition E.1), which implies µ
2 ·d (yt, x∗)

2 ≤
f(yt)− f(x∗). Lastly, the bound on dxt(yt, zt) follows upon noting that

dxt(yt, zt) ≤ dxt(yt, x∗) + dxt(zt, x∗) ≤ d (yt, x∗) + dxt(zt, x∗) , (F.1)

which is a consequence of the (Euclidean) triangle inequality together with the fact that the projected

distances are shorter than the actual distances (a property of non-postively curved manifolds; see e.g.

(Burago et al., 2001, §6.5)).

Proposition F.1 above establishes that the projected distance dxt(yt, zt) is shrinking over iterations.

From this, we can also show that d (yt, zt) is shrinking under mild conditions:

Proposition F.2 Let D0 := f(x0)− f(x∗) + 1
4∆γ

ξ20 · d (x0, x∗)2. If γL > 1, γL ≤ 2− ξt+1 and

ξt+1 > 2µ∆γ hold for t ≥ 0, then Algorithm 1 satisfies:

d (yt, zt) ≤
1− 2µ∆γ

1− 2µ∆γξ
−1
t+1

·

√√√√D0

t∏

j=1

(1− ξj) ·

(√
2
µ +

√
1

µ2∆γ
+ L

µ

√
2
µ

)

(γL− 1)(γL− 1 + 2µ∆γ)
.

Remark F.3 A careful reader might realize that the appearance of the term 1− 2µ∆γξ
−1
t+1 in the

denominator of the bound could be potentially problematic since this term could be arbitrarily

small in general when ξt+1 is very close to 2µ∆γ . However, as we shall see shortly, this term gets

canceled out with the algorithm parameter βt+1 = 1− 2µ∆γξ
−1
t+1 (see Algorithm 1) when we use

Proposition F.2 to bound the distance of our interest d (xt, zt).

Exp−1

xt+1
(zt)

Exp−1

xt+1
(zt+1)

βt+1Exp−1

xt+1
(zt)

Exp−1

xt+1
(yt)

0 (= Exp−1
xt+1

(xt+1))

Exp−1

xt+1
(yt+1)

−ηt+1∇f(yt)

−γ∇f(yt)

1− αt+1

αt+1

1− βt+1

βt+1

Figure 2: An illustration of the update rule (3.1) on the tangent space Txt+1M .

Proof We first recall the following assumption from the proposition statement:

1 < γL < 2− ξt+1 and ξt+1 > 2µ∆γ . (F.2)
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First, from (3.1b) and (3.1c) together with the triangle inequality (see Figure 2),

dxt+1(yt+1, zt+1) =
∥∥∥Exp−1

xt+1
(yt+1)− Exp−1

xt+1
(zt+1)

∥∥∥
xt+1

=
∥∥∥−γ∇f(xt+1)− βt+1Exp

−1
xt+1

(zt) + ηt+1∇f(xt+1)
∥∥∥
xt+1

≥ βt+1

∥∥∥Exp−1
xt+1

(zt)
∥∥∥
xt+1

− |ηt+1 − γ| · ‖∇f(xt+1)‖xt+1

= βt+1 · d (xt+1, zt)− |ηt+1 − γ| · ‖∇f(xt+1)‖xt+1
.

Rearranging the above inequality we have

βt+1 · d (xt+1, zt) ≤ dxt+1(yt+1, zt+1) + |ηt+1 − γ| · ‖∇f(xt+1)‖xt+1
. (F.3)

We first simplify the left hand side with the update rules (3.1). First, note that (3.1a) implies that xt+1

lies on the geodesic connecting yt and zt. Therefore, when representing the iterates on the tangent

space Txt+1M , the points Exp−1
xt+1

(zt), Exp
−1
xt+1

(yt) and 0 (= Exp−1
xt+1

(xt+1)) on the same line as

depicted in Figure 2. Therefore, it is easy to see from Figure 2 that

d (xt+1, zt) = dxt+1(xt+1, yt) = (1− αt+1)dxt+1(yt, zt) = (1− αt+1) · d (yt, zt) .

Substituting this identity to the left hand side of (F.3), (F.3) becomes:

βt+1(1− αt+1) · d (yt, zt)
≤dxt+1(yt+1, zt+1) + |ηt+1 − γ| · ‖∇f(xt+1)‖xt+1

(♣)

≤ dxt+1(yt+1, zt+1) + L|ηt+1 − γ| · d (xt+1, x∗)

(♠)
= dxt+1(yt+1, zt+1) + L(ηt+1 − γ) · d (xt+1, x∗)

(♥)

≤ dxt+1(yt+1, zt+1) + L(ηt+1 − γ) · d (xt+1, yt) + L(ηt+1 − γ) · d (yt, x∗) ,
=dxt+1(yt+1, zt+1) + Lαt+1(ηt+1 − γ) · d (yt, zt) + L(ηt+1 − γ) · d (yt, x∗) ,

where (♣) follows from the geodesic L-smoothness of f : ‖∇f(xt+1)‖xt+1
≤ L · d (xt+1, x∗);

and (♠) is due to the fact that ηt+1 − γ = 2∆γξ
−1
t+1 − γ = γξ−1

t+1(2 − Lγ − ξt+1) > 0 since

2− ξt+1 − γL > 0 from (F.2); (♥) follows from the Riemannian triangle inequality d (xt+1, x∗) ≤
d (xt+1, yt) + d (yt, x∗); and the last line follows from the identity d (xt+1, yt) = αt+1 · d (yt, zt)
(see Figure 2).

Moving the term Lαt+1(ηt+1 − γ) · d (yt, zt) to the LHS, we then obtain:

[βt+1(1− αt+1)− Lαt+1(ηt+1 − γ)] · d (yt, zt) ≤ dxt+1(yt+1, zt+1) + L(ηt+1 − γ) · d (yt, x∗) .
(F.4)

Since we have seen from Proposition F.1 that the both terms on the right hand side of (F.4) are

shrinking, one can prove that d (yt, zt) is shrinking as long as one can guarantee that βt+1(1 −
αt+1)−Lαt+1(ηt+1− γ) > 0. More formally, Proposition F.2 is a direct consequence the following

two statements:
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1. The RHS of (F.4) is upper bounded by

√
D0
∏t

j=1(1− ξj) ·
(√

2
µ +

√
1

µ2∆γ
+ L

µ

√
2
µ

)
.

2. βt+1(1−αt+1)−Lαt+1(ηt+1− γ) ≥
1−2µ∆γξ

−1
t+1

1−2µ∆γ
· (γL− 1)(γL− 1+2µ∆γ). Indeed, with

this lower bound one can guarantee that βt+1(1− αt+1)−Lαt+1(ηt+1 − γ) is positive due to

(F.2): γL > 1 and 1− 2µ∆γξ
−1
t+1 > 1− 2µ∆γ · (2µ∆γ)

−1 = 0.

Now let us prove the above two statements. From the third conclusion of Proposition F.1, we have

dxt+1(yt+1, zt+1) ≤
√
D0
∏t+1

j=1(1− ξj)·
(√

2
µ +

√
1

µ2∆γ

)
. Moreover, from the second conclusion

of Proposition F.1, we have:

L(ηt+1 − γ) · d (yt, x∗) ≤ Lηt+1 · d (yt, x∗) ≤ Lηt+1 ·
√
D0
∏t

j=1(1− ξj) ·
√

2
µ

≤
√
D0
∏t

j=1(1− ξj) · Lµ
√

2
µ ,

where the last inequality uses Lηt+1 = 2L∆γξ
−1
t+1 < 2L∆γ(2µ∆γ)

−1 ≤ L
µ . Hence, the first

statement follows.

Now, let us prove the second statement. We first recall the parameters in Algorithm 1 for

reader’s convenience: For ∆γ := γ(1− Lγ/2), αt+1 =
ξt+1−2µ∆γ

1−2µ∆γ
, βt+1 = 1− 2µ∆γξ

−1
t+1, and

ηt+1 = 2∆γξ
−1
t+1. Now substituting these parameters to the coefficient, we have:

βt+1(1− αt+1)− Lαt+1(ηt+1 − γ)

=(1− 2µ∆γξ
−1
t+1)

1− ξt+1

1− 2µ∆γ
− Lξt+1 − 2µ∆γ

1− 2µ∆γ

(
2∆γξ

−1
t+1 − γ

)

=
1− 2µ∆γξ

−1
t+1

1− 2µ∆γ
· [1− ξt+1 − 2L∆γ + γLξt+1]

Further simplifying the last expression, one obtains the second statement:

βt+1(1− αt+1)− Lαt+1(ηt+1 − γ) =
1− 2µ∆γξ

−1
t+1

1− 2µ∆γ
·
[
(γL− 1)2 + (γL− 1)ξt+1

]

>
1− 2µ∆γξ

−1
t+1

1− 2µ∆γ
·
[
(γL− 1)2 + (γL− 1) · 2µ∆γ

]
.

where the last line follows from the facts ξt+1 > 2µ∆γ and γL− 1 > 0.

Now, we are finally ready to provide the formal statement and the proof of Lemma 4.2:

Lemma F.1 (Formal statement of Lemma 4.2) Assume that µ > 0. Let D0 := f(x0)− f(x∗) +
1

4∆γ
ξ20 · d (x0, x∗)2. If γL > 1, γL ≤ 2− ξt+1 and ξt+1 > 2µ∆γ , then Algorithm 1 satisfies:

d (xt+1, zt+1) ≤ Cµ,L,γ ·

√√√√D0

t∏

j=1

(1− ξj) ,

where Cµ,L,γ =

(

√

2
µ
+
√

1
µ2∆γ

+L
µ

√

2
µ

)

(2L∆γ+1−2µ∆γ)

(γL−1)(γL−1+2µ∆γ)
+ L

µ

√
2
µ .
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Proof We again recall the parameters in Algorithm 1 for reader’s convenience: For ∆γ := γ(1 −
Lγ/2), αt+1 =

ξt+1−2µ∆γ

1−2µ∆γ
, βt+1 = 1− 2µ∆γξ

−1
t+1, and ηt+1 = 2∆γξ

−1
t+1. Now, one can use the

Euclidean triangle inequality on Txt+1M (see Figure 2) to obtain:

d (xt+1, zt+1) = dxt+1(xt+1, zt+1)

≤ βt+1 · d (xt+1, zt) + ηt+1 · ‖∇f(xt+1)‖xt+1

(♣)

≤ βt+1 · d (xt+1, zt) + Lηt+1 · d (xt+1, x∗)

(♠)

≤ βt+1 · d (xt+1, zt) + Lηt+1 · d (xt+1, yt) + Lηt+1 · d (yt, x∗)
(♥)
= (βt+1(1− αt+1) + Lηt+1αt+1) · d (yt, zt) + Lηt+1 · d (yt, x∗)
(♦)
= (1− ξt+1 + 2L∆γ)

1− 2µ∆γξ
−1
t+1

1− 2µ∆γ
· d (yt, zt) + 2L∆γξ

−1
t+1 · d (yt, x∗) ,

where (♣) is due to the geodesic L-smoothness of f , which implies ‖∇f(xt+1)‖ ≤ L · d (xt+1, x∗);
(♠) is due to Riemannian triangle inequality; (♥) is due to (3.1a) (see Figure 2); and (♦) follows from

the choice of parameters in Algorithm 1.

Now after we apply Propositions F.1 and F.2 to the last upper bound, and use the fact ξt+1 ∈
[2µ∆γ , 1) to upper bound ξt+1’s in the resulting upper bound, Lemma F.1 readily follows.

Appendix G. Proof of global acceleration (Theorem 4.1)

We first recall the assumptions in the theorem statement for reader’s convenience:

0 < µ < L and γL ∈ (1, 2−
√

µ/L].

We first demonstrate that regardless of what initial value ξ0 > 0 we choose, ξt becomes less than√
µ/L after a few iterations. Before the demonstration, we denote by ξt+1 = τt+1(ξt) the recursion

{ξt} in Algorithm 1 follows. In other words, given ξt > 0, ξt+1 = τt+1(ξt) is defined as the unique

ξt+1 > 0 satisfying:

ξt+1(ξt+1 − 2µ∆γ)

(1− ξt+1
=

ξ2t
δt+1

.

Proposition G.1 If ξ0 >
√
µ/L, then ξt ≤

√
µ/L for all t whenever

t ≥ log
(
(ξ0 −

√
2µ∆γ)/(

√
µ/L−

√
2µ∆γ)

)

log
(
1/
(
1− 8µ∆γ

5+
√
5

)) . (G.1)

If ξ0 <
√

µ/L, then ξt ≤
√

µ/L for all t ≥ 0.

Proof At some iteration t, we consider two cases depending on whether ξt ≤
√
2µ∆γ or not:

1. First, if ξt ≤
√
2µ∆γ , then we evidently have ξt′ ≤

√
2µ∆γ for all t′ ≥ t. This is due to the

fact that the fixed point ξ(δt) is always less than
√

2µ∆γ together with Lemma D.1.
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2. Next, consider the case ξt >
√

2µ∆γ . We may assume that ξt+1 >
√
2µ∆γ (otherwise,

ξt′ ≤
√

2µ∆γ for t′ ≥ t+ 1 due to the first case). Then, the mean value theorem implies:

ξt+1 −
√

2µ∆γ = τt+1(ξt)− τt+1(τ
−1
t+1(

√
2µ∆γ))

(♣)

≤ 1√
δt+1

(
1− 4

5 +
√
5
· 2µ∆γ√

δt+1

)
·
(
ξt − τ−1

t+1(
√

2µ∆γ)
)

(♠)
<
(
1− 4

5+
√
5
· 2µ∆γ

)
·
(
ξt −

√
2µ∆γ

)
,

where (♣) is due to Proposition D.1 together with ξt+1 >
√

2µ∆γ ⇒ ξt > τ−1
t+1(

√
2µ∆γ);

(♠) follows since 1√
δ
(1− 4

(5+
√
5)
· 2µ∆γ√

δ
) for δ ≥ 1 is maximized when δ = 1 and

√
2µ∆γ <

τ−1
t+1(

√
2µ∆γ) due to

√
2µ∆γ ≥ ξ(δt+1) and Lemma D.1. Hence, the distance between ξt

and
√
2µ∆γ shrinks geometrically.

Combining the two cases, we conclude the proof.

We now study the rate of convergence of {ξt}. To that end, we first study the convergence of

{ξ(δt)}. For simplicity, we assume that ξ0 ≤
√
µ/L. By Proposition G.1, the arguments below

remain true for ξ0 >
√
µ/L after we replace t with t+ (G.1). We first characterize ξ(δ) near δ = 1:

Proposition G.2 Let ξ(δ) := 1
2

(√
(δ − 1)2 + 8δµ∆γ − (δ − 1)

)
for δ ≥ 1. Then, 0 ≤

√
2µ∆γ−

ξ(δ) ≤ 1
2(δ − 1) for 1 ≤ δ ≤ 1 + 3/(1 + (4µ∆γ)

−1).

Proof For simplicity, let us write δ = 1+d. Then, ξ(1+d) = 1
2

(√
d2 + 8µ∆γ(1 + d)− d

)
. Using

the inequality
√
1 + r ≥ 1 + 1

3r for 0 ≤ r ≤ 3, we get the following as long as d+ 1
8µ∆γ

d2 ≤ 3:

ξ(1 + d) ≥
√
2µ∆γ ·

(
1 +

1

3
d+

1

24µ∆γ
d2
)
− 1

2
d

≥
√

2µ∆γ −
(
1

2
−
√

2µ∆γ

3

)
d .

Now all we need to check is that d ≤ 3/(1 + 1
4µ∆γ

) implies d + 1
8µ∆γ

d2 ≤ 3. Indeed, if d ≤
3/(1 + 1

4µ∆γ
), then we have d ≤ 3/(1 + 1

4µ∆γ
) ≤ 3/(3/2) = 2, and hence d + 1

8µ∆γ
d2 =

d
(
1 + d

8µ∆γ

)
≤ d
(
1 + 1

4µ∆γ

)
≤ 3.

Next, we characterize the behaviour of the function Tκ(r) near r = 1.

Proposition G.3 Tκ(r) ≤ 1 + 2κr2 for 0 ≤ r ≤ 1
2
√
κ

.

Proof Using Taylor expansion, one easily easily verify for 0 ≤ r ≤ 1
2
√
κ

that

√
κr

tanh(
√
κr)
≤ 1 +

κ

2
r2 and

(
sinh(2

√
κr)

2
√
κr

)2

≤ 1 + 2κr2 .

Hence, from the definition of Tκ (see (4.1)), we obtain the desired bound on Tκ.

Combining Propositions G.2 and G.3, we obtain the following results:
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Proposition G.4
√

2µ∆γ − ξ(Tκ(r)) ≤ κr2 for 0 ≤ r ≤
√

3
1+(4µ∆γ)−1 · 1

2
√
κ

.

Proof Note that 3
1+(4µ∆γ)−1 ≤ 3

1+2L/µ ≤ 1, and hence,
√

3
1+(4µ∆γ)−1 · 1

2
√
κ
≤ 1

2
√
κ

. Thus, one

can apply Proposition G.3 for 0 ≤ r ≤
√

3
1+(4µ∆γ)−1 · 1

2
√
κ

, and obtain Tκ(r) ≤ 1 + 2κr2.

Hence, Tκ(r) ≤ 1 + 1
2 · 3

1+(4µ∆γ)−1 within the range. Hence, by Proposition G.2, one then obtains
√
2µ∆γ − ξ(Tκ(r)) ≤ κr2 for 0 ≤ r ≤

√
3

1+(4µ∆γ)−1 · 1
2
√
κ

.

Let Dκ,µ,γ :=
√

3
1+(4µ∆γ)−1 · 1

2
√
κ

. Then by Lemma F.1, we can deduce that d (xt+1, zt+1) ≤

Dκ,µ,γ whenever t ≥ 2
log(Cµ,L,γ ·

√
D0/Dκ,µ,γ)

log(1/(1−2µ∆γ))
. Therefore, Proposition G.4 implies that for t ≥

2
log(Cµ,L,γ ·

√
D0/Dκ,µ,γ)

log(1/(1−2µ∆γ)))
, the following bound holds:

√
2µ∆γ − ξ

(
Tκ
(
d (xt+1, zt+1)

))
≤ κC2µ,L,γD0(1− 2µ∆γ)

t .

From this bound, it follows that ξ
(
Tκ
(
d (xt+1, zt+1)

))
∈ [
√

2µ∆γ − ǫ/2,
√
2µ∆γ ] whenever

t ≥ max

{
2
log(Cµ,L,γ ·

√
D0/Dκ,µ,γ)

log(1/(1−2µ∆γ)))
,
log(2κC2µ,L,γD0/ǫ)

log(1/(1−2µ∆γ)))

}
.

Now having established the convergence rate of {ξ(δt)}, we translate it into the convergence rate

of {ξt}. Similarly to the proof of Proposition G.1, one can prove that for any T ≥ 0,

|ξT+t − ξ(δT )| ≤
(
1− 8µ∆γ

5 +
√
5

)t

|ξT − ξ(δT )| .

From this, one can conclude that ξt+1 ∈ [
√
2µ∆γ − ǫ,

√
2µ∆γ ] whenever

t ≥ max

{
2
log(Cµ,L,γ ·

√
D0/Dκ,µ,γ)

log(1/(1−2µ∆γ)))
,
log(2κC2µ,L,γD0/ǫ)

log(1/(1−2µ∆γ)))

}
+

log(2
√

2µ∆γ/ǫ)

log
(
1/
(

1− 8µ∆γ

5+
√
5

)

) ,

concluding the proof of the the convergence rate of {ξt} in Theorem 4.1.

Appendix H. Extension to the non-strongly geodesically convex case

In the Euclidean case, it is well-known that one can obtain acceleration guarantees for the non-strongly

convex case from the strongly convex case; see e.g., (Gasnikov and Nesterov, 2018, Theorem 4). In

this section, we extend such an argument to the Riemannian setting and use it to establish accelerated

guarantees for the non-strongly g-convex case under the constant distortion assumption.

To that end, we will need the following properties of the distance function:

Proposition H.1 Let M be a Riemannian manifold with sectional curvatures lower bounded by

−κ < 0. Then, for a fixed p ∈M , the distance function d(x) := 1
2d (x, p)

2 :M → R satisfies:

1. d is 1-strongly g-convex in the entire M with ∇d(x) = −Exp−1
x (p).
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2. For D ≥ 0, d is geodesically
√
κD

tanh(
√
κD)

-smooth within the domain {u ∈M : d (u, p) ≤ D}.

Proof Let us first verify the strong g-convexity. Let x, y be arbitrary points on M . Then,

d (y, p)2 ≥ dx(y, p)2 = d (x, p)2 + d (x, y)2 − 2
〈
Exp−1

x (p) ,Exp−1
x (y)

〉
x
.

Using the notation d(·) and noting that ∇d(x) := −Exp−1
x (p), we get

d(y) ≥ d(x) +
〈
∇d(x),Exp−1

x (y)
〉
x
+

1

2
· d (x, y)2 ,

which is precisely the definition of geodesic 1-strong convexity (see Definition E.1). Next, we verify

the geodesic smoothness. From the global trigonometry inequality (Proposition C.3),

d (y, p)2 ≤ d (x, p)2 +
√
κd (x, p)

tanh(
√
κd (x, p))

· d (x, y)2 − 2
〈
Exp−1

x (p) ,Exp−1
x (y)

〉
x
,

which can be rewritten as

d(y) ≤ d(x) +
〈
∇d(x),Exp−1

x (y)
〉
x
+

√
κd (x, p)

2 tanh(
√
κd (x, p))

· d (x, y)2 .

From this, one can deduce geodesic
√
κD

tanh(
√
κD)

-smoothness of d (see Definition E.2).

The next ingredient is the extension of the folklore reduction argument to the Riemannian case:

Proposition H.2 (Reduction argument) Given an accuracy ǫ > 0, a Riemannian manifold M ,

and a point x0 ∈M , let µ > 0 be a constant satisfying µ ≤ ǫ/d(x∗,x0)
2. Suppose that xsol ∈M is an

ǫ/2-suboptimal solution to minimize
x∈M

(
f(x) + µ/2 · d (x, x0)2

)
. Then, f(xsol)− f(x∗) ≤ ǫ.

Proof By the definition of xsol, we have f(xsol) ≤ f(x∗) + µ
2d (x∗, x0)

2 + ǫ
2 ≤ ǫ.

Using Propositions H.1 and H.2, Corollary 3.1 can be extended to the non-strongly g-convex

case by perturbing the cost function. More specifically, when f is geodesically L-smooth, then

f + µ
2 · d (x, x0)

2
is geodesically L + µ

√
κD

tanh(
√
κD)

-smooth and µ-strongly convex within {u ∈
M : d (u, x0) ≤ D}. Hence, as long as the algorithm iterates stay within the bounded domain, one

can use the reduction argument to obtain accelerated rate for non-strongly convex costs:

Corollary H.1 Let ǫ ∈ (0, 1) be an arbitrary accuracy, and f be a geodesically L-smooth function.

Assume that there exists D > 0 such that

1. ǫ < L
2 · d (x∗, x0)

2 · tanh(
√
κD)√

κD
.

2. All iterates of (3.1) with parameters chosen as per Theorem 3.1 with γt ≡ 1/L, µ = ǫ
d(x∗,x0)

2

and δt ≡ Sκ(2D) =
( sinh(√κ2D)√

κ2D

)2
stay within {u ∈M : d (u, x0) ≤ D}.

Then, one can find an ǫ-suboptimal solution to minimize
x∈M

f(x), within O
(
ǫ−1/2 log(1/ǫ)

)
iterations,

where the constant involved in O (·) depends only on κ,D,L.
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Remark H.3 It is important to note that Corollary H.1 is not a complete result but rather a proof of

concept as it assumes that all iterates with a certain parameter choices stay within a bounded domain.

In particular, it would be interesting to see if such an assumption can be guaranteed following

the arguments in Appendix F. Moreover, compared to the acceleration result from the Euclidean

case (Nesterov, 1983), Corollary H.1 is not fully satisfactory: the target accuracy ǫ > 0 needs to

be chosen beforehand, and an extra log(1/ǫ) term appears in the iteration complexity. It would be

interesting to see if one can overcome such shortcomings of the reduction argument, and we leave it

as an open question.

Proof Let us take µ = ǫ/d(x∗,x0)
2. Then, Proposition H.2 implies that arbitrary ǫ/2-suboptimal

solution xsol ∈M to minimize
x∈M

(
f(x) + µ/2 · d (x, x0)2

)
satisfies f(xsol)− f(x∗) ≤ ǫ.

On the other hand, note that f + µ
2 · d (x, x0)

2
is geodesically L + µ

√
κD

tanh(
√
κD)

-smooth and

µ-strongly convex within {u ∈M : d (u, x0) ≤ D}. Hence, by choosing γt ≡ 1/L, we have

∆γ =
1

L


1−

L+ ǫ
d(x∗,x0)

2 ·
√
κD

tanh(
√
κD)

2L


 ≥ 1

L

(
1− L+ L

2

2L

)
=

1

4L
,

where the inequality follows due to the assumption ǫ < L
2 · d (x∗, x0)

2 · tanh(
√
κD)√

κD
.

Since all the iterates stay within a subset of diameter D, Rauch comparison theorem (Proposi-

tion 4.1) implies that the constant distortion condition holds with δ = Sκ(2D). Hence, Corollary 3.1

implies that (3.1) with finds an ǫ/2-suboptimal solution within iterations bounded by

O



(√

(δ − 1)2 + ǫ · δ

Ld (x∗, x0)
2 − (δ − 1)

)−1

log(2/ǫ)


 ,

which is of O
(
ǫ−1/2 log(1/ǫ)

)
.

Appendix I. Extension to positively-curved manifolds

Let us now assume that the sectional curvatures of M is upper bounded by σ ≥ 0. In particular, the

case with σ = 0 corresponds to the non-positively curved case. We first pinpoint the main differences:

unlike the the non-positively curved case, M now may not be uniquely geodesic. Instead, one can

only guarantee the property within a local neighborhood of M . Consequently, the notion of geodesic

convexity can be guaranteed only within a local neighborhood of M . For instance, manifolds with

positive sectional curvatures (e.g. spheres) are compact, and hence, they do not admit globally

geodesically convex functions other than the constant functions. Following the prior arts (Dyer et al.,

2015; Zhang and Sra, 2018), we make the following assumptions to avoid any further complications:

Assumption 3 The domain N ⊂M of f is uniquely geodesic with the diameter bounded by π
2
√
σ

.

Assumption 4 (Bounded iterates assumption) All the iterates of Algorithm 1 (whose parameters

will be chosen later) remain in N .
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The analysis for the positively curved case is identical to that for the non-positively curved case,

modulo an additional geometric inequality due to (Zhang and Sra, 2018):

Proposition I.1 ((Zhang and Sra, 2018, Lemma 7)) Let x, y, z be points on Riemannian manifold

M with sectional curvatures upper bounded by σ ≥ 0. If d(x, z) ≤ π
2
√
σ

, then

dx(y, z)
2 ≤ (1 + 2σ · d (x, y)2) · d (y, z)2 .

Applying Proposition I.1 to Lemma C.1, we obtain the following metric distortion inequality:

Lemma I.1 (Modification of Lemma C.1) Let x, x′, y, z be points on Riemannian manifold M
with sectional curvatures upper and lower bounded by σ and−κ < 0, respectively. If d(x′, z) ≤ π

2
√
σ

,

then for T̂κ : R≥0 → R≥1 defined as in Lemma C.1, we have

dx′(y, z)2 ≤ T̂κ(d (x, y)) · (1 + 2σ · d
(
x′, y

)2
) · dx(y, z)2 .

From Lemma I.1, one can conclude that at iteration t ≥ 1,

Tκ(d (xt, zt)) · (1 + 2σ · d (yt, zt)2) (I.1)

is a valid distortion rate. Thus, one can use (I.1) in lieu of Tκ(d (xt, zt)) for the valid distortion

rate in Algorithm 1. Then, one can invoke Theorem 3.1 with the chosen valid distortion rate (I.1)

to guarantee the potential decrease. To show that Algorithm 1 with (I.1) eventually achieves full

acceleration, the last ingredient is to show that the distances d (xt, zt) and d (yt, zt) shrink over

iterations. Indeed, one can prove that the distances shrink following the arguments in Appendix F.

The only difference is that in proving Proposition F.1, one now has the following in place of (F.1):

dxt(yt, zt) ≤ dxt(yt, x∗) + dxt(zt, x∗) ≤ (1 + π2/2) · d (yt, x∗) + dxt(zt, x∗) , (I.2)

where the last inequality is due to Proposition I.1 together with the bounded iterates assumption

(Assumption 4). Hence the third statement of Proposition F.1 now holds with an additional multipli-

cation constant of 1 + π2/2. With this modification, the rest follows in exactly the same manner. We

skip the details as they significantly overlap with the non-positively curved case.
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