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Abstract

We provide the first non-asymptotic analysis for
finding stationary points of nonsmooth, noncon-
vex functions. In particular, we study the class
of Hadamard semi-differentiable functions, per-
haps the largest class of nonsmooth functions for
which the chain rule of calculus holds. This class
contains examples such as ReLU neural networks
and others with non-differentiable activation func-
tions. We first show that finding an e-stationary
point with first-order methods is impossible in
finite time. We then introduce the notion of (J, €)-
stationarity, which allows for an e-approximate
gradient to be the convex combination of general-
ized gradients evaluated at points within distance
4 to the solution. We propose a series of random-
ized first-order methods and analyze their com-
plexity of finding a (J, €)-stationary point. Fur-
thermore, we provide a lower bound and show
that our stochastic algorithm has min-max opti-
mal dependence on §. Empirically, our methods
perform well for training ReLU neural networks.

1. Introduction

Gradient based optimization underlies most of machine
learning and it has attracted tremendous research attention
over the years. While non-asymptotic complexity analysis
of gradient based methods is well-established for convex
and smooth nonconvex problems, little is known for non-
smooth nonconvex problems. We summarize the known
rates (black) in Table 1 based on the references (Nesterov,
2018; Carmon et al., 2017; Arjevani et al., 2019).

Within the nonsmooth nonconvex setting, recent research
results have focused on asymptotic convergence analy-
sis (Benaim et al., 2005; Kiwiel, 2007; Majewski et al.,
2018; Davis et al., 2018; Bolte & Pauwels, 2019). Despite
their advances, these results fail to address finite-time, non-
asymptotic convergence rates. Given the widespread use
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Table 1. When the problem is nonconvex and nonsmooth, find-
ing a e-stationary point is intractable, see Theorem 11. Thus we
introduce a refined notion, (J, €)-stationarity, and provide non-
asymptotic convergence rates for finding (4, €)-stationary point.

DETERMINISTIC RATES CONVEX NONCONVEX

L-SMOOTH O(e79) O(e™?)

L-LIPSCHITZ O(™?) O35
STOCHASTIC RATES CONVEX NONCONVEX
L-SMOOTH O(e™?) O(e™)
L-LIPSCHITZ O™ Ot

of nonsmooth nonconvex problems in machine learning,
a canonical example being deep ReLU neural networks,
obtaining a non-asymptotic convergence analysis is an im-
portant open problem of fundamental interest.

We tackle this problem for nonsmooth functions that are
Lipschitz and directionally differentiable. This class is rich
enough to cover common machine learning problems, in-
cluding ReL.U neural networks. Surprisingly, even for this
seemingly restricted class, finding an e-stationary point, i.e.,
a point Z for which d(0,9f(Z)) < ¢, is intractable. In other
words, no algorithm can guarantee to find an e-stationary
point within a finite number of iterations.

This intractability suggests that, to obtain meaningful non-
asymptotic results, we need to refine the notion of stationar-
ity. We introduce such a notion and base our analysis on it,
leading to the following main contributions of the paper:

e We show that a traditional e-stationary point cannot be
obtained in finite time (Theorem 5).

e We study the notion of (J, ¢)-stationary points (see Def-
inition 4). For smooth functions, this notion reduces to
usual e-stationarity by setting 6 = O(e/L). We provide a
(6~1) lower bound on the number of calls if algorithms
are only allowed access to a generalized gradient oracle.

e We propose a normalized “gradient descent” style algo-
rithm that achieves O(¢~3§~") complexity in finding a
(0, €)-stationary point in the deterministic setting.

e We propose a momentum based algorithm that achieves
O(e=*6~1) complexity in finding a (4, €)-stationary point
in the stochastic finite variance setting.
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As a proof of concept to validate our theoretical findings, we
implement our stochastic algorithm and show that it matches
the performance of empirically used SGD with momentum
method for training ResNets on the Cifar10 dataset.

Our results attempt to bridge the gap from recent advances
in developing a non-asymptotic theory for nonconvex opti-
mization algorithms to settings that apply to training deep
neural networks, where, due to non-differentiability of the
activations, most existing theory does not directly apply.

1.1. Related Work

Asymptotic convergence for nonsmooth nonconvex
functions. Benaim et al. (2005) study the convergence
of subgradient methods from a differential inclusion per-
spective; Majewski et al. (2018) extend the result to include
proximal and implicit updates. Bolte & Pauwels (2019)
focus on formally justifying the back propagation rule un-
der nonsmooth conditions. In parallel, Davis et al. (2018)
proved asymptotic convergence of subgradient methods as-
suming the objective function to be Whitney stratifiable.
The class of Whitney stratifiable functions is broader than
regular functions studied in (Majewski et al., 2018), and it
does not assume the regularity inequality (see Lemma 6.3
and (51) in (Majewski et al., 2018)). Another line of work
(Mifflin, 1977; Kiwiel, 2007; Burke et al., 2018) studies
convergence of gradient sampling algorithms. These algo-
rithms assume a deterministic generalized gradient oracle.
Our methods draw intuition from these algorithms and their
analysis, but are non-asymptotic in contrast.

Structured nonsmooth nonconvex problems. Another
line of research in nonconvex optimization is to exploit
structure: Duchi & Ruan (2018); Drusvyatskiy & Paquette
(2019); Davis & Drusvyatskiy (2019) consider the composi-
tion structure f o g of convex and smooth functions; Bolte
et al. (2018); Zhang & He (2018); Beck & Hallak (2020)
study composite objectives of the form f + g where one
function is differentiable or convex/concave. With such
structure, one can apply proximal gradient algorithms if the
proximal mapping can be efficiently evaluated. However,
this usually requires weak convexity, i.e., adding a quadratic
function makes the function convex, which is not satisfied
by several simple functions, e.g., —|x|.

Stationary points under smoothness. When the objec-
tive function is smooth, SGD finds an e-stationary point in
O(e~*) gradient calls (Ghadimi & Lan, 2013), which im-
proves to O(e~2) for convex problems. Fast upper bounds
under a variety of settings (deterministic, finite-sum, stochas-
tic) are studied in (Carmon et al., 2018; Fang et al., 2018;
Zhou et al., 2018; Nguyen et al., 2019; Allen-Zhu, 2018;
Reddi et al., 2016). More recently, lower bounds have also
been developed (Carmon et al., 2017; Drori & Shamir, 2019;
Arjevani et al., 2019; Foster et al., 2019). When the func-

tion enjoys high-order smoothness, a stronger goal is to
find an approximate second-order stationary point and could
thus escape saddle points too. Many methods focus on this
goal (Ge et al., 2015; Agarwal et al., 2017; Jin et al., 2017;
Daneshmand et al., 2018; Fang et al., 2019).

2. Preliminaries

In this section, we set up the notion of generalized direc-
tional derivatives that will play a central role in our analysis.
Throughout the paper, we assume that the nonsmooth func-
tion f is L-Lipschitz continuous (more precise assumptions
on the function class are outlined in §2.3).

2.1. Generalized gradients

We start with the definition of generalized gradients, follow-
ing (Clarke, 1990), for which we first need:

Definition 1. Given a point x € R<, and direction d, the
generalized directional derivative of f is defined as

f°(z;d) := limsup w

y—x,tl0
Definition 2. The generalized gradient of f is defined as
Of(x):={g|{g,d) < f°(x,d), vd € R’}

We recall below the following basic properties of the gener-
alized gradient, see e.g., (Clarke, 1990) for details.

Proposition 1 (Properties of generalized gradients).

1. 9f(x) is a nonempty, convex compact set. For all
vectors g € Of(z), we have ||g|| < L.

2. fo(x;d) = max{(g,d) | g € 0f (x)}.
3. Of(x) is an upper-semicontinuous set valued map.

4. f is differentiable almost everywhere (as it is L-
Lipschitz); let conv(-) denote the convex hull, then

df(z) = conv({glg = khﬁrgO Vf(zk), z — x}).

5. Let B denote the unit Euclidean ball. Then,
Af(x) = Ns>0 Uyeatsn Of (y).

6. For any y, z, there exists A € (0,1) and g € 0f(\y +
(1= A)z) such that f(y) — f(z) = {9,y — 2).

2.2. Directional derivatives

Since general nonsmooth functions can have arbitrarily large
variations in their “gradients,” we must restrict the function
class to be able to develop a meaningful complexity theory.
We show below that directionally differentiable functions
match this purpose well.
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Definition 3. A function f is called directionally differen-
tiable in the sense of Hadamard (cf. (Sova, 1964; Shapiro,
1990)) if for any mapping ¢ : Ry — X for which ¢(0) = =

() =¢(0)
t

and lim;_, o+ = d, the following limit exists:

flasd) = lim 1(f(e(t) - f(2)). (D

In the rest of the paper, we will say a function f is direc-
tionally differentiable if it is directionally differentiable in
the sense of Hadamard at all x.

This directional differentiabilility is also referred to as
Hadamard semidifferentiability in (Delfour, 2019). Notably,
such directional differentiability is satisfied by most prob-
lems of interest in machine learning. It includes functions
such as f(z) = —|z| that do nor satisfy the so-called regu-
larity inequality (equation (51) in (Majewski et al., 2018)).
Moreover, it covers the class of semialgebraic functions, as
well as o-minimally definable functions (see Lemma 6.1 in
(Coste, 2000)) discussed in (Davis et al., 2018). Currently,
we are unaware whether the notion of Whitney stratifiability
(studied in some recent works on nonsmooth optimization)
implies directional differentiability.

A very important property of directional differentiability is
that it is preserved under composition.

Lemma 2 (Chain rule). Let ¢ be Hadamard directionally
differentiable at x, and v be Hadamard directionally dif-
ferentiable at ¢(x). Then the composite mapping v o ¢ is
Hadamard directionally differentiable at x and

(Y0 d)y = Yy © Bpe

A proof of this lemma can be found in (Shapiro, 1990,
Proposition 3.6). As a consequence, any neural network
function composed of directionally differentiable functions,
including ReLU/LeakyReLU, is directionally differentiable.

Directional differentiability also implies key properties use-
ful in the analysis of nonsmooth problems. In particular, it
enables the use of (Lebesgue) path integrals as follows.

Lemma 3. Given any x,y, let y(t) = x+t(y—z), t € [0, 1].
If f is directionally differentiable and Lipschitz, then

fly) = f(z) = f(y(t);y — x)dt.

(0,1]

The following important lemma further connects directional
derivatives with generalized gradients.

Lemma 4. Assume that the directional derivative exists.
For any x, d, there exists g € Of (x) s.t. (g,d) = f'(x;d).

2.3. Nonsmooth function class of interest

Throughout the paper, we focus on the set of Lipschitz,
directionally differentiable and bounded (below) functions:

F(A, L) := {f|f is L-Lipschitz;
f is directionally differentiable;

f(wo) — in f(z) < A}, @)
where a function f : R™ — R is L—Lipschitz if

[f(x) = f)| < L]z —yll,V 2,y € R™.

As indicated previously, ReLU neural networks with
bounded weight norms are included in this function class.

3. Stationary points and oracles

We now formally define our notion of stationarity and dis-
cuss the intractability of the standard notion. Afterwards,
we formalize the optimization oracles and define measures
of complexity for algorithms that use these oracles.

3.1. Stationary points

With the generalized gradient in hand, commonly a point
is called stationary if 0 € 0f(x) (Clarke, 1990). A natural
question is, what is the necessary complexity to obtain an
e-stationary point, i.e., a point « for which

min{|lg| | g € 9f(z)} <e

It turns out that attaining such a point is intractable. In
particular, there is no finite time algorithm that can guarantee
e-stationarity in the nonconvex nonsmooth setting. We make
this claim precise in our first main result.

Theorem 5. Given any algorithm A that accesses function
value and generalized gradient of f in each iteration, for
any € € [0,1) and for any finite iteration T, there exists
[ € F(A, L) such that the sequence {x},c1,1) generated
by A on the objective f does not contain any e-stationary
point with probability more than %

A key ingredient of the proof is that an algorithm A is
uniquely determined by {f (), df(x¢)}ien, . the func-
tion values and gradients at the query points. For any two
functions f; and f5 that have the same function values and
gradients at the same set of queried points {1, ..., ¢ }, the
distribution of the iterate z;,; generated by A is identi-
cal for f; and fo. However, due to the richness of the
class of nonsmooth functions, we can find f; and f5 such
that the set of e-stationary points of f; and f5 are disjoint.
Therefore, the algorithm cannot find a stationary point with
probability more than % for both f; and f5 simultaneously.
Intuitively, such functions exist because a nonsmooth func-
tion could vary arbitrarily—e.g., a nonsmooth nonconvex
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function could have constant gradient norms except at the
(local) extrema, as happens for a piecewise linear zigzag
function. Moreover, the set of extrema could be of measure
zero. Therefore, unless the algorithm lands exactly in this
measure-zero set, it cannot find any e-stationary point.

Theorem 5 suggests the need for rethinking the definition
of stationary points. Intuitively, even though we are unable
to find an e-stationary point, one could hope to find a point
that is close to an e-stationary point. This motivates us to
adopt the following more refined notion:

Definition 4. A point x is called (0, €)-stationary if
d(0,0f(z +0B)) <,

where Of (x + 6B) := conv(Uyeqa+580f(y)) is the Gold-
stein d-subdifferential, introduced in (Goldstein, 1977).

Note that if we can find a point y at most distance ¢ away
from z such that y is e-stationary, then we know z is (4, €)-
stationary. However, the contrary is not true. In fact,
(Shamir, 2020) shows that finding a point that is ¢ close
to an e—stationary point requires exponential dependence
on the dimension of the problem.

At first glance, Definition 4 appears to be a weaker notion
since if x is e-stationary, then it is also a (, ¢)-stationary
point for any § > 0, but not vice versa. We show that the
converse implication indeed holds, assuming smoothness.

Proposition 6. The following statements hold:

(i) e-stationarity implies (9, €)-stationarity for any 6 > 0.

(i) If f is smooth with an L-Lipschitz gradient and if x is
(3%’ %)-stationary, then z is also e-stationary, i.e.

d(0,0f (z+:5B)) <& = |Vf(@)|<e

Consequently, the two notions of stationarity are equivalent
for differentiable functions. It is then natural to ask: does
(0, €)-stationarity permit a finite time analysis?

The answer is positive, as we will show later, revealing an
intrinsic difference between the two notions of stationarity.
Besides providing algorithms, in Theorem 11 we also prove
an (0~ 1) lower bound on the dependency of § for algo-
rithms that can only access a generalized gradient oracle.

We also note that (0, €)-stationarity behaves well as ¢ | 0.
Lemma 7. The set Of(x + dB) converges as ¢ | 0 as

lim 0 0B)=0 .
im0 (x +0B) = 0f(x)
Lemma 7 enables a straightforward routine for transform-

ing non-asymptotic analyses for finding (9, ¢)-stationary
points to asymptotic results for finding e-stationary points.

Indeed, assume that a finite time algorithm for finding (6, €)-
stationary points is provided. Then, by repeating the algo-
rithm with decreasing dx, (e.g., oy = 1/k), any accumula-
tion points of the repeated algorithm is an e-stationary point
with high probability.

3.2. Gradient Oracles

We assume that our algorithm has access to a generalized
gradient oracle in the following manner:

Assumption 1. Given z,d, the oracle O(z,d) returns a
function value f,, and a generalized gradient g,

(fragm) = @(l‘, d)a

such that

(a) In the deterministic setting, the oracle returns
f$ = f(x)v gz € 8f(a:) satisfying <gw7d> = fl(xad)

(b) In the stochastic finite-variance setting, the oracle
only returns a stochastic gradient g with E[g] = ¢,.,
where g, € 0f(z) satisfies (g,,d) = f'(x,d). More-
over, the variance E[|lg — g.||?] < o2 is bounded. In
particular, no function value is accessible.

We remark that one cannot generally evaluate the gener-
alized gradient Jf in practice at any point where f is not
differentiable. When the function f is not directionally dif-
ferentiable, one needs to incorporate gradient sampling to
estimate 0f (Burke et al., 2002). Our oracle queries only
an element of the generalized gradient and is thus weaker
than querying the entire set Jf. Still, finding a vector g,
such that (g, d) equals the directional derivative f’(z,d) is
non-trivial in general. Yet, when the objective function is a
composition of directionally differentiable functions, such
as ReL.U neural networks, and if a closed form directional
derivative is available for each function in the composition,
then we can find the desired g, by appealing to the chain rule
in Lemma 2. This property justifies our choice of oracles.

3.3. Algorithm class and complexity measures

An algorithm A maps a function f € F(A, L) to a sequence
of points {zy, }r>0 in R”. We denote A*) to be the mapping
from previous k iterations to xj41. Each xj, can potentially
be a random variable, due to the stochastic oracles or algo-
rithm design. Let {Fj}x>0 be the filtration generated by
{z}} such that =, is adapted to F. Based on the definition
of the oracle, we assume that the iterates follow the structure

Tr41 = A(k)(l’hgl, f1,22, 92, f2, .-y Tk, G, fk), 3)

where ( fx, gx) = O(yx, di), and the point y;, and direction
dy, are (stochastic) functions of the iterates x1, ..., Tg.
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For a random process {xy } ren, we define the complexity
of {« }ren for a function f as the value

Té,e({xt}t€N7f) =
inf{t € N | Prob{d(0,0f(z+6B)) >€ (4)
forall k <t} < %}

Let A[f, xo] denote the sequence of points generated by

algorithm A for function f. Then, we define the iteration

complexity of an algorithm class .A on a function class F as

N(Aa fvev(s) = Hlf sup T&,E(A[fv 1’0],f)- (5)
A€AfeF

At a high level, (5) is the minimum number of oracle calls

required for a fixed algorithm to find a (9, €)-stationary point
with probability at least 2/3 for all functions is class F.

4. Deterministic Setting

For optimizing L-smooth functions, a crucial inequality is

f(z = LVf(@) - flx) < == V@) (©)

In other words, either the gradient is small or the func-
tion value decreases sufficiently along the negative gradient.
However, when the objective function is nonsmooth, this
descent property is no longer satisfied. Thus, defining an
appropriate descent direction is non-trivial. Our key innova-
tion is to solve this problem via randomization.

More specifically, in our algorithm, Interpolated Normalized
Gradient Descent (INGD), we derive a local search strategy
to find the descent direction at an iterate x;. The vector
my j, plays the role of descent direction and we sequentially
update it until the condition

_Olmel

flaer) = fx) < 1

is satisfied. To connect with the descent property (6), ob-
serve that when f is smooth, with m;, = V f(z;) and
d = ||my k||/ L. (descent condition) is the same as (6) up to
a factor 2. This connection motivates our choice of descent
condition.

(descent condition)

When the descent condition is satisfied, the next iterate ;1
is obtained by taking a normalized step from x; along the
direction my j. Otherwise, we stay at z; and continue the
search for a descent direction. We raise special attention to
the fact that inside the k-loop, the iterates x; ; are always
obtained by taking a normalized step from ;. Thus, all the
inner iterates z; ; have distance exactly ¢ from .

To update the descent direction, we incorporate a random-
ized strategy. We randomly sample an interpolation point
Yt k+1 on the segment [z, 4 ;| and evaluate the generalized
gradient g; ;41 at this random point ¥; ;1. Then, we up-
date the descent direction as a convex combination of g; 11

Algorithm 1 Interpolated Normalized Gradient Descent

1: Initialize z; € R¢
2: fort=1,2,....,T do
3:  while ||m; k| > edo
4: Call oracle ~, m; 1 = O(zy, 6)
5: fork=1,..., K do
6: Tk = Tt — 57‘|:it|‘
7: if |[my k|| < € then
8: Terminate the algorithm and return z;
9: elseif f(xyx) — f(xy) < —M then
10: Break while-loop
11: Set$t+1 = Ttk andt <+ t+1
12: else
13: Sample y; ;41 uniformly from [z, x4 j]
14: Call oracle ~, g x+1 = O(y¢ k+1, —Mi k)
15: Update my 11 = Btk e+ (1—Be,k ) Gt k41
o _ 4L2_Hmt.k“2
with Bt,k = IL712fmy k|2
16: end if
17: end for
18:  end while
19: end for

20: Return x; such that ||my k|| <e

and the previous direction m ;. Due to lack of smooth-
ness, the violation of the descent condition does not directly
imply that g; ;41 is small. Instead, the projection of the
generalized gradient is small along the direction m, j on
average. Hence, with a proper linear combination, the ran-
dom interpolation allows us to guarantee the decrease of
|l7m2,x || in expectation. This reasoning allows us to derive
the non-asymptotic convergence rate in high probability.

Theorem 8. In the deterministic setting and with Assump-

4812
62

andT = % finds a (9, €)-stationary point for function class
F(A, L) with probability 1 — ~y using at most

tion 1(a), the INGD algorithm with parameters K =

192A L2 4A
———log | — oracle calls.

€30 Yde
Since we introduce random sampling for choosing the in-
terpolation point, even in the deterministic setting we can
only guarantee a high probability result. The detailed proof
is deferred to Appendix C.

A sketch of the proof is as follows. Since ||z, —x¢|| = 6 for
any k, the interpolation point y; j, is inside the ball z; + §B.
Hence my, € Of(x¢ + 6B) for any k. In other words,
as soon as |my || < € (line 7), the reference point x; is
(0, €)-stationary. If this is not true, i.e., ||my || > €, then we
check whether (descent condition) holds, in which case

ollm )
il e

flaew) — flze) < 1 1
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Knowing that the function value is lower bounded, this can
happen at most 7' = % times. Thus, for at least one x;,
the local search inside the while loop is not broken by the
descent condition. Finally, given that ||, k|| > € and the
descent condition is not satisfied, we show that

my 2
E[” ,k” ]) E[Hmt,k |2]

This implies that E[||m; x||?] follows a decrease of order
O(1/k). Hence with K = O(1/€?), we are guaranteed to
find ||y k|| < e with high probability.

Remark 9. If the problem is smooth, the descent condition
is always satisfied in one iteration. Hence the global com-
plexity of our algorithm reduces to T' = O(1/¢d). Due to
the equivalence of the notions of stationarity (Prop. 6), with
§ = O(e/ L), our algorithm recovers the standard O(1/€?)
convergence rate for finding an e-stationary point. In other
words, our algorithm can adapt to the smoothness condition.

Eflme|?] < (1 -

5. Stochastic Setting

In the deterministic setting one of the key ingredients used
INGD is to check whether the function value decreases suf-
ficiently. However, evaluating the function value can be
computationally expensive, or even infeasible in the stochas-
tic setting. For example, when training neural networks,
evaluating the entire loss function requires going through
all the data, which is impractical. As a result, we do not
assume access to function value in the stochastic setting
and instead propose a variant of INGD that only relies on
gradient information.

Algorithm 2 Stochastic INGD (z1,p, q, 5,7, K)

Initialize ©; € R<.
Call oracle g(x1) = Q(x1,0) and set m; = g(z1).
fort=1,2,...,T do
Update Ti41 = Ty — Mg with Nt = m
Sample y;41 uniformly from [z, 2;41]
Call oracle g(y:+1) = O(yi 11, —my)
Update m41 = Bmy + (1 — B)g(yr+1)
end for
Randomly sample ¢ uniformly from {1, ..., T'}.
Update i = max{i — K, 1}
Return x;.

—_ =
DY e

One of the challenges of using stochastic gradients is the
noisiness of the gradient evaluation. To control the variance
of the associated updates, we introduce a parameter g into
the normalized step size:

B 1
pllme| +q

A similar strategy is used in adaptive methods like (Duchi
et al., 2011; Kingma & Ba, 2015) to prevent instability.

Ul

Here, we show that the constant ¢ allows us to control the
variance of x;11 — x;. In particular, it implies the bound

G2
Elllzes1 — 2] < e

where G2 := L2 + o2 is a trivial upper-bound on the ex-
pected norm of any sampled gradient g.

Another substantial change (relative to INGD) is the removal
of the explicit local search, since the stopping criterion can
now no longer be tested without access to the function value.
Instead, one may view x;_ g 41,...,2:—1, 2+ as an implicit
local search with respect to the reference point x;_ . In
particular, we show that when the direction m; has a small
norm, then x;_ f is a (, ¢)-stationary point, but not z;. This
discrepancy explains why we output x;_ i instead of ;.

In the deterministic setting, the direction m; j;, inside each
local search is guaranteed to belong to 0 f (x; + d B). Hence,
controlling the norm of m, j, implies the (0, €)-stationarity
of x;. In the stochastic case, however, we have two compli-
cations. First, only the expectation of the gradient evaluation
satisfies the membership E[g(yx)] € 0f(yx). Second, the
direction my is a convex combination of all the previous gra-
dients g(y1), - . ., g(y:), with all coefficients being nonzero.
In contrast, we use a re-initialization in the deterministic
setting. We overcome these difficulties and their ensuing
subtleties to finally obtain the following complexity result:

Theorem 10. In the stochastic setting, with Assump-
tion 1(b), the Stochastic-INGD algorithm (Algorithm 2)

2

with parameters G = VL2402, B = 1 — .
p:%, = 4Gp, K = p5, T =
w max{1, €2} ensures

LS B < &

- m €

T tl =7

t=1

In other words, the number of gradient calls to achieve a

(6, €)—stationary point is upper bounded by O (Ciz?) .

For readability, the constants in Theorem 10 have not been
optimized. The high level idea of the proof is to relate
E[n¢||m:||?] to the function value decrease f(z;) — f(z¢11),
and then to perform a telescopic sum.

We would like to emphasize the use of the adaptive step size
1 and the momentum term m,1. These techniques arise
naturally from our goal to find a (4, €)-stationary point. The
step size 7; helps us ensure that the distance moved is at
most 1, and hence we are certain that adjacent iterates are
close to each other. The momentum term m; serves as a
convex combination of generalized gradients, as postulated
by Definition 4.
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Further, even though the parameter K does not directly
influence the updates of our algorithm, it plays an important
role in understanding our algorithm. Indeed, we show that

€
d (E[mtll‘t_]d, 8f(xt_K + (SB)) < E

In other words, the conditional expectation E[m;|z;_ k] is
approximately in the J-subdifferential 0 f (z;—x + dB) at
z¢_ . This relationship is non-trivial.

On one hand, by imposing K < Jp, we ensure that
Ti—K+41,-- -, are inside the d-ball of center x;_g. On
the other hand, we guarantee that the contribution of m;_
to my is small, providing an appropriate upper bound on the
coefficient 5%, These two requirements help balance the
different parameters in our final choice. Details of the proof
may be found in Appendix D.

Recall that we do not access the function value in this
stochastic setting, which is a strength of the algorithm. In
fact, we can show that our 6! dependence is tight, when
the oracle has only access to generalized gradients.

Theorem 11 (Lower bound on 0 dependence). Let A denote
the class of algorithms defined in Section 3.2 and F (A, L)
denote the class of functions defined in Equation (2). As-
sume € € (0,1) and L = 1. Then the iteration complexity
is lower bounded by % if the algorithm only has access to
generalized gradients.

The proof is inspired by Theorem 1.1.2 in (Nesterov, 2018).
We show that unless more than % different points are
queried, we can construct two different functions in the
function class that have gradient norm 1 at all the queried
points, and the stationary points of both functions are ()
away. For more details, see Appendix E.

This theorem also implies the negative result for finite time
analyses that we showed in Theorem 5. Indeed, when an
algorithm finds an e-stationary point, the point is also a
(6, €)-stationary for any 6 > 0. Thus, the iteration complex-
ity must be at least lims_,q % = 400, i.e., no finite time
algorithm can guarantee to find an e-stationary point.

Before moving on to the experimental section, we would like
to make several comments related to different settings. First,
since the stochastic setting is strictly stronger than the de-
terministic setting, the stochastic variant Stochastic-INGD
is applicable to the deterministic setting too. Moreover, the
analysis can be extended to ¢ = 0, which leads to a com-
plexity of O(1/€34). This is the same as the deterministic
algorithm. However, the stochastic variant does not adapt
to the smoothness condition. In other words, even if the
function is differentiable, we will not obtain a faster conver-
gence rate. In particular, if the function is smooth, by using
the equivalence of the types of stationary points, Stochastic-
INGD finds an e-stationary point in O(1/€”) while standard

SGD enjoys a O(1/€*) convergence rate. We do not know
whether a better convergence result is achievable, as our
lower bound does not provide an explicit dependency on ;
we leave this as a future research direction.

6. Experiments
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Figure 1. Learning curve of SGD, ADAM and INGD on training
ResNet 20 on CIFAR10.

In this section, we evaluate the performance of our proposed
algorithm Stochastic INGD on image classification tasks.

We train the ResNet20 (He et al., 2016) model on the CI-
FARI10 (Krizhevsky & Hinton, 2009) classification dataset.
The dataset contains 50k training images and 10k test im-
ages in 10 classes.

We implement Stochastic INGD in PyTorch with the inbuilt
auto differentiation algorithm (Paszke et al., 2017). We re-
mark that except on the kink points, the auto differentiation
matches the generalized gradient oracle, which justifies our
choice. We benchmark the experiments with two popular
machine learning optimizers, SGD with momentum and
ADAM (Kingma & Ba, 2015). We train the model for 100
epochs with the standard hyper-parameters from the Github
repository':

e For SGD with momentum, we initialize the learning rate
as 0.1, momentum as 0.9 and reduce the learning rate by

"https://github.com/kuangliu/pytorch-cifar
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10 at epoch 50 and 75. The weight decay parameter is set
to5-1074,

e For ADAM, we use constant the learning rate 1073, betas
in (0.9,0.999), and weight decay parameter 10~% and
€ = 1073 for the best performance.

e For Stochastic-INGD, we use 8 = 0.9, p = 1, ¢ = 10,
and weight decay parameter 5 x 104

The training and test accuracy for all three algorithms are
plotted in Figure 1. We observe that Stochastic-INGD
matches the SGD baseline and outperforms the ADAM
algorithm in terms of test accuracy. The above results sug-
gests that the experimental implications of our algorithm
could be interesting, but we leave a more systematic study
as future direction.

7. Conclusions and Future Directions

In this paper, we investigate the complexity of finding
first order stationary points of nonconvex nondifferentiable
functions. We focus in particular on Hadamard semi-
differentiable functions, which we suspect is perhaps the
most general class of functions for which the chain rule of
calculus holds—see the monograph (Delfour, 2019). We
further extend the standard definition of e-stationary points
for smooth functions into a new notion of (d, €)-stationary
points. We justify our definition by showing that no algo-
rithm can find a (0, €) stationary point for any ¢ < 1 in
a finite number of iterations and conclude that a positive
0 is necessary for a finite time analysis. Using the above
definition and a more refined gradient oracle, we prove
that the proposed algorithms find stationary points within
O(e 3571 iterations in the deterministic setting and with
O(e=*571) iterations in the stochastic setting.

Our results provide the first non-asymptotic analysis of non-
convex optimization algorithms in the general Lipschitz con-
tinuous setting. Yet, they also open further questions. The
first question is whether the current dependence on € in our
complexity bound is optimal. A future research direction is
to try to find provably faster algorithms or construct adver-
sarial examples that close the gap between upper and lower
bounds on €. Second, the rate we obtain in the determin-
istic case requires function evaluations and is randomized,
leading to high probability bounds. Can similar rates be
obtained by an algorithm oblivious to the function value?
Another possible direction would be to obtain a determinis-
tic convergence result. More specialized questions include
whether one can remove the logarithmic factors from our
bounds. Aside from the above questions on the rate, we can
take a step back and ask high-level questions. Are there bet-
ter alternatives to the current definition of (0, €)-stationary
points? One should also investigate whether everywhere
directional differentiability is necessary.

In addition to the open problems listed above, our work un-
covers another very interesting observation. In the standard
stochastic, nonconvex, and smooth setting, stochastic gradi-
ent descent is known to be theoretically optimal (Arjevani
et al., 2019), while widely used practical techniques such as
momentum-based and adaptive step size methods usually
lead to worse theoretical convergence rates. In our proposed
setting, momentum and adaptivity naturally show up in al-
gorithm design, and become necessary for the convergence
analysis. Hence we believe that studying optimization under
more relaxed assumptions may lead to theorems that can
better bridge the widening theory-practice divide in opti-
mization for training deep neural networks, and ultimately
lead to better insights for practitioners.
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