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Abstract

We provide the first non-asymptotic analysis for

finding stationary points of nonsmooth, noncon-

vex functions. In particular, we study the class

of Hadamard semi-differentiable functions, per-

haps the largest class of nonsmooth functions for

which the chain rule of calculus holds. This class

contains examples such as ReLU neural networks

and others with non-differentiable activation func-

tions. We first show that finding an ǫ-stationary

point with first-order methods is impossible in

finite time. We then introduce the notion of (δ, ǫ)-
stationarity, which allows for an ǫ-approximate

gradient to be the convex combination of general-

ized gradients evaluated at points within distance

δ to the solution. We propose a series of random-

ized first-order methods and analyze their com-

plexity of finding a (δ, ǫ)-stationary point. Fur-

thermore, we provide a lower bound and show

that our stochastic algorithm has min-max opti-

mal dependence on δ. Empirically, our methods

perform well for training ReLU neural networks.

1. Introduction

Gradient based optimization underlies most of machine

learning and it has attracted tremendous research attention

over the years. While non-asymptotic complexity analysis

of gradient based methods is well-established for convex

and smooth nonconvex problems, little is known for non-

smooth nonconvex problems. We summarize the known

rates (black) in Table 1 based on the references (Nesterov,

2018; Carmon et al., 2017; Arjevani et al., 2019).

Within the nonsmooth nonconvex setting, recent research

results have focused on asymptotic convergence analy-

sis (Benaı̈m et al., 2005; Kiwiel, 2007; Majewski et al.,

2018; Davis et al., 2018; Bolte & Pauwels, 2019). Despite

their advances, these results fail to address finite-time, non-

asymptotic convergence rates. Given the widespread use
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Table 1. When the problem is nonconvex and nonsmooth, find-

ing a ǫ-stationary point is intractable, see Theorem 11. Thus we

introduce a refined notion, (δ, ǫ)-stationarity, and provide non-

asymptotic convergence rates for finding (δ, ǫ)-stationary point.

DETERMINISTIC RATES CONVEX NONCONVEX

L-SMOOTH O(ǫ−0.5) O(ǫ−2)

L-LIPSCHITZ O(ǫ−2) Õ(ǫ−3δ−1)

STOCHASTIC RATES CONVEX NONCONVEX

L-SMOOTH O(ǫ−2) O(ǫ−4)

L-LIPSCHITZ O(ǫ−2) Õ(ǫ−4δ−1)

of nonsmooth nonconvex problems in machine learning,

a canonical example being deep ReLU neural networks,

obtaining a non-asymptotic convergence analysis is an im-

portant open problem of fundamental interest.

We tackle this problem for nonsmooth functions that are

Lipschitz and directionally differentiable. This class is rich

enough to cover common machine learning problems, in-

cluding ReLU neural networks. Surprisingly, even for this

seemingly restricted class, finding an ǫ-stationary point, i.e.,

a point x̄ for which d(0, ∂f(x̄)) ≤ ǫ, is intractable. In other

words, no algorithm can guarantee to find an ǫ-stationary

point within a finite number of iterations.

This intractability suggests that, to obtain meaningful non-

asymptotic results, we need to refine the notion of stationar-

ity. We introduce such a notion and base our analysis on it,

leading to the following main contributions of the paper:

• We show that a traditional ǫ-stationary point cannot be

obtained in finite time (Theorem 5).

• We study the notion of (δ, ǫ)-stationary points (see Def-

inition 4). For smooth functions, this notion reduces to

usual ǫ-stationarity by setting δ = O(ǫ/L). We provide a

Ω(δ−1) lower bound on the number of calls if algorithms

are only allowed access to a generalized gradient oracle.

• We propose a normalized “gradient descent” style algo-

rithm that achieves Õ(ǫ−3δ−1) complexity in finding a

(δ, ǫ)-stationary point in the deterministic setting.

• We propose a momentum based algorithm that achieves

Õ(ǫ−4δ−1) complexity in finding a (δ, ǫ)-stationary point

in the stochastic finite variance setting.
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As a proof of concept to validate our theoretical findings, we

implement our stochastic algorithm and show that it matches

the performance of empirically used SGD with momentum

method for training ResNets on the Cifar10 dataset.

Our results attempt to bridge the gap from recent advances

in developing a non-asymptotic theory for nonconvex opti-

mization algorithms to settings that apply to training deep

neural networks, where, due to non-differentiability of the

activations, most existing theory does not directly apply.

1.1. Related Work

Asymptotic convergence for nonsmooth nonconvex

functions. Benaı̈m et al. (2005) study the convergence

of subgradient methods from a differential inclusion per-

spective; Majewski et al. (2018) extend the result to include

proximal and implicit updates. Bolte & Pauwels (2019)

focus on formally justifying the back propagation rule un-

der nonsmooth conditions. In parallel, Davis et al. (2018)

proved asymptotic convergence of subgradient methods as-

suming the objective function to be Whitney stratifiable.

The class of Whitney stratifiable functions is broader than

regular functions studied in (Majewski et al., 2018), and it

does not assume the regularity inequality (see Lemma 6.3

and (51) in (Majewski et al., 2018)). Another line of work

(Mifflin, 1977; Kiwiel, 2007; Burke et al., 2018) studies

convergence of gradient sampling algorithms. These algo-

rithms assume a deterministic generalized gradient oracle.

Our methods draw intuition from these algorithms and their

analysis, but are non-asymptotic in contrast.

Structured nonsmooth nonconvex problems. Another

line of research in nonconvex optimization is to exploit

structure: Duchi & Ruan (2018); Drusvyatskiy & Paquette

(2019); Davis & Drusvyatskiy (2019) consider the composi-

tion structure f ◦ g of convex and smooth functions; Bolte

et al. (2018); Zhang & He (2018); Beck & Hallak (2020)

study composite objectives of the form f + g where one

function is differentiable or convex/concave. With such

structure, one can apply proximal gradient algorithms if the

proximal mapping can be efficiently evaluated. However,

this usually requires weak convexity, i.e., adding a quadratic

function makes the function convex, which is not satisfied

by several simple functions, e.g., −|x|.
Stationary points under smoothness. When the objec-

tive function is smooth, SGD finds an ǫ-stationary point in

O(ǫ−4) gradient calls (Ghadimi & Lan, 2013), which im-

proves to O(ǫ−2) for convex problems. Fast upper bounds

under a variety of settings (deterministic, finite-sum, stochas-

tic) are studied in (Carmon et al., 2018; Fang et al., 2018;

Zhou et al., 2018; Nguyen et al., 2019; Allen-Zhu, 2018;

Reddi et al., 2016). More recently, lower bounds have also

been developed (Carmon et al., 2017; Drori & Shamir, 2019;

Arjevani et al., 2019; Foster et al., 2019). When the func-

tion enjoys high-order smoothness, a stronger goal is to

find an approximate second-order stationary point and could

thus escape saddle points too. Many methods focus on this

goal (Ge et al., 2015; Agarwal et al., 2017; Jin et al., 2017;

Daneshmand et al., 2018; Fang et al., 2019).

2. Preliminaries

In this section, we set up the notion of generalized direc-

tional derivatives that will play a central role in our analysis.

Throughout the paper, we assume that the nonsmooth func-

tion f is L-Lipschitz continuous (more precise assumptions

on the function class are outlined in §2.3).

2.1. Generalized gradients

We start with the definition of generalized gradients, follow-

ing (Clarke, 1990), for which we first need:

Definition 1. Given a point x ∈ R
d, and direction d, the

generalized directional derivative of f is defined as

f◦(x; d) := lim sup
y→x,t↓0

f(y+td)−f(y)
t .

Definition 2. The generalized gradient of f is defined as

∂f(x) := {g | 〈g, d〉 ≤ f◦(x, d), ∀d ∈ R
d}.

We recall below the following basic properties of the gener-

alized gradient, see e.g., (Clarke, 1990) for details.

Proposition 1 (Properties of generalized gradients).

1. ∂f(x) is a nonempty, convex compact set. For all

vectors g ∈ ∂f(x), we have ‖g‖ ≤ L.

2. f◦(x; d) = max{〈g, d〉 | g ∈ ∂f(x)}.
3. ∂f(x) is an upper-semicontinuous set valued map.

4. f is differentiable almost everywhere (as it is L-

Lipschitz); let conv(·) denote the convex hull, then

∂f(x) = conv
({

g|g = lim
k→∞

∇f(xk), xk → x
})

.

5. Let B denote the unit Euclidean ball. Then,

∂f(x) = ∩δ>0 ∪y∈x+δB ∂f(y).

6. For any y, z, there exists λ ∈ (0, 1) and g ∈ ∂f(λy +
(1− λ)z) such that f(y)− f(z) = 〈g, y − z〉.

2.2. Directional derivatives

Since general nonsmooth functions can have arbitrarily large

variations in their “gradients,” we must restrict the function

class to be able to develop a meaningful complexity theory.

We show below that directionally differentiable functions

match this purpose well.
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Definition 3. A function f is called directionally differen-

tiable in the sense of Hadamard (cf. (Sova, 1964; Shapiro,

1990)) if for any mapping ϕ : R+ → X for which ϕ(0) = x

and limt→0+
ϕ(t)−ϕ(0)

t = d, the following limit exists:

f ′(x; d) = lim
t→0+

1
t (f(ϕ(t))− f(x)). (1)

In the rest of the paper, we will say a function f is direc-

tionally differentiable if it is directionally differentiable in

the sense of Hadamard at all x.

This directional differentiabilility is also referred to as

Hadamard semidifferentiability in (Delfour, 2019). Notably,

such directional differentiability is satisfied by most prob-

lems of interest in machine learning. It includes functions

such as f(x) = −|x| that do not satisfy the so-called regu-

larity inequality (equation (51) in (Majewski et al., 2018)).

Moreover, it covers the class of semialgebraic functions, as

well as o-minimally definable functions (see Lemma 6.1 in

(Coste, 2000)) discussed in (Davis et al., 2018). Currently,

we are unaware whether the notion of Whitney stratifiability

(studied in some recent works on nonsmooth optimization)

implies directional differentiability.

A very important property of directional differentiability is

that it is preserved under composition.

Lemma 2 (Chain rule). Let φ be Hadamard directionally

differentiable at x, and ψ be Hadamard directionally dif-

ferentiable at φ(x). Then the composite mapping ψ ◦ φ is

Hadamard directionally differentiable at x and

(ψ ◦ φ)′x = ψ′
φ(x) ◦ φ′x.

A proof of this lemma can be found in (Shapiro, 1990,

Proposition 3.6). As a consequence, any neural network

function composed of directionally differentiable functions,

including ReLU/LeakyReLU, is directionally differentiable.

Directional differentiability also implies key properties use-

ful in the analysis of nonsmooth problems. In particular, it

enables the use of (Lebesgue) path integrals as follows.

Lemma 3. Given any x, y, let γ(t) = x+t(y−x), t ∈ [0, 1].
If f is directionally differentiable and Lipschitz, then

f(y)− f(x) =
∫

[0,1]

f ′(γ(t); y − x)dt.

The following important lemma further connects directional

derivatives with generalized gradients.

Lemma 4. Assume that the directional derivative exists.

For any x, d, there exists g ∈ ∂f(x) s.t. 〈g, d〉 = f ′(x; d).

2.3. Nonsmooth function class of interest

Throughout the paper, we focus on the set of Lipschitz,

directionally differentiable and bounded (below) functions:

F(∆, L) := {f |f is L-Lipschitz;

f is directionally differentiable;

f(x0)− inf
x
f(x) ≤ ∆}, (2)

where a function f : Rn → R is L−Lipschitz if

|f(x)− f(y)| ≤ L‖x− y‖, ∀ x, y ∈ R
n.

As indicated previously, ReLU neural networks with

bounded weight norms are included in this function class.

3. Stationary points and oracles

We now formally define our notion of stationarity and dis-

cuss the intractability of the standard notion. Afterwards,

we formalize the optimization oracles and define measures

of complexity for algorithms that use these oracles.

3.1. Stationary points

With the generalized gradient in hand, commonly a point

is called stationary if 0 ∈ ∂f(x) (Clarke, 1990). A natural

question is, what is the necessary complexity to obtain an

ǫ-stationary point, i.e., a point x for which

min{‖g‖ | g ∈ ∂f(x)} ≤ ǫ.

It turns out that attaining such a point is intractable. In

particular, there is no finite time algorithm that can guarantee

ǫ-stationarity in the nonconvex nonsmooth setting. We make

this claim precise in our first main result.

Theorem 5. Given any algorithm A that accesses function

value and generalized gradient of f in each iteration, for

any ǫ ∈ [0, 1) and for any finite iteration T , there exists

f ∈ F(∆, L) such that the sequence {xt}t∈[1,T ] generated

by A on the objective f does not contain any ǫ-stationary

point with probability more than 1
2 .

A key ingredient of the proof is that an algorithm A is

uniquely determined by {f(xt), ∂f(xt)}t∈[1,T ], the func-

tion values and gradients at the query points. For any two

functions f1 and f2 that have the same function values and

gradients at the same set of queried points {x1, ..., xt}, the

distribution of the iterate xt+1 generated by A is identi-

cal for f1 and f2. However, due to the richness of the

class of nonsmooth functions, we can find f1 and f2 such

that the set of ǫ-stationary points of f1 and f2 are disjoint.

Therefore, the algorithm cannot find a stationary point with

probability more than 1
2 for both f1 and f2 simultaneously.

Intuitively, such functions exist because a nonsmooth func-

tion could vary arbitrarily—e.g., a nonsmooth nonconvex
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function could have constant gradient norms except at the

(local) extrema, as happens for a piecewise linear zigzag

function. Moreover, the set of extrema could be of measure

zero. Therefore, unless the algorithm lands exactly in this

measure-zero set, it cannot find any ǫ-stationary point.

Theorem 5 suggests the need for rethinking the definition

of stationary points. Intuitively, even though we are unable

to find an ǫ-stationary point, one could hope to find a point

that is close to an ǫ-stationary point. This motivates us to

adopt the following more refined notion:

Definition 4. A point x is called (δ, ǫ)-stationary if

d(0, ∂f(x+ δB)) ≤ ǫ,

where ∂f(x + δB) := conv(∪y∈x+δB∂f(y)) is the Gold-

stein δ-subdifferential, introduced in (Goldstein, 1977).

Note that if we can find a point y at most distance δ away

from x such that y is ǫ-stationary, then we know x is (δ, ǫ)-
stationary. However, the contrary is not true. In fact,

(Shamir, 2020) shows that finding a point that is δ close

to an ǫ−stationary point requires exponential dependence

on the dimension of the problem.

At first glance, Definition 4 appears to be a weaker notion

since if x is ǫ-stationary, then it is also a (δ, ǫ)-stationary

point for any δ ≥ 0, but not vice versa. We show that the

converse implication indeed holds, assuming smoothness.

Proposition 6. The following statements hold:

(i) ǫ-stationarity implies (δ, ǫ)-stationarity for any δ ≥ 0.

(ii) If f is smooth with an L-Lipschitz gradient and if x is

( ǫ
3L , ǫ

3 )-stationary, then x is also ǫ-stationary, i.e.

d
(

0, ∂f
(

x+ ǫ
3LB

))

≤ ǫ
3 =⇒ ‖∇f(x)‖ ≤ ǫ.

Consequently, the two notions of stationarity are equivalent

for differentiable functions. It is then natural to ask: does

(δ, ǫ)-stationarity permit a finite time analysis?

The answer is positive, as we will show later, revealing an

intrinsic difference between the two notions of stationarity.

Besides providing algorithms, in Theorem 11 we also prove

an Ω(δ−1) lower bound on the dependency of δ for algo-

rithms that can only access a generalized gradient oracle.

We also note that (δ, ǫ)-stationarity behaves well as δ ↓ 0.

Lemma 7. The set ∂f(x+ δB) converges as δ ↓ 0 as

lim
δ↓0

∂f(x+ δB) = ∂f(x).

Lemma 7 enables a straightforward routine for transform-

ing non-asymptotic analyses for finding (δ, ǫ)-stationary

points to asymptotic results for finding ǫ-stationary points.

Indeed, assume that a finite time algorithm for finding (δ, ǫ)-
stationary points is provided. Then, by repeating the algo-

rithm with decreasing δk, (e.g., δk = 1/k), any accumula-

tion points of the repeated algorithm is an ǫ-stationary point

with high probability.

3.2. Gradient Oracles

We assume that our algorithm has access to a generalized

gradient oracle in the following manner:

Assumption 1. Given x, d, the oracle O(x, d) returns a

function value fx, and a generalized gradient gx,

(fx, gx) = O(x, d),

such that

(a) In the deterministic setting, the oracle returns

fx = f(x), gx ∈ ∂f(x) satisfying 〈gx, d〉 = f ′(x, d).

(b) In the stochastic finite-variance setting, the oracle

only returns a stochastic gradient g with E[g] = gx,

where gx ∈ ∂f(x) satisfies 〈gx, d〉 = f ′(x, d). More-

over, the variance E[‖g − gx‖2] ≤ σ2 is bounded. In

particular, no function value is accessible.

We remark that one cannot generally evaluate the gener-

alized gradient ∂f in practice at any point where f is not

differentiable. When the function f is not directionally dif-

ferentiable, one needs to incorporate gradient sampling to

estimate ∂f (Burke et al., 2002). Our oracle queries only

an element of the generalized gradient and is thus weaker

than querying the entire set ∂f . Still, finding a vector gx
such that 〈gx, d〉 equals the directional derivative f ′(x, d) is

non-trivial in general. Yet, when the objective function is a

composition of directionally differentiable functions, such

as ReLU neural networks, and if a closed form directional

derivative is available for each function in the composition,

then we can find the desired gx by appealing to the chain rule

in Lemma 2. This property justifies our choice of oracles.

3.3. Algorithm class and complexity measures

An algorithmAmaps a function f ∈ F(∆, L) to a sequence

of points {xk}k≥0 in R
n. We denoteA(k) to be the mapping

from previous k iterations to xk+1. Each xk can potentially

be a random variable, due to the stochastic oracles or algo-

rithm design. Let {Fk}k≥0 be the filtration generated by

{xk} such that xk is adapted to Fk. Based on the definition

of the oracle, we assume that the iterates follow the structure

xk+1 = A(k)(x1, g1, f1, x2, g2, f2, ..., xk, gk, fk), (3)

where (fk, gk) = O(yk, dk), and the point yk and direction

dk are (stochastic) functions of the iterates x1, . . . , xk.
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For a random process {xk}k∈N, we define the complexity

of {xk}k∈N for a function f as the value

Tδ,ǫ({xt}t∈N, f) :=

inf
{

t ∈ N | Prob{d(0, ∂f(x+ δB)) ≥ ǫ
for all k ≤ t} ≤ 1

3

}

.

(4)

Let A[f, x0] denote the sequence of points generated by

algorithm A for function f . Then, we define the iteration

complexity of an algorithm classA on a function class F as

N (A,F , ǫ, δ) := inf
A∈A

sup
f∈F

Tδ,ǫ(A[f, x0], f). (5)

At a high level, (5) is the minimum number of oracle calls

required for a fixed algorithm to find a (δ, ǫ)-stationary point

with probability at least 2/3 for all functions is class F .

4. Deterministic Setting

For optimizing L-smooth functions, a crucial inequality is

f
(

x− 1
L∇f(x)

)

− f(x) ≤ − 1
2L‖∇f(x)‖2. (6)

In other words, either the gradient is small or the func-

tion value decreases sufficiently along the negative gradient.

However, when the objective function is nonsmooth, this

descent property is no longer satisfied. Thus, defining an

appropriate descent direction is non-trivial. Our key innova-

tion is to solve this problem via randomization.

More specifically, in our algorithm, Interpolated Normalized

Gradient Descent (INGD), we derive a local search strategy

to find the descent direction at an iterate xt. The vector

mt,k plays the role of descent direction and we sequentially

update it until the condition

f(xt,k)− f(xt) < −
δ‖mt,k‖

4
, (descent condition)

is satisfied. To connect with the descent property (6), ob-

serve that when f is smooth, with mt,k = ∇f(xt) and

δ = ‖mt,k‖/L, (descent condition) is the same as (6) up to

a factor 2. This connection motivates our choice of descent

condition.

When the descent condition is satisfied, the next iterate xt+1

is obtained by taking a normalized step from xt along the

direction mt,k. Otherwise, we stay at xt and continue the

search for a descent direction. We raise special attention to

the fact that inside the k-loop, the iterates xt,k are always

obtained by taking a normalized step from xt. Thus, all the

inner iterates xt,k have distance exactly δ from xt.

To update the descent direction, we incorporate a random-

ized strategy. We randomly sample an interpolation point

yt,k+1 on the segment [xt, xt,k] and evaluate the generalized

gradient gt,k+1 at this random point yt,k+1. Then, we up-

date the descent direction as a convex combination of gt,k+1

Algorithm 1 Interpolated Normalized Gradient Descent

1: Initialize x1 ∈ R
d

2: for t = 1, 2, ..., T do

3: while ‖mt,K‖ > ǫ do

4: Call oracle ∼,mt,1 = O(xt,~0)
5: for k = 1, ...,K do

6: xt,k = xt − δ mt,k

‖mt,k‖

7: if ‖mt,k‖ ≤ ǫ then

8: Terminate the algorithm and return xt
9: else if f(xt,k)− f(xt) < − δ‖mt,k‖

4 then

10: Break while-loop

11: Set xt+1 = xt,k and t← t+ 1
12: else

13: Sample yt,k+1 uniformly from [xt, xt,k]
14: Call oracle ∼, gt,k+1 = O(yt,k+1,−mt,k)
15: Updatemt,k+1 = βt,kmt,k+(1−βt,k)gt,k+1

with βt,k =
4L2−‖mt,k‖

2

4L2+2‖mt,k‖2

16: end if

17: end for

18: end while

19: end for

20: Return xt such that ‖mt,K‖ ≤ ǫ

and the previous direction mt,k. Due to lack of smooth-

ness, the violation of the descent condition does not directly

imply that gt,k+1 is small. Instead, the projection of the

generalized gradient is small along the direction mt,k on

average. Hence, with a proper linear combination, the ran-

dom interpolation allows us to guarantee the decrease of

‖mt,k‖ in expectation. This reasoning allows us to derive

the non-asymptotic convergence rate in high probability.

Theorem 8. In the deterministic setting and with Assump-

tion 1(a), the INGD algorithm with parameters K = 48L2

ǫ2

and T = 4∆
ǫδ finds a (δ, ǫ)-stationary point for function class

F(∆, L) with probability 1− γ using at most

192∆L2

ǫ3δ
log

(

4∆

γδǫ

)

oracle calls.

Since we introduce random sampling for choosing the in-

terpolation point, even in the deterministic setting we can

only guarantee a high probability result. The detailed proof

is deferred to Appendix C.

A sketch of the proof is as follows. Since ‖xt,k−xt‖ = δ for

any k, the interpolation point yt,k is inside the ball xt + δB.

Hence mt,k ∈ ∂f(xt + δB) for any k. In other words,

as soon as ‖mt,k‖ ≤ ǫ (line 7), the reference point xt is

(δ, ǫ)-stationary. If this is not true, i.e., ‖mt,k‖ > ǫ, then we

check whether (descent condition) holds, in which case

f(xt,k)− f(xt) < −
δ‖mt,k‖

4
< −ǫδ

4
.
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Knowing that the function value is lower bounded, this can

happen at most T = 4∆
ǫδ times. Thus, for at least one xt,

the local search inside the while loop is not broken by the

descent condition. Finally, given that ‖mt,k‖ > ǫ and the

descent condition is not satisfied, we show that

E[‖mt,k+1‖2] ≤
(

1− E[‖mt,k‖2]
3L2

)

E[‖mt,k‖2]

This implies that E[‖mt,k‖2] follows a decrease of order

O(1/k). Hence with K = O(1/ǫ2), we are guaranteed to

find ‖mt,k‖ ≤ ǫ with high probability.

Remark 9. If the problem is smooth, the descent condition

is always satisfied in one iteration. Hence the global com-

plexity of our algorithm reduces to T = O(1/ǫδ). Due to

the equivalence of the notions of stationarity (Prop. 6), with

δ = O(ǫ/L), our algorithm recovers the standard O(1/ǫ2)
convergence rate for finding an ǫ-stationary point. In other

words, our algorithm can adapt to the smoothness condition.

5. Stochastic Setting

In the deterministic setting one of the key ingredients used

INGD is to check whether the function value decreases suf-

ficiently. However, evaluating the function value can be

computationally expensive, or even infeasible in the stochas-

tic setting. For example, when training neural networks,

evaluating the entire loss function requires going through

all the data, which is impractical. As a result, we do not

assume access to function value in the stochastic setting

and instead propose a variant of INGD that only relies on

gradient information.

Algorithm 2 Stochastic INGD (x1, p, q, β, T,K)

1: Initialize x1 ∈ R
d.

2: Call oracle g(x1) = O(x1,~0) and set m1 = g(x1).
3: for t = 1, 2, ..., T do

4: Update xt+1 = xt − ηtmt with ηt =
1

p‖mt‖+q .

5: Sample yt+1 uniformly from [xt, xt+1]
6: Call oracle g(yt+1) = O(yt+1,−mt)
7: Update mt+1 = βmt + (1− β)g(yt+1)
8: end for

9: Randomly sample i uniformly from {1, ..., T}.
10: Update i = max{i−K, 1}
11: Return xi.

One of the challenges of using stochastic gradients is the

noisiness of the gradient evaluation. To control the variance

of the associated updates, we introduce a parameter q into

the normalized step size:

ηt =
1

p‖mt‖+ q
.

A similar strategy is used in adaptive methods like (Duchi

et al., 2011; Kingma & Ba, 2015) to prevent instability.

Here, we show that the constant q allows us to control the

variance of xt+1 − xt. In particular, it implies the bound

E[‖xt+1 − xt‖2] ≤
G2

q
,

where G2 := L2 + σ2 is a trivial upper-bound on the ex-

pected norm of any sampled gradient g.

Another substantial change (relative to INGD) is the removal

of the explicit local search, since the stopping criterion can

now no longer be tested without access to the function value.

Instead, one may view xt−K+1, . . . , xt−1, xt as an implicit

local search with respect to the reference point xt−K . In

particular, we show that when the direction mt has a small

norm, then xt−K is a (δ, ǫ)-stationary point, but not xt. This

discrepancy explains why we output xt−K instead of xt.

In the deterministic setting, the direction mt,k inside each

local search is guaranteed to belong to ∂f(xt+δB). Hence,

controlling the norm of mt,k implies the (δ, ǫ)-stationarity

of xt. In the stochastic case, however, we have two compli-

cations. First, only the expectation of the gradient evaluation

satisfies the membership E[g(yk)] ∈ ∂f(yk). Second, the

direction mt is a convex combination of all the previous gra-

dients g(y1), . . . , g(yt), with all coefficients being nonzero.

In contrast, we use a re-initialization in the deterministic

setting. We overcome these difficulties and their ensuing

subtleties to finally obtain the following complexity result:

Theorem 10. In the stochastic setting, with Assump-

tion 1(b), the Stochastic-INGD algorithm (Algorithm 2)

with parameters G =
√
L2 + σ2, β = 1 − ǫ2

64G2 ,

p = 64G2 ln(16G/ǫ)
δǫ2 , q = 4Gp, K = pδ, T =

216G3∆ ln(16G/ǫ)
ǫ4δ max{1, Gδ

8∆} ensures

1

T

T
∑

t=1

E[‖mt‖] ≤
ǫ

4
.

In other words, the number of gradient calls to achieve a

(δ, ǫ)−stationary point is upper bounded by Õ
(

G3∆
ǫ4δ

)

.

For readability, the constants in Theorem 10 have not been

optimized. The high level idea of the proof is to relate

E[ηt‖mt‖2] to the function value decrease f(xt)−f(xt+1),
and then to perform a telescopic sum.

We would like to emphasize the use of the adaptive step size

ηt and the momentum term mt+1. These techniques arise

naturally from our goal to find a (δ, ǫ)-stationary point. The

step size ηt helps us ensure that the distance moved is at

most 1
p , and hence we are certain that adjacent iterates are

close to each other. The momentum term mt serves as a

convex combination of generalized gradients, as postulated

by Definition 4.
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Further, even though the parameter K does not directly

influence the updates of our algorithm, it plays an important

role in understanding our algorithm. Indeed, we show that

d (E[mt|xt−K ], ∂f(xt−K + δB)) ≤ ǫ

16
.

In other words, the conditional expectation E[mt|xt−K ] is

approximately in the δ-subdifferential ∂f(xt−K + δB) at

xt−K . This relationship is non-trivial.

On one hand, by imposing K ≤ δp, we ensure that

xt−K+1, . . . , xt are inside the δ-ball of center xt−K . On

the other hand, we guarantee that the contribution of mt−K

to mt is small, providing an appropriate upper bound on the

coefficient βK . These two requirements help balance the

different parameters in our final choice. Details of the proof

may be found in Appendix D.

Recall that we do not access the function value in this

stochastic setting, which is a strength of the algorithm. In

fact, we can show that our δ−1 dependence is tight, when

the oracle has only access to generalized gradients.

Theorem 11 (Lower bound on δ dependence). LetA denote

the class of algorithms defined in Section 3.2 and F(∆, L)
denote the class of functions defined in Equation (2). As-

sume ǫ ∈ (0, 1) and L = 1. Then the iteration complexity

is lower bounded by ∆
8δ if the algorithm only has access to

generalized gradients.

The proof is inspired by Theorem 1.1.2 in (Nesterov, 2018).

We show that unless more than ∆
8δ different points are

queried, we can construct two different functions in the

function class that have gradient norm 1 at all the queried

points, and the stationary points of both functions are Ω(δ)
away. For more details, see Appendix E.

This theorem also implies the negative result for finite time

analyses that we showed in Theorem 5. Indeed, when an

algorithm finds an ǫ-stationary point, the point is also a

(δ, ǫ)-stationary for any δ > 0. Thus, the iteration complex-

ity must be at least limδ→0
∆
8δ = +∞, i.e., no finite time

algorithm can guarantee to find an ǫ-stationary point.

Before moving on to the experimental section, we would like

to make several comments related to different settings. First,

since the stochastic setting is strictly stronger than the de-

terministic setting, the stochastic variant Stochastic-INGD

is applicable to the deterministic setting too. Moreover, the

analysis can be extended to q = 0, which leads to a com-

plexity of O(1/ǫ3δ). This is the same as the deterministic

algorithm. However, the stochastic variant does not adapt

to the smoothness condition. In other words, even if the

function is differentiable, we will not obtain a faster conver-

gence rate. In particular, if the function is smooth, by using

the equivalence of the types of stationary points, Stochastic-

INGD finds an ǫ-stationary point inO(1/ǫ5) while standard

SGD enjoys a O(1/ǫ4) convergence rate. We do not know

whether a better convergence result is achievable, as our

lower bound does not provide an explicit dependency on ǫ;
we leave this as a future research direction.

6. Experiments

Figure 1. Learning curve of SGD, ADAM and INGD on training

ResNet 20 on CIFAR10.

In this section, we evaluate the performance of our proposed

algorithm Stochastic INGD on image classification tasks.

We train the ResNet20 (He et al., 2016) model on the CI-

FAR10 (Krizhevsky & Hinton, 2009) classification dataset.

The dataset contains 50k training images and 10k test im-

ages in 10 classes.

We implement Stochastic INGD in PyTorch with the inbuilt

auto differentiation algorithm (Paszke et al., 2017). We re-

mark that except on the kink points, the auto differentiation

matches the generalized gradient oracle, which justifies our

choice. We benchmark the experiments with two popular

machine learning optimizers, SGD with momentum and

ADAM (Kingma & Ba, 2015). We train the model for 100

epochs with the standard hyper-parameters from the Github

repository1:

• For SGD with momentum, we initialize the learning rate

as 0.1, momentum as 0.9 and reduce the learning rate by

1https://github.com/kuangliu/pytorch-cifar
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10 at epoch 50 and 75. The weight decay parameter is set

to 5 · 10−4.

• For ADAM, we use constant the learning rate 10−3, betas

in (0.9, 0.999), and weight decay parameter 10−6 and

ǫ = 10−3 for the best performance.

• For Stochastic-INGD, we use β = 0.9, p = 1, q = 10,

and weight decay parameter 5× 10−4.

The training and test accuracy for all three algorithms are

plotted in Figure 1. We observe that Stochastic-INGD

matches the SGD baseline and outperforms the ADAM

algorithm in terms of test accuracy. The above results sug-

gests that the experimental implications of our algorithm

could be interesting, but we leave a more systematic study

as future direction.

7. Conclusions and Future Directions

In this paper, we investigate the complexity of finding

first order stationary points of nonconvex nondifferentiable

functions. We focus in particular on Hadamard semi-

differentiable functions, which we suspect is perhaps the

most general class of functions for which the chain rule of

calculus holds—see the monograph (Delfour, 2019). We

further extend the standard definition of ǫ-stationary points

for smooth functions into a new notion of (δ, ǫ)-stationary

points. We justify our definition by showing that no algo-

rithm can find a (0, ǫ) stationary point for any ǫ < 1 in

a finite number of iterations and conclude that a positive

δ is necessary for a finite time analysis. Using the above

definition and a more refined gradient oracle, we prove

that the proposed algorithms find stationary points within

O(ǫ−3δ−1) iterations in the deterministic setting and with

O(ǫ−4δ−1) iterations in the stochastic setting.

Our results provide the first non-asymptotic analysis of non-

convex optimization algorithms in the general Lipschitz con-

tinuous setting. Yet, they also open further questions. The

first question is whether the current dependence on ǫ in our

complexity bound is optimal. A future research direction is

to try to find provably faster algorithms or construct adver-

sarial examples that close the gap between upper and lower

bounds on ǫ. Second, the rate we obtain in the determin-

istic case requires function evaluations and is randomized,

leading to high probability bounds. Can similar rates be

obtained by an algorithm oblivious to the function value?

Another possible direction would be to obtain a determinis-

tic convergence result. More specialized questions include

whether one can remove the logarithmic factors from our

bounds. Aside from the above questions on the rate, we can

take a step back and ask high-level questions. Are there bet-

ter alternatives to the current definition of (δ, ǫ)-stationary

points? One should also investigate whether everywhere

directional differentiability is necessary.

In addition to the open problems listed above, our work un-

covers another very interesting observation. In the standard

stochastic, nonconvex, and smooth setting, stochastic gradi-

ent descent is known to be theoretically optimal (Arjevani

et al., 2019), while widely used practical techniques such as

momentum-based and adaptive step size methods usually

lead to worse theoretical convergence rates. In our proposed

setting, momentum and adaptivity naturally show up in al-

gorithm design, and become necessary for the convergence

analysis. Hence we believe that studying optimization under

more relaxed assumptions may lead to theorems that can

better bridge the widening theory-practice divide in opti-

mization for training deep neural networks, and ultimately

lead to better insights for practitioners.
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