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Abstract

We study the optimal sample complexity of
learning a Gaussian directed acyclic graph
(DAG) from observational data. Our main
results establish the minimax optimal sam-
ple complexity for learning the structure of a
linear Gaussian DAG model in two settings
of interest: 1) Under equal variances without
knowledge of the true ordering, and 2) For
general linear models given knowledge of the
ordering. In both cases the sample complexity
is n =< qlog(d/q), where ¢ is the maximum
number of parents and d is the number of
nodes. We further make comparisons with
the classical problem of learning (undirected)
Gaussian graphical models, showing that un-
der the equal variance assumption, these two
problems share the same optimal sample com-
plexity. In other words, at least for Gaussian
models with equal error variances, learning
a directed graphical model is statistically no
more difficult than learning an undirected
graphical model. Our results also extend to
more general identification assumptions as
well as subgaussian errors.

1 INTRODUCTION

A significant open question in the literature on structure
learning is the optimal sample complexity of learning
a directed acyclic graphical model. The problem of
deriving upper bounds on the sample complexity for
this problem goes back decades (Zuk et al., 2006 [Fried{
man and Yakhini, [1996), and in recent years there has
been significant progress (Ghoshal and Honoriol 2017aj,
2018; |Chen et al.l |2019; |Park and Raskutti, 2017; |[Park]
2018; [Park and Parkl [2019; |Park, [2020; [Wang and Dr{
ton, [2020; |Gao et al. |2020; |Gao and Aragam| 2021)).
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Nonetheless, despite these upper bounds, a tight charac-
terization of the optimal sample complexity is missing.
This is to be contrasted with the situation for learn-
ing undirected graphs (UGs), also known as Markov
random fields (MRFs), for which optimal rates were
established approximately ten years ago (Santhanam
and Wainwright| 2012; (Wang et al., [2010]), alongside
similar results for support recovery in linear models
(Wainwright, |2009a.b). In fact, this is unsurprising
given the connection between these two problems via
neighbourhood regression. Unfortunately, learning a
directed acyclic graph (DAG) does not reduce to neigh-
bourhood regression as it involves a more difficult order
recovery step.

In this paper, we resolve this question for the special
case of linear Gaussian DAG models with equal error
variances. The identifiability of these models was estab-
lished in [Peters and Biithlmann| (2013), and eventually
led to the development of several polynomial-time algo-
rithms under the equal variance assumption (Ghoshal
and Honoriol [2017a), 2018} |Chen et al., 2019} |Gao et al.|
2020). Nonetheless, it was not known whether or not
any of these algorithms were optimal for this precise
statistical setting. We will show that a variant of the
EQVAR algorithm from |Chen et al.|(2019)) is indeed
optimal. This involves the derivation of new lower
bounds and a novel analysis of the EQVAR algorithm
that sharpens the existing sample complexity upper
bound from O(q?logd) to O(qlogd/q), where ¢ is the
maximum number of parents in the DAG and d is the
number of nodes. This upper bound is optimal up to
constants, and allows for the high-dimensional regime
with d > n, where as usual n denotes the sample size.
Moreover, in Section [d] we extend this result to the
case of general Gaussian models with known ordering.
Our results also extend to more general identification
assumptions (e.g. allowing for unequal error variances)
as well as subgaussian error terms; see Remark

As a problem of independent interest, we further com-
pare the complexity of learning Gaussian graphical
models (GGMs) and Gaussian DAG models under the
equal variance assumption. Given the additional com-
plexity of the order recovery problem in DAG learning,
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the folklore has generally been that learning DAGs
is harder than learning UGs. Despite this folklore,
few results are available to rigorously characterize the
hardness of these problems on an equal footing (be-
sides known NP-hardness results for both problems,
see [Srebrol, 2003} [Chickering), [1996} [Chickering et al.
2004). The equal variance assumption gives us the
opportunity to make an apples-to-apples comparison
under the same assumptions. As we will show, the
optimal sample complexity for both problems scales as
O(qlogd/q). In other words, learning a DAG is statis-
tically no harder than learning a GGM under the equal
variance assumption. It is worth emphasizing that this
comparison is purely statistical: The computational
complexity of the algorithm we analyze is exponential
in ¢ whereas learning GGMs can be done efficiently;
see also Remark 21

To the best of our knowledge, these are the first results
giving a tight characterization of the optimal sample
complexity for learning DAG models from observational
data.

The rest of this paper is organized as follows: In the
remainder of Section [I} we discuss related work and
the problem setting. In Sections 2] and [3] we present our
main results for learning equal variance DAGs. Then
in Section [4] we consider the special case of known or-
dering, and in Section [5] make further comparisons with
learning undirected GGMs. An illustrative simulation
study is presented in Section [f] before concluding with
some open questions in Section [7]

Notation and preliminaries Given a directed
graph G = (V, E) with |V| = d nodes, we make the
following standard definitions:

The parents pa(k) = {¢: ({,k) € E};

The descendants de(k) to which & has at least one
directed path;

The nondescendents nd(k) = V' \ de(k);

The ancestors an(k) any of which has at least one
directed path to k.

When (¢, k) € E we will often write £ — k for short. A
source node is any k € V with an(k) = (). A subgraph
G[V \ S] is the original graph with nodes in S and
edges related to S removed. Given a DAG G, the
moralized graph M(G) is constructed by dropping the
orientations of all directed edges and then connecting
all nodes within pa(k) for all k € [d]. A topological sort
(also called an ordering) of a DAG G is an ordering of
the nodes V such that j - k = j < k.

Given a random vector X = (Xi,...,X,), we say
that G is a Bayesian network for X (or more precisely,

its joint distribution P), if the following factorization
holds:

d
P(X) =[] P(Xx| pa(k)). (1)
k=1

In this case, we abuse notation by identifying the ran-
dom vector X with the vertex set V,ie. V =X =
[d] ={1,2,...,d}. We denote the class of all DAGs
with d nodes and at most ¢ parents per node (i.e. in-
degree < ¢) by Ga,q-

1.1 Related Work

To provide context, we begin by reviewing the related
problem of learning the structure of an undirected
graph (e.g. MRF, GGM, etc.) from data. Early work
establishing consistency and rates of convergence in-
cludes Meinshausen and Bihlmann| (2006); Banerjee
et al.| (2008); Ravikumar et al|(2010), with information-
theoretic lower bounds following in [Santhanam and|
[Wainwright| (2012); Wang et al| (2010). More re-
cently, sample optimal and computationally efficient
algorithms have been proposed (Vuffray et al., 2016}
\Misra et al., [2020). Part of the reason for the early suc-
cess of MRFs is owed to the identifiability and convexity
of the underlying problems. By contrast, DAG learning
is notably nonidentifiable and nonconvex. This has led
to a line of work to better understand identifiability
(e.g. Hoyer et al,[2009; Zhang and Hyvérinen| [2009; Pe;

ters et all, [2014} [Peters and Biithlmann| 2013} [Park and
2017)) as well as efficient algorithms that cir-

cumvent the nonconvexity of the score-based problem
(Ghoshal and Honoriol 20172, 2018; |Chen et al., 2019;
\Gao et al., 2020} |Gao and Aragaml [2021)). The latter
class of algorithms begins by finding a topological sort
of the DAG; once this is known the problem reduces to
a variable selection problem. Our paper builds upon
this line of work.

Other approaches include score-based learning, for
which various consistency results are known (van de
[Geer and BiithImannl, 2013} [BithImann et al. 2014} [Lohl
[and Biithlmann|, 2014}, [Aragam et al., 2015} [Nowzohour|
and BiithImann|, 2016} [Nandy et al.| 2018} [Rothenhéusler|
et al) 2018; Aragam et all 2019)), but for which op-
timality results are missing. It is interesting to note
that recent work has explicitly connected the equal
variance assumption we use here to score-based learn-
ing via a greedy search algorithm (Rajendran et al.l
2021). We also note here important early work on
the constraint-based PC algorithm, which also estab-
lishes finite-sample rates under the strong faithfulness
assumption (Kalisch and Biihlmann| [2007)).

For completeness, we pause for a more detailed compari-
son with existing sample complexity upper bounds from
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the literature. van de Geer and Bithlmann| (2013) stud-
ied the £y-penalized MLE and showed that n/logn = d
samples suffice, which was later improved to n 2 slogd
(Aragam et al., 2019)). Using a different approach,
Ghoshal and Honorio| (2017a)) proved that n > s*logd
samples suffice, where s is the maximum Markov blan-
ket size or equivalently the size of the largest neighbour-
hood in the conditional independence graph of X. The
dependency on s arises from the way this algorithm
uses the inverse covariance matrix I' = ¥~'. Moreover,
their result additionally requires the restricted strong
adjacency faithfulness assumption, which we do not
impose. In a more recent work, (Chen et al.| (2019)
show that n > ¢?logd samples suffices to learn the
ordering of the underlying DAG, but do not estab-
lish results for learning the full DAG. Similar to our
work, |[Chen et al.| (2019) do not make any faithfulness
or restricted faithfulness-type assumptions. We note
also the work of |Park| (2020]) that establishes rates
of convergence assuming n > d, but which precludes
the high-dimensional scenario d > n. For comparison,
we improve these existing bounds to n 2 glogd/q for
the full DAG and moreover prove a matching lower
bound (up to constants). |Ghoshal and Honorio| (2017b))
have also established lower bounds for a range of DAG
learning problems up to Markov equivalence. For ex-
ample, their lower bound for sparse Gaussian DAGs
is 0%(qlogd/q + ¢*/d)/(0® + 2wi, .y (1 + W],y ), where
Wmax depends on the £ norms of the regression coeffi-
cients. By contrast, our lower bounds depend instead

on (Bmin, M) (cf. ({), for definitions).

1.2 Problem Setting

Although our results extend to more general settings,
we focus on the special case of linear Gaussian Bayesian
networks under equal variances. See Remark [I] for a
discussion of generalizations. Specifically, let X =
(Xla cee ,Xd),

X = <Bk7X> + €k, Var(ek) = 0'2, E[Ek] =0,
that is, each node is a linear combination of its parents
with independent Gaussian noise. The variance o2 of
each noise term is assumed to be the same; this is the
key identifiability assumption that is imposed on the
model.

More compactly, let B = (8;%) denote the coefficient
matrix such that 8;, # 0 is equivalent to the existence
of the edge j — k. Then letting € = (e1,...,€4) We
have

X=B"X+e (2)

The matrix B defines a graph G = G(B) by its nonzero

entries, i.e.

V=X,
E(B) ={(j,k) : Bjr # 0}.
Whenever G is acyclic, it is easy to check that holds,

and hence G is a Bayesian network for X. In the sequel
we assume that G is acyclic.

G(B) = (V, E(B)), {

The following quantities are important in the sequel:
The largest in-degree of any node is denoted by ¢, i.e.

q=4q(B) = sup | pa(k)| = sup |supp(Br)|.  (3)

The absolute values of the coefficients are lower
bounded by Bmin, i.€.

ﬂmin = ﬁmin(B) = mln{|ﬁjk| : Bjk: 7é 0} (4)

Furthermore, assume the covariance matrix > =
E[X X ] satisfies

M_l S )\min(z) S Amax(z) S M (5)

for some M > 1.

Let the class of distributions satisfying the above condi-

tions , , and be denoted by Fy 4(Bmin, 02, M).
For any F € Fy 4(Bmin, 02, M) we have

Y =02(I-B)"T(I-B)~" (6)

This follows directly from and cov(e) = o2I. Since
the DAG is identifiable from the observational distribu-
tion, we denote G(F') to be the DAG associated with
the distribution F' € fdﬁq(ﬁmima%M). Finally, we
introduce the variance gap:

A = min min E4 var(Xyg | A) — o2
k ACnd(k)
pa(k)\A#0
ACnd(pa(k)\A)

where the subscript indicates that the expectation is
being taken over the random variables in A. This is
the missing conditional variance on ancestors if not all
the parents are conditioned on, which serves as the
identifiability signal for the main algorithm. It turns
out it can be explicitly expressed in terms of the edge
coefficient and noise variance:

Lemma 1.1. A =32, 02 > 0.
The proof of this lemma is a straightforward calculation;
see Appendix [E] for details.

Remark 1. Both our upper and lower bounds can be
generalized as follows: Although we assume Gaussianity
for simplicity, everything extends to subgaussian fam-
ilies without modification. This is because the upper
bound analysis relies only on subgaussian concentra-
tion, and the lower bounds easily extend to subgaussian
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models (i.e. since subgaussian also contains Gaussian
as a subclass). Furthermore, the equal variance assump-
tion can be relaxed to more general settings as long as
B can be identified by Algorithm [I] Examples include
(a) the “unequal variance” condition from |Ghoshal and
Honorio (2018) (see Assumption 1 therein) and (b) if
noise variances are known up to some ratio as in |Loh
and Biihlmann| (2014)). Moreover, both of these iden-
tifiability conditions include the naive equal variance
condition as a special case, hence the lower bounds still
apply. This implies more general optimality results for
a wider class of Bayesian networks.

2 ALGORITHM AND UPPER
BOUND

We begin with stating the sufficient conditions on the
sample size for DAG recovery under the equal vari-
ance assumption. Namely, we present an algorithm
(Algorithm 1)) that takes samples from a distribution
F e fd’q(ﬂmin702,M) as an input and returns the
DAG G(F) with high probability. We first state an
upper bound for the number of samples required in
Algorithm [I] in Theorem [2:1}

Theorem 2.1. For any F € Fu4(Bmin, 02, M), let G
be the DAG return by Algorithm |1 with v = A/2. If

5

M
n 2z (qlogd —l—log5) ,
A q

then P(G = G(F)) > 1—34.

The proof of this result can be found in Appendix [A]
The obtained sample complexity depends on the vari-
ance gap A, which serves as signal strength, and covari-
ance matrix norm M, which shows up when estimating
conditional variances. Treating these parameters as
fixed, the sample complexity scales with glogd/q. The
order of this complexity arises mainly from counting
all possible conditioning sets. The proof follows the
correctness of Algorithm [T} which consists of two main
steps: Learning ordering and Learning parents.

Algorithmically, the first step is the same as|Chen et al.
(2019)), however, our analysis is sharper: We separately
analyze the estimation of each conditional variance
directly rather than indirectly via the inverse covariance
matrix. This leads to the improved sample complexity
in Theorem This step is where we exploit the
equal variance assumption: The conditional variance
var(Xy | C) of each random variable X}, is a constant
o2 if and only if pa(k) C C for any nondescendant set
C. This implies that the variance of any non-source
node in the corresponding subgraph would be larger
than o2. Therefore, when all conditional variances vic
are correctly estimated with error within some small

Algorithm 1 LEARNDAG algorithm

Input: Sample covariance matrix & = Ly XX
backward phase threshold ~
Output: G.

1. Learning Ordering:

(a) Initialize empty ordering 7 = |]
(b) Denote vgco = f]kk. — ikcialcick
(¢c) For j=1,2,...,d
i. Calculate o, := mingcz |c|<q VkC
ii. Update 7 = [7, arg miny, o]

2. Learning Parents:
(a) Initialize empty graph G=10
(b) For j=1,2,....d
i. Let Cj = argmingcz, \1c|<q V7,0
ii. Set

pag(7j) = C; \ {Z € Cj|lva;c; — vaopl < V}

3. Return G

factor of the signal A (see Lemma , identifying
the node with the smallest o yields a source node
in the underlying subgraph. Recall that oy is the
minimum variance estimation that node k can achieve
conditioned on at most ¢ nondescendants. Finally,
recursively applying the above step leads to a valid
topological sort.

In the second step, given the correct ordering, we use
Best Subset Selection (BSS) along with a backward
phase to learn the parents for each node. Note that BSS
is already applied in the step 1.(c).i. of Algorithm
and the candidate set C; can be stored for each 7,
thus there is no additional computational cost. Again,
when all conditional variances are well approximated by
their sample counterpart vy, C; would be a superset
of the true parents of current node 7j, otherwise the
minimum would not be achieved. Meanwhile, removal
of any true parent i € pa(7;) from C; would induce
a significant change in conditional variances, which
is quantified by A as well. This is used to design a
tuning parameter ~ in the backward phase for pruning
C;. Finally, we show the tail probability of conditional
variance estimation error is well bounded to get the
desired sample complexity in Lemma [A2]

When the true variance gap A is unknown, we can
select the tuning parameter v according to the following
theorem:

Theorem 2.2. For any F € Fq(Bmin, 02, M), let G



Ming Gao, Wai Ming Tai, Bryon Aragam

be the DAG return by Algorithm [1] with tuning parame-
ter
2M?®qlogd/q
= —
n

If

5

nz ——qlog —,
A q

then P(G = G(F)) 2 1 —exp(—qlogd/q).

The proof of this result can be found in Appendix

Remark 2. A computationally attractive alternative
to BSS is the Lasso, or /;-regularized least squares
regression. Unlike BSS, the Lasso requires restrictive
incoherence-type conditions. If these conditions (or
related conditions such as irrepresentability) are im-
posed on each parent set, then the Lasso can be used to
recover the full DAG under a similar sample complex-
ity scaling (see e.g. |Wainwright, [2009a). Furthermore,
these incoherence-type conditions can be further re-
laxed through the use of nonconvex regularizers such
as the MCP (Zhang,2010) or SCAD (Fan and Li}, |2001));
see also |Loh and Wainwright| (2014]).

3 LOWER BOUND

We will now present the necessary conditions on the
sample size for DAG recovery under the equal vari-
ance assumption. Namely, we present a subclass of
Fa.q(Bmin, o2, M) such that any estimator that success-
fully recovers the underlying DAG in this subclass with
high probability requires a prescribed minimum sample
size. For this, we rely on Fano’s inequality, which is
a standard technique for establishing necessary con-
ditions for graph recovery. See Corollary [B.2] for the
exact variant we use.

Theorem 3.1. Assume q < d/2. If

logd qlogd/q)

n < (1—25)max<6rznin, 72— 1

then for any estimator @,

r G log 2
sup P(G+#G(F))>6— '
FeFa,q(Bmin,02,M) ( ( )) 1ogd

In Theorem we state two sample complexity lower
bounds: qlogd/q/(M? — 1) and logd/B32.,. Though
the first one dominates when fixing other parameters
as constants, the second one reveals the dependency on
the signal strength [,;,. This can also be seen from the
upper bound in Theorem by replacing A = 82, o2
(cf. Lemma . We will present two ensembles for
each bound. The first one is the whole set of sparse

DAGs Gg,4, and the second is the set of DAGs with only

one edge, which is constructed to study the dependency
on the coefficient Byin.

For the first ensemble, we borrow the ideas from [San/
thanam and Wainwright| (2012) to count the number of
DAGs in G4 4. The only difference is we consider DAGs
instead of undirected graphs. Also, it is easy to bound
the KL divergence between any two distributions in
this ensemble due to Gaussianity, which would lead to
the bound qlogd/q/(M? —1). For the second ensem-
ble, it is easy to count the size of this ensemble since
we consider the DAGs with only one edge. Then all
possibilities of any different pair of edges are analyzed
to bound the KL divergence. This ensemble gives us
the bound log d/S2;,. The detailed proof can be found
in Appendix

For comparison, |(Ghoshal and Honorio| (2017b)) previ-
ously established a lower bound for general Gaussian
DAGs (i.e. without equal variances) of

( o qlogd/q+q¢*/d )
Qlo ,
o2+ 2w2, (1+w2,.)

max ( max

where wp,,x depends on the 5 norms of the regression
coefficients. Holding o2 constant, w2, is similar to the
maximum marginal variance of the variables, which is
comparable with our definition of M as an upper bound
on ||X||. By contrast, under the stronger assumption

of equal variances, our lower bound is

Q<logd Y qlogd/q)

ﬁl%lin M2 -1 7

which is a comparable lower bound. This is interesting
since by restricting to simpler equal variance models
(i.e. a smaller family), the problem should become
easier, however, our analysis shows this is not the case.
In particular, our lower bounds do not follow from
previous work, and require a slightly different analysis
as outlined in Appendix

4 RECONSTRUCTING A DAG
FROM ITS ORDERING

The second step of Algorithm [I| may be of interest
in its own right: Abstracted away, this step seeks to
reconstruct a DAG from knowledge of its topological
sort. We claim that the second step of Algorithm [I] is
in fact sample optimal for learning the parents of each
node (and hence all of G) given the true ordering of G
under more general assumptions.

Dropping the equal variance condition from
Fag(Bmin, 02, M), define o7 := var(ex) and let
Fa,q(Bmin, 02ax, M) denote the class of Gaussian
distributions such that , , and hold and

2

max’

sup a,% <o
k
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i.e. 0']% is allowed to depend on k. Note that
Fa.q(Bminy 02ax, M) C Faq(Bmin, 02ax, M). Further-
more, we modify the definition of the variance gap for
Fa,q(Bmin, 020 M) as follows:

A=min min Eyvar(Xy|A) —op.
k ACnd(k)
pa(k)\ A#D

Finally, given a known topological sort 7 of G, let G (1)
be the DAG returned by the second step of Algorithm
with v = A/2.

Remark 3. As with the rest of our results, these re-

sult extend to subgaussian models without issue. See
Remark [

Using the second part of Lemma [AT] Lemma [A72] and
following the proof in Appendix we have an upper
bound on the sample complexity for recovering G from
its ordering:
Proposition 4.1. For any F € F 4 4(Bmins 02axs M),
giwven a wvalid topological sort T of G, let @(T) be the
DAG returned by the second step of Algorithm [1] with
v=A/2. If
5
nz M(qlogd +log6> ,
A q

~

then P(G(1) =G(F)|1) 2 1-4.

The “given 7”7 in the probability is to emphasize that
the estimator has the access to the true ordering 7.

Unsurprisingly, this approach of using best subset se-
lection with a backwards phase is indeed optimal: We
have a matching lower bound (up to constants).

Proposition 4.2. If

2
o d
n < ——5—qlog —,

8M/812nin q
then given the knowledge of true ordering T of DAG G,
for any estimator G,

sup P(é#G(FHT)Z
FEF 4 4(Bmin 02,0, M)

The proof uses known lower bounds from the sparse
support recovery literature (Wainwright), [2009bl); see
Appendix [C] for details.

This more general optimality result for the second step
shows that it is only in the first step (learning par-
ents) that the equal variance assumption is operational.
Moreover, although it may be possible to improve the
sample complexity of the second step for the smaller
class Fg,q(Bmin, 0%, M), since the sample complexity
upper bound of the first step of Algorithm [I| matches
the lower bound for recovering the whole graph, such
improvements would not change the optimal sample
complexity for learning G.

5 COMPARISON WITH
UNDIRECTED GRAPHS

Our results on DAG learning under equal variances
raise an interesting question: Is learning an equal vari-
ance DAG statistically more difficult than learning its
corresponding Gaussian graphical model (i.e. inverse
covariance matriz)? This is especially intriguing given
the folklore intuition that learning a DAG is more dif-
ficult than learning an undirected graph (UG). In fact,
it is common to learn an undirected graph first as a
pre-processing step in order to reduce the search space
and sample complexity for DAG learning (Perrier et al.|
2008; |[Loh and Buhlmann| [2014; Bihlmann et al., 2014}
Aragam et al., [2019). In this section we explore this
question and show that in fact, at least in the special
case of equal variance Gaussian models, the sample
complexity of both problems is the same.

5.1 Gaussian Graphical Models

First, let us recall some basics about undirected graph-
ical models, also known as Markov random fields
(MRFs). When X ~ AN(0,X) as in this paper, an
MRF can be read off from the inverse covariance ma-
trix I' = (%) := X~'. More precisely, the zero pattern
of T defines an undirected graph U = U(T") that is
automatically an MRF for X:

V=X,
E() ={(,k) : vjx # 0}

Let ne(k) = {¢ € V : (¢{,k) € E} be the neighbours of
node k, i.e. they are connected by some edge. Note
the distinction between the parents of k£ in a directed
graph vs. the neighbours of £ in an undirected graph.
This model is often referred as the Gaussian graphical
model (GGM).

Wang et al.| (2010) showed that the optimal sample
complexity for learning a GGM is n < slogd, where

U() = (V, E()), {

s 1= max | ne(k)| (7)

is the degree of U or maximum neighborhood size, and
Misra et al.| (2020) developed an efficient algorithm that
matches this information-theoretic lower bound. Given
F € Fuq(Bmin, 0% M), let U(F) be the undirected
graph induced by the covariance matrix of F' (cf. @
It follows that for any F' € Fg 4(Bmin, o2, M) we can
learn the structure U (F') with ©(slogd) samples. Note
that this sample complexity scales with s instead of g.

Example 1. Consider the DAGs G; and G5 in Fig-
ure 1l In G1, we have ¢ = O(d) since T has d parents,
whereas in Gy we have ¢ = O(1) since each Sy has
only one parent. Thus, we expect that learning G
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Figure 1: Illustrating examples to compare sample
complexities for learning DAG and UG. (a) & (b):
The original DAGs; (c) & (d): The UGs generated
under equal variance condition by DAGs in (a) & (b)
respectively.

will require O(d) samples and learning G will require
O(log d) samples. By comparison, the UGs associated
with each model, given by U; and U; have s = d, and
hence if we use the previous approaches to learn each
Ui we will need ©(dlogd) samples each. Of course,
this is to be expected: One should expect that a spe-
cialized estimator that exploits the structure of the
family F4 4(Bmin, 02, M) to perform better.

5.2 Optimal Estimation of Equal Variance
GGMs

Example [I| shows that there is a gap between existing
“universal” algorithms for learning GGMs (i.e. algo-
rithms that do not exploit the equal variance assump-
tion) and the sample complexity for learning equal
variance DAGs. A natural question then is: What is
the optimal sample complexity for learning the structure
of U(F) for any F € Fa4(Bmin,0?, M)?

We begin by establishing a lower bound that matches
the lower bound in Theorem (up to constants):

Theorem 5.1. Assume q < d/2. If

2(1 —9)logd (1—26)qlogd/q
lein 7 M2 -1 ’

then for any estimator (7,

nSmax(

B 1
logd "

sup PU#U(F) >4
Fe]:d,q(ﬁmin’aea]»{)

The proof is deferred to Appendix

To derive an upper bound for this problem, we use the
well-known trick of moralization; see [Lauritzen| (1996])

Algorithm 2 LEARNUG algorithm

Input: Sample covariance matrix & = Ly XX
backward phase threshold ~
Output: U.

1. Learn DAG: Let G = LEARNDAG(i,v)
2. Moralization: Set U = M(G)

3. Return U

for details. Since F' € Fu4(Bmin, 0%, M), we can first
learn the DAG G = G(F) via Algorithm |1} Given the

output G, we then form the moralized graph and define
U := M(G). See Algorithm

This approach is justified by a result due to [Loh and
Biihlmann| (2014). First, we need the following condi-
tion:

Condition 1. Let precision matrix I' = 7! =
[COV(F)]il, Fij =0« 51']' = 0 and ﬁikﬁjk = 0 for
all k #1, 7.

When we sample nonzero entries of B from some contin-
uous distribution independently, Condition []is satisfied
except on a set of Lebesgue measure zero. For example,
it is easy to check that the examples in Figure [1] satisfy
this condition. Under this condition, moralization is
guaranteed to return U:

Lemma 5.2 (Theorem 2, |Loh and Biithlmann) 2014).
If Condition[1] holds, then U = M(G(F)).

Under Condition [1} we have the following upper bound,
which matches the lower bound in Theorem [5.1k

Theorem 5.3. Assuming Condition[1] for any F €
fd,q(ﬁmin,a2,M) let U be the UG returned by Algo-
rithm [§ with v = A /2. If

M5( d
— | gqlog — + lo 5),
A gq g

then P(U = U(F)) > 1—4.

nz

The proof is straightforward by Theorem and
Lemma This answers the question proposed at
the beginning of this section: Under the equal variance
assumption, learning a DAG is no harder than learning
its corresponding UG.

Remark 4. It is an interesting question whether or not
similar results hold without Condition [1} i.e. is there
a direct estimator of U—mnot based on moralizing a
DAG—that matches the sample complexity of learning
an equal variance DAG?

Remark 5. To compare Theorem with previ-
ous work, |[Wang et al| (2010) showed the opti-
mal sample complexity is O(slogd/\?) where \? =
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min(s yep I2,/(DssTw), which is dominated by (2,
when B, is small. For equal variance GGMs, our
result gives Q(qlogd/q/M? +logd/B2%;,). Under Con-
dition [T} s is always greater than ¢, so our new lower
bound is strictly smaller, along with a matching upper
bound that shows the s dependence for general GGMs
is suboptimal for equal variance GGMs. Another re-
lated work (Cai et al, |2016) derives lower bounds on
precision matrix estimation under certain matrix norms,
which is distinct from the graph recovery problem we
consider in this work. For comparison, put in our
setting, their lower bound becomes Q(s?log d), which

again depends on s instead of gq.

6 EXPERIMENTS

To illustrate the effectiveness of Algorithm [1} we report
the results of a simulation study. We note that existing
variants of Algorithm [I] have been compared against
other approaches such as greedy DAG search (GDS,
Peters and Biithlmann| [2013)), see (Chen et al.| (2019) for
details. In our experiments, we controlled the number
of parents when generating the DAG, fix all noise vari-
ances to be the same, and sample nonzero entries of
Bi’s uniformly from given intervals.

6.1 Experiment Settings

To generate random DAGs, we first randomly permute
[d] to obtain an ordering 7. Then for each j € [d], we
randomly draw a set S of ¢ nodes from 77;.;_;) and set

pag(r;) = Tij—1, J<q+1
A S, otherwise.

We then generate random nonzero coefficients according
to B ~ Rad x Unif(0.5, 1), where Rad is a Rademacher
random variable. Finally, we generate data by the
resulting Gaussian linear model:

X, =B X +e, e ~N(0,0% Vk

with ¢ = 0.3.

We consider graphs with d € {20,30,...,90} nodes
and in-degree ¢ € {2,3,4}. For each setting, the total
number of replications is N = 100. For each replication,
we generate a random graph and a dataset with sample
size n € {80,160, ...,560}. Finally, we report #{G =
G}/N to approximate P(G = G).

6.2 Implementation

We implement the learning ordering phase of Algo-
rithm (1| using code from |Chen et al. (2019)E|7 which

!'The code can be found at https://github.com/
WY-Chen/EqVarDAG/blob/master/R/EqVarDAG_HD_TD.R.

inputs the oracle in-degree ¢ and outputs a topological
sort. For the learning parents phase of Algorihm [1} we
use the R package leaps (Lumley and Lumley, [2013)
for Best Subset Selection with BIC.

The experiments were conducted on an internal cluster
using an Intel E5-2680v4 2.4GHz CPU with 64 GB

memory.

6.3 Results

The results are shown in Figure 2 As expected, the
probability of successfully recovering true DAG goes to
one quickly across different settings of the number of
nodes d and maximum in-degree q. Since Best Subset
Selection is computationally expensive, we are not able
to examine higher dimensions systematically. Nonethe-
less, to test higher dimensional cases, we checked several
(random) cases for d = 200, 300, 500, and the results
shows with 90% chance the DAG is successfully recov-
ered for moderate sample sizes n = 480, 560, 900.

7 CONCLUSION

In this paper, we derived the optimal sample complex-
ity for learning Gaussian linear DAG models under
an equal variance condition that has been extensively
studied in the literature. These results extend to sub-
gaussian errors under similar assumptions as well as
more general models with unequal variances as long
as the DAG remains identifiable by the proposed al-
gorithm, which is easy to implement and simulations
corroborate our theoretical findings. We also investi-
gated the sub-problem of learning a linear DAG from its
ordering and made comparisons with the classical prob-
lem of learning GGMs, showing the sample complexity
of both problems is the same.

We conclude with some open questions. Although our
algorithm is sample optimal, it is not computationally
efficient. As noted in Remark [2] an easy fix is to use
{1-regularization, however, this would require impos-
ing restrictive incoherence assumptions. It would be
interesting to find efficient algorithms without such con-
ditions, along the lines of [Misra et al.| (2020) for GGMs.
We conjecture that there is such a polynomial-time
algorithm that achieves the optimal sample complexity
bound without such restrictive conditions. It also is
not known whether or not score-based approaches (e.g.
van de Geer and Bithlmann| 2013} |[Loh and Bithlmann),
2014; Nandy et al., 2018; [Aragam et al.| 2019; Ra/
jendran et al.; 2021)) are sample optimal. Another
interesting question posed in Remark [4] is whether or
not there is a moralization-free algorithm that achieves
the optimal sample complexity for learning U (F’) estab-
lished in Theorem 5.1l This would allow Condition [
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Figure 2: P(@ = @) v.s. sample size n. Different in-degree g are presented by different colors. The darker shade

indicates large number of nodes d.

to be relaxed or removed entirely.

Finally, it would be of interest to generalize the results
in Section [p| to more general families, i.e. beyond
equal variances and its generalizations (Ghoshal and
. This would require the derivation of
new identifiability conditions, as in [Gao and Aragam|
(2021)) and Rajendran et al(2021)).
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Supplementary Material:
Optimal Estimation of Gaussian DAG Models

A PROOF OF UPPER BOUND

A.1 Preliminaries

We first show that if all conditional variances are estimated sufficiently well, then Algorithm [I]is able to identify
the true DAG.

Lemma A.l. If for allk € V and C C V\ {k}, |C| < g,
|V&I‘(Xk |Xc) — UkC| S A/4
then G = G.
Proof. We start by showing that 7 is a valid ordering for G, which is equivalent to saying 7; is a source node

of the subgraph G[V \ 7j;.;_1j] for all j. We proceed by induction. For j = 1, it reduces to compare marginal
variances.

var(X},) = o2 k is a source node
var(X;) > 0% + A [ is not a source node

For any non-source node ¢ and any source node k,

op = Vg
> var(Xy) — A/4
>Ax%+¥
> A/4+o?
=var(Xy) + A/4
2 Ugp = Ok

Thus k is preferred over £. Given that 7j;.;_1] correctly identified, by the equal variance assumption,

min var(Xg | C) = var(X a(k)) = o2
con M0, (Xk|C) (X% | pa(k))

if k is a source node of G[V \ 7j1.;_1)]

_ min var(Xy|C) > A + o?
C§7[1:j71]7‘c|§q

if £ is not a source node of G[V \ 7j1.;_q]]
Therefore, for any ¢ that is not a source node and for any & that is a source node,

o¢ = min
CCT1:5-1)51C1<Lq

> min var(X,|C) — A/4
CCT5-11:C1<q

Vec

3
>1A+O’2
> AJd+o?

= min var(Xy | Xeo) + A/4
Cg?{l:j71]7|c|§q

>  min VkC = Ok
CQT[I:j—1]7|C|Sq
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Thus the first step of Algorithm [I| will always include k instead of £ into 7. This implies that 7 is a valid topological
ordering.

Now we look at the second step of Algorithm [1] this step is to remove false parents from candidate set returned by
Best Subset Selection. For any j, let 7; = j for ease of notation. Given that 7 is a valid ordering, pa(j) C 7j1.;_1)-
We first conclude pa(j) € Cj, otherwise there exists C; C 7j1.;_1) with pa(j) C C such that
’chj Z V&I‘(Xj | Cj) - A/4
>0+ A-A/4
> o+ A/4
= var(X; | C) + A/4

2 vjcy
Then C; should not lead to minimum. Then for any k € pa(j) and any £ € C; \ pa(j),

vjc; — vio\k = var(X; [ Cy) —var(X; | C5 \ k) — A/2

>A/2=7
UjCj — 'chj\g S V&I‘(Xj | CJ) — V&I‘(Xj | Cj \6) + A/2
=A/2=7
Thus ¢ will be removed while & will stay. Then pag(j) = pag(j) for all j. O

Next we bound the estimation error tail probability:
Lemma A.2. Forallk €V and C C V\{k}, |C| <q,
P(|var(X | X¢) — vre| > €) < Ay exp(—Agyne/M® + q)

for some constants A1, As.

Proof. Denote the covariance between k and set of nodes C' at

5, = (Ekk EkC)
Yor Xcc
Note that |[Sicl, [Sccll, [Ecol<IZd< 2] < M.
Then the estimation error for conditional variance
|Var(X;C | X¢) — var( Xy |Xc)|
= |(Skk — SeeSeSok) — (Shr — ikcialcimcﬂ
< |§kk — Sek| + |§kc(§alc - Ealc)icd
+1Ere — Zke)SotEok| + [ZreZot Eck — o)
< S = k| + 1566 — SoellIShel?
+ M|Zic — SkelllScrll + M2[|Ecr — ekl
< |§kk — Sl
+2/I566 — el Sk — Skell? +2M2 S0 — Sob
+ M|[Sie — Skl + M| Sk — Sicl
+ M?||Scr, — Sexl
< Sk — S|
+2IE5E - SeElIE: - Zel” +2ME5E - Sat|
+ M|, = Sil + M|S; - Sl + M|IE - £
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The first inequality is by the triangular inequality, and the second simply bounds ||Xxc|| by M. The third
inequality introduces the estimation error of ikC and the final inequality replaces this with the estimation error
of the full covariance matrix ¥;. To set the RHS to be smaller than € > 0, we consider three estimation errors.
The first two can be controlled via standard sub-exponential concentration, whereas the third can be controlled
via Theorem 6.5 from [Wainwright| (2019)):

P(IS — S| > ¢) < exp(—Asn(/M)
P(|Z; = S| > ¢) < exp(=Asn( /M +q)
for some constants Az, A4. The largest error is from
I£56 - Zaell < 15clISaENIEce - Eccll
< MIIEENZee - Secl
= M(IZcel - IZzeDIEee — el
+M|ScellSce — Secll
< M|Sce — SaelllEec - Seel
+M?|Sco — Sec|
After some arrangement, we have
M?||Ecc — Sccll
1-M|Scc - Eccll

<<

IS5 — Soell <
as long as
¢ <
M2+ M¢ — M2
This is just another Gaussian covariance matrix estimation error, i.e.
P(|Scc — Secll > ¢/M?) < exp(—Asn¢ /M + q)

for some constant As. Now we require all the errors to be bounded by ¢ = ¢/M? such that the conditional
variance estimation error is within e. Thus

P(|var(Xg| Xc) — var(Xp| Xc)| > €)
< exp(—Azne/M?) + exp(—Asne/M?> + q)
+ exp(—Asne/M® + q)
< Aj exp(—Asne/M° +q). =

|Xce — el £

A.2 Proof of Theorem 2.1]

Proof. Combine Lemma, and we can have success probability:

PG +#G) < P( U {Ivar(Xe| Xc) = vee| > 6})
keV
ccV\{k}
ICl<q

< Z P(|V8.I"(Xk | Xc) —vke| > 6)
kev
CcV\{k}
IC1<q

5dx((d11)+...+ (dgl))xexp(q—ne/M‘r’)

< d x g x €198/ exp(q — ne/ M)
= exp(qlog(d/q) +logd + log q 4+ q — ne/M?®)
= exp(qlog(d/q) — ne/M°).
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The last equality is by (g)q = (g)q_1 X (g) > 2171 x (g) >q X % = d, thus qlog(d/q) = logd. In the end, replace

€ by A/4, solve for the sample size n such that
exp(qlog(d/q) —nA/M?) <4,

we can have the desired sample complexity. O

A.3 Proof of Theorem [2.2]

Proof. In the proof of Lemma denote the estimation error to be upper bounded by ¢, i.e. for all £ € V and
CcV\{k} [Cl <q,
|V&I‘(Xk | Xc) — ka| S €,

then it suffices to have
2e <y < AJ2 —2¢

for the correctness of second phase to proceed. Therefore, let v = 3¢ and require € < A/10. Finally, set

2M° x qlog(d/q)
(=
n

Then we have failure probability bounded:

~

P(G # G) < exp(qlog(d/q) — ne/M®)
= exp(—qlog(d/q)) .

And to satisfy the requirement ¢ < A/10, we need sample size

> M°qlog(d/q)

. 0
~ A

B PROOF OF LOWER BOUND

B.1 Preliminaries

Let’s start with recalling Fano’s inequality and its corollary under the structure learning setting. Let 6(F') be a
parameter associated to some observational distribution F'.

Lemma B.1 (Yu 1997, Lemma 3). For a class of distributions F and its subclass F' = {Fy,...,Fy} C F,

. . ~ S na+log2)
inf sup Epdist(0(F),0) > =1 — ———
G FG.F/"): r (6(5),9) 2( log N

where

o=, max (£ Fx)

= dist(6(F;), 6(F;
s = p max  dist(6(F), 0(Fy)
Set 0(F) = G(F), dist(-,-) = 1{- # -}. One consequence of Lemma [B.1] is as follows:

Corollary B.2. Consider some subclass G' = (G1,...,GN) C Gaq, and let F' = {F1,...,Fn}, each of whose
elements is generated by one distinct G € G'. If the sample size is bounded as

n< (1—2(5)10g]\f7
!

then the any estimator for G is d-unreliable:

log 2

inf sup P@;AGF >5—
G FEFuq(Bmin,02,M) ( (E) log N
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Thus the strategy for building lower bound is to find a subclass of original problem such that

e Has large cardinality V;

e Pairwise KL divergence between any two distributions is small.

Now we do some counting for the number of DAGs with d nodes and in-degree bounded by g.
Lemma B.3. For ¢ < d/2, the number of DAGs with d nodes and in-degree bounded by q scales as ©(dqlogd/q).

Proof. The proof construction is similar to|Santhanam and Wainwright| (2012)). We can upper bound by number
of directed graphs (DG), and lower bound by one particular subclass of DAGs.

For upper bound, note that a DG has at most d?> many, and a sparse DAG has at most dg any edges. Since
2 2 2

q < d/2, then we have dq < d?/2. Since for £ < k < d*/2, we have (dz) < (Cﬁc), and there are (Cﬁc) DGs with

exactly k directed edges, then the numbder of DGs is upper bounded by

Ny & d
log |DGs| = logz <k> < logdg <dq) = dqloga
k=1

For lower bound, we look at one subclass of DAGs. Suppose d/(¢ + 1) is an integer, otherwise discard remaining
nodes. First partition d nodes into ¢ + 1 groups with equal size d/(q + 1). Then for the first group, build directed
edges from nodes in group 2,3,...,¢+ 1 to group 1, which requires ¢ permutations on d/(¢q 4 1) nodes within one
particular group. Then the nodes in group 1 has exactly degree ¢. Similarly, for group 2, build directed edges
from group 3,4,...,q+ 1, which requires ¢ — 1 permutations on d/(q + 1) nodes. Therefore, for the subclass of
DAGs generated in this way of partition, we have

d
(q+1

!)(Q)+(q*1)+.‘.+1 — (L

!)q(q+1)/2
qg+1

many DAGs, any of which is valid DAG and has degree bounded by ¢. Then the cardinality
log |[DAGSs| > log(il)'z((ﬁ'l)/2 = dglog d
T g+l q
Thus the total number of DAGs scales as O(dqlog %) O

B.2 Proof of Theorem [3.1]

Proof. We consider two ensembles:

Ensemble A In this ensemble, we consider all possible DAGs with bounded in-degree. Note that by Lemma [B-3]
we know N =< dglog d/q, it remains to provide an upper bound for the KL divergence between any two distributions
within the class. For any two F}, Fi; € Fq q(Bmin, 0%, M), denote their covariance matrices to be >, 3k. Due to
Gaussianity, It is easy to see that

KL = 5 (5 [X 750X - B X755 1))

= ( [XTe X~ d)
= (tr( ) )/2

(\/
(M2 —1)d

Therefore, we can establish the first lower bound that

n> qlogd/q
Mz -1
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Ensemble B For this ensemble, we consider the DAGs with exactly one edge u — v and coefficient SBpin,
denoted as G"?. There are 2 directions and d(d — 1)/2 many edges, so the cardinality of this ensemble would be
N =d(d — 1) < d?. Then denote the distribution defined according to G“* as F“*, the log likelihood

—log F" [ > XPH X+ (X — BuinXu)?
i¢{u,v}
+ dlogo

and the difference between any two cases is

uv 1
log F“* —log F7* = 357 [X2 + (Xk — BminX;)?

- XE = (X, B X
Then take expectation over F'*V we get the KL divergence:

KL (Fuv”ij) |: min¥ +EF““(ﬁm1nX2 2XkX]):|

2 9,2

For fixed edge (u,v), any other edges (j, k) has relationship and corresponding KL divergence below:

o j#u k#v, KL(Fw||Fik

o j=uk#v, KLE™W||F*) =53,
o j#uk=v, KL(F"™||F*) = 52,
° j:’l},k:U, KL Fuv”F]k = mln mm/2 Bmln

o j=uv,k#u, KL(F"| Fi

)=
)
)
)
) = Bitin T Bunin/2
)=

(
(
(
(
(
(

o j#v k=u, KL(F"W|/F*

mll’l

Among them, the largest KL between F“?, F7k is 2. + 4. /2. Therefore, we can conclude a lower bound

logd

1
" z ﬁfnin + 2/812nin
C PROOF OF PROPOSITION (4.2

Proof. For simplicity we consider DAGs with d + 1 nodes. We first recall a known lower bound for sparsity
recovery: Consider the linear model Y = 37 X + ¢ with X ~ A(0,%) and € ~ N(0,02). The support of 3 is
S C [d] and |S| = q. Let Bmin = minj.5, 20 |3;]. Then informally,

Lemma C.1 (Wainwright| (2009b)), Theorem 2). If

log (¢
ne el
8epu (%) L
where
wbu(Z) = ]E min Zg 2552’5
|z;|>1Vj

then with g known, for any instance from the linear model and any estimator S for S,

P(5#5)>

w\»—*
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Now we adapt this result to our setting, Smin remains the same, and clearly wy,, (X) < M according the definition
of M. Additionally, since every Gaussian with positive definite ¥ has a minimal I-map and given ordering, the
parents can be read off through regression, i.e. the model class in Lemma is equivalent to the one generated
in Fa,q(Bmin, 0ax> M). For any estimator G = G(7), denote pa(k) := pag(k) for any node k. Then if

o2 d
< _max  glo5
"= SMﬁfnin 8 q ’
we have
_inf P(G=G(F)|7)= _ inf P(pa(k) = pa(k) k| 7)
Fefd,q(ﬂmima'?nava) Fe}—dvq(ﬂmimarznax’M)
<  inf P(pa(rq) = pa(7a) | T)
Fefd,q(ﬁminvagnax?M)
< inf P(pa(ra) = pa(ra) | T)

FEFa,q(Bmins0mmax:M)

I pa(ra)|=g,var(er, ) =00x

< inf P(pa(rq) = pa(ra) | | pa(ra)| = q,7)
FEF 4,q¢(Bmin,0 2 ax>M)
| pa(ra)|=q,var(er, ) =02,
< 1
2

The first inequality is by relaxing the problem to simply finding the parents of the last node from all preceding
nodes. The second inequality is because we can restrict at a sub-ensemble of Fg ;(Bmin, 02k, M) whose last
node of ordering has ¢ parents and maximum noise var(e,,) = 02,,.. The third inequality is because knowing the
number of parents only makes the problem easier. The final inequality is by noticing the equivalence to sparsity
recovery problem and applying Lemma O

D PROOF OF LOWER BOUND OF GGM (THEOREM

Proof. We introduce two useful lemmas from |Wang et al.| (2010]):

Lemma D.1 (Wang et al.| (2010), Section IV.A). Consider a restricted ensemble U C U consisting of N = |U|
models, and let model index 6 be chosen uniformly at random from {1,...,N}. Given the observations X, the
error probability for any estimator U

I6; X)+1

max P(U #U) > j:ql,z.if)fNP(U #U;)>1 log N

veld

Lemma D.2 (Wang et al|(2010)), Section IV.A). Define the averaged covariance matrix

_ 1 X
5= 3 R0
=1

2|

The mutual information is upper bounded by 1(6; X) < %R(Zj), where

N
~ _ 1 ~
R(U) =logdetX — — E log det X(Uj)

j=1
Another lemma for ease of presentation:
Lemma D.3. For a matrixz of dimension p
1+a b e b
A b 14a --- b
b b v 1+4a

with a,b — 0 and pb — 0, the determinant logdet A = pa.
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Proof.

A=(1+a-0bI,+b1,1]
b T
:(1+a_b>(lp+1—F(7,—l)1p1p>

b
detA = (]. +a — b)p det <Ip -+ 1—|—a—b1p1;—>

bp
=1 -bPl14+ ———
(1+a )(+1+a—b)

=(1+a-bP (1+a+(p—1)b)
logdet A= (p—1)log(l +a —b) +log(l+a+ (p—1)b)
~(p—-1)(a—=b)+a+ (p—1)b=pa. O

Finally, let’s consider three ensembles of UGs generated by DAGs. We describe the ensembles by showing how
the DAGs generate the UGs.

Ensemble A In this first Ensemble, we consider an empty DAG, then add one edge from node S to T' with
linear coeflicient Bnin. Specifically,

Xo = BuinXs+e £=T
ngq E#T

2

Without loss of generality, let var(e;) = 1, general variance o would not affect the final results. There are

N =d(d — 1) possibilities, thus log N < logd.

It remains to figure out the structure of covariance matrix and find out the corresponding determinants. Without
loss of generality, let the first two nodes to be S, T, then the covariance matrix of any model (denoted as jth) is

1 Bmin 0
Ej = Bmin 1+ ﬁggin 0
0 0 Ig_o
It is easy to see that logdet X; = log(1 + B2, — Bmin X Bmin) = 0 for all models in this subclass. To compute
the average 3, by symmetry, all diagonal and off-diagonal entries are the same respectively. For entries on
diagonal, there are two situations: whether it corresponds to node T" or not. For off-diagonal entries, there are two
situations: corresponds to edge S — T or not. Different situations behave differently Table [I] with total counts N:

Table 1: Summary of situations of sub-covariance matrix entry in Ensemble A.

diagonal
situations T Otherwise
values 2 +1 1
counts d—1 (d—1)?
off-diagonal
situations T-5 Otherwise
values Bmin 0
counts 2 dd—1)—2

Thus we conclude the entries in X:

5 _ 14 Bow = 14a i=k
) = itk
ad-1 °

Using Lemma we conclude logdet ¥ =< 2. . and invoking Lemma and we obtain a lower bound as

S log d

5 .
~ ﬁmin
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Ensemble B Here we can adopt the same construction as the first ensemble for DAG in Appendix [A] which
applies analogously through Lemma Since the joint distribution remains to be the same, we have KL
divergence upper bounded by (M? — 1)d.

For number of models inside this class, firstly we know that for a UG with degree bounded by s, there are
O(dslogd/s) many UGs (Lemma 1(b) of [Santhanam and Wainwright| (2012)). By Lemma[5.2 U = M(G), so
q < s, thus the number of UGs would be greater than ©(dqlogd/q), which leads to the same lower bound:

qlogd/q
> 2 1° O
"X

E PROOF OF LEMMA [I.1]

Proof. Immediate from the law of total variance:

A = min min B4 var(Xy | A) — o?
k ACnd(k)
pa(k)\A#D

ACnd(pa(k)\A)

= min Aénnhr%k) EAE a4 var(Xy | pa(k))
pa(k)\ A0
ACnd(pa(k)\A)

+E4 Valpa(k)\ A E(Xk | pa(k)) — o’

. . T
= min Agrllldr%k) E 4 varpa e 4 Bpa(k:)\AXpa(k)\A | A
pa(k)\A#D
ACnd(pa(k)\A)
_ ﬂQ 0_2. O

min
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