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Abstract

This work explores the Benevolent Training Hypothesis (BTH) which argues that
the complexity of the function a deep neural network (NN) is learning can be
deduced by its training dynamics. Our analysis provides evidence for BTH by
relating the NN’s Lipschitz constant at different regions of the input space with the
behavior of the stochastic training procedure. We first observe that the Lipschitz
constant close to the training data affects various aspects of the parameter trajectory,
with more complex networks having a longer trajectory, bigger variance, and often
veering further from their initialization. We then show that NNs whose 1st layer
bias is trained more steadily (i.e., slowly and with little variation) have bounded
complexity even in regions of the input space that are far from any training point.
Finally, we find that steady training with Dropout implies a training- and data-
dependent generalization bound that grows poly-logarithmically with the number
of parameters. Overall, our results support the intuition that good training behavior
can be a useful bias towards good generalization.

1 Introduction

Though neural networks (NNs) trained on relatively small datasets can generalize well, when em-
ploying them on unfamiliar tasks significant trial and error may be needed to select an architecture
that does not overfit [1]. Could it be possible that NN designers favor architectures that can be easily
trained and this biases them towards models with better generalization?

In the heart of this question lies what we refer to as the “Benevolent Training Hypothesis” (BTH),
which argues that the behavior of the training procedure can be used as an indicator of the complexity
of the function a NN is learning. Some empirical evidence for BTH already exists: (a) It has been
observed that the training is becoming more tedious for high frequency directions in the input
space [2] and that low frequencies are learned first [3]. (b) Training also slows down the more
images/labels are corrupted [4], e.g., the Inception [5] architecture is 3.5 slower to train when
used to predict random labels than real ones. (c) Finally, Arpit et al. [6] noticed that the loss is
more sensitive with respect to specific training points when the network is memorizing data and that
training slows down faster as the NN size decreases when the data contain noise.

From the theory side, it is known that the training of shallow networks converges faster for more
separable classes [7] and slower when fitting random labels [8]. In addition, the stability [9] of
stochastic gradient descent (SGD) implies that (under assumptions) NNs that can be trained with
a small number of iterations provably generalize [10, 11]. Intuitively, since each gradient update
conveys limited information, a NN that sees each training point few times (typically one or two) will
not learn enough about the training set to overfit. Despite the elegance of this claim, the provided
explanation does not necessarily account for what is observed in practice, where NNs trained for
thousands of epochs can generalize even without rapidly decaying learning rates.
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Figure 1: Our findings connect training dynamics and NN complexity by showing that the trajectory
of the 1st layer bias reflects the NN’s Lipschitz constant near (and far from) the training data: the
bias of higher complexity NNs exhibits a longer trajectory and varies more at the end of the training.

1.1 Quantifying NN complexity

This work takes a further step towards theoretically grounding the BTH by characterizing the
relationship between the SGD trajectory and the complexity of the learned function. We study neural
networks with ReLU activations, i.e., parametric piece-wise linear functions. Though many works
measure the complexity of these networks via their maximum number of linear regions [12—15], it
is suspected that the average NN behavior is far from the extremal constructions usually employed
theoretically [16].

We instead focus on the Lipschitz continuity of a NN at different regions of its input. For networks
equipped with ReLLU activations, the Lipschitz constant in a region is simply the norm of the
gradient at any point within it. The distribution of Lipschitz constants presents a natural way to
quantify the complexity of NNs. Crucially, NNs with a bounded Lipschitz constant can generalize
beyond the training data, a phenomenon that has been demonstrated both theoretically [17-19] and
empirically [20]. The generalization bounds in question grow with the Lipschitz constant and the
intrinsic dimensionality of the data manifold, but not necessarily with the number of parameters',
which renders them ideal for the study of overparameterized networks.

1.2 Main findings: connecting training behavior and neural network complexity
We link training dynamics and NN complexity close and far from the training data (see Figure 1).

NN complexity close to the training data. Section 4 commences with a simple observation: SGD
updates the 1st layer bias more quickly if the learned function has a large Lipschitz constant near
a sampled data point. This implies that the length of the bias trajectory grows linearly with the
Lipschitz constant of the NN on its linear regions that contain training data (Theorem 1). Based
on this insight, we deduce that (a) near convergence, the parameters of more complex NNs vary
more across successive SGD iterations (Corollary 2), and (b) the distance of the trained network
to initialization is small if the learned NN has a low complexity (near training data) throughout its
training, with the first few high-error epochs playing a dominant role (Corollary 3).

NN complexity far from the training data. Section 5 focuses on the relationship between training
and the Lipschitz constant in empty regions of the input space, i.e., linear regions of the NN that do
not contain training points. We first show that the Lipschitz constants in empty regions are linked
with those of regions containing training points (Theorem 2). Our analysis implies that NNs whose
parameters are updated more slowly during training have bounded complexity in a larger portion
of the input space. We then demonstrate how training NNs with Dropout enables us to grasp more
information about the properties of the learned function and, as such, to yield tighter estimates for the
global Lipschitz constant. Our findings yield a data- and training-dependent generalization bound

"While the Lipschitz constant is typically upper bounded by the product of spectral norms of the layer weight
matrices (thus yielding an exponential dependency on the depth), the product-of-norms bound is known to be far
from the real Lipschitz constant [21, 22]



that features a poly-logarithmic dependence on the number of parameters and depth (Theorem 3).
On the contrary, in typical NN generalization bounds the number of samples needs to grow nearly
linearly with the number of parameters [23—25] or exponentially with depth [26-30].

All proofs can be found in Appendix B, whereas Appendices A and C contain additional empirical
and theoretical results, respectively.

2 Related works

The Lipschitz constant of NNs. Since exactly computing the Lipschitz constant is NP-hard [31],
its efficient estimation is an active topic of research [31-34, 22, 35]. Our work stands out from
these works both in motivation (i.e., we connect training behavior with NN complexity) and in
the techniques developed (we are not employing any complex algorithmic machinery to estimate
the Lipschitz constant of a trained model, but we bound it as the NN is being trained based on
how weights change). Empirically, Lipschitz regularization has been used to bias training towards
simple and adversarially robust networks [36—42]. Theoretically, the Lipschitz constant is featured
prominently in the generalization analysis of NNs (e.g., [26-28]), but most analyses depend on
sensitivity w.r.t. parameter perturbation, which is related but not identical to the Lipschitz constant.

Dropout and generalization. The Dropout mechanism and its variants are standard tools of the NN
toolkit [43—45] that regularize training [46, 47] and help prevent memorization [6]. The effect of
Dropout on generalization have been theoretically studied primarily for shallow networks [48, 49, 47]
as well as for general classifiers [50]. The generalization bounds that apply to deep networks are norm-
based and generally grow exponentially with depth [51, 52] or are shown to scale the Rademacher
complexity by the Dropout probability (for Dropout used in the last layer) [53]. We instead base our
analysis on arguments from [18, 19] and exploit the properties of ReL.U networks to derive a bound
that features a significantly milder dependency on the NN depth.

Flat and sharp minima. Flat minima correspond to large connected regions with low empirical
error in weight space and have been argued to correspond to networks of low complexity and good
generalization [54]. It has also been shown that SGD converges more frequently to flat minima [55-
59]. Different from the current work that focuses on the sensitivity w.r.t. changes in the data, flatness
corresponds to a statement about local Lipschitz continuity w.r.t. weight changes. In addition, whereas
flat minima are regions of the space where the loss is low, our main results account for more complex
loss behaviors (by means of an appropriate normalization). Note also that some works argue that the
flat/sharp dichotomy may not capture all necessary properties [60—62] as flat minima can be made
sharp by a suitable reparameterization [61], and flat and sharp minima may be connected [61].

Training dynamics of NNs. Many authors have studied the training dynamics of NNs [63—-69],
arguing that, with correct initialization and significant overparameterization, SGD converges to a
good solution that generalizes. Our work complements these studies by focusing on how the SGD
trajectory can be used to infer NN complexity. Arora et al. [8] connect the trajectory length and
generalization performance via the Neural Tangent Kernel (NTK). Most analyses based on the NTK
(“lazy” regime) or mean field approximation (“adaptive” regime) focus on 2- or 3-layer networks. In
contrast to these works, we make no assumptions on initialization or NN size.

3 Preliminaries and background

Suppose that we are given a training dataset (X,Y’) consisting of N training points X =
(z1,...,zN) and the associated labels Y = (y1,...,yn), withax; € XY CR™andy; € Y CR.

We focus on NN defined as the composition of d layers f = fy0--- 0 fi, with
file,w)=p(W,x+b) for I=1,...,d

Above, W; € R™*™-1 and b; € R™ withng =nandng = 1,and w = (W1, by,..., Wy, b,) are
the network’s parameters. For all layers but the last, p; will be the ReLLU activation function, whereas
pq may either be the identity pg(z) = 2 (regression) or the sigmoid function py(z) = 1/(1+ e~ %)
(classification).



We optimize w to minimize a differentiable loss function ¢ using stochastic gradient descent (SGD).
The optimization proceeds in iterations ¢ and each parameter is updated as follows:

t+1) _ () _ 6f(f(m(t)aw(t))ay(t))
W T Dw® ’

where *) € X is a point sampled with replacement from the training set at iteration ¢, y(*) is its
label, and «y is the learning rate. It will also be convenient to refer to f(-, w(®)) as f(*).

w!

3.1 Linear regions

A well-known property of NNs with ReLU activations is that they partition the input space into
regions (convex polyhedra) R C R"™ within which f is linear. This viewpoint will be central to our
analysis.

There is a simple way to deduce this property from first principles. When py is the identity, each f
can be equivalently expressed as

f(@,w) = Sa(x)(Wa(- -+ Sa(x)(W2S:1(x)(Wiz + by) + bs) - ) + ba),
where we have defined the input-dependent binary diagonal matrices
Si(z) := diag(1[fio--- o fi(@,w) > 0]) and Sa(z)=1,

with 1[x > 0] being the indicator function applied element-wise. The key observation is that, when
the neuron activations S;(x) are fixed for every layer, the above function becomes linear. Thus, each
linear region R of f contains those points that yield the same neuron activation pattern.

Since the activation pattern of any region is uniquely defined by a single point in that region, we write
R« to refer to the region that encloses .

3.2 Local and global Lipschitz constants

A function f is Lipschitz continuous with respect to a norm || - || if there exists a constant A such
that for all z, ' we have || f(x) — f(2')||2 < A||& — '||2. The minimum A satisfying this condition
is called the Lipschitz constant of f and is denoted by Ay.

The Lipschitz constant is intimately connected with the gradient. This can be easily seen for
differentiable functions f : X — R, in which case Ay = sup_cy |V f()| 2, where X’ is a convex
setand V f(x) is the gradient of f at « [70, 31, 34].

Although NNs with ReL.U activations are not differentiable everywhere, their Lipschitz constant can
be determined in terms of their gradient within their regions. Specifically, the local Lipschitz constant
within a linear region R, of f is

Ar(Ra) = [IV f(z, w)|2
The Lipschitz constant of f is then simply the largest gradient within any linear region A\; =

SUpgex ||V f (2, w)]|2. The latter is typically upper bounded by )\‘}md =TT, IW1]|2 which is known
to be a loose bound [21, 22]. For a more formal treatment that also accounts for different types of
activation functions and vector-valued outputs, the reader may refer to [22].

4 Relating training behavior to NN complexity close to the training data

Our analysis commences in Section 4.1 by deriving a general result that bounds the (appropriately
normalized) length of the SGD trajectory over any training interval with the Lipschitz constant of the
NN close to training data. Our results on the distance to initialization and weight variance will be
implied as corollaries in Section 4.2.

4.1 Bounding the length of the SGD trajectory

Theorem 1 formalizes a simple observation: the gradient of a neural network with respect to its input
is intimately linked to that with respect to the bias of the first layer. This implies that, by observing
how fast the bias of the network is updated, we can deduce what is the Lipschitz constant of the
learned function on the linear regions of the input space encountered during training.



Theorem 1 (Trajectory length). Let f*) be a d-layer NN being trained by SGD. Further, denote by

oL(y,
Ef(t)(mvy) = ’ g/gy)

g=f® (x)
the gradient of the loss with respect to the NN’s output at iteration t. For any set T of iteration indices
within which the gradient is not zero, the (normalized) bias trajectory is upper/lower bounded as

A . bt o (R
S < 3 oy s T e,
teT Ul(W1 O‘tef(” x(t), y) ier on(W1)

where Ul(Wl(t)) > > an(Wl( )) > 0 are the singular values ole(t).

Theorem 1 shows that lower complexity learners will have a shorter (normalized) bias trajectory. If
F0) (®,4®)) and o, remain approximately constant throughout 7, the trajectory will grow linearly
with the Lipschitz constant of the learner close to the training data.

Why we focus on the first layer bias. It might be originally surprising that the gradient w.r.t. by is
indicative of NN complexity. While the value of b, is not particularly informative, it turns out that
the way it changes over successive SGD iterations reflects the operation of the entire NN: since b;
and x are processed by the NN in a similar fashion, the sensitivity of the NN output w.r.t. changes in
the bias relates to those induced by changes in the input. Indeed, via the chain rule, we have

T
Vf(.’I}, w) = std_l(ﬁc)Wd_1 te Sl (.’B)Wl = <afgxb’1u})> Wl,

where, for simplicity of exposition, we consider here the case in which py is the identity function
and thus S, (x) = 1. The above equation also explains why the singular values of W7 appear in the
bound: since the gradient of b; does not yield information about W7, we account for it separately.
Alternatively, as explained in Appendix C.2, the first layer Lipschitz constant can be controlled by
also taking into account the dynamics of W3 and W5,. We also note that an identical argument can
be utilized to connect the gradient of b; with the Lipschitz constant of f 0 --- o fi11(x).

Understanding the normalization. The normalization by o € (x®,y®)) renders the bound
independent of the learning rate «; as well as of how well the network fits the training data. When a
mean-squared error (MSE) and a binary cross-entropy (BCE) loss is employed

~ 2
@ and  fpce(9,y) = —ylog () — (1 —y)log (1 —7),

with y,§ € Rand y,§ € [0, 1], respectively, we have

Ivse (9, ) =

ef(@,y) = |f(®) —y| and es(x,y) = m

In both cases, € (x, y) measures the distance between the true label and the NN’s output.

Applicability to other architectures. Beyond fully-connected layers, Theorem 1 directly applies
to layers that involve weight sharing and/or sparsity constraints, such as convolutional and locally-
connected layers, as long as b; remains non-shared. In addition, the result also holds unaltered for
networks that utilize skip connections or max/average pooling after the Ist layer, as well as for NNs
with general element-wise activation functions (see Appendix C.1).

Dependence on the singular values of W;. The lower bound presented in Theorem 1 can be
expected to be much tighter than the upper bound since the largest singular value is usually a
reasonably small constant, whereas the smallest may be (close to) zero. Fortunately, the upper bound
can be tightened when the data fall within some lower-dimensional space S. In that case, one may

substitute the minimum singular value with the minimum of || Wl(t):c |l2 for all z € S of unit norm.

4.2 Corollaries: steady learners, variance of bias, and distance to initialization

Suppose that after some iteration our NN has fit the training data relatively well. We will say that the
NN is a “steady learner” if its Ist layer bias is updated slowly:



Definition 1 (Steady learner). A NN ) trained by SGD is (1, p)-steady if

t+1 t
I6{""" — b5
o €pn (), y 1)

<@ forall t>T.

The following is a simple corollary:

Corollary 1. Let f®) pe (1, p)-steady. Consider an interval T of iterations after T and suppose
that ol(Wl(t)) < B foreveryt € T. Select an iteration t € T at random. The Lipschitz constant
of f®) at every training point x € X will be bounded by A (Ra) < B, generically, i.e., with
probability that converges to 1 as |T'| grows.

Crucially, the bound of Corollary 1 can be exponentially tighter than the product-of-norms bound
)\‘}md: whereas 3¢ does not generally depend on depth, )\‘;f"d(Rm) = w? when |W;||; = w.
We will also use Theorem 1 to characterize two other aspects of the training behavior: the parameter

variance as well as the distance to initialization. The following corollary shows that the weights of
high complexity NNs cannot concentrate close to some local minimum:

Corollary 2 (Variance of bias). Let f() be a d-layer NN with ReLU activations being trained by
SGD. Let T be a set of iteration indices and write

6harm(T') = \/h{aerj[n €5 (:I)(t)’ y(t))2

for the square-root of the harmonic mean of the squared loss derivatives within T'. Then, the bias of
the first layer will exhibit variance at least:

i Apn (Rgpw)) €harm(T) ) : (1)

(t) )2
avg ||by” — avgb > | av
t€%|| ! te% il = <te% 201(W1(t))

Therefore, a larger complexity NN will need to fit the training data more closely (so that epym, (77
decreases) to achieve the same variance as that of a lower complexity NN.

We can also deduce that the bias will remain closer to initialization for NNs that have a smaller
Lipschitz constant:

Corollary 3 (Distance to initialization). Let f*) be a d-layer NN being trained by SGD with an MSE
loss and fix some iteration 1. The first layer bias may move from its initialization by at most

1 ) @) A R
Ept)y\ LN, t t
||bgT) - bgO)Hz < E Qg A )( Y ) (t];( )( 2l ))
=0 O'n(Wl )

The latter result is only meaningful in a regression setting. When using the BCE loss, the loss
derivative can grow exponentially when the classifier is confidently wrong. On the contrary, with an
MSE loss in place the loss derivative grows only linearly with the error, rendering the bound more
meaningful.

When o; and € (x®,y®)) decay sufficiently fast, the bound depends on Un(Wl(t)) and the
(normalized) Lipschitz constant at and close to initialization. Therefore, the corollary asserts that
SGD with an MSE loss can find solutions near to initialization if two things happen: the NN fits the
data from relatively early on in the training while implementing a low-complexity function close to
the training data.

5 NN complexity far from the training data

Our exploration on the relationship between training and the complexity of the learned function thus
far focused only on regions of the input space that contain at least one training point. It is natural to
ask how the function behaves in empty regions. After all, to make generalization statements we need
to ensure that the learned function has, with high probability, bounded Lipschitz constant close to any
point in the training distribution.



Next, we provide conditions such that a NN that undergoes steady bias updates, as per Definition 1,
also has low complexity in linear regions that do not contain any training points. Our analysis starts
in Section 5.1 by relating the Lipschitz constant of regions in and outside the training data. We then
show in Section 5.2 how learners that remain steady while trained with Dropout have a bounded
generalization error.

A central quantity in our analysis is the activation s;(x) associated with each x:

1 1
si(@) = Q) diag(s{”(m)) = Q) 1fio--o filx,w) > 0] € {0,1}ma-1m
=d—

l=d—1 l=d—1
Thus, s;(x) is the Kronecker product of all activations when the NN’s input is .

We will also assume that the learned function f(*) eventually becomes consistent on the training data:

Assumption 1. There exists 7,7 > 0 such that si(x) = sy(x) and \;(Rz) < (1 +
v) )\fu/)(Rm)for allx € X and t,t' > 7.

Assumption 1 is weaker than requiring that the parameters have converged: the parameters are
allowed to keep changing as long as the slope and activation pattern on each training point remains
similar. We also stress that the NN can still have different activation patterns at different points
(and thus be highly non-linear), as long as these activations stay persistent over successive iterations.
Naturally, it is always possible to satisfy our assumption by decaying the learning rate appropriately.

5.1 The Lipschitz constant of empty regions

As we show next, the Lipschitz constant of a NN can be controlled for those regions whose neural
activation can be written as a combination of activations of training points.

Theorem 2. Let T' be any interval of SGD iterations that satisfies Assumption 1, and suppose that
Ul(Wl(t) ) < B forallt € T. Furthermore, denote, respectively, by

t+1 t
1B — b{"l2

(677 6j’(t) (w(t)a y(t)) teT

— (t) — c— mind FO (Y 1 £@) (1)
St = [si(x'")],cpn T = o pr = min{ S (@), 1= f (20)}
the binary matrix whose columns are the neural activations of all points sampled within T', the vector
containing the normalized bias updates, and the distance to integrality if a sigmoid is used in the last
layer. Select a point x € R" that is not in the training set. For all t € T, the Lipschitz constant of
Y in Ry is bounded by the following Basis Pursuit problem:

Ao (Re) < (L+7) BE minfla © ¢rly subjectio si(x) = Sra,

0.25

where © is the Hadamard product, § = =)

if a sigmoid is used and & = 1, otherwise.
To grasp an intuition of the bound, suppose that we are in a regression setting (§ = 1) and that the
interval 7' is large enough so that we have seen all training points. Theorem 2 then implies:

321, @i, € X, 80(@) = sy(@i,) + -+ se(@s,) = A (Ra) <EBI+7) 07 oo

By itself, Theorem 2 does not suffice to ensure that the function is globally Lipschitz because the
theorem does not have predictive power for points & whose activation s; () cannot be written as a
linear combination S7a of activations of the training points. A sufficient condition for the theorem to
yield a global bound is that S is full rank, but the latter can only occur for N > ng4 - - - nq, a quantity
that grows exponentially with the depth of the network. Section 5.2 will provide a significantly milder
condition for networks trained with Dropout.

5.2 Learners that remain steady with Dropout generalize

Dropout entails deactivating each active neuron independently with probability p. We here consider
the variant that randomly deactivates each neuron independently? at the end of the forward-pass with

Typically, the neurons are dropped during the forward pass and not at the end as we do here. However, for
networks with d < 2, the two mechanisms are identical.



probability 1/2. We focus on binary NN classifiers

¢D(x) =1 [f(t)(m) > 0.5]

trained with a BCE loss, and with the NN’s last layer using a sigmoid activation. The empirical and
expected classification error is, respectively, given by

erl™ = avg 1o (@) £ | and e =By [1]9%(@) # )]

Theorem 3 controls the generalization error in terms of the number A/ (X; £o, (X)) of £5 balls of
radius r¢(X') needed to cover the data manifold X. The radius is shown to be larger for more steadily
trained classifiers (through 1/¢) and to depend logarithmically on the number of neurons:

Theorem 3. Let f) be a depth d NN with ReLU activations being trained with SGD, a BCE loss
and Y/2-Dropout.

Suppose that {1 is (1, )-steady and that for every t > T the following hold: (a) Assumption 1, (b)
si(x) < vazl si(x;) for every x € X, (c) al(Wl(t)) < B, and (d) fO(x®) € [u,1 — p). Define
min, 1= 2fO@)| - (1+4) (1 +o(1)

cp log (Zf;ll nl> (1 = 1) Dmin

'I’t(X) =

where Dpin = Miljcqi<n, t>7[AV8zcx diag(Sl(t) (x))]; > 0 is the minimum frequency that any
neuron is active before Dropout is applied.

For any § > 0, with probability at least 1 — 6 over the Dropout and the training set sampling, the
generalization error is at most

e e? — 0 ( N (X: b2, 12(X)) + log <1/6>>
N )

where N'(X; lo, 1) is the minimal number of {2-balls of radius r needed to cover X.

Intuition. Recall that the bounds derived in Section 4 only concern the regions of the NN that contain
at least one training point. However, due to the geometry of these regions, it is possible (and likely)
that small empty regions will be located near those that have training data inside them. Deriving
a generalization bound would require upper bounding the Lipschitz constant of the NN on these
empty regions. Unfortunately, to our knowledge, the latter is not possible without resorting to loose
product-of-norms bounds or imposing strong additional assumptions that assert that the training
regions are sufficiently diverse (as Theorem 2 does). Here is where Dropout comes in. Dropout
introduces stochasticity in the training procedure that provides information of the NN function in the
gaps between training data. This allows us to infer the Lipschitz constant of the function in larger
portions of the space from the training behavior — and thus to relax the assumptions of Theorem 2.
Specifically, the proof approximates the global Lipschitz constant as follows:

d—1 d—1
c .
/\jfff;iy = TSO log ( g nl> with Af(t) < /\jf?f;iy < /\fm -O(log < g nl>>
=1 =1

It then invokes a robustness argument [18, 19] to control the generalization error. The bound above
comes in sharp contrast with the product-of-norms bound /\‘}md, which grows exponentially with d

and can be arbitrary larger than A ;) , since there exists parameters for which Ay = 0 and )\}}md > 0.

Understanding the assumptions made. The strongest requirement posed by Theorem 3 is that
every neural pathway is activated for each training point: s;(x) < Ef\;l s¢(x;) forevery x € X. In
contrast to Theorem 2, the latter can be satisfied even when N = 1, e.g., if there exist some training
point for which all neurons are active. However, the assumption will not hold when some entries
of s;(x) are never activated after iteration 7. Little can also be said about the global behavior of
f when there are neurons that are not periodically active (which would also imply p, = 0). We



— freq=1.0
freq=0.75
freq=0.5

— freq=0.25

freq=1.0
freq=0.75
freq=0.5
freq=0.25

/

o
=
v
e
e
v

Train loss
o
o
o
o
o
Test loss
o
i
o

o
=)
a
o
o
o

o
N}

Bias trajectory length (per epoch)
o
~

0.00 0.0 -£7 0.00
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Epoch Epoch Epoch
(a) Training loss (regression) (b) Bias trajectory (regression) (c) Test loss (regression)
=
0.4 ; 2 - 0.4
—— corruption=0.6 Q —— corruption=0.6
corruption=0.4 q: 0.6 corruption=0.4
0.3 corruption=0.2 g. corruption=0.2 0.3
. —— corruption=0.0 < —— corruption=0.0 ©
° ©0.4 / 3
€02 s 202
o - k]
[ = ~
01 go2 M 01 \\«,w__,_,_,———————
. g .
®
5
0.0 30.0 0.0
0 20 40 60 80 100 @ 0 20 40 60 80 100 0 20 40 60 80 100
Epoch Epoch Epoch

(d) Training loss (CIFAR classif.) (e) Bias trajectory (CIFAR classif.) (f) Test loss (CIFAR classif.)

Figure 2: Training behavior of MLP (top) and CNN (bottom) solving a task of increasing complexity
(green—red): fitting a function of increasing spatial frequency (top) and classifying CIFAR images
with increasing label corruption (bottom). In accordance with Theorem 1, the per epoch bias trajectory
(middle subfigures) is longer when the network is asked to fit a more complex training set.

argue however that such neurons can be eliminated without any harm as, by definition, they are not
affecting the NN’s output after 7.

Dependence on the classifier’s confidence. According to Theorem 3, the best generalization is
attained when the classifier has some certainty about its decisions on the training set (so that

|1 —2f®(x;)| = Q(1)), while also not being overconfident (so that y (1 — ) = O(1)).

Dependence on the data distribution and the number of parameters. A interesting property of
the bound is that it depends on the intrinsic dimension of the data rather than the ambient dimension.
For instance, if X is a C);-regular k-dimensional manifold with Cy; = O(1) it is known [71] that

k
N(X;ly,r) = <CM> , implying that N = O(r,(X)%)
r

training points suffice to ensure generalization. This sample complexity bound grows poly-
logarithmically with the number of neurons n - - - 71 and the number of parameters when ¢ p = O(1).
On the contrary, since the radius r of the /5 balls used in the covering grows inversely proportionally
to the Lipschitz constant, if the product-of-norms bound was used in our proof, then the sample
complexity would be exponentially larger: if |W;||2 = w then r = O(w~™%) and N = O(w¥).

As remarked by Sokoli¢ et al. [19], other data distributions with covering numbers that grow polynomi-
ally with k& include rank-k Gaussian mixture models [72] and k-sparse signals under a dictionary [73].

6 Experiments

We test our findings in the context of two tasks:

Task 1. Regression of a sinusoidal function with increasing frequency. In this toy problem, a
multi-layer perceptron (MLP) is tasked with fitting a randomly-sampled 2D sinusoidal function
with increasing frequency (0.25, 0.5, 0.75, 1) isometrically embedded in a 10-dimensional space.
More details can be found in Appendix A.1. The setup allows us to test our results while precisely
controlling the complexity of the ground-truth function: fitting a low-frequency function necessitates
a smaller Lipschitz constant than a high-frequency one. We trained an MLP with 5 layers consisting
entirely of ReLU activations and with the 1st layer weights being identity. We repeated the experiment
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Figure 3: A closer inspection of how the bias is updated. The variance is computed over the last 10
epochs. As seen, the bias of higher complexity NNs varies more close to convergence (Corollary 2).
Further, with an MSE loss, high complexity NNs may veer off further from initialization (Corollary 3).

10 times, each time training the network with SGD using a learning rate of 0.001 and an MSE loss
until it had fit the sinusoidal function at 100 randomly generated training points.

Task 2. CIFAR classification under label corruption. In our second experiment, we trained a
convolutional neural network (CNN) to classify 10000 images from the ‘dog’ and ‘airplane’ classes
of CIFARI1O0 [74]. The classes were selected at random. We focus on binary classification to remain
consistent with the theory. Inspired by [4], we artificially increase the task complexity by randomly
corrupting a (0, 0.2, 0.4, 0.6) fraction of the training labels. Thus, a higher corruption implies a larger
complexity function. Differently from the first task, we used a CNN with 2 convolutional layers
featuring ReLU activations in intermediate layers and a sigmoid activation in the last. We set the
first layer identically with the regression experiment. We repeated the experiment 8 times, each time
training the network with SGD using a BCE loss and a learning rate of 0.0025.

In agreement with previous studies [4, 6, 3, 2], Figure 2 shows that training slows down as the
complexity of the fitted function increases. Figures 2b and 2e depict the per-epoch bias trajectory:

ZteTepmh ||b§t+1) - bgt) ll2/cuepco (x® y®)) According to Theorem 1, this measure captures the

Lipschitz constant A ) (R4 ) of the NN during each epoch and across all training points. In
agreement with our theory, the bias trajectory is significantly longer when fitting higher complexity
functions. The length of the total trajectory is the integral of the depicted curve, see Appendix A.4.
Moreover, as shown in Fig 2c, the trajectory length also correlates with the loss of the network on a
held-out test set, with longer trajectories consistently corresponding to poorer test performance.

We proceed to examine more closely the behavior of bgt) during training. Figures 3a and 3b
corroborate the claims of Corollaries 2 and 3, respectively: when fitting a lower complexity function
and an MSE loss is utilized, the bias will remain more stable (here we show the variance in the last
10 epochs) and closer to initialization. The same variance trend can be seen in Figure 3¢ for image
classification. The distance-to-initialization analysis is not applicable to classification (due to the
BCE gradient being unbounded), but we include the figure in Appendix A.2 for completeness.

Additional results. The interested reader can refer to Appendices A.3 and A.4 for visualizations of
the Lipschitz constants within linear regions and of the total bias trajectory length. Appendices A.6
and A.5 test how our findings are affected by the batch size and architecture, whereas Appendix A.7
examines the training dynamics associated with deeper layer biases.

7 Conclusion

This paper showed that the training behavior and the complexity of a NN are interlinked: networks
that fit the training set with a small Lipschitz constant will exhibit a shorter bias trajectory and their
bias will vary less. Though our study is of primarily theoretical interest, our results provide support
for the Benevolent Training Hypothesis and suggest that favoring NNs that exhibit good training
behavior can be a useful bias towards models that generalize well.

At the same time, there are many aspects of the BHT that we do not yet understand: what is the
effect of optimization algorithms and of batching on the connection between complexity and training
behavior? Does layer normalization play a role? What can be glimpsed by the trajectory of other
parameters? We believe that a firm understanding of these questions will be essential in fleshing out
the interplay between training, NN complexity, and generalization.
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