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Abstract
When communication between teammates is limited to ob-
servations of each other’s actions, agents may need to im-
provise to stay coordinated. Unfortunately, current methods
inadequately capture the uncertainty introduced by a lack of
direct communication. This paper augments existing frame-
works to introduce Simple Temporal Networks for Impro-
visational Teamwork (STN-IT) — a formulation that cap-
tures both the temporal dependencies and uncertainties be-
tween agents who need to coordinate, but lack reliable com-
munication. We define the notion of strong controllability for
STN-ITs, which establishes a static scheduling strategy for
controllable agents that produces a consistent team schedule,
as long as non-communicative teammates act within known
problem constraints. We provide both an exact and approx-
imate approach for finding strongly controllable schedules,
empirically demonstrate the trade-offs between these two ap-
proaches on a benchmark of STN-ITs, and show analytically
that the exact method is correct. In addition, we provide an
empirical analysis of the exact and approximate approaches’
efficiency.

Introduction
In a team where agents must work together, they would ide-
ally be able to either pre-negotiate a coordination strategy
or communicate one in real-time. However, there may be
situations, such as ad-hoc teams, where agents must find a
way to work together despite not being able to communicate
directly. In such improvisational teams, agents must coordi-
nate their tasks by only observing already-executed actions.

Existing work in multi-agent coordination either relies
on solving the problem centrally or requiring communica-
tion before or during execution (Boerkoel and Durfee 2013;
Boerkoel et al. 2013). Other work in human-robot teams al-
lows the robots to dynamically recompute their plans in re-
sponse to the humans’ actions in order to deal with their un-
certainty (Castro et al. 2017; Hoffman and Breazeal 2007).
In addition, current work in temporal controllability places
restrictive assumptions on the forms of uncertainty that a
teammate could introduce (Vidal and Fargier 1999; Huns-
berger 2009). By contrast, we assume an agent must sched-
ule its actions before execution and account for its team-
mates without negotiation.
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Figure 1: Distance graph of our STN-IT example.

This paper introduces the Simple Temporal Network for
Improvisational Teamwork (STN-IT) to account for tempo-
ral planning situations where rational agents must coordinate
their actions to complete a task, but can only do so by ob-
serving each other’s actions. We characterize strong control-
lability for STN-ITs and discuss the challenges for establish-
ing such controllability in STN-ITs. We present both an ex-
act, Mixed-Integer-Programming-based approach, for find-
ing strongly controllable solutions to an STN-IT in a sound
and complete manner, and an efficient Linear-Programming-
based approximate approach. Then, we empirically compare
our approaches across a new benchmark of STN-ITs for both
efficiency and accuracy.

Background
As a motivating example used throughout this paper, con-
sider a scenario where a robot and a novel human teammate
are assigned to pack a box together (Figure 1). Both have
packed similar boxes before and are aware of the steps and
timing constraints. The robot, agent C, and human, agent U ,
move to the table, and each press a button to start the pro-
cess. It takes the human between 0 and 10 seconds to get
there (U0), and robot C between 0 to 5 seconds (C0). A box
then enters on a conveyor belt, giving the robot between 4
and 5 seconds to remove it and place it on the table after
they press the button and 2 to 8 seconds after the human
presses their button (C1). From there, the human will take
between 1 and 3 seconds to place the packing material in it
(U1). The robot can then place the item 0 to 5 seconds later
(C2). Once the robot has placed the item, the human will
take between 2 and 8 seconds to seal the box (U2). However,
to allow enough time to obtain supplies, the human has the



additional constraint that their second action (U2) must oc-
cur between 4 and 6 seconds after their first action (U1). The
box must be fully packed within 11 seconds.

In this section, we introduce how we can represent the
structure of this problem using existing temporal network
formulations. We also discuss how current representations
are inadequate in capturing the robot’s uncertainty intro-
duced by the lack of direct communication with its human
teammate.

Simple Temporal Networks

A Simple Temporal Network (STN) is a graph that consists
of a set of timepoints T , constraints between those time-
points C, and a “zero” timepoint z that acts as a reference
point and is assigned the time 0 (Deichter, Meiri, and Pearl
1991). A constraint in C is represented as tj − ti ≤ cij
for timepoints ti, tj ∈ T . When ti − tj ≤ cji also ex-
ists, then −cji ≤ tj − ti ≤ cij , which we rewrite as
tj − ti ∈ [−cji, cij ]. An STN solution, or schedule, is
an assignment of the timepoints in T such that all con-
straints in C are satisfied (Deichter, Meiri, and Pearl 1991).
As shown in Figure 1, an STN can be represented graphi-
cally, where each timepoint appears as a node and each con-
straint tj − ti ∈ [−cji, cij ] appears as a directed edge from
ti to tj with label [−cji, cij ]. The direction of the edges
is based on a partial ordering of the nodes with respect to
time. Constraints involving the zero timepoint with the form
tj − z ∈ [−cjz, czj ] are represented as self-loops with label
[−cjz, czj ]. Distance graphs, as shown in Figure 2, are help-
ful in determining a solution because they can be used to
calculate implicit constraints between two timepoints using
shortest path algorithms. Maintaining distance graphs can
also be useful in guiding scheduling decisions during dis-
patch, the process of the agent deciding when to execute its
events.

Multi-agent STN

A Multi-agent Simple Temporal Network (MaSTN), M , con-
sists of multiple local STNs for each agent along with global
constraints CM that connect each agent’s local STNs. In a
MaSTN with n agents, we can define agent i’s local STN
as Si = 〈z, T i, Ci〉 so that M = 〈S1, . . . , Sn, CM 〉, where
CM is the union of all the Ci’s and the global constraints.
We set z as the shared zero timepoint across each agent’s lo-
cal STN to ensure a common reference point. Furthermore,
agent i is responsible for assigning times to the timepoints
T i (Boerkoel and Durfee 2013). Figure 1 is an example of a
MaSTN involving two agents U and C.

A MaSTN is decoupled if every combination of solutions
of the n local agents’ STNs is a solution to the original
MaSTN. Generally, decoupling a MaSTN places additional
constraints onto each agent to embed the global constraints.
For instance, the example STN could be decoupled if we as-
signed C0 = [1, 3], U0 = [0, 4], C1 = [6, 6], U1 = [7, 9],
C2 = [7, 9], and U2 = [11, 11]. However, decoupling as-
sumes that agents can negotiate a strategy before execution,
which is not the case in improvisational teams.
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Figure 2: Distance graph of example problem after running
Floyd-Warshall

STN with Uncertainty
A Simple Temporal Network with Uncertainty (STNU) is
an STN with the set of events, T , partitioned into T c, con-
trollable events, and Tu, uncontrollable events (Vidal and
Fargier 1999). While events in T c are decisions made by
an agent in terms of assigning the timepoints, those in Tu

are decided by “Nature,” an external force not controlled by
the agent and realized during execution. Each uncontrollable
event, ti ∈ Tu, is associated with a unique contingent con-
straint of the form ti − tj ∈ [lb, ub], where 0 < lb < ub
and tj ∈ T c. Once tj is executed, the value of ti is received
from Nature, which determines how long after tj that ti will
occur by sampling the interval [lb, ub]. Thus, C can be par-
titioned into contingent constraints (CC), described above,
and requirement constraints (CR), which are normal STN
constraints (Hunsberger 2009).

An STNU is controllable when there exists a strategy to
work around the uncertainty in the problem. Strong control-
lability occurs when the controllable agent can schedule its
events pre-dispatch such that, for every realization of the
uncontrollable timepoints given the problem’s constraints,
there is a feasible solution. The STNU is dynamically con-
trollable when the controllable agent can react to the un-
controllable timepoints for every realization during dispatch
(Vidal and Fargier 1999). This paper focuses on strong con-
trollability.

From the robot’s perspective, the human’s timepoints and
constraints, drawn in red in Figure 1, are in some sense un-
controllable/contingent. However, our running example can-
not be captured as an STNU, since it violates multiple STNU
assumptions. In an STNU, the execution of uncontrollable
events is determined only by a single contingent constraint,
as the randomness of the sampling does not allow it to ful-
fill multiple. In addition, the bounds [lb, ub] must fulfill the
equation ub ≥ lb > 0, that is the uncontrollable event must
be strictly after the other. In our example, neither of these
assumptions hold; for instance, U2 has three incoming con-
tingent edges, one of which has a lower bound of 0. So,



whereas STNUs characterize which events and constraints
are uncontrollable/contingent (e.g., due to the inherent un-
certainty of independent, natural events), we need a new for-
mulation that is capable of characterizing entire agents as
uncontrollable (e.g., due to a lack of communication with
a novel teammate), and dealing with an uncertainty that is
over which temporal plan will be chosen by the other agent,
rather than what will happen as a result of random natu-
ral processes. The new formulation, which we define next,
needs to be robust to just the uncontrollable agent’s space of
viable temporal plans under our assumptions, rather than the
entire cross-product of possible temporal plans, which could
include infeasible schedules. That allows for additional so-
lutions that an STNU formulation might not reveal.

STN for Improvisational Teamwork
We define an STN for Improvisational Teamwork (STN-IT)
as a MaSTN where the set of agents, A, are partitioned be-
tween a set of controllable agents, AC , and uncontrollable
agents, AU . That is, agents in AC can strategize and coor-
dinate their scheduling strategies with other agents in AC ,
but not agents in AU . While we assume no ability to directly
control or communicate with agents in AU , we do make a
limited set of assumptions for how all agents will behave.

1. Problem Observability: Agents can observe and reason
about the global STN-IT.

2. Event Observability: Agents can observe when all
events occur as they are executed.

3. Execution Consistency: Agents will choose an execu-
tion strategy that is consistent with all problem con-
straints and event observations once they occur.

We acknowledge that these assumptions limit the types
of agents with which we can achieve improvisational team-
work. For instance, these assumptions may apply better to
an ad-hoc robot teammate than to a human teammate. We
elaborate on ideas for relaxing these assumptions in our dis-
cussion of future work.

In the remainder of this paper, we assume a single agent of
each type for ease of composition. We believe most methods
presented will extend to teams of agents where agents of the
same type can communicate with each other, but expanding
this work to more general teams of agents is left as future
work.

Order of Events
Running the Floyd-Warshall algorithm on the STN-IT’s dis-
tance graph reveals all implicit constraints (Figure 2). This
naturally imposes an order between most, but not all, pairs
of events. Consider two arbitrary events i and j, where
we assume w.l.o.g. that −cji and cij are the lower and
upper bounds on the time that elapses between i and j:
tj − ti ∈ [−cji, cij ]. This pair will have one of two rela-
tionships, which we define next.

Case 1: precedes (−cji, cij ≥ 0) The time differences be-
tween i and j are non-negative, so node i must happen earlier
than j. We define i precedes j (i → j), which implies that

j’s agent has the responsibility to satisfy the constraints be-
tween them and account for how i is executed. For example,
in Figure 2, the edge from C0 to C1 has the weights [4, 5],
so C0 precedes C1.

Notice that Case 1 also includes edges with [0, 0] weights,
which require i and j to be fully synchronous. In this case,
if i and j belong to the same agent, we define an arbitrary
ordering. If i and j belong to different agents, we assume
that the controllable node precedes the uncontrollable node,
which places the onus on the uncontrollable agent to observe
and synchronize its event. In practice, exact synchrony may
be impossible, so practitioners may choose to replace syn-
chronous constraints with ones with more built-in tolerance.

Case 2: unordered (−cji < 0, cij > 0) Case 2 occurs
when there is no clear precedence order between nodes,
which we define as unordered (i.e., i ↔ j). These two
nodes share a conditional responsibility that is triggered by
whichever one acts first. While both nodes remain unexe-
cuted, neither agent needs to worry about satisfying the con-
straints between them. However, as soon as one agent exe-
cutes, the unordered edge gets converted to an ordered one
with one node preceding the other (Case 1). Specifically, if i
executes first, j should take the responsibility and treat their
edges as if −cji = 0 and vice versa. In Figure 2, the dotted
edge from C0 to U0 has weights [−2, 3], which is equivalent
to a directed edge from U0 to C0 with weights [−3, 2]. So,
if U0 executes first, C0 must happen within 3 units of time,
else U0 must happen within 2 units of time after C0.

Strong Controllability of an STN-IT

We formally define an STN-IT to be strongly controllable if
we can assign specific times to the controllable timepoints
in a way that is guaranteed to work with any dynamically
determined realization of uncontrollable timepoints. That is,
uncontrollable timepoints are executed only after all events
that precede them in order to remain consistent with all prob-
lem constraints.

Our assumptions mean that the uncontrollable agent can
both reason about the problem constraints and dynamically
respond when there is a constraint from the controllable
agent to the uncontrollable agent that precedes one of its
events (i.e., it knows it must wait for the controllable agent
to finish using a tool before it can begin using it). How-
ever, when one of the uncontrollable agent’s events precedes
one of the controllable agent’s events, we do not assume
that the uncontrollable agent can anticipate any effects other
than those naturally implied by the original problem con-
straints. Once the distance graph has been computed, the un-
controllable agent only needs to know about its timepoints
and any incoming or unordered edges involved in them, as
highlighted in red in Figure 2. Even with our assumptions,
finding a strongly controllable STN-IT is non-trivial. There
may be many local schedules that correspond to a globally-
consistent solution but since agents cannot communicate,
the controllable agent cannot be sure which schedule the un-
controllable agent will pick.



Approaches for STN-IT Strong Controllability
In this section, we explore two methods for finding a
strongly controllable solution to an STN-IT. The first uses
a Mixed Integer Linear Program (MILP) to find an exact so-
lution. However, MILP’s are generally NP-Hard to solve, so
we provide a method for efficiently finding an approximate
solution using a Linear Program (LP).

An Exact Algorithm: STN-IT-SC-MILP
We introduce a method for determining a strongly control-
lable solution to an STN-IT using a Mixed Integer Linear
Program (MILP)1. We also adopt notation from Wilson et al.
(2014), which introduces decision variables t−i and t+i that
serve as shorthands for the lower and upper bounds on the
constraint between ti and the zero timepoint. Thus, if the
STN-IT is strongly controllable, our MILP will return as-
signments to decision variables t−i and t+i that specify the
range of times each event can occur for that particular con-
trollable solution.
STN-IT-SC-MILP:

t+j = t−j ∀tj ∈ T c (1)

t+i − t−j ≤ cji ∀i, j | tj ∈ T c, i→ j (2)

t+j − t−i ≤ cij ∀i, j | tj ∈ T c, j 9 i (3)

t−j ≤ t+j ∀tj ∈ Tu (4)

t−j = max
i|i→j
{t−i − cji} ∀tj ∈ Tu (5)

t+j = min
i|j9i
{t+i + cij} ∀tj ∈ Tu (6)

STN-IT-SC-MILP fully assigns all controllable time-
points by enforcing t+j = t−j (Eq. 1) for all controllable
timepoints. Controllable timepoints are assigned to be con-
sistent with the extreme values of any preceding uncontrol-
lable timepoints in Eqs. 2-3. Eq. 2 ensures that tj’s lower
bound is consistent with full range of times for all timepoints
ti that precede it (i→ j), while Eq. 3 does the same for tj’s
upper bound. Note that the notation j 9 i in Eq. 3 is short
for the cases when i precedes or is unordered with j, and
handles the case when uncontrollable agent acts first in an
unordered edge. Because we assign specific times to con-
trollable timepoints, Eqs. 2-3 also naturally enforce all of
the controllable agent’s internal constraints.

At the same time, the MILP enforces that each uncontrol-
lable timepoint tj maintains the full range of possible times
that ensures strong controllability, with Eq. 4 ensuring the
intervals are well-formed. Because strong controllability as-
sumes uncontrollable agents can only adjust to events that
have already occurred, our MILP adjusts the ranges of un-
controllable timepoints only in response to the timepoints ti
that precede tj . Note that the lower bound of the constraint
from ti to tj is ti − tj ≤ cji, which can be rewritten as
tj ≥ ti − cji. Then, the smallest adjustment we can make to
tj’s lower bound (t−j ) while ensuring tj ≥ ti − cji holds for
all ti that precede tj is exactly maxi|i→j{t−i − cji}, which

1We express constraints using min/max, which Gurobi converts
into a linearized MILP (Gurobi 2021; pp. 623-4)
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Figure 3: Strongly controllable solution to our example

is achieved by Eq. 5. Similarly, Eq. 6 achieves the necessary
updates to tj’s upper bound. Finally, unordered constraints
only need to be used to update the upper bound of tj , so
they are included in Eq. 6 but not 5. Directly assigning each
controllable timepoint randomly within its allowed bounds
could remove solutions that may optimize secondary goals,
such as flexibility or makespan. An objective function may
be added to prioritize among solutions.

We now step through how our MILP would apply to the
distance graph of our running example displayed in Figure
2 with the output shown as Figure 3. While for ease of ex-
planation, we discuss the MILP as operating sequentially on
each timepoint, in reality, the fact that the MILP considers
all constraints simultaneously is essential in its ability to find
strongly controllable solutions. First, since C0 has no time-
points that precede it, the MILP only has to assure that C0’s
assignment is consistent with both its original range of times
and the unordered constraint shared with U0 (Eq. 3). These
two constraints enforce C0 to execute within the range of
[0, 2], so the MILP happens to assign C0 to 0. With C0 = 0,
the MILP can now effectively treat the originally unordered
edge as one with C0 preceding U0 and label [0, 3], which
it does naturally by only concerning itself with the upper
bound on the constraint from C0 to U0 (Eq. 6). Thus, our
MILP updates the upper bound of U0 to 3. Note that during
actual execution, agent U will start off believing it has until
time 4 to complete U0 as shown in Figure 2. However, as
soon as it observes that C0 happens at time 0, it will update
its executable range to be [0,3], as captured in Figure 3.

Next, the MILP considers that C1 (and similarly C2) must
be able to account for the full range values that agent U
might consider for completing U0 without knowing its value
in advance. Since agent U0 could choose to execute as U0 as
early as 0, we know the latest C1 can occur is 0+6 = 6 (Eq.
3), and similarly, since the latest U0 could occur is 3, the
earliest C1 can take place is 3 + 2 = 5 (Eq. 2). Ultimately,
the MILP decides to assign C1 = 5. Finally, when adjusting
U1’s range of values (and similarly U2), the MILP consid-
ers U1’s current range [5, 7], along with the ranges implied
by both incoming edges (e.g., the edge from U0, which im-
plies a range for U1 of [0, 3] + [3, 7] = [3, 10], and the edge



from C1, which implies a range of [5, 5] + [1, 3] = [6, 8].)
Eqs. 5-6 then take the intersection of these three to obtain
U1’s new range U1 : [5, 7] ∪ [3, 10] ∪ [6, 8] = [6, 7]. Again,
before actual execution, agent U may not realize it cannot
start U1 before time 6, but it will realize it by time 5 when
it observes C1 has occurred. As illustrated in Figure 3, the
MILP ends up using the same logic to constrain C2 = [9, 9]
and U2 = [11, 11] to give us our final, strongly controllable
solution.

Correctness of STN-IT-SC-MILP
After defining our MILP, we argue that our proposed MILP
is complete and sound by presenting two theorems and the
corresponding proof sketches2.

Theorem 1. STN-IT-SC-MILP will return a strongly con-
trollable schedule to an STN-IT any time one exists.

Proof (Sketch). Eq. 4 ensures a valid interval of times for
each timepoint. By using proof by contradiction, we must
show that Eqs. 5-6 set each uncontrollable timepoint’s t−j
and t+j while assuring that the corresponding interval retains
the full range of time that is consistent with all events that
precede it, as required by the definition of strong controlla-
bility.

We assume that there exists at least one uncontrollable
timepoint tk, where its earliest possible time t−k does not
satisfy Eq. 5 (the proof for the upper bound t+k follows sym-
metrically). However, t−k cannot be less than maxi|i→k{t−i −
cki}, since t−k would then be inconsistent with respect to
its constraints with at least one timepoint ti that precedes
it, which violates our assumption. Similarly, t−k cannot be
greater than maxi|i→k{t−i − cki}, since that would contra-
dict the assumption that we are maintaining the largest pos-
sible interval for t−k . Thus, Eq. 5 (and symmetrically Eq. 6)
must hold for all uncontrollable timepoints.

Next, we consider the controllable timepoints. If an STN-
IT is strongly controllable, there must exist a fully assigned
schedule for the controllable timepoints that will work re-
gardless of how the uncontrollable timepoints are chosen
and how the controllable timepoints can be assigned (Eq.
1). Similar to Eqs. 5-6, we can argue by contradiction that
any strongly controllable solution to an STN-IT must satisfy
Eqs. 2-3. Assume that there is a strongly controllable solu-
tion that violates either Eq. 2 or Eq. 3. However, if the two
timepoints involved in the violation are controllable, not sat-
isfying either Eq. 2 or 3 would imply violating the original
problem’s constraint between controllable variables (since
t−j = t+j ∀tj ∈ T c), which contradicts our assumption of
a strongly controllable solution. Similarly, if the other time-
point involved is uncontrollable, we can show that a viola-
tion of Eq. 2 or 3 would imply conflicts with either the lower
or upper bound on the full range of times for that uncontrol-
lable timepoint, thereby contradicting our assumption.

Therefore, any strongly controllable STN-IT will yield
an assignment of controllable timepoints consistent with the
constraints of our STN-IT-SC-MILP.

2Full proofs available upon request.

Theorem 2. Any assignment of t−i and t+i that satisfies the
constraints of the STN-IT-SC-MILP results in a strongly con-
trollable solution to the original STN-IT.

Proof (Sketch). First, consider any assignment of t−j and t+j
to the controllable timepoints that satisfies the MILP. From
Eqs. 2-3, we see that for any timepoint ti that precedes a
controllable timepoint tj , tj will happen no earlier than ti’s
latest time plus the lower bound between them (−cji) and
no later than ti’s earliest time plus the upper bound between
them (cij). Thus, tj is guaranteed to be consistent with ti.

Now consider any assignment of t−j and t+j to the uncon-
trollable timepoints that satisfies the MILP. To start, we con-
sider the relationship between an uncontrollable timepoint
tj and an arbitrary timepoint ti that precedes or is unordered
with tj (j 9 i). When ti happens maximally early, tj can
happen no later than t−i plus the upper bound between them,
which gives us (a): t−j ≤ t−i + cij . When ti happens max-
imally late, tj can happen no earlier than t+i plus the lower
bound between them, which gives us (b): t+j ≥ t+i − cji. If
ti is controllable, we can derive (a) and (b) directly from the
MILP.

When ti is uncontrollable, we cannot do so. Instead, we
use proof by strong induction on n, the number of uncon-
trollable timepoints in the STN-IT, to prove that (a) and (b)
hold between any pair of uncontrollable timepoints. When
there is only one uncontrollable timepoint, its local problem
must be consistent and we have already shown that (a) and
(b) hold between controllable and uncontrollable timepoints.
Hence, the base case holds. For our inductive hypothesis, we
assume that for every STN-IT that has n or fewer uncontrol-
lable timepoints, equations (a) and (b) hold for all uncontrol-
lable timepoints ti that precedes or is unordered with other
uncontrollable nodes tj (j 9 i). Then we use proof by con-
tradiction to prove the inductive hypothesis holds for n + 1
uncontrollable timepoints.

Consider when (a) does not hold in an STN-IT with n+1
uncontrollable timepoints. There must be at least one uncon-
trollable timepoint that does not enable any other uncontrol-
lable timepoint. Let’s call it the maximal timepoint tm. In the
STN-IT without tm, (a) does not fail between any of the re-
maining uncontrollable timepoints by the inductive hypoth-
esis so it must fail between tm and another uncontrollable
timepoint ti. Because (a) has failed between tm and ti, time-
point ti cannot dominate the maximum of MILP constraint
(1), so another timepoint tk must do so. When investigating
tk’s relationship to ti, we get cik > cim + cmk, which im-
plies that there is a shorter path from ti to tk through tm.
This result contradicts the assumption that we ran Floyd-
Warshall. Hence, (a) must hold between all uncontrollable
timepoints in the STN-IT with n + 1 uncontrollable time-
points. We can use the same reasoning to prove that (b) must
also hold.

Overall, we have shown that every solution to the MILP
results in a strongly controllable solution to the STN-IT.
Thus, our MILP is sound.



An Approximate Algorithm—STN-IT-SC-LP
Although our MILP can correctly determine whether an
STN-IT is strongly controllable, because MILP formula-
tions are generally NP-Hard, this approach may be in-
tractable for some problems. Thus, we also developed a lin-
ear program (LP) version of the algorithm that approximates
the MILP result. Our basic approach is to replace equa-
tions that contained the non-linear max/min functions that
requires formulation as a MILP with linear constraints by
swapping Eqs. 5-6 for 7-8:

t−j ≥ t−i − cji ∀i, j | tj ∈ Tu, i→ j (7)

t+j ≤ t+i + cij ∀i, j | tj ∈ Tu, j 9 i (8)

Next, in order to encourage t−j and t+j to approximate
their respective maximum and minimum value, we add an
objective that maximizes the sum of uncontrollable time-
point’s time interval (t+j − t−j ) relative to its time initial in-
terval, czj + cjz , computed by Floyd-Warshall:

maximize
∑

tj∈Tu

ωj ·
t+j − t−j
czj + cjz

In addition, the weight ωj allows us to explore different
ways of relatively weighting the uncontrollable timepoints.
We have determined that giving uncontrollable timepoints
that are earlier or have shorter durations higher weights has
a small, but positive impact. Specifically, if a timepoint tj
is the xth earliest one among y uncontrollable timepoints, it
will receive a weight of ωj = y−x

y(1+y)
2

. In summary, the ap-

proximate LP weights early timepoints and timepoints with
short durations higher than late, long ones.

Empirical Evaluation
We designed an STN-IT generator inspired by Boerkoel
and Durfee (2013)’s random Multi-agent STN generator.
Like the original generator, ours first randomly assigns some
tasks to the controllable and uncontrollable agents, each
with start and end timepoints and bounds on its duration.
Next, because the original generator focuses on creating
multi-agent problems where agent subproblems could be de-
coupled, we modified how we define constraints between
tasks to create more interesting STN-IT examples requiring
greater coordination. Specifically, each constraint has a 25%
probability of being an unordered constraint rather than an
ordered one. After randomly deciding the type, our gener-
ator determines bounds by uniformly sampling [-60,60] for
local constraints and [-120, 120] for global constraints. To
ensure a consistent problem, the generator checks each con-
straint, skips adding it if it results in a conflict, and then ran-
domly generates a replacement. Finally, the generator stops
once the temporal network is connected. Using this gener-
ator, we created a set of 1,000 example problems in total,
consisting of 100 problems in each size from 10 to 100 in
steps of 10.

Efficiency
To test the efficiency of our MILP and Approximate LP,
we used the Gurobi Optimizer’s provided implementation

Figure 4: Number of timepoints in an STN-IT vs. average
runtime of the MILP and LP in seconds.

of the Dual Simplex and Barrier methods (Gurobi 2021).
While Simplex methods have a worst-case exponential run-
time, they are often efficient in practice (Spielman and Teng
2004). Meanwhile, the Barrier method can find the solution
in a worst-case polynomial runtime by traversing inside or
outside of the feasible region, but each step is relatively ex-
pensive (Nocedal and Wright 2006).

Out of the 1,000 examples, we removed 11 problems
where the MILP could not solve the problem under a five-
minute time limit using one or the other method. We report
the average runtime of each approach as the problem scales
to include more timepoints. Figure 4 illustrates the results,
which show that the Approximate LP scales significantly
better overall than the MILP. The Dual Simplex method gen-
erally performed best, though the Barrier method has a the-
oretically better worst-case runtime. We believe the Barrier
method’s vulnerability to numerical issues causes the peak
in the LP runtime at 70 timepoints (Gurobi 2021; pp. 941-2).
We also generated larger problems with up to 512 timepoints
and verified that the LP’s runtime scales in polynomial time.

Next, we explored which features of the underlying STN-
IT benchmarks impact the MILP performance using Dual
Simplex. While we found no strongly correlated features,
we did find that STN-ITs that timed out or took a signif-
icant time to solve tended to be ones with a smaller por-
tion of unordered edges, as shown in Figure 5. We also
found that among strongly controllable STN-ITs, those with
longer solve times tended to have smaller average executable
ranges (i.e., measured as the size of the interval at the time of
the uncontrollable agent’s execution) as shown in Figure 6.
We tested a variety of other features (e.g. the ratio between
uncontrollable to controllable timepoints, the ordering be-
tween uncontrollable and controllable timepoints, etc.) that
ended up not being all that predictive of MILP runtime.

In summary, MILP runtime is most affected by the prob-
lem size, the tightness of timepoints’ executable ranges, and
the strictness of the timepoint ordering.



Figure 5: Solution time (s) vs. the portion of edges in the
problem that are unordered.

Figure 6: Solution time (s) vs. average range of uncontrol-
lable timepoints for strongly controllable problems.

Accuracy
Next, we examined the trade-offs in terms of accuracy be-
tween the Approximate LP and exact MILP approaches us-
ing the more efficient Dual Simplex Method on the same set
of examples. We also compared against two other straw al-
gorithms: an early dispatch strategy where each controllable
timepoint executes at its earliest possible time; and a random
dispatch strategy where each controllable timepoint executes
at a random time in the interval defined by its bound with the
zero timepoint z. We repeated the random strategy 50 times
and report the 95% confidence interval across all instances.

Strong Controllability Validation First, we developed a
program to verify the correctness of an STN-IT’s solution. It
checked that assignments to controllable timepoints were a
valid solution to the controllable agent’s subproblem. It also
ensured that the solution was consistent with all possible as-
signments to uncontrollable intervals. To mimic the dynamic
solving process of the uncontrollable agent, we updated the
time interval for each uncontrollable timepoint any time a

Ctrl # of # of # of Emp.
Method solns failures timeouts Verif.
MILP 634 355 11 634
LP 1000 0 0 286
Early 1000 0 0 333
Rand. 1000 0 0 [85 - 101]

Table 1: Number of solutions, failures, timeouts, and empir-
ically verified solutions returned by each method.

Ctrl Rand. Unctrl. Early Unctrl.
Method All SC All SC
MILP 63.4% 100% 63.4% 100%
LP 56.52% 69.6% 52.8% 62.0%
Early 47.32% 63.6% 100% 100%
Rand. [23.0 - [31.6%, - [22.0% - [30.4% -

24.6%] 34.0%] 25.3%] 35.0%]

Table 2: Empirical performance against two simulated un-
controllable agents reported across all problems and just the
strongly controllable (SC) instances.

timepoint preceding it executed. During this dynamic pro-
cess, we verified that the full range of the time for each un-
controllable timepoint satisfied its constraints, which guar-
antees the solution is strongly controllable.

Table 1 shows the results for each method. Note the first
column reports the number of (approximate) solutions re-
turned, while the last reports the number empirically vali-
dated as strongly controllable. The MILP outperforms the
other strategies, with the highest accuracy, as all of its solu-
tions are empirically validated as correct. However, it does
time out on 11 of the problems. The random strategy finds
only 13.4-15.9% of the correct solutions that the MILP does,
while the Approximate LP and early strategies find 45.1%
and 52.5%, respectively. It is surprising that the naı̈ve early
first approach led to strongly controllable solutions more of-
ten than our LP approximation. This points to the existence
of structural features that may make the early strategy a rea-
sonable choice in some cases and validates work that shows
early is surprisingly effective in realistic, probabalistic set-
tings (Saint-Guillain et al. 2021).

Empirical Performance One advantage of the approxi-
mate methods is that they always return an approximate so-
lution, giving the team a chance of success even if it is not
guaranteed. We tested each method against two simulated
models of uncontrollable agents, one that uniformly ran-
domly selects times from its interval and the other which
selects the earliest time. We then verified how often the so-
lution returned by each method resulted in a consistent sim-
ulated execution.

There are several conclusions that we can draw from Ta-
ble 2. First, the approximate methods worked substantially
better on the set of strongly controllable problems, including
the random method, which had a statistically significant in-
crease in solutions. Second, the Approximate LP performed
especially well against the random uncontrollable agent in



strongly controllable problems, succeeding nearly 70% of
time. The LP, which gives the controllable agent a chance to
succeed, even if it is not guaranteed, closes the relative gap
across all problems, succeeding 7% less often than MILP,
though MILP was still most likely to succeed in expectation.

The one exception is that the early strategy had 100%
accuracy for situations where the uncontrollable agent also
used the early strategy. This is a tautological result since
if a solution exists, a dynamic early strategy paired with a
strong early strategy is guaranteed to find it. We hypothesize
that there exist problem structures where the LP is a better
choice than the exact MILP solution given that the LP scales
significantly better than the MILP and still performs well.

Discussion
Our new framework of an STN for Improvisational Team-
work allows us to model impromptu teamwork performed
without reliable communication. We determined a set of as-
sumptions that enable the first definition of strong control-
lability for improvisational teams. We translated this defi-
nition into a Mixed Integer Linear Program that character-
izes strongly controllable solutions to STN-ITs when they
exist and argued analytically that the MILP was both sound
and complete. We showed empirically that the MILP cor-
rectly identified which STN-IT’s were strongly controllable
across a new benchmark of 1000 randomly generated STN-
ITs, though MILP is generally NP-hard. We also provided
an efficient, LP-based approach that approximates the MILP
result. While the MILP scales reasonably well on problems
with fewer than 100 timepoints, we showed that the Approx-
imate LP approach scales much better, but does so by sacri-
ficing overall accuracy, leading to a lower likelihood of suc-
cessful execution.

Future work includes analyzing the characteristics of real-
world human-robot teamwork to create a more accurate set
of benchmarks. We are also interested in extending to teams
with more than two agents, or relaxing the assumptions that
the uncontrollable agent is fully rational and has full observ-
ability. Finally, we hope to validate our approaches in an
actual human-robot deployment.
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