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Abstract

Word embeddings, which represent words as dense feature
vectors, are widely used in natural language processing. In
their seminal paper on word2vec, Mikolov and colleagues
showed that a feature space created by training a word pre-
diction network on a large text corpus will encode semantic
information that supports analogy by vector arithmetic, e.g.,
“king” minus “man” plus “woman” equals “queen”.

We describe a new interactive tool for visually exploring word
embeddings. Our tool allows users to define semantic dimen-
sions by specifying opposed word pairs, e.g., gender is de-
fined by pairs such as boy/girl and father/mother, and age by
pairs such as father/son and mother/daughter. Words are plot-
ted as points in a zoomable and rotatable 3D space, where the
third “residual” dimension encodes distance from the hyper-
plane defined by all the opposed word vectors with age and
gender subtracted out. Our tool allows users to visualize vec-
tor analogies, drawing the vector from “king” to “man” and a
parallel vector from “woman” to “king-man+woman”, which
is closest to “queen”. Visually browsing the embedding space
and experimenting with this tool can make word embeddings
more intuitive. We include a series of experiments teachers
can use to help K-12 students appreciate the strengths and
limitations of this representation.

Introduction

Embeddings are low dimensional representations of points
in a higher dimensional vector space. Word embeddings are
dense vector representations of words in a lower dimensional
space, i.e., the number of dimensions is considerably less
than the number of words. Word embeddings are capable of
capturing both the context in which a word is likely to appear
and some aspects of its meaning. Seminal work in this area
was done by Mikolov and his colleagues at Google, who cre-
ated a family of algorithms known as word2vec (Mikolov
et al. 2013a,b) that construct embeddings via backpropaga-
tion learning. Most new word embedding techniques rely
on a neural network architecture instead of more traditional
n-gram models and unsupervised learning. The word2vec
model of word embeddings has found widespread use in
Natural Language Processing (NLP).
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Figure 1: Schematic view of our interactive embedding vi-
sualization demo. On the left side is a zoomable and rotat-
able 3D scatter plot. On the right is a display of six user-
selectable embedding vectors. For detailed views see Fig-
ures 2 and 3. The text box at the bottom allows entry of
new words. Below that, expandable panels (not shown) re-
veal more advanced features, such as analogies.

NLP includes a variety of syntax, semantics, discourse,
and speech tasks that can take advantage of word embed-
dings. Examples include text classification and categoriza-
tion, named entity recognition, part of speech tagging, se-
mantic parsing and question answering, paraphrase detec-
tion, language generation, multi-document summarization,
and machine translation.

Transformers, a class of deep neural network architectures
with built-in attention mechanisms, operate on text by tak-
ing a sequence of word embeddings as input and producing
another sequence as output. They are used today for Neu-
ral Machine Translation (NMT), question answering, and
language generation tasks. Cutting-edge question answering
and language generation models such as BERT (Devlin et al.
2018) and GPT3 (Brown et al. 2020) are built using trans-
formers.

We have developed an interactive tool for visualizing and
exploring word embeddings that runs purely in the browser
(Bandyopadhyay et al. 2021). See Figure 1.

Word2Vec Architecture

Early work on word embeddings was based on Latent Se-
mantic Analysis, which calculated a co-occurrence matrix
for words drawn from a corpus of text and then used princi-



pal components analysis to derive a modest-sized vector for
each word.

Word2Vec is an adaptive algorithm that starts with ran-
dom word representations and uses gradient descent to ad-
just those representations to improve its co-occurrence pre-
dictions (Mikolov et al. 2013a). There are two versions of
the word2vec algorithm: CBOW (Continuous Bag of Words)
and Skip-gram. We focus here on Skip-gram.

The Skip-gram algorithm creates two sets of word vec-
tor representations, one for the words themselves (called the
embedding vectors), and one for words appearing in the con-
text of other words (the context vectors). The size of these
vectors is a parameter to the algorithm; it typically ranges
from 100 to 300 elements. The context window size is also a
parameter, with a value between 2 and 50 words. For a win-
dow of size 5, any given word in the text will have the two
words before it and the two words after it as its context.

Initially both the embedding and context vectors are ran-
dom. As the algorithm cycles through the words of the cor-
pus, it trains on both positive and negative examples. Posi-
tive examples are words that have appeared at least once in
the context window. Negative examples are words that have
never appeared in the context of the current word. The al-
gorithm takes the dot product of the subject word’s embed-
ding vector and the context (or non-context) word’s context
vector and runs the result through a sigmoidal nonlinearity,
giving a value between 0 and 1. The desired output is 1 for
context words and 0O for non-context words. The difference
between the actual and desired output is an error signal that
is used to adjust both the embedding vector and the context
vector.

After some number of iterations, learning terminates and
the embedding vectors are the result. The context vectors
are discarded. Further details and an illustrated tutorial are
provided in (Alammar 2019).

fastText (Bojanowski et al. 2017) is a refinement of the
word2vec algorithm that decomposes words into an n-gram
letter encoding instead of assigning each word a unique one-
hot code. It produces slightly poorer performance than Skip-
gram or CBOW on word analogy problems, but has the ad-
vantage of being able to derive embedding vectors for words
not in the training set, based on their n-gram representations.

The initial version of our demo used 100-dimensional
vectors trained from the text8 corpus using Skip-gram (Ma-
honey 2006a). This corpus is the first I00MB of clean text
data obtained from the English Wikipedia text dump for
the Large Text Compression Benchmark (Mahoney 2006b).
“Clean text data” refers to human-readable text that is visi-
ble on a Wikipedia web page. Our current demo uses 300-
dimensional pre-trained word vectors without subwords,
generated from a fasttext.cc dataset containing a mix of
Wikipedia text and news stories (Mikolov et al. 2018). Only
words with purely alphabetical characters were used, and
for words with multiple capitalizations (treated as different
words in the dataset), the one with the highest frequency was
used.

For performance reasons we limited the vocabulary to the
50,000 highest frequency entries, and precomputed the 10
closest words for each one. However, when performing vec-

tor arithmetic on words, the 10 nearest words to the result
vector (e.g., “king” minus “man” plus “woman”) must be
computed on the spot.

Previous Work

We found 11 interactive online demos dealing with word
embeddings. We list below the various activities these de-
mos support. Table 1 summarizes the activities afforded by
each demo.

e Find nearest words. Given a word, find the words closest
to it in vector space, using either Euclidean distance or
cosine similarity metrics.

o Word similarity. Given two words, estimate their similar-
ity by comparing their vectors.

e Analogies. Complete the analogy A:B :: C:? by finding
the word D nearest to B — A + C.

e Qutlier detection. Given a set of words, such as “dinner”,
“cereal”, “breakfast”, and “lunch”, determine which one
does not fit with the others by computing their distances
in vector space.

e Concept projection. Define a semantic dimension by
picking two contrasting words, such as “food” and “pet”,
and subtracting their vectors. Then project a collection of
words onto that axis. May be done in either one or two
dimensions.

o Co-occurrence analysis. Comparing a set of word vec-
tors based on their co-occurrence statistics with related
words. For example, two female words “aunt” and “sis-
ter” may have similar co-occurrence statistics over a
set of words that includes “married”, ”love”, actress”,
“king”, “son”, “daughter”, etc.. And two male words “un-
cle” and “brother” may also have similar co-occurrence
statistics. But the co-occurrence statistics for “man”
may not look like the other male words, and those for
“woman” may not look like the other female words. This
suggests that “uncle” minus “aunt” or “brother” minus
“sister” might be a better proxy for gender than “man”
minus “woman” (Heimerl and Gleicher 2018a).

e |D visualizaion. Projection of words onto an axis based
on cosine similarity to a reference word.

e 2D or 3D scatter plots. Individual words are plotted as
points in a 2D or 3D space. This can be done using either
an embedding algorithm such as tSNE, or by projecting
the points along dimensions such as selected principal
components.

Most of these demos use English vocabulary, but (Robo
Report 2016) uses a Korean Wikipedia dataset, (Kutuzov
et al. 2017) offers both English and Norwegian vectors, and
(Kutuzov and Kuzmenko 2017) offers both English and Rus-
sian.

The (Duman et al. 2017) demo highlights gender bias in
word embeddings by having the user choose a male/female
contrast pair such as “he”/*she”, and also a set of seed
words. It then finds a collection of words related to the seeds
and shows, via both a word cloud and a tabular list, which
words are more strongly associated with the male contrast



Demo Nearest | Similar | Analogy | Outlier | Project. | Co-occ. | 1D | 2D/3D
(Turku NLP Group 2015) X X X
(Karem 2020) X
(Liu 2016) X X
(KB Labs 2019) X X
(Heimerl and Gleicher 2018b) X X X X
(Smilkov, Thorat, and Nicholson 2014) X X X
(Rehurek 2014) X X X
(Robo Report 2016) X X
(Duman et al. 2017) X
(Kutuzov et al. 2017) X X X X
(Kutuzov and Kuzmenko 2017) X X X X
Our demo X X X X
Table 1: Interactive word embedding demos and their features. Column headings are described in the text.
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Figure 2: Embedding vectors for three male words (“uncle”,
“boy”, “he”) and three female words (“aunt”, “girl”, “she”).
Component 126, shown magnified at left, is positive for the

male words and negative for the female words.

word, and which are more strongly associated with the fe-
male word.

Graphical Display of Embeddings

In some cases, semantic features in embedding vectors can
be discovered by examining the vectors directly. Figure 2
shows the vectors for three male words and the correspond-
ing female words. Element 126, shown magnified, is one of
several that seem to correlate with gender. Semantic infor-
mation is typically distributed across multiple vector com-
ponents and is difficult to discern by looking at the vectors
directly. In other words, the semantic dimensions we care
about are not generally aligned with the coordinate axes.
Displaying the vectors directly is still useful for some pur-
poses, but does not help the user appreciate the geometry of
the semantic space that makes analogy by vector arithmetic
possible. If each word is a point in the space, direct display
of the vector for that word, as in Figure 2, is like writing

Figure 3: Words plotted in our 3D semantic space. Male
words appear in the positive (left) half of the x-axis; female
words in the negative (right) half. Adult words are in the
positive (top) half of the y-axis; youth words in the negative
(bottom) half. The third dimension is the “semantic resid-
ual”, explained in the main text.

out its coordinates. What we want to do instead is graph the
point.

There are several approaches to generating graphical dis-
plays of word vectors. The simplest is to designate particular
components out of the 100 to 300 available as the x, y and
z values of the 3D graphical display. The problem, as we’ve
seen above, is that individual components may not correlate
strongly with the semantic features of interest. Thus, appro-
priate components may be difficult to find, and using single
components will likely produce poor results.

Another approach is to perform Principal Components
Analysis (PCA) on the vectors and then allow the user to se-
lect components to serve as the x, y, and z axes of the graph.
The TensorFlow Embedding Projector demo (Smilkov, Tho-
rat, and Nicholson 2014) offers this option. The problem
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Figure 4: Rotated view of the scatter plot, showing distance
along the residual dimension. Contrast pair words, which
define the residual dimension, have small residuals, except
for royal words which have moderate residuals. “Computer”,
“chair”, and “apple”, which are semantically unrelated to the
contrast words, have high residuals. Hovering over the word
“apple” pops up a list of the 10 closest words, which include
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“iphone”, “macintosh”, “cupertino”, and “microsoft”.

with this is that while PCA will likely find dimensions that
encode meaningful differences between words, there is no
guarantee that those dimensions will correlate strongly with
the particular semantic features we’re interested in.

A third approach to displaying semantic space is to use an
algorithm such as t-distributed Stochastic Neighbour Em-
bedding (tSNE) to embed the feature vectors into either a
2D or 3D space. The TensorFlow Embedding Projector also
offers this option. Words get clustered together with this ap-
proach, but it does not effectively illustrate the high dimen-
sionality of semantic feature space.

A fourth approach is to allow users to define their own se-
mantic dimension by specifying a pair of contrasting words
and subtracting their vectors. Words can then be projected
onto the axis defined by this difference vector. The EmbVis
system’s Concept Projection demo (Heimerl and Gleicher
2018a) works this way, projecting a collection of words onto
a 1D line. It actually does this twice to allow comparisons
across corpora, e.g., seeing how animal words fall on the
food-pet dimension for embeddings trained on Wikipedia
data vs. those trained on EEBO-TCP (Early English Books
Online Text Creation Partnership).

Following a similar approach, TensorFlow Embedding
Projector (Smilkov, Thorat, and Nicholson 2014) allows
users to specify two pairs of contrasting words, and then
projects a selected collection of words into a 2D space de-
fined by those two contrasts.

Our Approach

Our approach to displaying embedding vectors in 3D also
uses two dimensions to represent selected semantic features

such as gender and age. But it introduces a third “residual”
dimension that encodes distance along the remaining axes
of semantic space. For example, given the word “king”, we
measure its position along the gender axis by taking the dot
product of its embedding vector with a “gender” unit vector.
We perform a similar calculation to measure position along
the age axis. The procedure for measuring position along
the “semantic residual” axis will be described below. Given
these three coordinate values, “king” can be plotted in 3D
semantic space.

To create the gender and age unit vectors, we use mul-
tiple pairs of contrasting words, subtracting one from the
other and averaging the results. For example, “man” mi-
nus “woman” should point in roughly the same direction as
“king” minus “queen”. Similarly, an age unit vector can be
derived from pairs such as “man” minus “boy”, “woman”
minus “girl”, and “king” minus “prince”. Figure 7 shows
the complete list of word pairs used to define each semantic
dimension. We average the difference vectors and normalize
the result to derive a unit vector along any desired semantic
dimension.

To calculate the direction of the residual unit vector, we
take each word used to define age or gender and subtract off
its age and gender components, i.e., its projections along the
age and gender axes. All of the contrasting words describe
(or can be used to describe) people, so what’s left after sub-
tracting out their age and gender projections and averaging
the results should be a genderless, ageless “person” vector

P. Other kinship terms such as “grandfather” should have

a strong positive dot product with P, while unrelated words
such as “computer” should not. Thus, we calculate the resid-

ual coordinate 7 of a word W as r = 2 x (1- w - ]3) N
that a larger value corresponds to greater semantic distance

from P. The factor of 2 magnifies the residual for plotting,
to visually emphasize that it’s collapsing many semantic di-
mensions into one.

Using the Demo to Explore Word Embeddings

One of our core design principles is that a demo should
display something interesting from the moment it’s loaded,
without requiring the user to take any action. So we have
pre-defined the gender/age semantic space and added the
vectors for a select group of words to the 3D scatter plot
on the left. To the right, we display the 300-element vec-
tors for six selected words: “man”, “woman”, “boy”, “girl”,
“king”, and “queen”. Figure 1 shows the initial display when
the demo is loaded.

Continuing our theme of providing a low threshold for
informative interactions, simply moving the mouse pointer
over a point in the scatter plot produces a pop-up window
displaying that word and its 10 closest neighbors (Figure 4),
measured by 300-dimensional Euclidean distance. Explor-
ing the neighbors illustrates how dependent the vectors are
on the choice of training corpus. For the vectors we’re using,
derived from Wikipedia articles and news stories, the clos-
est neighbors of “apple” include “iphone”, “mackintosh”,
“ipod”, “cupertino”, and “microsoft”, not fruits.

Clicking and dragging on whitespace in the 3D plot ro-



tates the view, while the scroll wheel can be used to zoom in
or out. This gives the user a better sense of words as points in
a “space”, with relative motion of points providing a help-
ful cue for depth. The graphics are produced using Plotly
(Plotly Technologies Inc. 2015).

Displaying the word vectors as heat maps in the right half
of the display (Figure 1) facilitates visual comparisons, but
we also want to be transparent about the values. Moving the
mouse pointer over an element of the word vector display
produces a pop-up showing the word, the position of the el-
ement in the vector (0 to 299), and the precise value of that
element, which typically ranges from -0.2 to +0.2.

Clicking on a word causes it to become “active”, and its
dot turns red. Only one word can be active at a time. When
a word is active, clicking on a row of the vector display in
the right half of the window causes that word’s vector to
be copied into that row. In this way, the six words initially
shown in the vector display can be replaced with words of
the user’s choice. This makes it easy to visually compare
vectors of related or contrasting words, as we’ve done in
Figure 2.

New words can be added to the scatter plot by typing them
into a text box at the bottom of the window. When a word is
entered, it is made the active word; the red dot helps the user
to locate it in the display. A previously-added word can also
be entered in the text box to make it active again if the user
needs help finding it.

The ability to add selected words to the plot permits a
variety of informative exercises:

e Given a new word that could be part of a contrasting pair,
such as “grandfather”, try to predict where it will appear
in the 3D space. Is it further along the positive age di-
mension than “father”?

e After plotting a word that could be part of a contrasting
pair, try to predict where its contrasting partner will ap-
pear. For example, where does “grandmother” lie relative
to “grandfather”? Where does “grandson” lie?

e How do related words cluster together, e.g., “apple”, “or-
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ange”, “banana”, “peach”, “plum”?
e How do alternate forms of a word cluster together, e.g.,
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“peach” vs. “peaches”, or “eat”, “eats”, and “ate”?

Analogy by Vector Arithmetic

To simplify the visual presentation and avoid intimidating
inexperienced users, the advanced features of our demo are
hidden in collapsible panels. The first of these is the Vector
Arithmetic Analogy panel. Expanding this panel reveals text
boxes with the now classic example “king” minus “man”
plus “woman”. If the user types the suggested text into the
boxes, the calculation is performed and the results displayed.
In the 3D plot, the three source words are plotted as blue
points, and the result of the arithmetic operation is plotted
as a pink point. This result will not exactly match any of our
vocabulary vectors, so, following the procedure in (Levy,
Goldberg, and Dagan 2015) we find the closest word vec-
tor to it that is not one of the source vectors, and plot that
word in green. For this example, the result is “queen”. We
draw arrows from “man” to “king” and from “woman” to
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Figure 5: Analogy by vector arithmetic: “man” is to “king”
as “woman” is to “king — man + woman” = “queen”.

“king - man + woman”, as shown in Figure 5. Drawing the
arrows clearly shows the analogy, and the ability to interac-
tively zoom and rotate the display makes it easy to confirm
that the two arrows are parallel.

In the right half of the display (Figure 6), all the vectors

ELINY3

for the computation are shown, i.e., “king”, “man”, “king
- man”, “woman”, “king - man + woman”, and the closest
match, “queen”.

Many different types of analogies can be demonstrated
successfully using this procedure. For example, “Paris is to
France as London is to England”. Several thousand analo-
gies are discussed in (Mikolov et al. 2013a; Mikolov, Yih,
and Zweig 2013). Other examples include “finger is to hand
as toe is to foot”, “see is to saw as eat is to ate”, and “cow
is to beef as sheep is to lamb”. ("Mutton” would be more
correct, and that is the second closest answer found.). But
there are failures as well, e.g., “girl is to princess as woman
is to X produces “prince” as the closest match, although
the next two choices, “empress” and “queen”, would be sat-
isfactory. In the 3D plot, “queen” appears much closer to
the result vector than “prince” does, but this is misleading:
while “queen” is closer along the age and gender dimen-
sions, “prince” may be closer along other semantic dimen-
sions, all of which are being compressed into the residual.
Note that the choice of semantic dimensions affects only the
graphical display, not the analogy calculation itself.

Geometry analogies such as “square is to cube as triangle
is to pyramid” do not appear to work using the embeddings
dataset we’ve selected.

Defining Semantic Dimensions

A second hidden panel reveals the list of semantic dimen-
sions. The two initially selected are [age] and [gender],
but we also provide [royalty], [number], [part-of], [tense],
[capital], and two blank dimensions. Expanding a dimen-
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Figure 6: Steps in the vector analogy computation. The six
rows of the display show the vectors for (1) “king”, (2)
“man”, (3) “king” minus “man”, (4) “woman”, (5) “king”
minus “man” plus “woman”, and (6) “queen”.

sion reveals its list of opposed words. The word pairs for
several of our built-in dimensions are shown in Figure 7.
Users are free to edit these lists to experiment with differ-
ent definitions for a dimension. Note that for [royalty] we
avoided terms such as “count” and “duke” whose multiple
meanings might distort the result.

Building in these dimensions lowers the threshold for ex-
perimentation, which is important for younger students. It
allows them to explore both the generality of a mapping
(e.g., trying different part-whole analogies) and the basis
of the mapping (e.g., trying different sets of opposing word
pairs as the basis of [part-of]).

Figure 8 shows the same vector analogy as before, but
now plotted in the genderxroyalty semantic space. This
change also affects the residual dimension.

Discussion

Word embeddings are important because they are used in
many state of the art natural language processing systems.
The ability of embeddings to capture some semantic in-
formation allows a reasoner to make analogies or measure
semantic similarity using simple vector arithmetic. How-
ever, semantic accuracy is not guaranteed, and in fact is im-
possible to achieve because of polysemy and homographs.
Words such as “lead” are both nouns and verbs, and even
the noun has multiple unrelated meanings. Natural language
processing systems trained on huge corpuses can disam-
biguate these meanings based on context, but the embedding
vector itself cannot. The unique distributional characteristics
of a word like “lead” will distinguish it from other words in
the vector space, but at the cost of muddying its semantic
content.

Our demo helps students experience both the strengths
and limitations of word embeddings by doing their own ex-
periments. The interface is designed to facilitate exploration

Gender Dimension
man | woman

Age Dimension

king | queen man | boy
prince | princess woman | girl
husband | wife king | prince
father | mother queen | princess
son | daughter father | son
uncle | aunt mother | daughter
nephew | niece uncle | nephew
boy | girl aunt | niece

male | female

Royalty Dimension
man | king
woman | queen
boy | prince
girl | princess
woman | duchess
woman | countess
woman | baroness

Figure 7: Some semantic dimensions defined by pairs of
opposed words. Gender and age are the default dimen-
sions when the demo is started. All dimensions are user-
modifiable via editable text boxes.
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Figure 8: Replacing the [age] dimension with a [royalty]
dimension dramatically changes the display, but does not af-
fect the actual analogy computation.



and not overwhelm the user with options and parameters.

Initial User Testing

We tested the demo on two high school students with pro-
gramming experience and one undergraduate computer sci-
ence major. None had heard of word embeddings before.
The high school students were sent an article on word em-
beddings (Alammar 2019) and then asked to play with the
demo on their own, with no further instruction. They were
interviewed about their experience afterwards. The under-
graduate was not shown the article but was verbally guided
through the demo.

All students found the 3D scatter plot to be intuitive. They
were able to move about the space using rotate and zoom,
and they discovered on their own that hovering over a point
produced the list of closest words. None of them discovered
on their own that a word could be copied into one of the six
vector display positions by clicking on the point in the 3D
plot and then clicking on a row of the vector display. This is
not surprising, as the user interface provided no affordances
for this. We have since modified the demo to provide visual
prompting for this operation, and will also provide written
operating instructions.

All the students grasped the concept of analogy by vec-
tor arithmetic and were appreciative of the arrows drawn
in the scatter plot when they ran the “king minus man plus
woman” example. But all three expressed difficulty formu-
lating analogies of their own using the A— B+C = D arith-
metic convention provided by the demo. They were much
more comfortable with an “A is to B as C is to D” formula-
tion, which corresponds to B — A + C' = D. Swapping the
A and B terms and correctly identifying the C' term were
problematic when translating between analogy and equation
forms. We have modified the demo to allow entry in either
notation and translate automatically between the two.

The text boxes for user-defined semantic dimensions were
not interpretable by the students despite the fact that they
came pre-populated with the gender and age word-pairs.
While some improvements to the visual layout were made
afterwards, it’s clear that this portion of the demo will re-
quire explanatory text.

Additional Experiments

Earlier we described some experiments where students in-
vestigate how related words cluster together in semantic fea-
ture space. Here we list some more advanced topics for stu-
dents to explore.

Polysemous words such as “man” work less well in analo-
gies. Students should be prompted to think about why this is
the case. (It’s because their representation is a blend of the
different contexts where they are used.) Thus, “man is to
woman as stallion is to [mare]” fails in our demo. Students
can be asked to investigate other words for referencing gen-
der. “Uncle is to aunt” works better than “man is to woman”
for the stallion analogy.

While “doctor” and ‘“nurse” are gender-neutral terms,
some corpuses reflect cultural biases that allow for analogies
such as “uncle is to aunt as doctor is to nurse”, or even “as
strong is to weak” or “as hairy is to hairless”, all of which

our demo produces using the current fastText embedding.
Looking for examples like this is a good way to get students
to think about language and culture.

Semantris

Semantris (Google Research 2018) is an online word asso-
ciation game. The name is a play on “Tetris” as the game in-
volves eliminating blocks. In Semantris some blocks contain
a word, and blocks are removed by typing a list of associ-
ated words, e.g., for a “piano” block one might enter “music,
keyboard, pedals, fingering”. Word association is measured
using embeddings that were produced by Google research
projects on language understanding (Cer et al. 2018).
Semantris has proven to be a good way to introduce both
students and teachers to the topic of word embeddings. Af-
ter playing the game several times, they can be prompted to
think about how the game knows that a word like “piano” is
associated with “music” and “keyboard”. This leads to a dis-
cussion of semantic spaces, which our demo then illustrates.

Alignment with the AI4K12 Guidelines

This demo aligns with several of the Al education guidelines
presented by AI4K12.org (AI4K12.org 2021). Within Big
Idea 2, Representation & Reasoning, section A focuses on
representations, and the 2-A-iv guidelines concern feature
vector representations. The 2-A-iv.6-8 guideline explicitly
references word embeddings, while 2-A-iv.9-12 references
transformer networks, which utilize word embeddings.

Guideline 2-C-i examines types of reasoning problems.
Analogy problems, although not explicitly considered in the
guidelines, are a type of prediction problem. Solving analo-
gies by vector arithmetic is a specific reasoning algorithm
(guideline 2-C-ii) that can be employed when concepts are
represented as feature vectors.

Big Idea 3, Learning, is relevant because word em-
beddings are constructed by machine learning algorithms.
Guideline 3-C-iii examines how biases in datasets affect
learning. This can be illustrated in the demo by looking
at examples like “apple”, where the closest words are not
fruits, but computer technology words.

Future Work

We would like to offer alternative corpuses. Wikipedia arti-
cles, current news stories, and classical literature all have
different word co-occurrence statistics which will lead to
different embeddings. Also, newer algorithms such as GloVe
(Pennington, Socher, and Manning 2014) and ELMo (Peters
et al. 2018) may produce qualitatively different embeddings
in terms of word similarity and analogy.

Another extension we are considering would rotate the
300-dimensional feature space so that the two user-defined
semantic dimensions were aligned with the first two coor-
dinate axes. This would make the difference between male
and female words, or young and old words, visually salient
in the feature vector display. Seeing what this transformation
accomplished would give students a deeper understanding of
mathematical operations on feature vector representations.
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