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Abstract—This paper investigates an adversary’s ease of
attack in generating adversarial examples for real-world
scenarios. We address three key requirements for practical
attacks for the real-world: 1) automatically constraining the
size and shape of the attack so it can be applied with
stickers, 2) transform-robustness, i.e., robustness of a attack
to environmental physical variations such as viewpoint and
lighting changes, and 3) supporting attacks in not only white-
box, but also black-box hard-label scenarios, so that the
adversary can attack proprietary models. In this work, we
propose GRAPHITE, an efficient and general framework
for generating attacks that satisfy the above three key
requirements. GRAPHITE takes advantage of transform-
robustness, a metric based on expectation over transforms
(EoT), to automatically generate small masks and optimize
with gradient-free optimization. GRAPHITE is also flexible
as it can easily trade-off transform-robustness, perturbation
size, and query count in black-box settings. On a GTSRB
model in a hard-label black-box setting, we are able to find
attacks on all possible 1,806 victim-target class pairs with
averages of 77.8% transform-robustness, perturbation size of
16.63% of the victim images, and 126K queries per pair. For
digital-only attacks where achieving transform-robustness is
not a requirement, GRAPHITE is able to find successful
small-patch attacks with an average of only 566 queries for
92.2% of victim-target pairs. GRAPHITE is also able to
find successful attacks using perturbations that modify small
areas of the input image against PatchGuard, a recently
proposed defense against patch-based attacks.

Index Terms—adversarial examples, patch attacks, physical
attacks, black-box attacks, graphite

1. Introduction

Machine learning (ML) models have had resound-
ing success in several scenarios such as face and object
recognition [1]–[5]. Therefore, such models are now a
part of perception pipelines in cyber-physical systems like
cars [6]–[8], UAVs [9], [10] and robots [11]. However,
recent work has found that these models are vulnerable to
subtly perturbed adversarial examples that cause misclas-
sification [12]–[15]. While these early digital white-box
attacks were useful in understanding model weaknesses,
researchers are now considering how to make attacks
more practical for adversaries to accomplish in the real
world [16]–[21].

Practical, real-world attacks have three key require-
ments. The first is that they should automatically choose

small areas to perturb, so that they can be applied with
stickers on existing physical objects. The second is that
practical, real-world attacks should exhibit transform-

robustness, i.e., be robust to physical-world effects such
as viewpoint and lighting changes as measured by a met-
ric based on expectation over transforms [16]. The final
requirement is that the most powerful real-world attacks
should only require hard-label access. This means that the
adversary can succeed with only the final top-1 decision,
which must be provided by a deployed ML model for
it to be useful even if its internals are closed source
and designed to be difficult to completely reconstruct
due to proprietary formats, implementations, and stripped
binaries [22]. The adversary should also be able to work
with smaller query budgets when that is a constraint.

Regarding the first requirement, the art of automati-

cally picking limited areas to perturb remains relatively
unexplored. Existing patch attacks [17], [23]–[26] limit
perturbations to small patches, but are restricted to pre-
defined patch shapes. The adversary must also either
search for a good location and size or optimize over an
expectation of patch locations and sizes. This is ineffi-
cient and, in black-box settings, query-intensive. Exist-
ing work also shows that targeted attacks require larger
patches [26]. RP2 [18] uses masks to constrain the space
of the attack, but the mask creation process requires some
manual experimentation, making it harder to scale. The
Carlini & Wagner `0 attack [12] generates arbitrary, small
sets of pixels to perturb, but is designed for digital attacks,
not for physical settings or where only hard-label access
to a model is available (requirements 2 and 3).

Likewise, existing work on finding attacks in the hard-
label case do not satisfy the first two requirements; in-
stead, they find digital attacks that require tens or hundreds
of thousands of queries [20], [21], [27], [28].

We generalize these principles and combine all three

requirements for the first time, to our knowledge, creating
a more practical and efficient real-world attack frame-
work called GRAPHITE (Generating Robust Automatic
PHysical Image Test Examples). Such an attack frame-
work could be potentially useful for security testing of and
improving future defenses. We formulate our automatic
framework of physical attacks as a joint optimization
problem, balancing the opposing goals of minimizing per-
turbation size (or “mask size”) and maximizing transform-
robustness. More broadly, the framework is designed to
find attacks that permit tradeoffs among different con-
straints of query budgets (in hard-label settings), mask
size, and transform-robustness.

We first instantiate this framework in the white-box
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(a) Targeted GTSRB
attack to convert a Stop
sign into a Speed
Limit 30 km/hr
sign.

(b) Targeted CIFAR-10 at-
tack that modifies just 10
pixels to defeat the recently
proposed PatchGuard [29]
defense to misclassify a dog
to a cat.

Figure 1. Example GTSRB and CIFAR-10 GRAPHITE-generated black-
box hard-label attacks.

setting by adapting the Carlini-Wagner `0 attack [12] to
help satisfy the three requirements. We show that the
resulting attacks require a nearly 2x lower number of
forward/backward passes compared to typical square patch
attacks and exhibit more transform-robustness.

We then propose an instantiation of the framework
for the more challenging hard-label setting. We show that
there are significant algorithmic differences between the
white-box and black-box attacks that are motivated by the
general difficulties of naı̈ve `0 style minimization attacks
in the highly discrete and discontinuous hard-label opti-
mization space. As a result, we show experimentally that
simply extending white-box attacks to hard-label black-
box settings using strategies such as OPT [20] yields
poor results in Section 5.1. We solve these challenges
by separating the joint optimization into a two-stage ap-
proximation: automatic mask generation and perturbation
boosting, while using transform-robustness to provide a
more continuous measure (as compared to just success
or failure of an attack) to determine the relative value of
keeping or removing pixels.

We evaluate our GRAPHITE framework in hard-label
black-box settings both digitally on all 1,806 victim-target
pairs of German Traffic Sign Recognition Benchmark
(GTSRB) classes, and physically with printed stickers
placed on a real Stop sign. We add an additional con-
straint in these experiments to restrict the attack to be con-
tained within the victim object for physical-realizability.
Digitally, we achieve an average transform-robustness of
77.8% and an average mask size of 16.63% of the victim
image with 126k queries. Physically, we ran tests over 420
field test images of printed stickers placed on a real Stop
sign. This includes 210 images of a Speed Limit 30
km/hr sign attack with a 95.7% attack success rate.
We then demonstrate our framework’s ability to trade off
mask size, transform-robustness, and query count. In one
such setting, when transform-robustness is not required or
low values suffice, GRAPHITE is able to find successful
small-patch attacks for over 92.2% of GTSRB victim-
target pairs with just 566 queries per successful pair. In
contrast, state-of-the-art hard-label attacks of any type
(including those bounded by `2 or `1 norms) on similar
datasets all report requiring tens to hundreds of thousands
of queries, i.e., one to three orders of magnitude higher.

Finally, to demonstrate GRAPHITE’s ability to thwart

existing defenses, we select a state-of-the-art patch attack

defense called PatchGuard [29] and attack a defended
CIFAR-10 model in the hard-label black-box setting.
Across 100 random victim-target image pairs, we are able
to successfully attack PatchGuard by perturbing as little
as 1% of the pixels (e.g., see Figure 1b). This also demon-
strates the value of a framework that can generate more
generalized forms of patch attacks (e.g., attacks using
multiple patches) than those considered by PatchGuard;
PatchGuard primarily evaluated its scheme on patches in
a single part of an image.

The code is available at: https://github.com/ryan-
feng/GRAPHITE.

Our Contributions:
• We proposed a general framework for gener-

ating practical, real-world attacks that combine
three key requirements (that they are automatically
space constrained, physically robust to transfor-
mations, and only require black-box hard-label

access). The algorithms based on the framework
generate attacks efficiently in both white-box and
black-box settings.

• We introduce the first automatic, robust physical
perturbation attacks in the black-box hard-label
setting. We presented a novel mask generation pro-
cess that automatically generates candidate masks
to constrain the perturbation size and showed that
transform-robustness is a sufficiently smooth func-
tion to optimize with gradient-free optimization.
We test both digitally and physically, with printed
stickers placed on physical objects.

• We demonstrated GRAPHITE’s ability to trade
off transform-robustness, query budget, and mask
size depending on the adversary’s limitations and
priorities. As an example, we generate attacks with
non-negligible transform-robustness in 92.2% of
GTSRB victim-target pairs with an average of just
566 queries and an average mask size of 10.5%.

2. Related Work

Automatic Attacks. The art of constraining the size
and shape of perturbations remains relatively unexplored.
One approach to limit the perturbation size is to use a
patch attack. Patch attacks were first proposed as a white-
box technique that crafted small perturbation patches that
could be added to any scene to cause a misclassifica-
tion [17]. Later work then explored patch attacks on
object detection [23], [24] and the soft-label setting [25],
[26], where the model output probabilities are available.
Oftentimes, the patches are made robust to different spatial
locations by optimizing over different patch locations.
However, these approaches must run inferences over many
locations and are stuck to static shapes. In contrast, we are
able to efficiently generate arbitrarily shaped perturbations
and do so with only hard-label access, where only the top-
1 class prediction is known.

Other work that limits the size of perturbation includes
RP2 [18], a physical white-box attack that designs ad-
versarial stickers and the Carlini-Wagner (C&W) `0 at-
tack [12]. RP2 introduces the notion of a mask to limit the
size of the perturbation. However, their process requires
some manual experimentation based on the visual results

https://github.com/ryan-feng/GRAPHITE
https://github.com/ryan-feng/GRAPHITE


of an `1 approximation. The C&W `0 attack alternates
between pixel removal and the C&W `2 attack to optimize
an `0, but is designed for digital white-box setting, failing
to meet requirements 2 and 3.

Physical Attacks. Existing work for robust phys-
ical perturbation attacks on image models remains in
the white-box setting. Examples include printing images
of perturbed objects [30], modifying objects with stick-
ers [18], [19], and 3D printing perturbed objects [16].
Such attacks typically optimize the expectation over a
distribution of transformations, known as Expectation over
Transformation (EoT) [16]. Such transformations model
changes in viewing angle, distance, lighting, etc. In this
work, we describe the expectation of attack success over
such transformations as the transform-robustness of an
attack, approximated by measuring the attack success rate
with some number of transformations. Some attacks also
introduce the notion of a mask that constrains the perturba-
tion to small regions of the object [18]. However, existing
work does not fully automatically generate suitable masks,
and the mask is not jointly optimized with the noise.

In contrast, we automatically generate small masks to
confine perturbations. We also extend our construction of
such attacks to the black-box hard-label setting.

Black-box Attacks. Recent work has explored digital

hard-label attacks [20], [21], [27], [28], [31], where only
the top-1 label prediction is available. Such attacks are
difficult because the hard-label optimization space is dis-
continuous and discrete. One approach is to reformulate
the objective into a continuous optimization problem that
finds the perturbation direction at which the decision
boundary is closest. This approach is taken by OPT-
attack [20], which uses the Randomized Gradient Free
(RGF) method [32], [33] to optimize this distance-based
objective. The boundary distance is calculated through a
binary search process. The perturbation is initialized by
interpolating with a target class image.

In our work, we generate physically robust examples
within small, masked areas with only hard-label access.
As we show in Section 5.1, directly adding EoT to this
distance-based reformulation is both inefficient and in-
effective, leaving visible artifacts of the intended target.
Unlike OPT-attack, we also generate masks.

Other black-box work includes transfer and soft-label
attacks. Transfer attacks train a surrogate model, generate
white-box examples on the surrogate, and hope they trans-
fer to the target [34]. Unfortunately, targeted examples
often fail to transfer [35]. Many techniques also require
access to similar training sets that may not be available,
whereas our work only requires query access to the target
model. Soft-label attacks, or score-based attacks, require
access to the softmax layer output in addition to class
labels [36], [37]. In contrast, our threat model only allows
the adversary top-1 predicted class label access.

3. Setting up Automatic Physical Attacks

In this section, we lay the groundwork for our general
joint optimization problem for automatic physical attacks.
We define automatic physical attacks to be ones that: 1)
automatically pick a small mask consisting of pixels to
perturb and 2) are robust to some set of transformations,
set to model environmental variation such as viewpoint

and lighting changes. We describe this joint optimization
problem as the ideal problem we strive for and will
provide solvers for in Sections 4 and 5. We also show
that mask generation is an NP-complete problem.

3.1. Problem Setup

Our goal is to find some perturbation � and a small
maskM such that when � is applied to a victim image x in
the area defined by mask M , our model F predicts the tar-
get label ytar with high transform-robustness. Transform-
robustness is estimated over t transforms sampled from a
distribution of transforms T . We describe a targeted attack
formulation but can easily adapt to untargeted.

3.2. Optimizing Mask and Transform-robustness

The optimal perturbation maximizes transform-
robustness (i.e., EoT metric) while occupying only a small
area of the object such as a traffic sign. Mij is 1 if pixel
at position (i, j) is perturbed and 0 otherwise. A way to
model such constrained optimization problems is to model
is as a joint optimization problem, which we give below.
� > 0 is the relative weight given to size of the mask M

in the joint objective:

argmin
�,M

� · ||M ||0 � Et⇠T


F

✓
t(x+M · �)

◆
= ytar

�

(1)
where the second term is defined as transform-robustness,
computed as an expectation of attack success rate. In
practice, we estimate this with a set of randomly sampled
transforms. We observe that directly solving this objective
is generally challenging, especially in the hard-label set-
ting as we see in Section 5. Furthermore, the problem of
finding an optimal solution with a constrained mask size is
NP-complete, as we prove in Appendix A. One approach
to constructing such masks is to adopt an `0 “heuristic”
(the `0 norm itself is fundamentally non-differentiable, so
straightforward adaptations of gradient descent or OPT-
attack cannot be used). As an example, JSMA [14] builds
a mask by considering the pixels most “relevant” towards
causing a misclassification and Carlini and Wagner’s `0

attack [12] reduces a mask by removing least “relevant”
pixels; both approaches require doing a large number of
forward passes over the model (e.g., a pass for each pixel)
to find most relevant or least pixel, since the problem is
non-differentiable. This forward-pass method works in the
white-box setting but as further discussed in Section 5,
does not work in the hard-label setting where logits are
not available; changing a pixel is unlikely to change the
classification result, making it challenging to identify most
relevant or least relevant pixels.

3.3. General Algorithmic Pipeline

We describe the general GRAPHITE solver framework
with pseudocode in Algorithm 1. As the `0 norm inher-
ently makes (1) difficult to solve directly, we alternate
between reducing the mask size and improving the attack
with the set of perturbable pixels. After initializing a per-
turbation and gradient, the framework iteratively selects



TABLE 1. A SUMMARY OF CHARACTERISTICS BETWEEN ALL BASELINES AND GRAPHITE. WE ADAPT C&W `0 TO WHITE-BOX PHYSICAL
ATTACKS AND TO BLACK-BOX PHYSICAL ATTACK BASELINES. UPON FINDING THESE BASELINES TO BE INSUFFICIENT, WE SPLIT THE JOINT

OPTIMIZATION INTO A TWO-STEP OPTIMIZATION PROBLEM WITH A SINGLE ROUND OF MASK GENERATION AND BOOSTING.

Algorithm Works in
Hard-Label? Uses EoT? Pixel Removal

Strategy Internal Attack Num. Pixel Removal
+ Attack Rounds

C&W `0 [12] Gradient-based C&W `2 [12] Multiple
White-box GRAPHITE (Sec. 4) X Gradient-based EoT PGD Multiple

`0 and OPT (Sec. 5.1.2) X RGF-based OPT [20] Multiple
`0 and OPT w/ EoT (Sec. 5.1.3) X X RGF-based OPT w/ EoT Multiple
`0 and Boosting (Sec. 5.1.4) X X RGF-based Boosting (Sec. 5.2.3) Multiple

Black-box GRAPHITE (Sec. 5.2) X X Mask Gen. (Sec. 5.2.2) Boosting (Sec. 5.2.3) 1

Algorithm 1 General GRAPHITE Framework
Input: Victim Image x, Target Image xtar, Initial Mask

Minit, Model F , Target Label ytar
Output: Attacked Image A, Mask M , Perturbation �

1: M  Minit

2: �, g  INIT PERT + GRAD(x, xtar,M, F, ytar)
3: while not done do
4: S  SELECT PIXELS(x, xtar,M, �, ytar, g)
5: M  REMOVE PIXELS(M,S)
6: A, �, g  ATTACK(x, xtar,M, �init, F, ytar)

7: A, �  Last Successful Attack

pixels to remove, removes them, and attacks the remaining
pixels. This process is repeated until a specified stopping
criteria is met.

The C&W `0 attack is a natural starting point for our
framework as it alternates between removing the pixel
with the least impact and attacking the remaining pixels
with C&W `2 until it can no longer find an adversarial ex-
ample (Algorithm 2). Impact is measured by multiplying
the gradient and the perturbation. We are able to adapt
the C&W `0 attack to incorporate transform-robustness
for our white-box GRAPHITE algorithm (Section 4).

We first consider simple adaptations of the C&W `0 at-
tack, such as combining it with variations of OPT [20] and
EOT [16], but find that they fail to find satisfactory hard-
label physical attacks (Section 5.1). We consider these
adaptations (listed in rows 3-5 of Table 3) as ”baselines”
for our algorithm. This then motivates us to separate the
optimization into a mask generation phase and perturba-
tion boosting phase, which leads to our novel hard-label
black-box GRAPHITE algorithm (Section 5.2). Table 1
summarizes our algorithms and baselines.

4. White-box Automatic Physical Attacks

We now create a white-box GRAPHITE algorithm
as an instantiation of the general GRAPHITE framework
(Algorithm 1). We do so by extending the Carlini-Wagner
`0 attack [12] to have high transform-robustness, creating
an automatic, physical attack in the white-box setting.

White-box Attack Algorithm. We extend the C&W
`0 attack to add the notion of transform-robustness by
replacing the inner C&W `2 attack with an EoT PGD
attack. By using an inner attack that applies EoT [16], we
are able to generate attacks that have higher transform-
robustness. Then, replacing the C&W `2 minimization
attack with PGD [38] enables us to increase efficiency
and align our attack more similarly to our later black-

Algorithm 2 Original C&W `0 Attack
Input: Victim Image x, Model F , Initial Mask Minit,

Target Label ytar
Output: Attacked Image A, Mask M , Perturbation �

1: M  Minit

2: A, �, g  C&W `2 ATTACK(x,M,F, ytar)
3: while F (A) = ytar do
4: S  {argmini gi · �i}
5: M{Pixels2S}  0
6: A, �, g  C&W `2 ATTACK(x,M,F, ytar)
7: A, �  Last Successful Attack

Algorithm 3 White-box GRAPHITE Attack
Input: Victim Image x, Model F , Initial Mask Minit,

Target Label ytar
Output: Attacked Image A, Mask M , Perturbation �

1: M  Minit

2: A, �, g  EoT PGD ATTACK(x,M,F, ytar)
3: while Transform-Robustness of A > trmin do
4: S  set of z patches with smallest gi · �i values
5: M{Patches2S}  0
6: A, �, g  EoT PGD ATTACK(x,M,F, ytar)
7: A, �  Last Attack with transform-robustness >

trmin if one was found, else first attack

box implementation. With these changes, we now set the
stopping criteria as our EoT PGD attack being unable to
find an attack with at least trmin transform-robustness.

Additionally, for further efficiency and to encourage
larger sticker patches (for printing convenience), we re-
move z patches of pixels at a time, where each patch is a
p ⇥ p square of pixels. To collect the list of patches, we
stride by a step size of s.

Experimental Setup. To test our attack, we run
targeted attacks for all victim-target pairs in a varied,
10 class subset of GTSRB: Stop, Speed Limit
30 km / hr, Speed Limit 80 km / hr,
Pedestrians, Turn Left Ahead, Yield,
Caution, Roundabout, End of Overtaking
Limit, Do Not Enter. Foreshadowing our black-
box attack, where we want to show dataset independence,
we use images outside of the GTSRB dataset. Since
we had a real-world Stop Sign available in our lab,
we used a photo we took of that physical sign. For
all other GTSRB classes, we attack traffic-sign images
downloaded from the Internet. The images are 244⇥244.
We set the minimum transform-robustness threshold
trmin to 80%. Additional details on hyperparameters are
included in Appendix C.



TABLE 2. WHITE-BOX COMPARISONS BETWEEN OUR WHITE-BOX VERSION OF GRAPHITE (ALGORITHM 3) AND A PATCH-PGD ATTACK THAT
TRIES THE 4 CORNERS AND THE CENTER ON 90 VICTIM-TARGET TRAFFIC SIGN PAIRS. WHILE PATCH-PGD CAN PERFORM WELL ON THE RIGHT
EXAMPLES, GRAPHITE CAN MUCH MORE RELIABLY AND QUICKLY FIND SUCCESSFUL ATTACKS WITH LESS PERTURBATION SIZE. TR STANDS

FOR TRANSFORM-ROBUSTNESS. GRAY COLUMNS REPORT STATISTICS OVER JUST THE SAMPLES WITH > 80% TR.

Method Avg. TR,
All

Avg. Mask Size,
All

Num. Samples
with >80% TR

Avg. TR over
Samples with
>80% TR

Avg. Mask Size over
Samples with
>80% TR

Avg. Inferences

GRAPHITE 77.53% 8.82% 84 80.60% 6.35% 40,475.6

Patch-PGD 10.1556% 6.88% 4 95.25% 6.88% 100,000

Patch-PGD. For comparisons sake, we also compared
against the popular square patch attack that simply runs
Patch-PGD [29], [39] (with EoT) attack over a square
patch of 64⇥64 pixels (about 6.88% of the image). Rather
than test every possible location, which is expensive, we
test the four corners (as in the weaker adversary in [39])
and the center. We ran it with 100 transforms, 200 steps,
and a step size of 4 / 255.

Results. Table 2 presents the results from our white-
box algorithm and the Patch-PGD baseline on all 90
victim-target pairs of the GTSRB subset. We also re-
port results on the images with > 80% transform-
robustness (the gray columns) to characterize the white-
box GRAPHITE attacks that reached the trmin threshold.

Our approach finds patches with higher transform-
robustness more reliably and efficiently than choosing
static squares, even when using pre-selected patch lo-
cations. Patch-PGD finds attacks with low transform-
robustness (10.1556% on average, only 4 samples with
> 80%) and a high number of inferences (100k). In
contrast, our white-box GRAPHITE algorithm averages
77.53% transform-robustness, including 84 samples with
> 80%. It also uses fewer inferences and achieves a
smaller mask size over the successful samples (6.35% for
GRAPHITE vs. 6.88% for Patch-PGD. Finally, our white-
box algorithm does not require a user to specify the shape
or size of the mask or its location. Example images of
these attacks are included in Appendix C.

5. Black-box (Hard-label) Automatic Physi-
cal Attacks

We now create a new hard-label GRAPHITE al-
gorithm as an instantiation of the general GRAPHITE
framework (Algorithm 1) to generate automatic physical
attacks in the hard-label setting. Our white-box algorithm
(Section 4) cannot be trivially extended here, as our prior
selection of pixels for removal required gradient access.

We first attempt to leverage the C&W `0 algorithm
in combination with existing digital black-box attacks,
with three new “baseline” black-box instantiations of
GRAPHITE (Section 5.1). However, we find these “base-
lines” to be unsatisfactory (see the results in Section 5.1).

To address these limitations, we split the joint opti-
mization problem in 1 into a two-step optimization instead
(Section 5.2.1). Within this two-step process, we then (a)
present a novel mask generation algorithm (Section 5.2.2)
for the pixel selection and removal procedures (lines 4 and
5 of Algorithm 1) and (b) adopt Randomized Gradient
Free (RGF) optimization of transform-robustness itself as
the attack procedure (line 6 of Algorithm 1), referred to
as “perturbation boosting” (Section 5.2.3).

5.1. Baselines

These baselines modify the C&W `0 paradigm of
alternating pixel removal and attacking with each baseline
differing only in terms of the inner attack choice. For our
first two baselines, we adopt a vanilla and EoT version
of the digital black-box OPT-attack [20]. OPT-attack is
able to craft attacks in the black-box setting and provide
estimated gradients that can be used to order pixels for
pixel selection and removal. For our third baseline, we
deviate from OPT-attack and instead adopt perturbation
boosting — our RGF optimization attack that leverages
transform-robustness itself as the objective function.

5.1.1. Setup. To evaluate our baselines in this section,
we run targeted attacks for all 90 victim-target pairs in
the 10 class subset of GTSRB used in Section 4. All
hyper-parameters are identical to those used in our white-
box experiments, and performed on 32x32 images. We
also initialize the perturbation direction ✓ as the difference
between the target and victim images.

5.1.2. `0 and OPT baseline. This baseline employs the
vanilla OPT-attack [20] as its choice of attack algorithm.
OPT-attack crafts an adversarial example using a distance-
based objective:

argmin
✓

g(✓) (2)

where the objective g(✓) is the distance to the decision
boundary, formally defined as:

argmin
µ>0

µ s.t.

✓
F

✓
x+ µ

✓

||✓||2

◆
= ytar

◆
(3)

and where ✓ is the direction and µ is the distance
to the nearest adversarial example x

⇤ in that direction.
We consider an attack a success so long as it elicits
misclassification, regardless of transform-robustness (as
transforms have not been incorporated in any manner).

Results. We find that OPT-attack is generally unable
to find attacks with any significant transform-robustness
(Table 3, Table 4). In particular, the average transform-
robustness is only ⇠ 1.5%. This is likely an artifact of (2)
not incorporating transforms. OPT-attack also results in
a significant number of queries (⇠ 920k) because of
its intense decision boundary-searching procedures. The
final mask size is the only aspect of this baseline that
is modestly respectable, with a perturbation that covers
⇠ 24% of the input image.



TABLE 3. QUANTITATIVE RESULTS FOR HARD-LABEL BASELINE ATTACKS. WE REPORT THE AVERAGE AND STANDARD DEVIATION OF
TRANSFORM-ROBUSTNESS, # OF PIXELS OUT OF 32 X 32 = 1024 IN THE MASK (I.E., `0 DISTANCE), AND NUMBER OF QUERIES ISSUED TO THE
MODEL. STATISTICS ARE PRESENTED ONLY FOR SUCCESSFUL ATTACKS (I.E., ATTACKS THAT ARE ABLE TO CRAFT AN ADVERSARIAL EXAMPLE).

Baseline # Successes Transform-robustness (%) Queries Mask Size

`0 and OPT 90/90 1.52 ± 4.26 919.82k ± 605.24k 244.36 ± 307.11
`0 and OPT with EoT 81/90 80.01 ± 0.11 1958.67k ± 1317.49k 601.90 ± 190.91

`0 and Boosting 81/90 97.89 ± 3.61 5.50k ± 9.17k 990.72 ± 56.78

TABLE 4. SAMPLES FROM OUR THREE HARD-LABEL BASELINE
ATTACKS. SHOWN ARE TARGETED ATTACKS FROM A STOP SIGN TO

SPEED LIMIT 30 KM / HR SIGN . THE LEFTMOST IMAGE
SUFFERS FROM EXTREMELY LOW TRANSFORM-ROBUSTNESS. THE

MIDDLE AND RIGHTMOST IMAGES EXHIBIT HIGHER
TRANSFORM-ROBUSTNESS AT THE COST OF EXTREME VISIBLE

ARTIFACTS FROM THE TARGET IMAGE.

`0 and OPT `0 and OPT w/ EoT `0 and Boosting

5.1.3. `0 and OPT with EoT baseline. This baseline em-
ploys an EoT version of OPT-attack [20] as its choice of
attack algorithm, to alleviate the low transform-robustness
of the first baseline. We first define a wrapper function
W (x):

W (x) =

8
<

:
y if Et⇠T


F

✓
t(x)

◆
= ytar

�
� 80%

�1 otherwise
(4)

Then, with this wrapper function, we modify g(✓) to
the following:

argmin
µ>0

µ s.t.

✓
W

✓
x+ µ

✓

||✓||2

◆
= ytar

◆
(5)

We now consider an attack a success only if it exhibits
a transform-robustness greater than the trmin threshold, as
this baseline directly incorporates transforms via EoT.

Results. We find that wrapping existing hard-label
attacks with EoT is an inefficient approach to generating
attacks with high transform-robustness (Table 3, Table 4).
While, as expected, the introduction of EoT significantly
raises average transform-robustness to ⇠ 80%, it comes
at the cost of doubling in queries ⇠ 1, 959k.

Further, we find this approach yields attacks with
unacceptably large target image artifacts. The average
mask size covers nearly 59% of the input image. We also
observe that even for the successful attacks, OPT attack is
unable to escape the initial perturbation direction (i.e., the
target image itself). This results in attack examples with
very visible artifacts from the target.

5.1.4. `0 and Boosting Baseline. This baseline employs
perturbation boosting as its choice of attack algorithm,
i.e., an RGF optimization attack that leverages transform-
robustness itself as the objective function. This choice
is motivated by the intuition that directly optimizing for
our desired metric (instead of a proxy objective function
provided by existing black-box attacks) is likely a more

straightforward optimization problem, which is likely to
result in fewer queries and a smaller mask, while still
achieving high transform-robustness. For further details
regarding the details and suitability of perturbation boost-
ing for GRAPHITE, see Section 5.2.3, where it becomes
a part of our final, recommended instantiation algorithm
for GRAPHITE in the black-box setting.

Results. We find that this baseline yields transform-
robust attacks with unacceptably large masks (Table 3,
Table 4). While this baseline achieves a near optimal ⇠
98% transform-robustness as expected (since we are now
directly maximizing transform-robustness), the mask sizes
cover nearly 97% of the input image.

Close inspection reveals that this is because the es-
timated RGF optimization gradients eventually become
zero at some iteration (i.e., the area around the example
appears to be flat, thereby obstructing sampling-based
based techniques like RGF). Zero gradients prevent the
algorithm from creating a reliable importance ordering of
pixels, thereby ending the attack as pixel selection/removal
cannot proceed. This also results in several artifacts from
the target image, as 1-2 rounds are not enough to create
a sufficiently small mask or produce a more obscure per-
turbation. These early exits also explain how this baseline
is able to operate with significantly fewer queries than
previous baselines (⇠ 5.5k).

5.2. Black-box GRAPHITE Algorithm

Our black-box baseline instantiations in Section 5.1
failed to craft acceptable automatic physical attacks. How-
ever, these failures provided key insights towards de-
veloping automatic physical attacks: (a) creating high
transform-robustness examples requires direct incorpora-
tion of transforms (EoT) into the attack, (b) naı̈ve applica-
tion of EoT to existing black-box attacks is an indirect and
query-inefficient approach to doing so, and (c) reliance
upon leveraging gradient-based pixel ordering can fail in
the black-box setting, thus leading to large masks.

We instead solve a two-step optimization problem

that separates out mask generation and boosting (Sec-
tion 5.2.1). While the C&W `0 framework of alternating
between pixel removal and attacking is able to capture
a joint optimization in the white-box setting, our base-
lines showed that jointly optimizing the mask and the
perturbation in the hard-label setting is difficult without
gradients. Thus, we instead focus on generating a viable,
small mask first before focusing on perturbation boosting.
We then present algorithms for solving these optimization
problems (Sections 5.2.2-5.2.3).

5.2.1. Two-Step Optimization. We now present a two-
step optimization problem that first solves for an optimal
mask given an initial perturbation and then second solves



Algorithm 4 Black-box GRAPHITE Attack
Input: Victim Image x, Target Image xtar, Model F ,

Initial Mask Minit, Target Label ytar
Output: Attacked Image A, Mask M , Perturbation �

1: M  Minit

2: �  M · (xtar � x)
3: for One Iteration do
4: // Select and Remove Patches (Mask Generation)
5: P  HEATMAP ESTIMATION(M, �, F )
6: M,P  COARSE REDUCTION(M, �, F, P )
7: M  FINE REDUCTION(M, �, F, P )
8:
9: // Attack (Perturbation Boosting)

10: A, �  BOOST(x, �,M, F, ytar)

for the optimal perturbation given the discovered mask.
This two-step problem can be viewed as heuristically solv-
ing the general framework presented in Algorithm 1 with
a single iteration, with mask generation corresponding
to pixel selection and removal and perturbation boosting
becoming the internal attack. This solution then forms the
basis for our primary, recommended hard-label instantia-
tion of GRAPHITE, as shown in Algorithm 4.

Step #1: Mask Generation.We first find an optimized
mask that, when filled in with the target image xtar,
results in at least a specified level of transform-robustness,
trlo, a hyperparameter. We constrain the unmasked per-
turbation to be fixed at �tar = xtar � x and solve the
optimization objective from (1) under that constraint:

argmin
M

� · ||M ||0 � Et⇠T


F

✓
t(x+M · �tar)

◆
= ytar

�

s.t. Et⇠T


F

✓
t(x+M · �tar)

◆
= ytar

�
� trlo

(6)
We show how to solve this formulation heuristically using
an algorithm described in Section 5.2.2. Note that �tar
only applies within the resulting mask M .

Step #2: Perturbation Boosting. Equipped with the
mask M found by the Mask Generation Optimization
Problem in Step #1, we then aim to maximize transform-
robustness for the given mask by changing the perturba-
tion � within the masked region:

argmax
�

Et⇠T


F

✓
t(x+M · �)

◆
= ytar

�
(7)

By using transform-robustness as a measure of phys-
ical robustness, we can leverage this function as an opti-
mization goal we can pursue even in the hard-label case
(described in Section 5.2.3). In Section 5.2.3, we also
provide empirical evidence that this reformulation based
on transform-robustness is approximately continuous. We
do this by showing that the objective has relatively low
Lipschitz constants even when approximating the expec-
tation in (7) by averaging over n transformations. We
additionally refer to this process as boosting the transform-
robustness, as it aims to make transform-robustness as
high as possible.

5.2.2. Mask Generation Algorithm. For the first step of
our hard-label GRAPHITE algorithm, we need to find a

Algorithm 5 Mask Generation. Let TR(M, �) be the
estimate of transform-robustness for a mask M and per-
turbation �, and �1 be a hyperparameter, let P be the
set of all patches, let M be the mask covering the whole
object, and let �tar = xtar � x.
Input: Victim Image x, Target Image xtar, Target Label

ytar, Optional Max Mask Size mmax

Output: Mask M with lowest mask score J(M, �, trlo)
1: function J(M , �, trlo)
2: if TR(M, �) < trlo then
3: return 1
4: return �1 · ||M ||0 +

�
1� TR

�
M,xtar � x

��

5:
6: // HEATMAP ESTIMATION
7: for ⇢ in P do
8: tr⇢  TR(M � ⇢, �tar)

9: Sort P from highest tr⇢ to lowest
10:
11: // COARSE REDUCTION
12: i  Binary search for highest index such that

TR
�
(
S|P|

i=pivot Pi), �tar
�
>= trhi

13: Lc  {P[i],P[i+ 1], ...,P[|P|� 1]}
14: M  (

S|P|
i=pivot Pi)

15:
16: // FINE REDUCTION
17: for ⇢ in Lc do
18: if J(M � ⇢, �tar, trlo) < J(M, �tar, trlo) then
19: M  M � ⇢

20: if mmax is provided and ||M ||0 < mmax then
21: break
22: if mmax is provided and ||M ||0 > mmax then
23: Increase �1; Goto 24
24: return M

candidate mask that has good initial transform-robustness
and small size. Boosting can take care of further im-
proving the transform-robustness as long as it samples
enough variance at nearby points to make useful gradient
estimates with RGF. We first set the perturbation to the
target image’s pixels within the mask. In other words, the
initial attack is x+M · (xtar � x).

We generate masks using a three-stage process:

1) Heatmap Estimation
2) Coarse-grained Mask Reduction
3) Fine-grained Mask Reduction

The algorithm steps are shown in Algorithm 5. We
first initialize the mask to the entire victim object, which
overlays the target object over the victim. We then choose
a group of pixels called a patch as a configurable input into
the algorithm. We then collect all patches of a given shape
(e.g. 4 ⇥ 4 squares) that overlap with the victim object.
These patches serve two purposes: (1) it helps us estimate
a “heatmap” (i.e., which regions of pixels contribute more
to transform-robustness) and (2) it is used to remove
groups of pixels from the mask to reduce its size as the
algorithm optimizes the mask objective function (6). The
shape size such as 4⇥4 square (rather than a single pixel)
helps ensure that the attack image is not too pixelated



and thus more likely to be implementable as a physical
perturbation such as via stickers.

This process can be visualized by imagining a thin
overlay of the target being placed on top of the victim, and
then slowly cutting regions out of the overlay, exposing
the victim object underneath.

Heatmap Estimation. We generate a “heatmap” (sim-
ilar to a saliency map) over the victim image to begin
pixel selection and removal. This could be any process that
generates an ordering of pixel patches. We mainly focus
on one strategy that we call a “target-based heatmap”
strategy, which orders patches by the transform-robustness
with respect to the target.

Specifically, for each patch p that overlaps with the
victim object, we measure the transform-robustness of the
mask M and perturbation �tar, where M includes every
pixel of the victim object except for p. In other words, we
take the original target image overlay, cut out p, and mea-
sure the resulting transform-robustness. If the transform-
robustness drops a lot relative to the transform-robustness
with the patch after removing p, those target pixels are
important to causing a target prediction. This enables us
to identify candidate regions to remove from the mask.
We output the sorted list of patches in decreasing order
of transform-robustness.

The size of the patches matters in the hard-label
setting. If we pick just a single pixel as our patch, the
transform-robustness would likely be the same with or
without it, making the heatmap useless. If we make the
patch too large, we lose the ability to make more general
mask shapes. For 32⇥32 noise, we empirically found that
a 4⇥4 square patch worked well.

The “target-based heatmap” approach can success-
fully evaluate patches with varying degrees of transform-
robustness, leading to a useful ordering. One could imag-
ine a “victim-based heatmap” where we add small sections
of the target onto the victim, calculating the transform-
robustness with respect to the victim, but we found this
approach to be sub-optimal. Our intuition is that this is a
less direct measure in the targeted case - classifications of
the target versus any other non-victim labels are treated
the same. Note that in a “victim-based” setting we cannot
practically compute transform-robustness with respect to
the target since the target signal is typically too small to
get anything other than ⇡ 0% transform-robustness. We
try a random heatmap strategy in Section 6.3, where we
simply order the patches randomly and pass the list on to
fine-grained reduction.

Coarse-grained Mask Reduction. Using the sorted
list of patches from heatmap estimation, we begin re-
ducing the size of the mask. As an optimization to save
queries, we first do a coarse-grained reduction that binary
searches for a pivot in the patch list. We find the point
pivot in the ordered list of patches P such that the bitwise
unions of patches from that point (

S|P|
i=pivot Pi) yields

a mask of transform-robustness � trhi, where trhi is a
hyper-parameter specifying a high transform-robustness
threshold that must be reached. If trhi cannot be reached,
we simply include all patches. Coarse-grained reduction
outputs Lc, the list of patches from pivot to the end.

Fine-grained Mask Reduction. We then use a greedy
fine-grained reduction algorithm to further improve the
objective function of (6). Fine-grained reduction takes Lc

and evaluates each patch in sorted order. It removes the
patch if that improves the objective function, keeping it
otherwise. Empirically, we found that it was important to
add the restriction that transform-robustness does not cross
below some minimum threshold, trlo to ensure success in
boosting. The end result is the final mask defined by the
union of the retained elements of Lc. Because the ob-
jective function rewards small masks and high transform-
robustness, the final mask balances both well.

We can optionally specify to GRAPHITE that we
desire a maximum mask size mmax. If this option is
activated, we can simply break early once we drop below
mmax. If the first iteration fails to get below mmax, then
the value of � (the weight of the mask size term in the
joint optimization problem in (1)) can be increased until
an iteration gets below mmax.

Let n be the number of transforms used for estimating
transform-robustness. Heatmap estimation uses n · |P|
queries, coarse-grained reduction uses n · log |P| queries,
and fine-grained reduction uses n · |Lc| queries.

5.2.3. Perturbation Boosting Algorithm.. Given a re-
sulting image x and a mask M from the previous stage,
transform-robustness boosting, or simply boosting, aims
to find the perturbation � that maximizes transform-
robustness. We propose a transform-robustness-based re-
formulation to use with RGF [32], [33] to find the per-
turbation within the mask M with maximum transform-
robustness, which works as follows.

The perturbation � is first initialized to M · (xtar �x)
and then we proceed to maximize the probability that a
perturbation remains robust to physical-world transforms
with the RGF [32], [33] method for gradient estimation
using q random samples for each gradient estimation.
Explicitly, let u be random Gaussian unit vectors within
the allowable range of the mask and let � be a nonzero
smoothing parameter. Then, we set � to ��⌘ · ĝ where ⌘ is
the step size and ĝ is the gradient, calculated as follows:

ĝ =
TR(M, � + �u)� TR(M, �)

�
· u (8)

where TR(M, �) refers to the estimated transform-
robustness for a mask M and a perturbation �.

Finally, we introduce the notion of a query budget
which limits the number of queries used in a particular
stage of the algorithm. These parameters can be tuned
to emphasize better mask generation or better boosting
without a budget of queries if we want to limit the number
of attack queries.

Suitability of Transform-Robustness Reformula-
tion. To demonstrate that our reformulation based on
transform-robustness is approximately continuous for suc-
cessful RGF optimization, we show empirically that our
objective has a low local Lipschitz constant. We execute
boosting on attack examples from Stop sign to Speed
Limit 30 km/hr, Stop sign to Pedestrians,
and Stop sign to Turn Left Ahead with n =
1000 transformations and approximate the local Lips-
chitz constant every time we compute TR(M, � + � · u).
The approximate local Lipschitz constant is given by
|TR(M,�+�·u)�TR(�)|

||�·u|| . We found that the maximum ob-
served local Lipschitz constant was 0.056. We include a
histogram of observed local Lipschitz constants in Fig. 2.
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Figure 2. A histogram of our approximate local Lipschitz constant
observations on transform-robustness. This graph shows that transform-
robustness does not vary too much per amount of change with a sufficient
number of transformations.

6. Experiments

In this section, we demonstrate the digital and physical
viability of our black-box GRAPHITE instantiation pre-
sented in Algorithm 4 and Section 5.2, henceforth referred
to as simply GRAPHITE unless otherwise specified. We
first report digital transform-robustness results on GT-
SRB [40] and CIFAR-10 [41]. Then, we print stickers on
a smaller subset of attacks, and conduct real-world field
tests on physical traffic signs to show that our results carry
over to the real-world. Finally, we explore our pipeline’s
ability to adapt to attacker priorities/constraints, allowing
for a trade-off between transform-robustness, mask size,
and query budget.

6.1. Experimental Setup

This section discusses our experimental setup for run-
ning GRAPHITE. We will publicly release our code and
data prior to paper publication.

Datasets and Classifiers. We use the classifier
from RP2 [18], [42] trained on an augmented GTSRB
dataset [40]. As with RP2 [18], we replace the German
Stop signs with U.S. Stop signs from the LISA
dataset [43]. As a validation set, we take out the last
10% from each class in the training set. We augment
the dataset with random rotation, translation, and shear,
following Eykholt et al. [18]. Our network, GTSRB-Net,
has a 97.656% test set accuracy.

As in our white-box experiments in Section 4, we use
Internet images outside of the dataset plus our own Stop
sign picture since we had a physical sign available for
initialization to demonstrate that GRAPHITE does not
rely on having training set images to initialize from. In
our experiments we assume that object boundaries are
available but note they could be obtained automatically
through an object segmentation network [44].

GTSRB Attack Details. We set the size of our input
images to be 244⇥244. During the attack, we generate
32⇥32 perturbations and then upsample the perturbations
to the resolution of the input image when they are added.
Reducing the dimensionality of the perturbation space
makes RGF more efficient [20] and can help encourage
blockier perturbations that can be sensed by a camera in
the physical-world.

For field testing, we print stickers and place them on a
30”⇥30” Stop sign and place it at stationary positions

TABLE 5. HYPERPARAMETERS FOR BLACK-BOX GRAPHITE
EXPERIMENTS. ALL RANGED PARAMETERS SAMPLED UNIFORMLY.

Parameter Value

RGF smoothing parameter (�) 1
RGF step size (⌘) 500
Boosting query budget (b) 20k
# Samples for RGF gradient sampling (q) 10

Rotation range about the y axis (-50°, 50°)
Base focal length (f ) 3 ft.
Crop sizes and offsets (-3.125%, 3.125%)
Lighting gamma value (�) (1, 3.5) and (1, 1/3.5)
Gaussian kernels for blurring [1, 3, 5, 7]

Joint optimization mask size weight (�) 5
# of transforms (n) 100
Transform-robustness high threshold

for coarse red. (trhi)
85%

Transform-robustness low threshold
for fine red. (trlo)

65%

Max mask size option (mmax) Not set

TABLE 6. QUANTITATIVE RESULTS OF DIGITAL GTSRB ATTACKS.
AVERAGE AND STANDARD DEVIATION OF

TRANSFORM-ROBUSTNESS, # OF PIXELS OUT OF 32⇥ 32 = 1024 IN
THE MASK (I.E., `0 DISTANCE), NUMBER OF QUERIES REPORTED FOR

THE GIVEN VICTIM TO ALL OTHER TARGETS.

Victim Stop
SL 30
km/hr

Avg. of all
43 victims

TR (%) 80.8±7.02 84.5±10.6 77.8±17.5
Mask Size 116±38.0 139±71.7 170.3±122
# Queries 133k±8.92k 134k±15.2k 126k±18.9k

to test how robust our attacks are to different viewing
conditions. We take five pictures of the perturbed Stop
sign at 14 different locations for a total of 70 pictures per
set. To test lighting conditions, we take one set of images
in outdoor light and two sets indoors, one with indoor
lights on and one without. To compare against baseline
Stop sign accuracy, we also take five pictures of a
clean Stop sign at each of the same 14 locations. The
14 locations where chosen based on RP2 evaluation [18].

To gather crops, we use the original YOLOv3 [45]
object detector network trained on MS COCO [46] to
predict bounding boxes for the Stop sign. We take the
output bounding boxes, crop the sign, resize to 32 ⇥ 32,
and feed through our network for classification. Further
hyperparameters are specified in Table 5.

6.2. Experimental Results

We first report digital results for GTSRB and CIFAR-
10. We then report physical transform-robustness field
tests results on GTSRB1. Finally, we report physical drive-
by results on GTSRB.

Digital Transform-Robustness Results (GTSRB).
We report results for all 1,806 possible GTSRB victim
target pairs in Table 6. On average, we observe masks
with an `0 distance of 170.3 (16.6% w.r.t. the 32 ⇥ 32
image area) and 77.8% transform-robustness.

In Table 7 we provide results from attacks between
all victim target pairs of a subset of 10 varied GTSRB

1. CIFAR-10 objects such as airplanes or birds would have been
difficult for applying physical perturbations.



TABLE 7. SAMPLE OF DIGITAL TARGETED ATTACKS ON GTSRB-NET. RAN WITH trlo = 65%, trhi = 85%, n = 100 TRANSFORMS. FOR
CELLS WITH SAME VICTIM AND TARGET, WE REPORT THE % OF TRANSFORMS THE ORIGINAL LABEL IS PREDICTED. MASKS SIZE IS REPORTED

IN TERMS OF # OF PIXELS IN 32⇥ 32 (I.E., `0 IN 32⇥ 32 SPACE).

Target

Victim

Transform-robustness 92% 86% 85% 79% 80% 82% 80% 90% 77% 71%
Mask Size 0 88 123 105 51 96 131 92 138 97

Transform-robustness 77% 100% 88% 94% 94% 89% 88% 99% 61% 93%
Mask Size 161 0 18 140 74 152 175 45 210 156

Transform-robustness 79% 97% 88% 87% 88% 91% 95% 97% 62% 65%
Mask Size 171 13 0 228 132 173 162 41 213 122

Transform-robustness 50% 73% 52% 95% 86% 79% 100% 0% 79% 88%
Mask Size 398 398 398 0 198 254 28 398 205 190

Transform-robustness 73% 85% 71% 85% 100% 81% 71% 80% 71% 71%
Mask Size 111 72 120 92 0 122 93 74 263 148

Tranform robustness 0% 58% 7% 4% 92% 100% 46% 87% 83% 57%
Mask Size 436 436 436 436 81 0 436 157 198 436

Tranform robustness 56% 84% 70% 90% 80% 69% 100% 0% 78% 77%
Mask Size 398 398 398 23 133 225 0 398 133 161

Transform-robustness 74% 91% 73% 86% 77% 78% 76% 99% 72% 69%
Mask Size 172 43 75 92 62 106 133 0 218 114

Transform-robustness 72% 83% 82% 74% 91% 92% 78% 90% 73% 79%
Mask Size 142 123 141 159 137 137 175 90 0 182

Transform-robustness 79% 89% 89% 81% 82% 67% 82% 91% 73% 99%
Mask Size 42 85 79 106 106 153 117 62 242 0

signs. We include the final output image, the transform-
robustness, and the mask size. GRAPHITE generally finds
small, highly transform-robust perturbations on a variety
of attacks. Examples that tend to not perform well are
attacks on a triangle sign victim, as overcoming the dif-
ference in shape is difficult. Furthermore, it is not large
enough to fit the entire target object on the victim. This
means that in reduction the starting transform-robustness
may be low to begin with, making it hard to prune patches
from the mask. Resizing the target sign to fit within
the victim sign may alleviate this. Generally, the attack
quality varies depending on the victim target pair, which
is consistent with prior work that finds that the distortion
varies drastically depending on the attack pair [14].

Digital Transform-Robustness Results (CIFAR-10).
We test on 500 random victim-target pairs from CIFAR-
10 [41] on Wide ResNet 34-10 [47], commonly used to
evaluate CIFAR-10 attacks and defenses [38], [48], [49].
We observe that even natural images are not robust to
the same set of transformations used in GTSRB, so we
reduce the perspective transform to [-30, 30] at a constant
focal length, reduce � to (1, 2) and (1, 1/2), and remove
the blur. We achieve an average transform-robustness of
87.43% and mask size of 125.5 with 141.9k queries. We
include example attacks in Appendix D.

Physical Transform-Robustness Field Tests (GT-
SRB). We also conduct field experiments to confirm that
our results carry over to the physical world. This consists



TABLE 8. GTSRB FIELD TEST RESULTS. PHYSICAL ROBUSTNESS RESULTS ARE CALCULATED OVER 5 PICTURES EACH AT THE FOLLOWING
SPOTS: 5 FT ⇥ {0°, 15°, 30°, 45°}, 10 FT ⇥ {0°, 15°, 30°}, 15 FT ⇥ {0°, 15°}, 20 FT ⇥ {0°, 15°}, 25 FT, 30 FT, 40 FT. EACH EXAMPLE WAS

TESTED 3 TIMES: OUTDOORS, INDOORS WITH INDOOR LIGHTS TURNED OFF, AND INDOORS WITH INDOOR LIGHTS TURNED ON.

Victim Target
Digital

GRAPHITE
attack

Physical
GRAPHITE

attack
(outdoors)

Dig. TR
(100

xforms)

Phys. TR
(Indoors,
lights off)

Phys. TR
(Indoors,
lights on)

Phys. TR
(Outdoors)

86% 92.9% 94.3% 100%

79% 97.1% 85.7% 100%

TABLE 9. EXTENDED GTSRB FIELD TEST RESULTS, INCLUDING
THE MEASURED PHYSICAL ROBUSTNESS OF THE VIDEO FRAMES.

EVERY 10TH FRAME OF THE VIDEOS WERE ANALYZED.

Target # Frames
Analyzed

Attack Success
Rate (Transform-

robustness)

Speed Limit 30
km/hr

40 97.5%

Pedestrians 39 82.1%

of printing stickers and placing them on real-world traffic
signs and then evaluating images at differing conditions.
We evaluate GRAPHITE on targeted Stop sign attacks
to Speed Limit 30 km/hr and Pedestrians at
different viewing angles and lighting.

Table 8 shows the results of the field tests for GTSRB.
On average, they took 131k queries. The Speed Limit
30 km/hr attack was successful over all three lighting
conditions with at least 92.9% physical robustness. The
Pedestrians attack also did well, with at least 85.7%
success rate over each lighting condition. Overall, these
results suggest that transform-robustness translates rea-
sonably well into the physical world and improvements
in transformations could further improve the translation.
Baseline Stop sign tests were at least 95.7% in each
lighting condition.

Physical Drive-by Tests (GTSRB). In this section,
we provide extended field test results for GTSRB under
additional imaging conditions, in the form of drive-by
tests. In particular, we record videos while driving towards
the sign in a private lot, simulating a realistic driving
environment in an allowable fashion2. We test each of the
two attacks from Table 8. As in prior work by Eykholt et
al. [18], we analyze every 10th frame from the video. We
use the same YOLOv3 [45] detector as the other GTSRB
results to crop our frames. Some frames, particularly ones
at the beginning of the video when we were farthest
away could not be cropped with YOLOv3 and were thus
cropped manually in a similar fashion.

We include results for these two stop sign attacks in
Table 9. The Speed Limit 30 km/hr attack was the
most successful, with 97.5% physical robustness, which is
in line with the field test results in Table 8 and above the

2. We follow local laws and regulations for safety in this test.

digital transform-robustness. The Pedestrians attack
was also successful with an 82.1% physical robustness
rate, right around its digital transform-robustness of 79%.

Overall, these results confirm the field test results
reported in Table 8 in an even more realistic driving
setting. Example images are included in Appendix E.

6.3. Variations and Tuning of GRAPHITE

We now explore GRAPHITE’s ability to trade-off
transform-robustness, mask size, and query count as well
as an examination of heatmap estimation strategies. These
tradeoffs allow an attacker to design their attack given the
relative importance of certain attack constraints, such as
a need to keep the perceptibility of such attacks low or a
need to keep the query cost under a certain budget. We
also examine GRAPHITE’s output without the restriction
that the noise be contained within the victim object and a
strategy with multiple mask generation / boosting rounds.

6.3.1. Reducing the Number of Queries. To further re-
duce the number of queries, we consider two adjustments:
1) reducing the number of transforms and 2) replacing
the target-based heatmap strategy with a random heatmap
strategy that simply orders patches randomly. We also test
a “minimum query” setting, which uses both adjustments
to the extreme: both the random heatmap and only one
transform.

Tuning the Number of Transformations. We first
begin by decreasing n (the number of transformations)
that we use in mask generation and boosting. This makes
every transform-robustness measurement run faster. We
test with n = 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 trans-
forms. Regardless of the value of n, we measure the
final transform-robustness of each setting with 100 trans-
formations to ensure the numbers are comparative. We
test the 90 non-identity victim-target pairs from Table 7.
The results of these tests are shown in Fig. 3a. Since the
number of queries scales monotonically with the number
of transforms, we plot the 10 points using the number of
queries on the x axis, and with the transform-robustness
and mask size on the two y axes.

As more transforms are used in mask generation
and boosting, we find that the quality of the generated
attack increases, i.e., the size of the mask decreases



(a) Effects of tuning the number of trans-
forms, on 90 victim-target pairs. Generally,
as the number of queries and transformations
are increased, the mask size decreases and the
transform-robustness increases.

(b) Effects of tuning the max mask size option.
As mmax increases, the transform-robustness
increases and the query count decreases.

(c) Effects of tuning trlo. Generally, as trlo
increases, the mask size increases as we reject
more mask removals and the query count in-
creases some as fewer overlapping patches are
removed early.

Figure 3. Effects of trading off query count, mask size, and transform-robustness in our hard-label GRAPHITE pipeline.

TABLE 10. COMPARISON OF THE ORIGINAL TARGET-BASED
HEATMAP VS. A RANDOM HEATMAP STRATEGY. THE NUMBER OF
QUERIES CAN BE DRASTICALLY DECREASED WITH, ON AVERAGE,

SOME INCREASE IN MASK SIZE AND SOME DECREASE IN
TRANSFORM-ROBUSTNESS. AVERAGE AND STANDARD DEVIATION

ARE PRESENTED.

Strategy
Orig.

Strategy with
Target

Heatmap

Random
Heatmap

Min Query
Setting

TR (%) 77.8±17.5 76.4±17.1 19.9±21.2
Mask Size 170.3±122 175.9±121 112.993±69.7
# Queries 126k±18.9k 62.1k±12.5 572±105

and transform-robustness increases. Intuitively, this makes
sense - as the number of transformations are increased, the
objective becomes smoother, and the estimates become
more accurate. This also explains why the data at points
with fewer transformations are noisy within the relative
scale of the plot, as the sampled transformations may
represent the true distribution poorly. This performance
benefit comes at the trade-off of increased query count and
thus, if given a specific query budget, an attacker could
tune this parameter based on their query restrictions.

Random Heatmap. For this variation, we consider re-
placing the target-based heatmap estimation process with
a random heatmap strategy that simply orders the patches
randomly, processing the patches in fine-grained reduc-
tion in an arbitrary order (note that we remove coarse-
grained reduction, as its use of binary search makes it no
longer well-defined). This significantly reduces the queries
by saving an iteration over patch transform-robustness
estimations. While we lose the ability to binary search,
we save several thousand queries with this change. The
objective function of (6) rejects the removal of extremely
bad choice of patches but can suffer from poor removal
choices early on that negatively influence the final result.

The results of this experiment are shown in Ta-
ble 10, run over all 1,806 victim-target pairs. The random
heatmap strategy performs quite similarly to the original
target-based heatmap strategy with only about half of the
queries, with the average number of queries dropping from
126k to 62.1k. The loss in attack quality is a drop from
77.8% to 76.4% transform-robustness and an increase
from 170.3 to 175.9 pixels in terms of mask size. So,

random heatmap is a viable strategy when query count is
a concern. On average, however, the target-based heatmap
still outperforms in terms of transform-robustness and
mask generation.

Min Queries Setting. We now combine both previous
experiments by running GRAPHITE with the random
heatmap and with only one transformation, to see if we
can get a result that could possibly cause an accident in
the right conditions with the minimum possible queries.

The results are shown in Table 10, run over all victim-
target pairs. We find that, on average, GRAPHITE can find
attacks with 19.9% transform-robustness using only 572
queries. This includes 1,665 / 1,806 victim-target pairs
with greater than 0% transform-robustness. The mask
size is also small, with an average of 112.993 pixels
(11.0% of the image), with fewer transformations for mask
generation to have to optimize for. On just the 1665 non-
zero transform-robustness examples, the average mask
size was 107.897 pixels (10.5% of the image) and the
average query count was 566.253 queries. This suggests
that risky examples could be generated in as few as a
couple hundred queries but acquiring more robustness to
a variety of transformations requires more queries.

6.3.2. Reducing the Mask Size. To reduce the mask size,
we enable the mmax option and vary it to the desired
maximum mask size. This option can help achieve a
desired mask size limit or make a less perceptible attack.
We also change trlo = 0 to ensure that the maximum
mask size can be reached, even if it means choosing a
mask with a transform-robustness of 0.

We test with mmax values of 20, 41, 61, 82, 102,
123, 143, 164, 184, and 205, which corresponds to 2%,
4%, ..., 20% of the image area. Since mask size increases
monotonically as mmax increases, we plot the actual
average mask size on the x axis. The results of these
tests are shown in Fig. 3b. The results show an increase in
transform-robustness as the maximum mask size increases
(and thus the area to perturb increases) and a decrease in
query count, as the algorithm can get below the maximum
size quicker and exit earlier.

6.3.3. Increasing transform-robustness. To adjust
GRAPHITE based on a desired transform-robustness
level, we can tune the value of trlo. By increasing trlo,



TABLE 11. COMPARISON OF THE ORIGINAL VICTIM-OBJECT
CONSTRAINED ATTACK AND AN ATTACK WHERE THE PERTURBATION

CAN BE PLACED ANYWHERE IN THE IMAGE. AVERAGE AND
STANDARD DEVIATION ARE PRESENTED.

Strategy
Orig. Strategy,
Restricted to
Victim Object

Area Unrestricted

TR. (%) 77.8±17.5 86.7±8.81
Mask Size 170.3±122 147.1±77.8
# Queries 126k±18.9k 149k±20.6

we can achieve higher levels of transform-robustness but
potentially at the cost of larger mask size. This is because
trlo acts like a floor of acceptable transform-robustness
while performing mask generation and guarantees a higher
transform-robustness point on boosting. So, on average, a
higher trlo should result in higher transform-robustness.

We test with trlo values of 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, and 0.9. We fix trhi to 1.0 for all values of
trlo so that it can remain constant across the tests. The
average observed transform-robustness increased mono-
tonically with trlo, so we plot the actual transform-
robustness on the x axis. The results of these tests are
shown in Fig. 3c. The results show an increase in both
mask size and number of queries as transform-robustness
increases, as expected. As such, this parameter can help
raise transform-robustness if the attack is not as successful
as need be in the physical-world. Conversely, lowering trlo
may help find smaller, less perceptible attacks.

6.3.4. Removing the Victim Object Boundary Restric-
tions. To examine GRAPHITE’s performance in a setting
closer to standard patch attacks, we remove the restriction
that the perturbation be contained to the victim object.

The results show that GRAPHITE can perform even
better if it is not concerned with fitting it in within the
boundary of the victim object. The average transform-
robustness increases from 77.8% to 86.7% and the mask
size drops from 170.3 pixels (⇡ 16.6% of the image) to
147.1 pixels (⇡ 14.4% of the image). With more valid
patches to evaluate, the query count raises slightly from
126k to 149k. Thus, if the threat model does not need
to remain strictly in victim object, smaller attacks can be
found with higher transform-robustness.

6.3.5. Alternating Repeatedly between Mask Gener-
ation and Boosting. We now apply multiple rounds of
mask generation and boosting as an approximation of a
joint optimization approach, testing the 90 non-identity
victim-target pairs from Table 7 on two rounds. We find
that the average mask size improves from 172.0 to 138.9
pixels (a 19.3% improvement) but transform-robustness
decreases from 75.3% to 74.2% and query count increases
from 129.5k to 213.3k queries (a 64.7% increase). While
this strategy can yield smaller masks, the query count
increases faster than the performance improvements.

7. Discussion

We now discuss various countermeasures, how
GRAPHITE performs against a defense called Patch-
Guard [29], alternative defense approaches, transformation
limitations, license plate attacks, and ethical concerns.

7.1. Countermeasures

To the best of our knowledge, there are no defenses
that directly aim to mitigate the effects of physical attacks
that are realized through arbitrarily shaped perturbations.
However, there is some recent work that attempt to address
patch attacks (a similar attack where the perturbation is
instead restricted to a single patch) [29], [39], such as
PatchGuard [29], which we explore below. We discuss a
few other possible strategies as well.

7.1.1. PatchGuard. Recent work has, however, attempted
to address patch attacks (a similar attack where the per-
turbation is instead restricted to a single patch) [29], [39].
In this section, we investigate whether such defenses are
sufficient to defend against attacks from GRAPHITE. To
this end, we select PatchGuard [29], a state-of-the-art
provably robust defense against patch attacks.

At a high-level, PatchGuard operates by leveraging a
CNN with a “small receptive field”, i.e., a CNN where
each feature is only influenced by small regions in the
input image. This in turn suggests that patch attack per-
turbations (which occupy small regions in the input image)
influence only a few features and are thus forced to
produce abnormally large “suspicious” feature values to
elicit misclassification (which can then be masked out).
GRAPHITE, however, generates arbitrarily shaped pertur-
bations. As such, even if the model has a small receptive
field, many features can be influenced by the spread-out
perturbations. Intuitively, this suggests that PatchGuard is
largely ineffective at defending against GRAPHITE.

Results. We evaluate this intuition by launching sev-
eral GRAPHITE attacks against PatchGuard. Specifically,
we sample victim-target pairs from the CIFAR-10 dataset,
and craft GRAPHITE attacks against the authors’ CIFAR-
10 BagNet CNN implementation of the PatchGuard de-
fense. We employ transforms adapted for the 32⇥32
CIFAR-10 image size and pare down specific transforms
so that average transform-robustness of CIFAR-10 images
themselves is over 50% (rotation about y axis is reduced
to between �10° and 10°, lighting variation is removed,
and blurring is reduced to kernels of [0,3]). Across 100
randomly sampled victim-target pairs, we are able to ob-
tain an average transform-robustness of 68% using 155.8k
queries with an average mask size of 193.81 pixels. This
includes 33 examples with less than 102 pixels (10% of
the image) with 77% transform-robustness.

Discussion. The above results suggest that current
state-of-the-art defenses against patch attacks are not
effective against GRAPHITE, and that future work is
necessary to gain robustness against such attacks. One
such possible modification to the PatchGuard defense is to
mask out the top n regions (rather than that top-1 region as
in the standard PatchGuard defense) that contribute to mis-
classification. One challenge is that it is unknown to the
defender how many regions of perturbations GRAPHITE
introduces and thus what is the appropriate value (or
perhaps, thresholding) of n that would suffice. With higher
values of n, the risk of false positives could increase as
well. A future study would need to explore the defenses in
depth and experimentally evaluate them against adaptive
GRAPHITE-generated attacks against models that incor-



TABLE 12. ALPR FIELD TEST RESULTS. TRANSFORM-ROBUSTNESS
RESULTS CALCULATED OVER 5 PICTURES EACH AT: {5 FT, 10 FT, 15
FT, 20 FT} ⇥ {0°, 15°}. LICENSE PLATES ARE EXPIRED PLATES WE
ACQUIRED FOR THE PURPOSE OF TESTING THESE ATTACKS. ALL
IMAGES CROPPED TO SHOW THE PLATE AREA IN LARGER DETAIL.

Digital
GRAPHITE

attack

Physical
GRAPHITE

attack

Phys.
transform-
robustness

Avg. Lev.
Dist.

82.5% 3.175

67.5% 1.175

porate the above defense as part of their classification
pipeline. We leave this to future work.

7.1.2. Alternative Defense Approaches. Our white-box
or black-box GRAPHITE algorithm could potentially be
used in adversarial training to gain robustness to such at-
tacks. In particular, attacks could be tuned (Section 6.3) or
in other ways to be more efficient and the parameterization
of the GRAPHITE style pipeline enables the generation
of multiple attacks per image. We leave exploration of the
viability of such an approach to future work. A model of
the types of shapes and sizes of perturbations that should
be considered may also help.

It may also be possible to look for anomalous query
behavior that is suspicious of a possible hard-label at-
tack [50]. One difficulty of such a defense is that
GRAPHITE’s transformation sampling naturally applies
query blinding (e.g. the application of pre-processing
transformation functions to hide the query sequence) as
a byproduct. Prior work has shown that query blinding
weakens this type of defense [50]. We leave in-depth
analysis of the viability and anticipated next steps from
the attacker and the defender to future work.

7.2. Transformations

One benefit of the GRAPHITE framework is its ability
to accept arbitrary, parameterizable transformations in the
hard-label setting, even if non-differentiable. We choose a
set of transformations (perspective transformation, gamma
correction, and blurring) inspired by prior work [16] but
we could easily use new transformations that model dif-
ferent effects in the future.

One such case where this may be useful is with
printing and lighting error. We noticed a limitation in
gamma correction to model sun glare and printing de-
ficiencies, particularly when the color blue is involved.
See Appendix F for more details. Future improvement
in physics-based modeling could improve our ability to
robustify our attacks against a broader range of effects.

7.3. ALPR Attack

To demonstrate GRAPHITE’s ability to generalize to
a real-world system in a different domain, we attack an

Automated License Plate Recognition (ALPR) system.
We print license plate border stickers and attack expired
license plates in physical field tests. The results are shown
in Table 12. Details are included in Appendix G.

7.4. Ethical Concerns

While the algorithms described could be misused to
discover vulnerabilities in real systems for potential at-
tacks, it is important to provide system designers tools to
understand potential vulnerabilities to hard-label physical
attacks before deployment. Our hope is that the ability to
discover these attacks quickly can guide future defense
design as in Section 7.1. As perhaps the most practical
threat model, hard-label physical attacks could represent
the first stage of attacks that we should defend against -
these are the attacks that an adversary could practically
pull off in the real-world with the least amount of model
access for the model to be useful.

8. Conclusion

We proposed GRAPHITE, a general framework for
generating practical, real-world attacks on computer vision
systems that satisfy three key requirements: that they are
automatic, physical, and only require hard-label access
to a machine learning classifier. GRAPHITE’s attacks
are both automatically generated (e.g., without requiring
specification of mask shapes or their location) and highly
query-efficient compared to state-of-the-art in both white-
box and black-box hard-label settings. In black-box hard-
label settings, GRAPHITE is able to generate attacks that
are orders of magnitude more efficient in terms of number
of queries to the model than other state-of-the-art black-
box hard-label attacks. As future direction for research,
we plan to explore the use of GRAPHITE framework in
adversarial training to help address an open problem –
training models to better defend against robust physical
perturbation attacks.

Acknowledgements

This material is based on work supported by DARPA
under agreement number 885000, Air Force Grant
FA9550-18-1-0166, the National Science Foundation
(NSF) Grants 1646392, 2039445, CCF-FMitF-1836978,
SaTC-Frontiers-1804648 and CCF-1652140, and ARO
grant number W911NF-17-1-0405. Earlence Fernandes is
supported by the University of Wisconsin-Madison Of-
fice of the Vice Chancellor for Research and Graduate
Education with funding from the Wisconsin Alumni Re-
search Foundation. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright notation thereon.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the author(s)
and do not necessarily reflect the views of our research
sponsors. We thank Nelson Manohar for his help in early
development, and Renuka Kumar, Washington Garcia,
David Fouhey, Pin-Yu Chen, and Varun Chandrasekaran
for their feedback.



References

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2016, pp. 770–778.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classi-
fication with deep convolutional neural networks,” in Advances in

neural information processing systems, 2012, pp. 1097–1105.

[3] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proceedings of

the IEEE conference on computer vision and pattern recognition,
2015, pp. 815–823.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[5] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in Pro-
ceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 2818–2826.

[6] A. Geiger, P. Lenz, and R. Urtasun, “Are we ready for autonomous
driving? the kitti vision benchmark suite,” in Computer Vision and

Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE,
2012, pp. 3354–3361.

[7] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep rein-
forcement learning,” arXiv preprint arXiv:1509.02971, 2015.

[8] OpenPilot, “OpenPilot on the Comma Two,” https://github.com/
commaai/openpilot, 2020.

[9] H. Bou-Ammar, H. Voos, and W. Ertel, “Controller design for
quadrotor uavs using reinforcement learning,” in Control Appli-

cations (CCA), 2010 IEEE International Conference on. IEEE,
2010, pp. 2130–2135.

[10] C. Mostegel, M. Rumpler, F. Fraundorfer, and H. Bischof, “Uav-
based autonomous image acquisition with multi-view stereo quality
assurance by confidence prediction,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition Work-

shops, 2016, pp. 1–10.

[11] F. Zhang, J. Leitner, M. Milford, B. Upcroft, and P. Corke, “To-
wards vision-based deep reinforcement learning for robotic motion
control,” arXiv preprint arXiv:1511.03791, 2015.

[12] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in 2017 ieee symposium on security and privacy

(sp). IEEE, 2017, pp. 39–57.

[13] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” arXiv preprint arXiv:1412.6572,
2014.

[14] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,
and A. Swami, “The limitations of deep learning in adversarial
settings,” in 2016 IEEE European symposium on security and

privacy (EuroS&P). IEEE, 2016, pp. 372–387.

[15] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,”
arXiv preprint arXiv:1312.6199, 2013.

[16] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing
robust adversarial examples,” arXiv preprint arXiv:1707.07397,
2017.
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Appendix A.
NP-Completeness of Mask Generation

We now explore the theoretical properties of mask
generation and prove its NP-Completeness. Let an n⇥ n

square grid be represented as Gn, which is a graph
(Vn, En) (Vn has vertices (i, j), where 0  i  n and
0  j  n and for each (i, j), {(i, j + 1), (i, j � 1), (i+
1, j), (i�1, j)}\Vn is in the set of edges En). A mask M

is a sub-graph of the grid Gn that corresponds to a con-
tiguous region of squares. Let C(Gn) be the set of masks
corresponding to the grid Gn. Let µ : C(Gn) ! R+

be a monotonic scoring function (M ✓ M
0 implies that

µ(M)  µ(M 0)). The mask generation problem can be
stated as follows: Given r and threshold t, find a mask
M of size  r (the size of the mask is number of
squares in it) such that µ(M) � t. We call this problem
MASKP (n, µ, r, t).

Simply enumerating masks is not feasible because
the number of masks could be exponential. We provide
a simple argument. Consider a k ⇥ k sub-grid of Gn.
Consider columns that are odd numbered (i.e. of the form
(i, ?), where i is odd). Now any choice of one square for
the even columns gives us a contiguous mask, so there
are � 2

k(k+1)
2 masks. There are (n � k)2 k ⇥ k sub-

grids in Gn. So a lower bound on masks of size k is
at least (n� k)22

k(k+1)
2 . Next we prove that our problem

is actually NP-complete.
The Set Cover. Given a universe U and a family S of

subsets of U , a cover is a subfamily C ✓ P(U) of sets
whose union is U . In the set-covering decision problem,
the input is a triple (U ,S, k) (k is an integer), and the
question is whether there is a set covering of size k or

less. In the set covering optimization problem, the input
is a pair (U ,S) and the task is to find a set covering that
uses the fewest sets. The set-covering decision problem is
known to be NP-complete.
Theorem 1. Problem MASKP is NP-complete.

Proof. Our reduction is from the decision set-cover prob-
lem. Assume we are given an instance of the set-cover
problem (U ,S, k). Let n = max(|U|, |S|). We create
a n ⇥ n grid Gn. Let C(Gn) be the set of masks of
Gn. We construct a scoring function µ as follows: Let
M be a mask. Let I = {i|(i, 0) 2 M}, and SI =
{Sj |j 2 I ^ Sj 2 SI}. µ(M) = 1 if and only if
the following condition holds (otherwise µ(M) = 0):
|I|  k and [j2I = Sj = U . It is easy to see
that MASKP (n, µ, n2

, 1) has a satisfying solution iff the
instance of the set cover problem has a solution. This
proves that the problem is NP-hard. Given a solution to
the problem MASKP (n, µ, r, t), it is easy to check that it
is a valid solution in polynomial time, so the problem is
NP. Therefore, MASKP (n, µ, r, t) is NP-complete. ⇤

Appendix B.
Transformation Details

Prior work by Eykholt et al. [18] and Athalye et
al. [16] model environmental effects to create physical-
world attacks in the white-box setting. These transforma-
tions account for varying conditions such as the distance
and angle of the camera, lighting conditions, etc. Based
on this work, we build a more principled set of trans-
formations using classical computer vision techniques. To
this end, we group these effects into 3 main classes of
transformations:

1) Geometric transformations: These transforma-
tions refer to shape-based changes including ro-
tation, translation and zoom. For planar objects,
all three effects can be captured in a single per-
spective transformation through a homography
matrix. Homography matrices relate two planar
views under different perspectives.
Geometrically, to convert points from one image
plane to another, one can break down the op-
eration into a rotation and translation matrix R,
perspective projection onto a plane (P), and an
affine transformation from plane to pixels (A).
In the planar case, this boils down to a 3 ⇥ 3
homography matrix H:

xout = APRxin = Hxin (9)

We use these homographies to simulate rotation
around the y axis and different viewing distances
for given ranges of values. Once we pick val-
ues for each of the parameters uniformly, we
construct the homography matrix to compute the
transformation.
After performing the perspective transform, we
random crop to the tightest square crop that
includes the whole object ±c% of the resultant
image size to adjust for cropping errors. We also
add random offsets for the crop, given as two



(a) (b)

(c) (d)

Figure 4. Examples of different transformed images. The upper-left
image is the original, and the rest are three examples of transformed
versions with perspective, lighting, and blurring transforms.

more parameters. Then, we resize the square to
the original resolution.

2) Radiometric transformations: These are
appearance-based transformations with effects
such as lighting-based changes. One technique
to perform brightness adjustments is gamma
correction, which applies a nonlinear function.
Separately, printers apply nonlinear functions to
their colorspaces as well. Gamma correction is
reflective of nonlinear human sight perception.
To model these radiometric-based changes, we
model gamma correction under gamma values
between 1

� and �, with half coming from [ 1� , 1]
and half coming from [1, �] in expectation
where � is the maximum gamma value allowed.
Assuming the image ranges from [0, 1], this is
defined as the following:

xout = x
�
in (10)

Note that one limitation of gamma correction is
that if the color consists of RGB values of 0 or
255, the color does not change regardless of the
gamma value.

3) Filtering transformations: These transforma-
tions model changes related to the camera focus.
We model Gaussian blurring of different kernel
sizes to measure the effects of the target object
being out-of-focus. As a side benefit, this may
help deal with printer error as some precision in
color values is lost in printing. To maximize this
printer side benefit, we blur just the perturbation,
and let the perspective transform take care of
minor out of focus variation in the rest of the
image.

We define a single transformation to be a composite
function that includes one of each type of modeled trans-
formation. In our case with those listed above, we would
have a perspective transform followed by a cropping oper-
ation, gamma correction, and a Gaussian blur convolution.
Examples of transformed images are shown in Figure 4.

(a) Target: Speed
Limit 30
km/hr sign.

(b) Target:
Pedestrians
sign.

(c) Target: Turn
Left Ahead
sign.

(d) Target: Stop
sign.

(e) Target:
Pedestrians
sign.

(f) Target: Turn
Left Ahead
sign.

Figure 5. Example targeted, white-box automatic, physically-
realizable attacks between: Stop, Speed Limit 30 km/hr,
Pedestrians, Turn Left Ahead.

Appendix C.
Additional White-box Details and Results

In this section, we discuss additional details on hy-
perparameters for the white-box experiment in Section 4.
We also include example digital results in Figure 5. We
set z = 4 (the number of patches to remove at a time)
and trmin = 80% (the stopping criteria of the minimum
transform-robustness the EoT PGD attack must find). We
choose values of the patch size p and step size s such that
when rounded to the nearest int, the patches consists of
the areas that 4⇥ 4 patches would occupy in the original
32⇥32 input resolution of GTSRBNet at a stride of 2. We
compute transform-robustness with 100 transforms. PGD
is performed with a step-size of 2/255 and a max of 50
iterations per round of patch removal. The perturbation is
restricted to be within the pre-defined boundaries of the
victim traffic sign (if desired, object boundaries could be
detected automatically with a segmentation network). Fi-
nally, we apply a random start on PGD with noise between
[�8/255, 8/255]. Details on the specifics of GTSRBNet
and the transformations, which mirrors that of the hard-
label attack, can be found in Section 6.1 and Appendix B.

Appendix D.
Additional CIFAR-10 Results

We include example images from our CIFAR-10 dig-
ital results in Table 13.

Appendix E.
Drive-by Test Images

We include example images from our drive-by exper-
iments in Table 14.



TABLE 13. RANDOM SAMPLE OF DIGITAL TARGETED ATTACKS ON CIFAR-10. RAN WITH trlo = 65%, trhi = 85%, n = 100 TRANSFORMS.
FOR CELLS WITH SAME VICTIM AND TARGET, WE REPORT THE % OF TRANSFORMS THE ORIGINAL LABEL IS PREDICTED. MASKS SIZE IS

REPORTED IN TERMS OF # OF PIXELS IN 32⇥ 32 (I.E., `0 IN 32⇥ 32 SPACE). THE ACTUAL VICTIM AND TARGET IMAGES USED IN EACH CELL
ARE RANDOMLY SELECTED FROM THE POOL OF IMAGES OF THAT CLASS, WITH THE REFERENCE IMAGE IN THE TOP AND LEFT BEING USED

FROM THE DIAGONAL IMAGES.

Target

Victim

Transform-robustness 89% 96% 86% 91% 78% 91% 84% 84% 73% 75%
Mask Size 0 111 21 63 73 75 67 113 166 93

Transform-robustness 100% 78% 82% 93% 73% 89% 90% 92% 49% 100%
Mask Size 128 0 451 121 256 97 273 92 146 46

Transform-robustness 96% 78% 18% 98% 92% 93% 100% 100% 95% 79%
Mask Size 66 233 0 12 21 101 53 88 170 90

Transform-robustness 100% 92% 98% 97% 99% 96% 98% 78% 67% 79%
Mask Size 53 235 74 0 67 115 109 122 167 74

Transform-robustness 98% 97% 96% 100% 97% 61% 91% 82% 46% 98%
Mask Size 39 114 102 92 0 34 45 149 216 67

Tranform robustness 100% 98% 89% 99% 95% 100% 93% 76% 79% 95%
Mask Size 61 167 33 68 49 0 105 77 610 125

Tranform robustness 98% 99% 100% 83% 81% 97% 94% 98% 51% 60%
Mask Size 48 116 44 80 88 29 0 63 414 138

Transform-robustness 80% 99% 84% 89% 100% 98% 67% 77% 80% 100%
Mask Size 197 121 152 89 122 24 264 0 105 54

Transform-robustness 100% 57% 99% 95% 91% 70% 100% 91% 96% 100%
Mask Size 58 120 61 79 201 19 961 63 0 73

Transform-robustness 94% 95% 95% 100% 73% 72% 93% 82% 24% 100%
Mask Size 90 66 271 49 237 139 77 74 251 0

Appendix F.
Printing and Lighting Error

We noticed a limitation of gamma correction’s ability
to model sun glare and printing errors while testing a
Stop Sign to Turn Left Ahead attack. Of partic-
ular interest was the discrepancy between the modeled
attack’s blues in the digital form and the captured attack’s
blues in the physical form.

Examples images for the initial field tests are shown
in Table 15 and example images for drive-by tests are

shown in Table 16. In the drive-by tests, 42 frames were
analyzed and the transform-robustness was 19%.

We can see that the Turn Left Ahead attack is
less successful than the Speed Limit 30 km/hr or
Pedestrians attack. However, we can easily see that
the blue over the “P” is very different in the digital and
physical versions, and we hypothesize that it plays a big
factor in the performance drop.

To test this hypothesis, we take the outdoor images
and digitally darken them. We find that by darkening them
we are able to raise the attack success rate from 0% to



TABLE 14. SAMPLE OF GTSRB DRIVE-BY TEST PICTURES. TOP:
SPEED LIMIT 30 KM/HR ATTACK. BOTTOM: PEDESTRIANS

ATTACK.

52.9%. Likewise, we are also able to increase the attack
success rate for the drive-by images by digitally increasing
the contrast and decreasing the brightness. This raises
the attack success rate from 19% to 47.6%, including
successful attacks on the last 11 frames. This suggests that
much of the inaccuracy can be attributed to the modeling
and error of the blue color.

We can trace this to two limitations printing and
lighting error. Printing blue was harder than other colors.
In a related issue, a second limitation was the inaccuracies
of modeling sun glare, as shown by the increase of attack
success in indoor lighting settings (Table 15).

Examining the problem more closely, the color in the
blue spot over the “P” includes many instances of the tuple
(0, 0, 255). While our transforms adjust for lighting with
gamma correction, its exponential nature always leaves
a tuple like (0, 0, 255) as (0, 0, 255). This suggests a
limitation of using gamma correction as a method for
modeling lighting changes (especially impact of sunlight)
for colors at the extreme ends of the RGB spectrum.

A better model to address lighting changes at extreme
ends of the spectrum in EoT transforms may increase
robustness. More accurate modeling of printing error in
the transformations could help mitigate this effect as
well. We add that we found it difficult to improve the
printing quality by adding the NPS term as in RP2 [18]
to GRAPHITE, as oftentimes the limited color palette
either made too difficult to find good attacks. Finally,
while point source lighting and further sun glare mod-
eling could be conceptually done, this would requires
knowledge of physical surface properties (reflectivity, etc.)
and weather/environmental conditions beyond what was
available with the current data.

Appendix G.
ALPR Attack

This section includes details on attacking an Auto-
mated License Plate Recognition (ALPR) system with
GRAPHITE.

Dataset and Classifiers. For ALPR, we use Ope-
nALPR version 2.3.0, the latest freely available version.
We treat this command line tool as a complete black-
box. While this particular tool provides confidence scores,

others may not, so we do not use the scores during our
attack. We initialize with the same image but with a gray
rectangle filled in with (127, 127, 127) over the plate.

ALPR Attack Details. To attack ALPR systems, we
imagine printing a license plate holder sticker to cause the
ALPR system to fail to detect your license plate number
correctly (in an untargeted fashion). In this case, we could
attack with just the boosting stage from the (known)
border mask consisting of the license plate holder, but
we found this typically yielded a result with poor initial
transform-robustness. To over come that, we alternate
between mask generation and boosting in multiple rounds
as initially discussed in Section 6.3.5. We essentially want
to reduce the mask inside of the plate border to zero, but
cannot initially apply boosting on just the border, so we
find it useful to slowly remove the inside of the plate until
we have a sufficiently transform-robust border.

To test our ALPR attack, we print out the license plate
holder stickers and place it on expired license plates we
acquired for purposes of field testing. We ran ALPR on
stationary pictures of the car taken in a driveway and took
five pictures of the car at 5’, 10’, 15’, and 20’ away at
both 0 and 15 degree angles. We generate our attack on
images of height 500. The perturbation was generated at
a height of 250 and enlarged to fit over the whole image.

As with GTSRB, we use the original author’s
YOLOv3 [45] object detector network trained on MS
COCO [46] to predict bounding boxes for the car. We take
the output bounding boxes, crop the sign accordingly, and
send the crops to the black-box ALPR pipeline.

Hyperparameters. Like our GTSRB attack, we test
over n = 100 transformations to compute transform-
robustness and take q = 10 gradient samples for RGF
sampling [32]. For transformations, we model rotations
about the y axis with homography matrices, lighting
changes with gamma correction, and focus changes with
Gaussian blurring.

For our ALPR attack, we set rotation to be between
�15° and 15° and fix the base focal length f = 10 ft.
We set the Gaussian kernels to sizes 1, 3, and 5, and let
the remaining parameters match the GTSRB attack. We
used 3 iterations of mask generation and boosting. The
patch size for mask generation was 8⇥ 8, then 4⇥ 4, and
then in the last iteration the mask was fixed to just the
border. The stride for the patches was the width divided by
2. We additionally added in the backtracking line search
to adaptively select the step size as in OPT-attack [20].
We set trlo = 20% and trhi = 60%. We use n = 10
transformations in mask generation and n = 50 transforms
in boosting. We set � in (6) to 25. We do not utilize the
mmax option.

Physical Transform-Robustness Field Tests: We also
evaluate ALPR license plate holder attacks on two plates
and cars. In total, we evaluated over 700 physical images.

Table 12 shows ALPR field test results. These attacks
took an average of 12950 queries. We found these attacks
to have physical success as well. The Washington plate
attack success rate was 82.5%. The transform-robustness
(digital) for this attack was 80%. 100% of unperturbed,
baseline images correctly predicted the license plate. For
the Michigan plate attack, the attack succeeded in 67.5%
of images while the transform-robustness for this attack
was 86%. 82.5% of unperturbed, baseline images correctly



TABLE 15. GTSRB FIELD TEST RESULTS FOR VICTIM STOP SIGN AND TARGET TURN LEFT AHEAD . PHYSICAL ROBUSTNESS RESULTS ARE
CALCULATED OVER 5 PICTURES EACH AT THE FOLLOWING SPOTS: 5 FT ⇥ {0°, 15°, 30°, 45°}, 10 FT ⇥ {0°, 15°, 30°}, 15 FT ⇥ {0°, 15°}, 20

FT ⇥ {0°, 15°}, 25 FT, 30 FT, 40 FT. THE ATTACK WAS TESTED 3 TIMES: OUTDOORS, INDOORS WITH INDOOR LIGHTS TURNED OFF, AND
INDOORS WITH INDOOR LIGHTS TURNED ON.

Victim Target
Digital

GRAPHITE
attack

Physical
GRAPHITE

attack
(outdoors)

Dig. TR
(100

xforms)

Phys. TR
(Indoors,
lights off)

Phys. TR
(Indoors,
lights on)

Phys. TR
(Outdoors)

80% 55.7% 55.7% 0%

TABLE 16. SAMPLE OF GTSRB DRIVE-BY TEST PICTURES FOR
TURN LEFT AHEAD ATTACK.

predicted the license plate. The average Levenshtein dis-
tance, which calculates the number of additions, subtrac-
tions, and substitutions required to change one string to
another, was 2.175 (including correct predictions). These
results also suggest that transform-robustness translates
well to physical-world robustness.


