
Accelerating Spatial Autocorrelation Computation
with Parallelization, Vectorization and Memory

Access Optimization
With a focus on rapid recalculation of COVID related spatial statistics for faster geospatial analysis and response

Anmol Paudel
Department of Computer Science

Marquette University
Milwaukee, USA

anmol.paudel@marquette.edu

Satish Puri
Department of Computer Science

Marquette University
Milwaukee, USA

satish.puri@marquette.edu

Abstract—Geographic information systems deal with spatial
data and its analysis. Spatial data contains many attributes with
location information. Spatial autocorrelation is a fundamental
concept in spatial analysis. It suggests that similar objects
tend to cluster in geographic space. Hotspots, an example of
autocorrelation, are statistically significant clusters of spatial
data. Other autocorrelation measures like Moran’s I are used
to quantify spatial dependence.

Large scale spatial autocorrelation methods are compute-
intensive. Fast methods for hotspots detection and analysis are
crucial in recent times of COVID-19 pandemic. Therefore, we
have developed parallelization methods on heterogeneous CPU
and GPU environments. To the best of our knowledge, this
is the first GPU and SIMD-based design and implementation
of autocorrelation kernels. Earlier methods in literature intro-
duced cluster-based and MapReduce-based parallelization. We
have used Intrinsics to exploit SIMD parallelism on x86 CPU
architecture. We have used MPI Graph Topology to minimize
inter-process communication.

Our benchmarks for CPU/GPU optimizations gain upto 750X
relative speedup with a 8 GPU setup when compared to baseline
sequential implementation. Compared to the best implementation
using OpenMP + R-tree data structure on a single compute node,
our accelerated hotspots benchmark gains a 25X speedup. For
real world US counties and COVID data evolution calculated
over 500 days, we gain upto 110X speedup reducing time from
33 minutes to 0.3 minutes.

Index Terms—Spatial Statistic, Getis-Ord, Moran’s I, Geary’s
C, Hotspots, Vectorization, Cache, Intrinsics, Parallelization,
OpenMP, OpenACC, CUDA, MPI, MPI Topology

I. INTRODUCTION

In spatial statistics and spatial data mining, there are many
methods to discover and explore interesting patterns in spatial
data. Spatial autocorrelation is one such class of methods that
are used in spatial data analysis. Spatial datasets often are
not independent and identically distributed (i.i.d) [22]. Spatial
datasets exhibit statistically significant clustering in attribute
values under study.

Hotspots analysis is a technique in geospatial analysis used
to visualize geographic data in order to show areas where
a higher density or cluster of activity occurs. For example,

in a city, we can collect crime data from different locations
and with hotspot analysis we can see if there are clusters in
the city with significantly higher/lower incidence of crime
than so by random chance. Two concepts - similarity of
values and proximity of locations, or lack of those, are crucial
to calculating hotspots and hence requires spatial statistics.
Hotspot detection is useful in many fields like public health,
crime analysis, schooling, sales, agriculture etc.

We focus on Getis-Ord (Gi*) statistic which is computed
for each feature in a dataset. The resultant z-scores and p-
values show where features with either high (or low values)
cluster spatially. In short, each feature is evaluated within the
context of neighboring features. To be a statistically significant
hotspot, a feature will have a high value and be surrounded
by other features with high values as well.

Hotspots are sometimes confused with a similar spatial
visualization technique known as heatmaps. Hotspots differ
from heatmaps where point data is analyzed in order to create
an interpolated surface showing the density of occurrence
where each cell is assigned a density value and the entire
layer is visualized using a gradient.

We present performance engineering for Hotspots kernel
using SIMD on CPUs and SIMT (Single Instruction Multi-
ple Thread) on GPUs for exploiting fine-grained vector/data
parallelism. For relative speedup calculations, we have used
sequential implementation with spatial sorting as a baseline.
For absolute speedup calculation, we have used R-tree data
structure based implementation. Based on this R-tree baseline,
we have demonstrated absolute speedup upto 16X using SIMD
+ multi-threading on a single compute node. For scalability,
our system leverages multiple GPUs using MPI. Our bench-
marks for CPU/GPU optimizations gain upto 750X relative
speedup with a 8 GPU setup when compared to baseline
sequential implementation.

Earlier methods for hotspots problem have used pointer-
based tree data structures like quadtree for storing location data
and for range query. For effective SIMD/SIMT parallelization,

instead of tree data structure, we have designed a novel spatial
locality-preserving 2D array-based data structure for weight
matrix. On a distributed memory environment, this weight
matrix further aids in creating task interaction graph which
can be utilized to minimize communication using MPI graph
topology functions.

The rest of the paper is organized as follows. Section II
presents the motivation and background. Section III presents
the parallel formulation for the problem. Section IV presents
the acceleration techniques on CPUs and GPUs. Section V
presents the experimental results. Finally, we conclude in
Section VI.

II. MOTIVATION AND BACKGROUND

Finding patterns helps us identify causes and predict future
trends. For instance, finding hotspots of Covid-19 occurrences
enable us to study disease spread and efficient resource al-
location to combat the problem at hand. We have identified
important autocorrelation kernels in spatial domains for paral-
lelization. In the existing work, the focus has been on coarse-
grained approaches with less attention to data movement
aspects and communication complexity [23].

A. Spatial autocorrelation

The notion of spatial autocorrelation is related to first law of
geography: Everything is related to everything else, but nearby
things are more related than distant things [24]. The value of
attributes at a given location tend to vary gradually over space.
For instance, weather of two adjacent areas tend to be similar.
In many cases, events in a given area are influenced by the
events at neighboring areas. In spatial statistics, this property
is called spatial autocorrelation [22]. A famous example of
application of this concept was finding the link between
Cholera outbreak and contaminated water in London in 1855
by looking at the clustering of disease occurrences (hotspots)
around a water pump. An example of hotspots map is shown
in Figure 1.

Spatial interdependence of attributes exhibited in data with
respect to location and distance is captured by statistical
measures like Moran’s I. There are many local and global
auto-correlation kernels. We focus on a representative and
popular kernel - Hotspots. For a set of disease occurrences,
finding hotspots aim at detecting disease outbreaks well before
it results in a large number of cases. Hotspots are statistically
significant clusters of observations based on similarities of
values and locations. Hotspot detection is used in many fields
like public health, crime analysis, etc.

B. Common Dataset Structures

Data for geo-spatial autocorelation analysis can usually
come in 3 forms:

1) Aggregated Boundary data: This is the most typical type
of available dataset for which usually a boundary is
given and a value corresponding to the boundary is avail-
able. The boundary can be a known regular shape like
square, rectangular, hexagonal or an irregular polygonal

Fig. 1. Polygon boundaries with their corresponding z scores and p values [1]

boundary. An example of this would be county level
covid cases data. For each county, there is a defined
polygonal boundary which is not a regular shape and
for each county there would be a corresponding attribute
value like active covid cases.

2) Unit point incidence data: This is the type of data where
we have geolocation instances of incidents. Here we
would have multiple points where each point corre-
sponds to a single incident. Common example of this
type of dataset is the crime dataset where each point
relates to a reported criminal activity. A covid related
example would be having a dataset of all the people
who tested positive in a given area. In this dataset, each
person would represent an individual incident and the
geolocation of their home address would be an incident
point.

3) Aggregated point incidence data: This is the type of
data where we have instances from an area aggregated
at a point. In the crime dataset, the geolocation of the
police station could be the incident point and number
of complaints are aggregated to get one single attribute
value per incident point. A covid related example would

Fig. 2. Point data overlaid on a Grid vs Polygonal Boundaries [1].

be having a list of rapid testing centers, where the
geolocation of the testing center is the incident point and
the number of all tested positive cases are the aggregate
attribute value.

In geospatial analysis, to calculate and show hotspots,
boundaries are required. In the second case, the data can be
overlaid on a regular grid of squares, rectangles, or hexagonal
shapes. Another approach is to overlay the data on top of
a polygonal layer, for instance, boundaries of zipcodes. All
the values inside the boundary can be aggregated and used as
the corresponding attribute value for the polygonal boundary.
Figure 2 shows an example of data being overlaid on a regular
grid and a polygonal map. Depending on the choice of data
overlay, the computational cost will vary.

C. Parallelization

Vector/SIMD Intrinsics: Vector/SIMD extensions of In-
struction Set Architecture are provided by modern CPUs
for single instruction steam, multiple data stream (SIMD)

processing. For x86 CPUs, special wide registers and vector in-
structions are provided for parallel processing at the instruction
set level. For instance, x86 processors provide AVX (advanced
vector extensions) instructions. ARM processors provide neon
extensions. In this paper, for effective SIMD parallelization,
we have used AVX instructions through C functions (called
intrinsic functions). Intrinsics are replaced directly to vector
instructions without the overhead of function calls. In this
paper, we achieved better performance when compared to
compiler generated vectorization of our computational kernels.

MPI Graph Topology: Given a process interaction graph,
MPI provides support to map the processes on a compute
cluster. The application level topology can be mapped to the
the physical topology of a network using cartesian and graph
topology functions in MPI. Since a good mapping of processes
to network topology reduces the data communication volume
across the network, we have used graph topology functions in
our implementation.

D. Related Work

With the volume of data increasing due to its spatio-
temporal nature, parallelization of existing algorithms have
been done [9], [10], [13], [19]. Existing approaches use spatial
partitioning methods like quadtree for parallelization [10].

GPU-based implementations of geospatial filter-based al-
gorithms have been presented in [11], [12]. MPI-based
parallelization of geospatial polygon overlay and spatial join
has been presented in [20], [21], [26].

A Matlab-based shared memory parallelization has been
described in [9]. Hadoop MapReduce has been used to
parallelize Getis-Ord based Hotspots detection problem using
quadtree-based decomposition of spatial data [10]. Apache
Spark framework has also been used to parallelize spatial
hotspot computation [13], [19]. Spark MapReduce papers
are short papers from GIS Cup competition organized with
SIGSPATIAL conference [13], [19]. Hadoop and Spark based
projects make good use of thread-level and coarse-grained par-
allelism but do not take full advantage of HPC resources (e.g.,
SIMD, GPUs) thus leaving performance on the table [10], [13],
[19]. The trade-offs of calculating weight matrix vs on the fly
computation has been discussed in .

Compared to related literature, our paper further explores
additional hardware and software parallelization opportunities.
GPU SIMT parallelization and CPU SIMD parallelization
along with communication optimizations are the novelties
compared to related literature.

III. PARALLEL FORMULATION OF SPATIAL
AUTOCORRELATION

We can use Getis-Ord algorithm to calculate the G∗
i statistic

for each feature in a dataset [16]. In geospatial analysis, it
gives a Z-score statistic G∗

i where xj is the value for polygon
j. wi,j is a weight parameter between polygons i and j which
is inversely proportional to the active distance between them.
N is equal to the total number of polygons in our dataset.
Positive and negative G∗

i values denote hot and cold spots

respectively and the absolute value of G∗
i is proportional to

the intensity of clustering for the ith polygon.
The equations to the Getis-Ord algorithm are as follows:

X =

∑n
j=1 xj

n
(1)

X2 =

∑n
j=1 x

2
j

n
(2)

SX =

√
(X2)− (X)2 (3)

WXi
=

n∑
j=1

wi,jxj (4)

Wi =
n∑

j=1

wi,j (5)

W 2
i =

n∑
j=1

w2
i,j (6)

Si =

√√√√[
n ∗W 2

i −
(
Wi

)2]
n− 1

(7)

G∗
i =

WXi
−X ∗Wi

SX ∗ Si
(8)

For Moran’s I:

W =
n∑

i=1

n∑
j=1

wi,j (9)

I =
n

W

∑n
i=1

∑n
j=1 wi,j(xi −X)(xj −X)∑n

i=1(xi −X)2
(10)

Values of I usually range from −1 to +1. Values signifi-
cantly below (1−N)−1 indicate negative spatial autocorrela-
tion and values significantly above (1 − N)−1 indicate pos-
itive spatial autocorrelation. For statistical hypothesis testing,
Moran’s I values can be then transformed to z-scores.

Geary’s C:

C =
n− 1

2W

∑n
i=1

∑n
j=1 wi,j(xi − xj)

2∑n
i=1(xi −X)2

(11)

N is the number of spatial units indexed by i and j. x is
the variable of interest; x̄ is the mean of x; wi,j is a matrix
of spatial weights with zeroes on the diagonal (i.e., wii = 0
and W is the sum of all wi,j .

The value of Geary’s C lies between 0 and some unspecified
value greater than 1, usually lower than 2. Values significantly
lower than 1 demonstrate increasing positive spatial autocor-
relation. Values significantly higher than 1 illustrate increasing
negative spatial autocorrelation. Geary’s C is inversely related
to Moran’s I. Moran’s I is a measure of global spatial auto-
correlation, while Geary’s C is more sensitive to local spatial
autocorrelation.

A. Algorithm

The Algorithm for Getis-Ord is as follows:
1) Load all the Points and their x attribute values.
2) Calculate the mean of all the x values, denoted by X .
3) Calculate the mean of all the x2 values, denoted by X2.
4) Calculate S, the standard deviation of all the x values.
5) Calculate the values for wi,j , the weight metric between

polygon i and polygon j.
6) Calculate w2

i,j from wi,j .
7) For each i, calculate Wi from wi,j .
8) For each i, calculate W 2

i from w2
i,j .

9) For each i, calculate Si from Wi and W 2
i .

10) For each i, calculate WXi
from wi,j and x values.

11) For each i, calculate G∗
i .

B. Complexity

The time complexity of this algorithm is O(N2) and the
space complexity of this algorithm is O(N). This analysis of
time complexity is contingent on the assumption that inverse
distance squared (impedance) is used for wi,j and any similar
O(c) method of calculating wi,j would keep the analysis the
same. Similarly, for the space complexity no pre-calculations
of wi,j are assumed. Pre-calculations of wi,js would make the
space complexity to become O(N2) too.

C. Weight Matrix

The most common technique of calculating wi,j is the
metric called the inverse distance. Distance could be differ-
ent types but most typically the euclidean distance. Inverse
distance is a metric would be a high value for things that are
closer and low value for things that are spatially further apart.
It should be noted that wi,j = k ∀(i = j), where k is a value
of no consequence and is just used as a placeholder because in
this case both i, j would be the same point so no distance and
undefined inverse distance. On, the other end, objects further
than a certain threshold can be deemed to have a inverse
distance value of zero i.e. wi,j = 0 if invDist(i, j) < ϵ. Also,
wi,j = wj,i because both are distance-based quantities which
does not vary on direction. Hence, if w was to be modeled as a
matrix, it would be a n×n symmetric matrix with diagonals all
k. Basically, it is an adjacency matrix where wi,j corresponds
to the weight, as it relates to the spatial relation between two
areas i and j.

D. Spatial Sorting

Spatial sorting is used to arrange 2-dimensional points in 1-
dimensional order based on spatial proximity (locality). Space
filling curves are used for spatial sorting, such as Z-order [15]
and H-order (also known as Hilbert curve). For illustration, let
us assume that we have a list of tuples, where the first entry
is the x-coordinate and the second entry is the y-coordinate of
a point. After sorting the list spatially, points that are closer
to each other in the xy plane would appear closer in the list.
Proximity of the points - difference in their index values in the
sorted list would be an indication of proximity of the points
in euclidean space and vice versa.

Fig. 3. Slice of the Weight Matrix. Each row and column index corresponds
to a polygon id. For any two polygons i and j, element at index (i, j) is the
inverse of the euclidean distance between centroids of i and j.

Having the polygons from our data sorted has special
implications for our application and acceleration objectives,
especially the affect it has on the weight matrix. Looking at
Figure 3, we can observe that if the polygons are spatially
sorted, then in each row i, the columns that have non-zero
entries are only the columns numbered close to the value
of i. This is because, as polygons get further apart, their
inverse distance decreases and beyond a threshold, they simply
become zero. So, for each row i, the columns j for whose
values are further apart, their values are simply zero because
it represents the underlying property that polygon i and j are
just spatially further away from each other.

Expanding upon this property, we will find that for each
row i there are only columns in the range (i − li, i + ri) for
which the weight values are non-zero. Let li be the number of
entries to the left of i that are non-zero and ri be the number
of entries to the right of i that are non-zero. Given a large
map with lots of polygons, the range (li + ri) can become
significantly small, making our matrix a sparse matrix with
only elements around the main diagonal being non-zero and
elements further away from the diagonal being mostly zeros.
For example, with 100k polygons the max range (li+ ri) was
less than 200.

Furthermore, for the rapid recalculation part, in events
where we only have new data for a few polygons and we
want to update the scores, the only polygons that require
recalculation would be the polygons which have new data and
the polygons with which it has a non-zero weight relationship.

Comparison with R-tree: An alternative to using the
weight matrix would be the use of a R-tree like approach.
Here, our cutoff threshold ϵ from the weight matrix would
translate to a certain distance and we would then query the
tree to get all polygons within that distance range from the
query polygon. We could then calculate weights wi,j for each
query polygon i and queried polygons denoted by j. If we
use this approach, rather than the sorting and pre-calculating
weights, then it would add overheads needed to build a tree.

This is in contrast to the tradeoff of sorting all the polygons.
Since the locations of the polygons are static, the tree would
only be needed to be built once just like the sorting. The
advantage of using weight matrix is that the weights will be
available in memory easily accessible for SIMD operations.
Also, in the cases of the square tiles, sorting is extremely
efficient and building a tree would just be an overhead. In an
R-tree approach, each polygon will be able to query its list
of neighbours and then calculate the corresponding weights
with each neighbour. Since the polygons will be unsorted,
each weight calculation will access arbitrary areas of the
memory and no cache-based gain will be achieved. Also, using
a vectorized approach will not be possible without further
sorting and ordering because the results of the query may not
be in a contiguous memory. The distinct advantage of using
R-trees can be that their build cost is not high, their query can
be easily parallelizable and storing the weight matrix might
not be necessary.

IV. ACCELERATION TECHNIQUES

A. Cache Access Optimization

We have three arrays of size N – two are arrays that have
the x-location and y-location for each point, and another is an
array of attribute values of each point. Let’s denote the first
two arrays by p and the next array by x. We need to fill a 2D
array of size n×n with wi,js. Let’s call this array w. Assuming
there is a cache block size of B, whenever calculating any wi,j ,
we get two B blocks of p and one B block of w loaded into
the cache, so in this case, instead of linearly calculating the
values of w, we calculate all the combination of wi,j that we
can from these two blocks of p in an order where we can write
into the loaded B block of w. Once we have a filled wi,j matrix
array, whenever looping through it, we need to make sure that
we access it in the proper order. Looping through

∑n
j=1 wi,j

for a fixed i might be expensive in column-major architectures
than looping through

∑n
j=1 wj,i but since wi,j = wj,i doing

both will give the same result.

B. Weight Matrix Storage Optimization

Since the weight matrix is symmetric, we can store only
the upper triangular matrix. Furthermore, since the non-zero
values are only near the diagonal we would only need to
store at most maxr = ∀i max ri values for each polygon.
So, in the worst case, the weight matrix would need n∗maxr
space compared to its n2 size. But this approach makes SIMD
operations inefficient because we would need to index up or
down to find the neighbours to the left of polygon i. Due
to symmetry,n2 and maxl = ∀i max li would be equal. So,
we could store a n ∗ (2 ∗ maxr) array, which is still better
than the n2 array. Here the N rows will be the polygons
and (2 ∗maxr) columns would be weight with the non-zero
neighbours. This way, although the storage is doubled from
the most compressed form, being able to access a contiguous
memory of weights will significantly improve the cache access
and make SIMD operations easily accessible. Furthermore, if
the weight matrix is now stored in a file, then, that too can be

easily read with contiguous memory access and the amount
needed to be read by each process decreases significantly,
almost by a factor of n/maxr.

C. OpenMP Parallelization

OpenMP parallelization is based on the equations of the
Getis-Ord algorithm as shown earlier. The steps from Getis-
Ord algorithm III-A, Step 2, 3 and 5 were parallelized using
parallel loops with reduction. All the steps, including calculat-
ing each of the G∗

i , are parallelized. If recalculation of results
is not required, then steps 5 through 10 can be parallelized
to run by each thread for each polygon i along with a second
level of parallelism inside the loop for calculating all the sums
and G∗

i values.

D. OpenACC Parallelization

OpenACC compiler pragmas support both CPU and GPU
parallelization. We have used OpenACC for GPU paralleliza-
tion. Compared to OpenMP, additional steps include data copy
to GPU (in and out). We have used reduction pragma in
OpenACC for additions. For example, in Algorithm III-A, Step
1, once the x values are copied to the GPU, for Steps 2 and
3, we can do reductions to get the summation results. Only
the output G∗

i values are copied back to the host CPU. Our
OpenACC implementation leverages our existing C/C++ code.

E. CUDA Parallelization

We have also used CUDA for GPU parallelization of our
kernels. Compared to OpenACC, CUDA gives more control
in using the GPU. For algorithm III-A, we added CUDA
kernels for each steps. For large datasets that do not fit in the
GPU memory, especially the weight matrix whose size grows
quadratically in the number of inputs, we do calculations in
batches by moving data in and out of the GPU. Data movement
between GPU and Host can be an expensive step compared to
computation especially when done multiple times.

F. MPI Graph Topology (Distributed Memory)

Using MPI, process ids are used to split the data among
multiple compute nodes for a distributed memory paralleliza-
tion. We use allreduce collective function to merge the partial
results from Steps 2 and 3 of algorithm III-A. We need to
broadcast the reduced values to all the ranks as well. Also,
for Step 5, each polygon needs to calculate the wi,j values
and the MPI ranks need communication to share the location
information. We assign a MPI rank to each polygon. This
process mapping scheme helps in creating better MPI process
topology, which we discuss next.

Given the nature of weights which decays with increasing
distance, polygons that are further from each other have a
weight of zero. This means that only polygons that are close to
each other need to communicate with each other. The Weight
matrix can then be utilized to create an adjacency matrix (for
graph) where entries in this new matrix are 1, if the weights
are greater than zero, and zero otherwise. We translate this
polygon adjacency matrix to MPI processes adjacency matrix

for each process as required by Graph Topology function in
MPI. MPI has methods that can take this adjacency matrix and
arrange processes in such a way that minimizes the amount of
communication among processes. We have used the following
function for graph topology in MPI.

M P I D i s t g r a p h c r e a t e a d j a c e n t (
MPI COMM WORLD, degree , n e i g h b o u r s ,
MPI UNWEIGHTED, degree , n e i g h b o u r s ,
MPI UNWEIGHTED, MPI INFO NULL , 1 ,
&new dist comm) ;

Listing 1. Adjacent distributed graph creation

Since the weight matrix is symmetric, the indegrees are
equal to the outdegrees and the sources are same as the
destinations. We have used MPI UNWEIGHTED because the
volume of communication is the same when communication
takes place. It is important to set reorder equal to 1, if
we want MPI to figure out the best configuration to reduce
the amount of cross-node communication. Setting reorder to
be true, means that in the new MPI Comm, the ranks of
MPI processes will be different from the global ranks in
MPI COMM WORLD. Hence, to avoid double loading of
the input data (before and after process reordering), we divide
the overall data loadin into two stages. In the first stage we
load partial data that is necessary and then load all the other
remaining data only after this reorder has taken place. This is
efficient and it also ensures that MPI processes will not have
data corresponding to their old ranks.

G. Communication Efficiency on Distributed Memory

If we have P processes, each process will have N/P
polygons and each of them will have to calculate N/P G∗

i

values. However, X and S are the same for N polygons. So,
each N/P process have to calculate those values only once.
X and S are simply mean and standard deviation, and we can
use any of the existing communication efficient algorithms to
calculate those. The main communication bottleneck here is
that for each polygon i to calculate G∗

i , it needs wi,j and xj for
all N js which means P all-to-all communication steps which
is O(P 2) communications. Each broadcast would have to send
the appropriate xj values along with parameters to calculate
wi,j values. Using graph topology built on top of a weight
matrix that preserves neighborhood information for each MPI
process, the communication can be potentially optimized to
O(P) communication steps.

H. Vectorization with compiler intrinsics

For single precision floating point data type (32 bits), 8-
way parallelism can be potentially exploited by using 256
bit vector register supported by Advanced Vector Extensions
(AVX) [8]. AVX-512 intrinsics can support 16-way parallelism
because of wider SIMD registers. Intrinsic functions work like
inline functions. There is no overhead of function calls because
compilers replace these functions with corresponding vector
assembly instructions. Our implementation of equations 8, 1
and 3 is geared towards exploiting vectorization via intrinsics.

Arithmetic (summations, multiplications, etc), data movement
(load/store), and comparison operations are fully vectorized.
The denominator and numerator terms for equation 8 are also
vectorized efficiently.

In Algorithm 1, we show an example of using advanced
vector intrinsics to calculate the weight matrix using the
inverse euclidean distance and setting all weight values below
threshold epsilon (epi) to be zero. Broadcast function is used
to set all the elements of a SIMD register with the same value
that was passed to it as an argument. Please refer to [8] for
details on the functions used here.

It can be seen that the code is optimized enough to start
vector operations always at aligned memory for each i loop
using the second j loop and control variable k. Also, the code
only does one calculation for wi,j and wj,i values because they
are the same due to symmetry. There is a post-processing step
done after this to fill the wj,i values. This will ensure that
whenever we need w[i] for any polygon i, we will have the
full contiguous memory of size N with values for all wi,j .

Algorithm 1 Intrinsics based algorithm for calculating weights
Input: N , cutoff value epi
Output: populated weights w

1: declare m256 epis, x1, x2, xx, y1, y2, yy, z
2: declare int i, j, k and assign k ← 8
3: epis ← mm256 broadcast ss(epi)
4: for (i = 0; i < N ; i++) do
5: for (j = i+ 1; j < k; j ++) do
6: w[i*N + j] ← invEucDist(x, y, i, j, epi)
7: end for
8: for (j = k; j < N ; j = j + 8) do
9: x1 ← mm256 broadcast ss(x + i)

10: x2 ← mm256 load ps(x + j)
11: xx ← mm256 sub ps(x2, x1)
12: xx ← mm256 mul ps(xx, xx)
13: y1 ← mm256 broadcast ss(y + i)
14: y2 ← mm256 load ps(y + j)
15: yy ← mm256 sub ps(y2, y1)
16: yy ← mm256 mul ps(yy, yy)
17: z ← mm256 add ps(xx, yy)
18: z ← mm256 rsqrt ps(z)
19: // SIMD compare if z > epis
20: bmask ← mm256 cmp ps(z, epis, CMP GT OQ)
21: z ← mm256 and ps(z, bmask) // (z & bmask)
22: mm256 store ps(w + i*N + j, z)
23: end for
24: k ← (((i+ 1)/8) + 1) ∗ 8
25: end for

I. OpenMP & Vectorization

On top of our vectorized code, we added thread-level data
parallelism using OpenMP to leverage multiple vector units
available on modern multi-core CPUs. For this combined
parallelization, cache and register memory availability with
multiple parallel threads are the main issues. With reference

to code, algorithm 1, the approach that gave us the most
benefit was to run the i loop in OpenMP parallel regions while
maintaining contiguous data access for each thread. If t is
the number of OpenMP parallel threads, this can be achieved
with using a guided OpenMP schedule with chunk size ck
such that 1 < ck < (N/t). Having a lower value of ck will
split the iterations into threads in such a way that the first
among the earlier threads will have the largest chunk size
and less memory access overhead, but later threads will have
smaller chunks size and higher cache overhead. Also, with
multi-threading, it is necessary to keep in mind that depending
on the processor, each core will have only a limited number
of SIMD registers (usually 32) and limited L1 cache size, so
choosing a thread count t that does not overwork each core is
necessary to see any benefits from the combined acceleration
approach.

J. MPI & Multiple GPU (CUDA)

If multiple nodes with GPU are available, then MPI can
be used to offload much of the processing to the GPUs by
combining the MPI and CUDA codes. Once each MPI process
has the data it is going to be processing, it can easily copy it
to GPU device and get results. This will work even if there
are multiple MPI processes running in the node. Even if each
node has multiple GPUs, MPI processes can use their rank to
select one of the available GPUs and offload their computation.
This has been shown in Figure 4. If there are multiple nodes
each with multiple GPUs, this same approach will work with
the combined MPI. The best way to use MPI with CUDA
is to have a separate cuda file with extern C functions that
are capable of executing the cuda kernels. This has been
demonstrated in Figure 5. Pointer to the data structures from
the host’s main memory can be passed into this function with
useful information like the rank of the MPI process that’s
calling it. Using cudaGetDeviceCount, cudaSetDevice and the
MPI rank, the function can call the kernel and copy back
the memory after computation to host using the host pointers.
Figures 4 and 5 are only for demonstration purpose and show
a case where a node has multiple GPUs and number of MPI
processes are equal to the number of GPUs per node.

If multiple GPUs are going to be used in a node, it is
also a good idea to minimize all cudaMemcpyHostToDevice
and cudaMemcpyDeviceToHost to because that is the step that
consumes the most time. So, a preprocessing step to allocate
memory on the GPUs and passing back the device pointers to
host to use in further calculations is recommended.

K. Rapid Recalculation

Even in scenarios where the data emerges or changes at
certain time intervals, the location based data and spatial
relationships remains constant. For example, in the COVID
data cases, the number of daily cases would be different but
the distance between two counties would remain the same.
So, whenever we would need to re-calculate the results, we
would need to only recalculate some of the equation, i.e. the
equations that are dependent on x. The equations independent

Fig. 4. MPI part of multi-gpu

Fig. 5. CUDA part of multi-gpu

of x could be pre-calculated and stored for easy access and
retrieval. The equations independent of x in equation 8 for
G∗

i are equation 5 for Wi and equation 7 for Si and their
dependent equations. Hence, for each polygon, Wi and Si

remain unchanged for newer values of x and do not need to
be recalculated from the beginning.

Next, lets consider a boundary case where we have a new
value for only one polygon and there is change in only one
value of x. In such a case, the global values of X and Sx would
change and would need to be updated across all polygons.
However, we would only need to recalculate WXi

for cases
wi,j ̸= 0, j = k where xk is the existing polygon value and
∆xk is the change in value for xk.

So the equations become

Xnew = X +
∆xk

n
(12)

X2
new = X2 +

2 ∗ xk ∗∆xk +∆x2
k

n
(13)

SX
2
new = X2

new − (Xnew)
2

= X2 +
2∗xk∗∆xk+∆x2

k

n − (X + ∆xk

n)2

= X2+
2∗xk∗∆xk+∆x2

k

n −(X)2−(2∗X∗∆xk

n)−(∆xk

n)2

= S2
X + 2∗xk∗∆xk−2∗X∗∆xk

n

SX
2
new = S2

X +
(2 ∗∆xk) ∗ (xk −X)

n
(14)

WXinew = WXi + wi,k∆xk (15)

Next, lets consider the general case where there are multiple
new x values for multiple polygons. In this case, we would
only need to recalculate WXi for cases wi,j ̸= 0 ∀ j = k
where xks are the updated polygon values. In this case, the
equations become:

Xnew = X +
1

n

∑
k

∆xk (16)

X2
new = X2 +

1

n

∑
k

(2 ∗ xk ∗∆xk +∆x2
k) (17)

SX
2
new = S2

X +
2

n
∗
∑
k

(∆xk ∗ (xk −X)) (18)

WXinew = WXi
+

∑
k

wi,k∆xk (19)

Hence, if there are only few polygons with updated values,
and if we have pre-calculated values from previous iterations,
then we can calculate the difference and use the difference to
reduce a lot of recalculations. For example, if there were only
100s of counties that had updated data from the previous day,
then we could rerun calculations for just those 100 and update
the G∗

i values. Also, note that ∆xk values can be negative too,
in case of decrease in x values.

V. EXPERIMENTAL RESULTS

For the experiments, both real world data and simulated/-
generated data were used to test the implementations.

A. Real World COVID Data

One of the primary motivation for this work was to track
COVID hotspots, especially as they were emerging and alter-
ing. One of the main sources of COVID related data was the
United States Center for Disease Control. Different geographic
level (like cities, districts, county, states) based data on daily
reported values are available. This data had necessary COVID
related statistics like active cases, new cases, closed cases,
deaths, recovered etc. However, for geospatial analysis, we
require geographic data too. For the experimental timing
results provided in this paper, we focused on the county level
analysis. Geographic data required are county locations and
boundaries. This information was available from the Cen-
sus Bureau’s MAF/TIGER geographic database U.S. County
Boundaries TIGER dataset [5]. For autocorrelation calcula-
tions, we require only certain properties from the geographic
data. For each county, we required its boundary information
to calculate its centroid. This centroid information was further
used to calculate the inverse distance for the weight values
among county polygons. Next, we needed to match the county
polygons with its corresponding COVID data. Counties have
unique identifiers called GEOID, so each of these county
polygons had a unique five digit identifier known as the
FIPS code. Also, the county level COVID data along with
each county information had a corresponding FIPS code. This
common unique id made it easier to join the COVID data
with the geographic data. The counties geographic data had
3,233 polygons along with other data entities of which the
extra unnecessary information were discarded and this was
processed to get a dataset with the following entities: County,
State, FIPS, and Centroid. Then for each date, the entities for
the available COVID data were: Date, County, State, FIPS,
new cases, active cases, recovered cases, total cases, new
deaths, and total deaths.

B. Simulated/Generated Datasets

Simulated data were generated mostly for the unit point
incidence data and the aggregated point incidence data. The
data was generated randomly. For the unit point incidence
data, the sample space was divided into a uniform square
grid, and each square cell was considered as the polygon
for that region. Next, the centroid for each of the square tile
was calculated. Then, using different random distributions, x-
values (attributes) were assigned to each square tile. The x-
values were used to simulate the count of events inside the
square tile. Finally the data entities for each square tile were:
id, centroid, x1, x2, x3, ..., xn. Using the centroid values
to calculate the inverse distances among the square tiles, the
weight matrix was populated.

For the aggregated point incidence data, first location for
the aggregation points were generated from a uniform random
distribution across the sample space. Then a fast Voronoi

boundary calculation [18] was used to generate the boundaries
for each unit point. These boundaries represented the polygon
for that region and the aggregation points were used as
centroids for that region. Next, similar to data generation with
the square grids, different random distributions were used
to simulate x-values which were assigned to each polygon.
Finally the data entities for each aggregation points polygon
was: id, centroid, x1, x2, x3, ..., xn. Using the centroid
values to calculate the inverse distances among the polygon
boundaries, the weight matrix was populated.

C. Hardware Description

Experiments were performed on two machines with the
following hardware configurations. Machine 1 (M1) has two
Intel Xeon E5 v4 CPUs (2.10 GHz), where each CPU has 18
cores (36 thread). M1 has 500 GBs of RAM. M1 also has an
Nvidia TITAN V GPU with 5120 CUDA cores. On the Intel
Xeon E5, there is L1 cache of 32KB per core. L2 and L3
cache sizes are 256 KB and 2.5 MB. L2 cache is per core. L3
cache is per NUMA node. The gcc verision is 4.8.5, nvcc is
V11.2.67 and pgcc is 21.2.0.

Machine 2 (M2) is a medium sized compute cluster with
multiple nodes used for running experiments with a scheduler.
Compute nodes in M2 contains AMD Rome which is a 64
core (128 thread) CPU with a base frequency of 2 GHz,
NVIDIA Tesla V100 GPUs which has 5120 CUDA cores at
base frequency of 1.20 GHz and 512 GBs RAM. Compute
nodes and storage are connected via a 100 GB/s Infiniband
network. On the AMD Rome, there is L1 instruction cache
of 32KB per core and similarly L1 data cache of 32KB per
core. There is mid-level cache (MLC) or L2 of 512 KB per
core. AMD Rome has 16 x 16 MB L3 cache which is the last
level cache and is a shared cache of 16 MB per 4 core. The
gcc version is 9.2.0, mpi is mvapich2, nvcc is V11.2.152 and
pgcc is 21.11.0.

D. Performance Engineering Results

Table I show the aggregation of speedup gained from
different methods from multiple experiments at different data
sizes. Every acceleration method improves the computation
speedup and combining different approaches has even greater
yield. For OpenMP and MPI, the shown speedup holds as long
as the threadCount or numProcess is less than the number of
cores.

The AVX2 codes were implemented in both Intel and AMD
CPUs and the gain in performance was similar across both.
Because 8 single precision floating point variables can be
loaded in 256 bits of a SIMD register, there is potentially 8-
way SIMD parallelism that can be exploited when compared
to scalar code. We observe upto 6x speedup using SIMD-
optimized code. We used linux perf tool to measure the impact
of improved vectorization through intrinsic functions on x86
processors. An analysis through the perf tool showed that
with intrinsics the number of CPU cycles were reduced by
a factor of almost 40x while the instructions per cycle (IPC)
doubled. Higher IPC value represents better CPU utilization.

TABLE I
PARALLELIZATION METHOD AND CORRESPONDING BEST SPEEDUP (25K

DATASET)

Parallelization Speedup
GPU CUDA (single node) 100×

GPU OpenACC (single node) 100×
OpenMP (16 thread) 15.4×

AVX2 intrinsics 6×
AVX2 + OpenMP 90×

MPI (16p) 15×
MPI (16p) + AVX2 90×

MPI (8 gpu nodes) + CUDA 750×
MPI (4 gpu nodes) + CUDA 380×

Also, the number of branches decreased by almost 50x while
branch misses reduced by 1.5x. This is attributed to the
advantages of loop unrolling on line number 8 of Algorithm
1 (loop variable j is incremented by 8). Reduction in branch
misses leads to higher instruction level parallelism through
instruction pipelining because of reduction in control hazards.
Furthermore, cache loads decreased by 16x and cache misses
decreased by more than 2x.

From a vectorization perspective, the difference in perfor-
mance is attributed to the choice of SIMD registers and vector
instructions selected by the compiler with/without intrinsics.
We used GCC compiler with -O3 flag to enable compiler
auto-vectorization. In compiler generated code, XMM registers
with 128 bits width were used for critical parts of the kernel.
In the version with intrinsics, compiler generated code had
YMM registers with 256 bits width. Wider registers have the
benefit of packing more data elements in a single register. We
looked at the assembly code generated with/without intrinsics
using double precision floating point data. For data movement,
vmovsd was generated in the sub-optimal code instead of
vmovapd. s stands for scalar in vmovsd. p stands for packed
in vmovapd. Similarly, vmulsd was generated by compiler in
the suboptimal code instead of vmulpd.

Figure 6 shows the time (in log2 scale) for different sizes
of data. Average from multiple runs of the experiments are
shown. The best implementation remains the MPI+CUDA
approach.

Execution times from an experiment with 300,000 polygons
are shown in Table III. Using a non-optimized sequential C
code, it takes about 36 minutes to run from start to finish. The
computationally intensive parts can be divided into three parts.
First part is the spatial sorting. Second part is calculating and
populating the weight matrix. Final part is calculating all G∗

i

values. The above mentioned speedups in Table I are mostly
gained in the second and third parts. OpenACC and CUDA
brings down 780 seconds to calculate the weight matrix down
to about 9 seconds. AVX2 intrinsics brings it down to almost
110 seconds. Adding OpenMP parallelization to AVX2, with
a thread count of 16 threads brings the time down to almost
7 seconds and its performance is very similar to that of MPI.
The MPI+CUDA results is using 4 GPUs concurrently which
is the fastest. MPI+CUDA took 2 seconds. Table II shows
the average speedup and efficiency of using multiple OpenMP

Fig. 6. Comparison at different data sizes. OpenMP version is running on 16
threads.

threads.

TABLE II
OPENMP SPEEDUP AND EFFICIENCY

Threads Avg Speedup Speedup/thread
2 1.9 0.950
4 3.7 0.925
8 7.7 0.963

16 15.4 0.963
32 30.1 0.941

TABLE III
AVERAGE EXECUTION TIMES FOR 300K POLYGONS

Method Sorting Wmatrix G∗
i Total (minutes)

Sequential 900s 780s 480s 36
CUDA 10s 9s 6s 0.42
AVX2 500s 110s 69s 11.4

OpenMP (16 t) 150s 51s 30s 4
MPI+CUDA 10s 2s 2s 0.24

OpenMP+AVX2 150s 7s 5s 2.7

TABLE IV
RTREE BASED TIMES FOR 300K POLYGONS

Building Querying G∗
i Total (minutes)

Sequential (No Sort) 20s 60s 520s 10
OpenMP (16 t) 20s 4s 37s 1

OpenMP+AVX2 20s 4s 10s 0.6

Table IV shows R-tree based execution time for 300K
polygons. This sequential version performs better than the
version with spatial sorting because of R-tree data structure.
This version does not use spatial sorting, as shown in Table IV.
OpenMP parallelization speeds up query operations and calcu-
lation of G∗

i values compared to the sequential baseline. SIMD
parallelization using AVX2 is applied to G∗

i calculations only.

The best performance on a single compute node is by using
16 threads accelerated by AVX2 SIMD extensions.

Table V shows the use of acceleration and rapid recalcu-
lation techniques applied to calculate daily G∗

i values for the
US Counties using real world COVID data for 500 days to see
the evolution of the spread of infection over the time period.

TABLE V
500 DAYS TIME SERIES G∗

i CALCULATION FOR REAL US COUNTIES
DAILY COVID DATA [5] [4]

Method Time (minutes)
Sequential 33

CUDA 0.5
AVX2 6

OpenMP (16t) 3
MPI+CUDA 0.3

OpenMP+AVX2 1

VI. CONCLUSION AND FUTURE DIRECTION

We have demonstrated successful acceleration of spatial
autocorrelation kernel. This acceleration can be used for indus-
trial and scientific application requiring faster solutions and the
techniques mentioned in the paper can be transferred to apply
to wide variety of similar statistical kernels. Future directions
of this work can be extending the rapid recalculation work
for streaming and online real-time solutions and expanding
the scope of the work for cloud infrastructures where different
acceleration techniques are combined to automatically achieve
the best acceleration depending on hardware configuration and
availability.

ACKNOWLEDGMENT

This research used the Raj high-performance computing
facility funded by the National Science foundation award
CNS-1828649 and Marquette University.

REFERENCES

[1] https://pro.arcgis.com/en/pro-app/latest/tool-reference/spatial-statistics/
h-how-hot-spot-analysis-getis-ord-gi-spatial-stati.htm.

[2] Marc P Armstrong and Richard Marciano. Massively parallel processing
of spatial statistics. International Journal of Geographical Information
Systems, 9(2):169–189, 1995.

[3] Marc P Armstrong, Claire E Pavlik, and Richard Marciano. Parallel
processing of spatial statistics. Computers & Geosciences, 20(2):91–
104, 1994.

[4] https://covid.cdc.gov/covid-data-tracker/index.html.
[5] https://www.census.gov/geographies/mapping-files/time-series/geo/

tiger-line-file.html.
[6] http://resources.esri.com/help/9.3/ArcGISEngine/java/Gp ToolRef/

Spatial Statistics tools/how hot spot analysis colon getis ord gi
star spatial statistics works.htm.

[7] William Gropp, Torsten Hoefler, Rajeev Thakur, and Ewing Lusk. Using
advanced MPI: Modern features of the message-passing interface. MIT
Press, 2014.

[8] https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.
html.

[9] Mingjun Li. MS Thesis: A Parallel Algorithm and Implementation to
Compute Spatial Autocorrelation (Hotspot) Using MATLAB. MS Thesis,
2020.

[10] Yan Liu, Kaichao Wu, Shaowen Wang, Yanli Zhao, and Qian Huang.
A mapreduce approach to gi(d) spatial statistic. In Proceedings of the
ACM SIGSPATIAL International Workshop on High Performance and
Distributed Geographic Information Systems, pages 11–18, 2010.

[11] Yiming Liu and Satish Puri. Efficient filters for geometric intersection
computations using gpu. In Proceedings of the 28th International
Conference on Advances in Geographic Information Systems, pages
487–496, 2020.

[12] Yiming Liu, Jie Yang, and Satish Puri. Hierarchical filter and refinement
system over large polygonal datasets on cpu-gpu. In 2019 IEEE 26th
International Conference on High Performance Computing, Data, and
Analytics (HiPC), pages 141–151. IEEE, 2019.

[13] Paras Mehta, Christian Windolf, and Agnès Voisard. Spatio-temporal
hotspot computation on apache spark (gis cup). In 24th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information
Systems, 2016.

[14] Pradeep Mohan, Ronald E Wilson, Shashi Shekhar, Betsy George, Ned
Levine, and Mete Celik. Should sdbms support a join index? a case
study from crimestat. In Proceedings of the 16th ACM SIGSPATIAL in-
ternational conference on Advances in geographic information systems,
pages 1–10, 2008.

[15] https://developer.nvidia.com/blog/thinking-parallel-part-iii-tree-construc
tion-gpu.

[16] J Keith Ord and Arthur Getis. Local spatial autocorrelation statistics: dis-
tributional issues and an application. Geographical analysis, 27(4):286–
306, 1995.

[17] Anmol Paudel and Satish Puri. Openacc based gpu parallelization
of plane sweep algorithm for geometric intersection. In International
Workshop on Accelerator Programming Using Directives, pages 114–
135. Springer, 2018.

[18] Anmol Paudel, Jie Yang, and Satish Puri. Parallelization of plane sweep
based voronoi construction with compiler directives. In 2019 IEEE 43rd
Annual Computer Software and Applications Conference (COMPSAC),
volume 1, pages 908–911. IEEE, 2019.

[19] Shangfu Peng, Hong Wei, Hao Li, and Hanan Samet. Simplification and
refinement for speedy spatio-temporal hot spot detection using spark (gis
cup). In 24th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, 2016.

[20] Satish Puri, Anmol Paudel, and Sushil K Prasad. MPI-Vector-IO: Parallel
I/O and partitioning for geospatial vector data. In Proceedings of the
47th International Conference on Parallel Processing, pages 1–11, 2018.

[21] Satish Puri and Sushil K Prasad. A parallel algorithm for clipping
polygons with improved bounds and a distributed overlay processing
system using mpi. In 2015 15th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, pages 576–585. IEEE, 2015.

[22] Shashi Shekhar, Pusheng Zhang, and Yan Huang. Spatial data mining.
In Data mining and knowledge discovery handbook, pages 837–854.
Springer, 2009.

[23] Scott D. Stoller, Michael Carbin, Sarita Adve, Kunal Agrawal, Guy
Blelloch, Dan Stanzione, Katherine Yelick, and Matei Zaharia. Future
directions for parallel and distributed computing: Spx 2019 workshop
report. NSF Workshop Reports, Oct 2019.

[24] Waldo R Tobler. A computer movie simulating urban growth in the
detroit region. Economic geography, 46(sup1):234–240, 1970.

[25] Jie Yang, Anmol Paudel, and Satish Puri. Spatial data decomposition
and load balancing on hpc platforms. PEARC ’19, pages 1–4. ACM,
Jul 28, 2019.

[26] Jie Yang and Satish Puri. Efficient parallel and adaptive partitioning
for load-balancing in spatial join. In 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS), pages 810–820. IEEE,
2020.

[27] Song-lin Zhang and Kun Zhang. Comparison between general moran’s
index and getis-ord general g of spatial autocorrelation. Acta Scientiarum
Naturalium Universitatis Sunyatseni, 4:022, 2007.

