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Abstract: Reinforcement learning (RL) in low-data and risk-sensitive domains
requires performant and flexible deployment policies that can readily incorporate
constraints during deployment. One such class of policies are the semi-parametric
H-step lookahead policies, which select actions using trajectory optimization over
a dynamics model for a fixed horizon with a terminal value function. In this work,
we investigate a novel instantiation of H-step lookahead with a learned model and a
terminal value function learned by a model-free off-policy algorithm, named Learn-
ing Off-Policy with Online Planning (LOOP). We provide a theoretical analysis of
this method, suggesting a tradeoff between model errors and value function errors
and empirically demonstrate this tradeoff to be beneficial in deep reinforcement
learning. Furthermore, we identify the “Actor Divergence” issue in this framework
and propose Actor Regularized Control (ARC), a modified trajectory optimization
procedure. We evaluate our method on a set of robotic tasks for Offline and On-
line RL and demonstrate improved performance. We also show the flexibility of
LOOP to incorporate safety constraints during deployment with a set of navigation
environments. We demonstrate that LOOP is a desirable framework for robotics
applications based on its strong performance in various important RL settings.
Project video and details can be found at hari-sikchi.github.io/loop.
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1 Introduction
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Figure 1: Overview of LOOP: A learned dynamics
model is utilized for Online Planning with a termi-
nal value function. The value function is learned
via a model-free off-policy algorithm.

Off-policy reinforcement learning algorithms
have been widely used in many robotic ap-
plications due to their sample efficiency and
their ability to incorporate data from different
sources [1, 2, 3, 4]. Model-free off-policy algo-
rithms sample transitions from a replay buffer to
learn a value function and then update the policy
according to the value function [5, 6]. Thus, the
performance of the policy is highly dependent
on the estimation of the value function. How-
ever, learning an accurate value function from
off-policy data is challenging especially in deep
RL due to a variety of issues, such as overes-
timation bias [7, 8], delusional bias [9], rank
loss [10], instability [11], and divergence [12]. Another shortfall of model-free off-policy algorithms
in continuous control is that the policy is usually parametrized by a feedforward neural network
which lacks flexibility during deployment.

Previous works in model-based RL have explored different ways of using a dynamics model to
improve off-policy algorithms [13, 14, 15, 16, 17]. One way of incorporating the dynamics model
is to use H-step lookahead policies [18]. At each timestep, H-step lookahead policies rollout the
dynamics model H-step into the future from the current state to find an action sequence with the
highest return. Within this trajectory optimization process, a terminal value function is attached to the
end of the rollouts to provide an estimation of the return beyond the fixed horizon. This way of online
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planning offers us a degree of explainability missing in fully parametric methods while also allowing
us to take constraints into account during deployment. Previous work proves faster convergence
with H-step lookahead policies in tabular setting [18] or showed improved sample complexity with
a ground-truth dynamics model [19]. However, the benefit of H-step lookahead policies remains
unclear under an approximate model and an approximate value function. Additionally, if H-step
lookahead policies are used during the value function update [19], the required computation of value
function update will be significantly increased.

In this work, we take this direction further by studying H-step lookahead both theoretically and
empirically with three main contributions. First, we provide a theoretical analysis of H-step lookahead
under an approximate model and approximate value function. Our analysis suggests a trade-off
between model error and value function error, and we empirically show that this tradeoff can be
used to improve policy performance in Deep RL. Second, we introduce Learning Off-Policy with
Online Planning (LOOP) (Figure 1). To avoid the computational overhead of performing trajectory
optimization while updating the value function as in previous work [19], the value function of
LOOP is updated via a parameterized actor using a model-free off-policy algorithm (“Learning
Off-Policy”). LOOP exploits the benefits of H-step lookahead policies when the agent is deployed
in the environment during exploration and evaluation (“Online Planning”). This novel combination
of model-based online planning and model-free off-policy learning provides sample-efficient and
computationally-efficient learning. We also identify the “Actor Divergence" issue in this combination
and propose a modified trajectory optimization method called Actor Regularized Control (ARC).
ARC performs implicit divergence regularization with the parameterized actor through Iterative
Importance Sampling.

Third, we explore the flexibility of H-step lookahead policies for improved performance in offline RL
and safe RL, which are both important settings in robotics. LOOP can be applied on top of various
offline RL algorithms to improve their evaluation performance. LOOP’s semiparameteric behavior
policy also allows it to easily incorporate safety constraints during deployment. We evaluate LOOP
on a set of simulated robotic tasks including locomotion, manipulation, and controlling an RC car.
We show that LOOP provides significant improvement in performance for online RL, offline RL, and
safe RL, which makes it a strong choice of RL algorithm for robotic applications.

2 Related Work

Model-based RL Model-based reinforcement learning (MBRL) methods learn a dynamics model
and use it to optimize the policy. State-of-the-art model-based RL methods usually have better
sample efficiency compared to model-free methods while maintaining competitive asymptotic perfor-
mance [20, 13]. One approach in MBRL is to use trajectory optimization with a learned dynamics
model [17, 21, 22]. These methods can reach optimal performance when a large enough planning
horizon is used. However, they are limited by not being able to reason about the rewards beyond the
planning horizon. Increasing the planning horizon increases the number of trajectories that need to
be sampled and incurs a heavy computational cost.

Various attempts have been made to combine model-free and model-based RL. GPS [23] combines tra-
jectory optimization using analytical models with the on-policy policy gradient estimator. MBVE [15]
and STEVE [16] use the model to improve target value estimates. Approaches such as MBPO [13]
and MAAC [24] follow Dyna-style [25] learning where imagined short-horizon trajectories are used
to provide additional transitions to the replay buffer leveraging model generalization. Piché et al.
[26] use Sequential Monte Carlo (SMC) to capture multimodal policies. The SMC policy relies
on combining multiple 1-step lookahead value functions to sample a trajectory proportional to the

unnormalized probability exp(
∑H
i=1(A(s, a))); this approach potentially compounds value function

errors, in contrast to LOOP which uses single H-step lookahead planning for each state. POLO [19]
shows advantages of trajectory optimization under ground-truth dynamics with a terminal value
function. The value function updates involve additional trajectory optimization routines which is one
of the issues we aim to address with LOOP. The computation of trajectory optimization in POLO
is O(THN) while LOOP is O(TH) where T is the number of environment timesteps, H is the
planning horizon, and N is the number of samples needed for training the value function.

Off-Policy RL LOOP relies on a terminal value function for long horizon reasoning which can be
learned effectively via model-free off-policy RL algorithms. Off-policy RL methods such as SAC [5]
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and TD3 [6] use the replay buffer to learn a Q-function that evaluates a parameterized actor and then
optimize the actor by maximizing the Q-function. Off-policy methods can be modified to be used for
Offline RL problems where the goal is to learn a policy from a static dataset [27, 8, 28, 29, 30, 31, 32].
MBOP [33], a recent model-based offline RL method, leverages planning with a terminal value
function, but the value function is a Monte Carlo evaluation of truncated replay buffer trajectories,
whereas in LOOP the value function is trained for optimality under the dataset.

3 Preliminaries

A Markov Decision Process (MDP) is defined by the tuple (S,A, p, r, ρ0) with state-space S , action-
space A, transition probability p(st+1|st, at), reward function r(s, a), and initial state distribution
ρ0(s). In the infinite horizon discounted MDP, the goal of reinforcement learning algorithms is to
maximize the return for policy π given by Jπ = Eat∼π(st),s0∼ρ0 [

∑∞
t=0 γ

tr(st, at)].

Value functions: V π : S → R represents a state-value function which estimates the return from
the current state st and following policy π, defined as V π(s) = Eat∼π(st)[

∑∞
t=0 γ

tr(st, at)|s0 = s].
Similarly, Qπ : S × A → R represents a action-value function, usually referred as a Q-function,
defined as Qπ(s, a) = Eat∼π(st)[

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a]. Value functions corresponding
to the optimal policy π∗ are defined to be V ∗ and Q∗. The value function can be updated according
to the Bellman operator T :

T Q(st, at) = r(st, at) + Est+1∼p,at+1∼πQ
[γ(Q(st+1, at+1)] (1)

where πQ is updated to be greedy with respect to Q, the current Q-function.

Constrained MDP for safety: A constrained MDP (CMDP) is defined by the tuple (S,A, p, r, c, ρ0)
with an additional cost function c(s, a). We define the cumulative cost of a policy to be Dπ =
Eat∼π(st),s0∼ρ0 [

∑∞
t=0 γ

tc(st, at)]. A common objective for safe reinforcement learning is to find a
policy π = argmaxπJ

π subject to Dπ ≤ d0 where d0 is a safety threshold [34].

4 H-step Lookahead with Learned Model and Value Function

Model-based algorithms often learn an approximate dynamics model M̂(st+1|st, at) using the data
collected from the environment. One way of using the model is to find an action sequence that
maximizes the cumulative reward with the learned model using trajectory optimization [35, 36, 37].
An important limitation of this approach is that the computation grows exponentially with the planning
horizon. Thus, methods like [35, 17, 21, 38, 39] plan over a fixed, short horizon and are unable to
reason about long-term reward. Let πH be such a fixed horizon policy:

πH(s0) = argmax
a0

max
a1,..,aH−1

EM̂ [RH(s0, τ)] ,where RH(s0, τ) =

H−1
∑

t=0

γtr(st, at) (2)

where τ denotes the action sequence a[0..H−1]. One way to enable efficient long-horizon reasoning

is to augment the planning trajectory with a terminal value function. Given a value-function V̂ , we
define a policy πH,V̂ obtained by maximizing the H-step lookahead objective:

πH,V̂ (s0) = argmax
a0

max
a1,..,aH−1

EM̂

[

RH,V̂ (s0, τ)
]

(3)

where RH,V̂ (s0, τ) =
H−1
∑

t=0

γtr(st, at) + γH V̂ (sH)

The quality of both the model M̂ and the value-function V̂ affects the performance of the overall
policy. To show the benefits of this combination of model-based trajectory optimization and the
value-function, we now analyze and bound the performance of the H-step look-ahead policy πH,V̂
compared to its fixed-horizon counterpart without the value-function πH (Eqn. 2), as well as the

greedy policy obtained from the value-function πV̂ = argmaxaEs′∼M(.|s,a)

[

r(s, a) + γV̂ (s′)
]

.

Following previous work, we will construct the proofs with the state-value function V , but the proofs
for the action-value function Q can be derived similarly.
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Lemma 1. (Singh and Yee [40]) Suppose we have an approximate value function V̂ such that

maxs|V
∗(s)− V̂ (s)|≤ εv . Then the performance of the 1-step greedy policy πV̂ can be bounded as:

Jπ
∗

− JπV̂ ≤
γ

1− γ
[2εv] (4)

Theorem 1. (H-step lookahead policy) Suppose M̂ is an approximate dynamics model with Total

Variation distance bounded by εm. Let V̂ be an approximate value function such that maxs|V
∗(s)−

V̂ (s)|≤ εv. Let the reward function r(s, a) be bounded by [0,Rmax] and V̂ be bounded by [0,Vmax].
Let εp be the suboptimality incurred in H-step lookahead optimization (Eqn. 3). Then the performance
of the H-step lookahead policy πH,V̂ can be bounded as:

Jπ
∗

− JπH,V̂ ≤
2

1− γH
[C(εm, H, γ)+

εp
2

+ γHεv] (5)

where
C(εm, H, γ) = Rmax

H−1
∑

t=0

γttεm + γHHεmVmax

Proof. Due to the page limit, we defer the proof to Appendix A.1. We also provide extension
of Theorem 1 under assumptions on model generalization and concentrability in Corollary 1 and
Theorem 2 respectively in Appendix A.

H-step Lookahead Policy vs H-step Fixed Horizon Policy: The fixed-horizon policy πH can

be considered as a special case of πH,V̂ with V̂ (s) = 0 ∀s ∈ S. Following Theorem 1, εV̂ =

maxs|V
∗(s)| implies a potentially large optimality gap. This suggests that learning a value function

that better approximates V ∗ than V̂ (s) = 0 will give us a smaller optimality gap in the worst case.

H-step lookahead policy vs 1-step greedy policy: By comparing Lemma 1 and Theorem 1, we
observe that the performance of the H-step lookahead policy πH,V̂ reduces the dependency on the

value function error εv at least by a factor of γH−1 while introducing an additional dependency on
the model error εm. This implies that the H-step lookahead is beneficial when the value-function bias
dominates the bias in the learned model. In the low data regime, the value function bias can result
from compounded sampling errors [41] and is likely to dominate the model bias, as evidenced by the
success of model-based RL methods in the low-data regime [33, 42, 13]; we observe this hypothesis
to be consistent with our experiments where H-step lookahead offers large gains in sample efficiency.
Further, errors in value learning with function approximation can stem from a number of reasons
explored in previous work, some of them being Overestimation, Rank Loss, Divergence, Delusional
bias, and Instability [7, 11, 6, 43, 10]. Although this result may be intuitive to many practitioners, it
has not been shown theoretically; further, we demonstrate that we can use this insight to improve the
performance of state-of-the-art methods for online RL, offline RL, and safe RL.

5 Learning Off-Policy with Online Planning

We propose Learning Off-Policy with Online Planning (LOOP) as a framework of using H-step
lookahead policies that combines online trajectory optimization with model-free off-policy RL
(Figure 1). We use the replay buffer to learn a dynamics model and a value function using an off-
policy algorithm. The H-step lookahead policy (Eqn. 3) generates rollouts using the dynamics model
with a terminal value function and selects the best action for execution. The underlying off-policy
algorithm is boosted by the H-step lookahead which improves the performance of the policy during
both exploration and evaluation. From another perspective, the underlying model-based trajectory
optimization is improved using a terminal value function for reasoning about future returns. In this
section, we discuss the Actor Divergence issue in the LOOP framework and introduce additional
applications and instantiations of LOOP for offline RL and safe RL.

5.1 Reducing actor-divergence with Actor Regularized Control (ARC)

As discussed above, LOOP utilizes model-free off-policy algorithms to learn a value function in a
more computationally efficient manner. It relies on actor-critic methods which use a parametrized
actor πθ to facilitate the Bellman backup. However, we observe that combining trajectory optimization
and policy learning naively will lead to an issue that we refer to as “actor divergence": a different
policy is used for data collection (H-step lookahead policy πH,V̂ ) than the policy that is used to learn
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the value-function (the parametrized actor πθ). This leads to a potential distribution shift between the
state-action visitation distribution between the parametrized actor πθ and the actual behavior policy
πH,V̂ which can lead to accumulated bootstrapping errors with the Bellman update and destabilize

value learning [43]. One possible solution in this case is to use Offline RL [30]; however, in practice,
we observe that offline RL in this setup leads to learning instabilities. We defer discussion on this
alternative to the Appendix D.7. Instead, we propose to resolve the actor-divergence issue via a
modified trajectory optimization method called Actor Regularized Control (ARC).

In ARC, we aim to constrain the action selection of the trajectory optimization to be close to the
parametrized actor. We frame the following general constrained optimization problem for policy
improvement [44]:

pτopt = argmax
pτ

Epτ [LH,V̂ (st, τ)] , s.t DKL(p
τ ||pτprior) ≤ ε (6)

where LH,V̂ (st, τ) is the expected lookahead objective (Eqn. 3) under the learned model given by

LH,V̂ (st, τ) = EM̂

[

RH,V̂ (st, τ)
]

, starting from state st, p
τ is a distribution over action sequences τ

of horizon H starting from st, and pτprior is a prior distribution over such action sequences. We will
use the parametrized actor to derive this prior in ARC. This optimization admits a closed form solution

by enforcing the KKT conditions where the optimal policy is given by pτopt ∝ pτpriore
1
η
LH,V̂ (st,τ) [45,

46, 47, 48], where η is the lagrangian dual variable. The above formulation generalizes a number of
prior work [5, 35, 45] (more details in Appendix B.3).

Approximating the optimal policy pτopt as a multivariate gaussian with diagonal covariance p̂τopt =
N (µopt, σopt) , the parameters can be estimated using importance sampling under the proposal
distribution pτprior as:

p̂τopt = N (µopt, σopt) , µopt = Eτ ′,M̂

[

pτopt(τ
′)

pτprior(τ
′)
τ ′

]

, σopt = Eτ ′,M̂

[

pτopt(τ
′)

pτprior(τ
′)
(τ ′ − µ)2

]

(7)

where τ ′ ∼ pτprior. We use iterative importance sampling to estimate p̂τopt which is parameterized as
a Gaussian whose mean and variance at iteration m+ 1 are given by the empirical estimate:

µm+1 =

∑N
i=1[e

1
η
LH,V̂ (st,τ

′)τ ′]
∑N
i=1 e

1
η
LH,V̂ (st,τ ′)

, σm+1 =

∑N
i=1[e

1
η
LH,V̂ (st,τ

′)(τ ′ − µm+1)2]
∑N
i=1 e

1
η
LH,V̂ (st,τ ′)

(8)

where τ ′ ∼ N (µm, σm) and N (µ0, σ0) is set to pτprior. As long as we perform a finite number of
iterations, the final trajectory distribution is constrained in total variation to be close to the prior as a
result of finite trust region updates as shown in Lemma 2 in Appendix A.4.

To reduce actor divergence in LOOP, we constrain the action-distribution of the trajectory optimization
to be close to that of the parametrized actor πθ. To do so, we set pτprior = βπθ + (1− β)N (µt−1, σ).
The trajectory prior is a mixture of the parametrized actor and the action sequence from the previous
environment timestep with additional Gaussian noise N (0, σ). Using 1-timestep shifted solution
from the previous timestep allows to amortize trajectory optimization over time [33]. For online RL,
we can vary σ to vary the amount of exploration during training. For offline RL, we set β = 1 to
constrain actions to be close to those in the dataset (from which πθ is learned) to be more conservative.

5.2 Additional instantiations of LOOP: Offline-LOOP and Safe-LOOP

LOOP not only improves the performance of previous model-based and model-free RL algorithms
but also shows versatility in different settings such as the offline RL setting and the safe RL setting.
These potentials of H-step lookahead policies have not been explored in previous work.

LOOP for Offline RL: In offline reinforcement learning, the policy is learned from a static dataset
without further data collection. We can use LOOP on top of an existing off-policy algorithm as
a plug-in component to improve its test time performance by using the model-based rollouts as
suggested by Theorem 1. Note that this is different from the online setting in the previous section
in which LOOP also influences exploration. In offline-LOOP, to account for the uncertainty in the
model and the Q-function, ARC optimizes for the following uncertainty-pessimistic objective similar
to [49, 50]:

mean[K][RH,V̂ (st, τ)]− βpessstd[K][RH,V̂ (st, τ)] (9)
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A Theory

A.1 H-step lookahead with approximation error

We aim to show that H-step model-based lookahead policies are more robust to certain types of
approximation errors than 1-step greedy policies given an approximate value function. We restate
Theorem 1 here for convenience and then provide a proof.

Theorem 1. (H-step lookahead policy) Suppose M̂ is an approximate dynamics model such that

maxs,aDTV

(

M(.|s, a), M̂(.|s, a)
)

≤ εm. Let V̂ be an approximate value function such that

maxs|V
∗(s) − V̂ (s)|≤ εv. Let the reward function by bounded in [0,Rmax] and V̂ be bounded in

[0,Vmax]. Let εp be the suboptimality incurred in H-step lookahead optimization (Eqn. 3) such that

J∗ − Ĵ ≤ εp, where J∗ is the optimal return for the H-step optimization and Ĵ is the result of the
suboptimal H-step optimization. Then the performance of the H-step lookahead policy πH,V̂ can be

bounded as:

Jπ
∗

− JπH,V̂ ≤
2

1− γH
[C(εm, H, γ) +

εp
2

+ γHεv]

where

C(εm, H, γ) = Rmax

H−1
∑

t=0

γttεm + γHHεmVmax

Proof. Assume we have an εv-approximate value function i.e ‖V̂ − V ∗‖∞< εv and we have an

approximate transition model which satisfies DTV

(

M(.|s, a), M̂(.|s, a)
)

≤ εm , similar to assump-

tions in [19, 18]. We analyze the optimality gap of the policy which uses an H-step lookahead
optimization (Eqn. 3) with this approximate model and value function. First, we define some useful
notations: let M be the MDP defined by (S,A,M, r, s0) which uses the ground truth dynamics M ,

state space S , action space A, reward function r and starting state s0, and let M̂ be the MDP defined

by (S,A, M̂ , r, s0) which uses the approximate dynamics model M̂ . Correspondingly, let H be an

H-step finite horizon MDP given by (S,A,M, rmix, s0) and let Ĥ be an H-step finite horizon MDP

given by (S,A, M̂ , rmix, s0) where

rmix(st, at) =

{

r(s, a) if t < H

V̂ (sH) if t = H
(11)

We redefine πH,V̂ to be the policy obtained by repeatedly optimizing for the H-step lookahead

objective (Eqn. 3) in Ĥ and acting for H steps in M. We do not consider the MPC setting for
simplicity in proof i.e. the policy does not perform any replanning after taking its initial actions. We
will use π∗

K denote the optimal policy for some MDP K. Let τ̂ denote an H-step trajectory sampled
by running π∗

Ĥ
in M and similarly τ is used to denote an H-step trajectory sampled by running π∗

H

in M. Let τ∗ denote the H-step trajectory sampled by running π∗
M in M. Let pτ̂ , pτ and pτ∗ be the

corresponding trajectory distributions. The performance gap we want to upper bound is given by:

Jπ
∗

− JπH,V̂ = V ∗(s0)− V πH,V̂ (s0) (12)

= Eτ∗∼pτ∗

[

∑

γtr(st, at) + γHV ∗(sH)
]

− Eτ̂∼pτ̂

[

∑

γtr(st, at) + γHV πH,V̂ (sH)
]

(13)

= Eτ∗∼pτ∗

[

∑

γtr(st, at) + γHV ∗(sH)
]

− Eτ̂∼pτ̂

[

∑

γtr(st, at) + γHV ∗(sH)
]

(14)

+ Eτ̂∼pτ̂

[

∑

γtr(st, at) + γHV ∗(sH)
]

− Eτ̂∼pτ̂

[

∑

γtr(st, at) + γHV πH,V̂ (sH)
]

(15)

= Eτ∗∼pτ∗

[

∑

γtr(st, at) + γHV ∗(sH)
]

− Eτ̂∼pτ̂

[

∑

γtr(st, at) + γHV ∗(sH)
]

(16)

+ γHEτ̂∼pτ̂ [V
∗(sH)− V πH,V̂ (sH)] (17)
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Since we have |V ∗(s)− V̂ (s)|≤ εv ∀s, we can bound the following expressions:

Eτ∗∼pτ∗

[

∑

γtr(st, at) + γHV ∗(sH)
]

≤ Eτ∗∼pτ∗

[

∑

γtr(st, at) + γH V̂ (sH)
]

+ γHεv (18)

Eτ̂∼pτ̂

[

∑

γtr(st, at) + γHV ∗(sH)
]

≥ Eτ̂∼pτ̂

[

∑

γtr(st, at) + γH V̂ (sH)
]

− γHεv (19)

Subtracting these two inequalities (18 and 19), we get:

Eτ∗∼pτ∗

[

∑

γtr(st, at) + γHV ∗(sH)
]

− Eτ̂∼pτ̂

[

∑

γtr(st, at) + γHV ∗(sH)
]

(20)

≤ Eτ∗∼pτ∗

[

∑

γtr(st, at) + γH V̂ (sH)
]

− Eτ̂∼pτ̂

[

∑

γtr(st, at) + γH V̂ (sH)
]

+ 2γHεv

Substituting Eqn. 20 into Eqn. 16 we can bound the performance gap as follows:

Jπ
∗

− JπH,V̂ = V ∗(s0)− V πH,V̂ (s0)

≤ Eτ∗∼pτ∗

[

∑

γtr(st, at) + γH V̂ (sH)
]

− Eτ̂∼pτ̂

[

∑

γtr(st, at) + γH V̂ (sH)
]

(21)

+ 2γHεv + γHEτ̂∼pτ̂ [V
∗(sH)− V πH,V̂ (sH)]

= Eτ∗∼pτ∗

[

∑

γtr(st, at) + γH V̂ (sH)
]

− Eτ∼pτ

[

∑

γtr(st, at) + γH V̂ (sH)
]

(22)

+ Eτ∼pτ

[

∑

γtr(st, at) + γH V̂ (sH)
]

− Eτ̂∼pτ̂

[

∑

γtr(st, at) + γH V̂ (sH)
]

+ 2γHεv + γHEτ̂∼pτ̂ [V
∗(sH)− V πH,V̂ (sH)] (23)

≤ Eτ∼pτ

[

∑

γtr(st, at) + γH V̂ (sH)
]

− Eτ̂∼pτ̂

[

∑

γtr(st, at) + γH V̂ (sH)
]

(24)

+ 2γHεv + γHEτ̂∼pτ̂ [V
∗(sH)− V πH,V̂ (sH)] (25)

The last step is due to the fact that τ is generated by the optimal action sequence in the ground-

truth H-step MDP H as defined earlier which implies that Eτ∗∼pτ∗

[

∑

γtr(st, at) + γH V̂ (sH)
]

≤

Eτ∼pτ

[

∑

γtr(st, at) + γH V̂ (sH)
]

Now we aim to characterize the performance gap between an optimal policy of MDP Ĥ , π∗
Ĥ

, with the

optimal policy of MDP H, π∗
H, evaluating both in the ground truth MDP H. We wish to characterize

this performance gap as a function of model errors and value errors f(εm, εv, γ,H):.

Eτ∼pτ

[

∑

γtr(st, at) + γH V̂ (sH)
]

− Eτ̂∼pτ̂

[

∑

γtr(st, at) + γH V̂ (sH)
]

≤ f(εm, εv, γ,H)

Let JπH denote the performance of policy π when evaluated in MDP H starting from same initial state
s0. Then we can write this performance gap as

Eτ∼pτ

[

∑

γtr(st, at) + γH V̂ (sH)
]

− Eτ̂∼pτ̂

[

∑

γtr(st, at) + γH V̂ (sH)
]

(26)

= J
π∗

H

H − J
π∗

Ĥ

H (27)

= J
π∗

H

H − J
π∗

H

Ĥ
+ J

π∗

H

Ĥ
− J

π∗

Ĥ

Ĥ
+ J

π∗

Ĥ

Ĥ
− J

π∗

Ĥ

H (28)

=
(

J
π∗

H

H − J
π∗

H

Ĥ

)

−
(

J
π∗

Ĥ

H − J
π∗

Ĥ

Ĥ

)

+
(

J
π∗

H

Ĥ
− J

π∗

Ĥ

Ĥ

)

(29)

≤
(

J
π∗

H

H − J
π∗

H

Ĥ

)

−
(

J
π∗

Ĥ

H − J
π∗

Ĥ

Ĥ

)

+εp (30)

≤ 2 max
π∈{π∗

H
,π∗

Ĥ
}
|
(

JπH − Jπ
Ĥ

)

|+εp (31)

The second-to-last equation is due to the assumed suboptimality of H-step lookahead planner where

we have ∀ policies π, J
π∗

Ĥ

Ĥ
+ εp ≥ Jπ

Ĥ
. Since the total variation between M and M̂ is at most

εm, i.e DTV

(

M(.|s, a), M̂(.|s, a)
)

≤ εm, we have that |ρt1(s, a)− ρt2(s, a)|≤ tεm, where ρ1(s, a)
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is the discounted state-action visitation induced by π on H, ρ2(s, a) is the discounted state-action

visitation induced by the same policy on Ĥ and superscript t indicates the state-action marginal at
the tth timestep (for proof see Lemma B.2 Markov Chain TVD Bound [13]). Then we can write
the performance of policy π in terms of its induced state marginal and the reward function, i.e

JπH =
∑

s,a ρ1(s, a)rmix(s, a) =
∑

s,a

∑H
t=0 γ

tρt1(s, a)rmix(s, a) and use the Markov chain TVD

bound:

JπH − Jπ
Ĥ

=
∑

s,a

(ρ1(s, a)− ρ2(s, a))rmix(s, a) (32)

|JπH − Jπ
Ĥ
| = |

∑

s,a

(ρ1(s, a)− ρ2(s, a))rmix(s, a)| (33)

= |
∑

s,a

H
∑

t=0

γt(ρt1(s, a)− ρt2(s, a))r
t
mix(s, a)| (34)

≤
∑

s,a

H
∑

t=0

γt|(ρt1(s, a)− ρt2(s, a))|r
t
mix(s, a) (35)

≤ Rmax

H−1
∑

t=0

γttεm + γHHεmVmax (36)

= C(εm, H, γ) (37)

Combining Eqn. 31 and Eqn. 37 we have:

Eτ∼pτ

[

∑

γtr(st, at) + γH V̂ (sH)
]

− Eτ̂∼pτ̂

[

∑

γtr(st, at) + γH V̂ (sH)
]

≤ 2C(εm, H, γ)+εp

(38)

We substitute Eqn. 38 in Eqn. 24. Also observe that the last term in Eqn. 24
γHEτ̂ [V

∗(sH)− V πH,V̂ (sH)] can be bounded recursively. Then, we will have the following opti-
mality gap for the H-step lookahead policy πH,V̂ :

Jπ
∗

− JπH,V̂ ≤
2

1− γH
[C(εm, H, γ)+

εp
2

+ γHεv] (39)

The H-step lookahead policy πH,V̂ reduces the dependency on εv (the maximum error of the value

function) by a factor of γH and introduces an additional dependency on εm (the maximum error
of the model). In contrast, when we use 1-step greedy policy, the performance gap is bounded by
(Lemma 1):

Jπ
∗

− JπH,V̂ ≤
γ

1− γ
[2εv] (40)

Lemma 1 can be seen as a special case of our bound when εm is set to 0 and H is set to 1.

A.2 H-step lookahead with model generalization error

In this section, we derive a similar proof as the previous section with a weaker assumption on model
error. We consider a model trained by supervised learning where the sample error can be computed
by PAC generalization bounds which bounds the expected loss and empirical loss under a dataset
with high probability.

We define D to be the dataset of transitions and πD to be the data collecting policy.

Corollary 1. (H-step lookahead with function approximation) Suppose M̂ is an approx-

imate dynamics model such that maxt Es∼πD,t

[

DTV (M(.|s, a)‖M̂(.|s, a))
]

≤ ε̃m. Let

V̂ be an approximate value function such that maxs|V
∗(s) − V̂ (s)|≤ εv. Let the maxi-

mum TV distance of state distribution visited by lookahead policy πH,V̂ be bounded wrt

state visitation of data generating policy by maxt Es∼πH,V̂

[

DTV (ρ
t
πH,V̂

‖ρtπD
)
]

≤ εi and

max
(

DTV (πD(a|s)||π
∗
H(a|s)), DTV (πD(a|s)||π

∗
Ĥ
(a|s))

)

≤ ε̃π ∀s. Let the reward function by
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bounded in [0,Rmax] and V̂ be bounded in [0,Vmax]. Then the performance of the H-step lookahead
policy πH,V̂ can be bounded as:

Jπ
∗

− JπH,V̂ ≤
2

1− γH
[C(ε̃m, ε̃π, εi, H, γ) + γHεv]

where

C(ε̃m, ε̃π, H, γ) = Rmax

H−1
∑

t=0

γtt(ε̃m + ε̃π) +Rmaxεi + γHH(ε̃m + ε̃π)Vmax

Proof. In the function approximation setting, a more realistic perfomance bound depends on the gen-
eralization error of model and distribution shift for the new policy under the collected dataset of tran-

sitions D. Let πD be the data collecting policy. Let Es∼πD,t

[

DTV (M(.|s, a)||M̂(.|s, a))
]

≤ ε̃m ∀s

and max
(

DTV (πD(a|s)||π
∗
H(a|s)), DTV (πD(a|s)||π

∗
Ĥ
(a|s))

)

≤ ε̃π ∀s. Following Lemma B.2

Markov Chain TVD Bound [13] with model generalization error ε̃m, policy distribution shift ε̃π and
bounded state visitation of lookahead policy by εi, we have: |ρt1(s, a)− ρt2(s, a)|≤ t(ε̃m + ε̃π) + εi
Substituting the new state-action divergence bound in Eqn. 35 from Theorem 1 we get the following
performance bound:

Jπ
∗

− JπH,V̂ ≤
2

1− γH
[C(ε̃m, ε̃π, εi, H, γ) + γHεv] (41)

where C(ε̃m, ε̃π, H, γ) = Rmax

∑H−1
t=0 γtt(ε̃m + ε̃π) +Rmaxεi + γHH(ε̃m + ε̃π)Vmax.

Intuitively this bound highlights the tradeoff between model error and value error reasonably when
the dataset is sufficiently exploratory to cover π∗

H and H-step lookahead policy has visitation close to
the dataset.

A.3 H-step lookahead with Empirical Dataset Distribution using Fitted-Q Iteration

In this section, we take a look at the analysis of H-step lookahead under a set of different assumptions.
In particular, we assume a form of model generalization error and that the optimal H-step trajectory
is obtained via fitted-Q iteration in the H-step MDP at every timestep during policy deployment. This
analysis largely follows the fitted-Q iteration analysis from [60, 61, 41] but we adapt it to H-step
lookahead in a simplified form.

Assumption 1. Let our replay buffer dataset be denoted by D and the data generating distribution
be given by dπD , where πD is the data generating policy. Let the Q-function class is given by

Q ⊂ R
S×A. The empirical bellman update T̂ Q under the learned model is given by:

L
d
π
M̂ (Q,Qk) = E

s,a,r,s′∼d
π
M̂

[

(Q(s, a)− r − γQk(s′, πQ(s
′)))2

]

(42)

where Qk is the Q-function at k iteration, dπM̂ is the state visitation under a learned model M̂ from
dataset D. Also we define:

LdπD (Q,Qk) = Es,a,r,s′∼dπD

[

(Q(s, a)− r − γQk(s′, πQ(s
′)))2

]

(43)

A form of model generalization error: We assume the following uniform deviation bound which holds
with high probability (≥ 1− δ):

∀Q,Qk, |LD(Q,Qk)− LdπD (Q,Qk)|≤ ε̃m (44)

This bound can be obtained by concentration inequality as in [41] using concentration inequality ε̃m
to be a function of size of dataset |D|, δ and size of function space for Q.

Intuitively the assumption above states that the bellman error obtained in the data-generating distribu-
tion is close to the bellman error obtained via state-action distribution induced by the learned model,
where the model is learned on a finite fixed dataset D sampled from data generating distribution.

In the following analysis, we assume that H-step lookahead policy is obtained by performing fitted-Q

iteration in the H-step approximate MDP Ĥ defined in Theorem 1.
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Theorem 2. Suppose M̂ is an approximate dynamics model such that Assumption 1 holds. Let V̂

be an approximate value function such that maxs|V
∗(s)− V̂ (s)|≤ εv. Let the reward function by

bounded in [0,Rmax] and V̂ be bounded in [0,Vmax]. Let concentrability coefficient C̃ be such that

∀s, a ν(s,a)
dπD (s,a) ≤ C̃ where ν(s, a) is state-action distribution induced by any non-stationary policy.

Then the performance of the H-step lookahead policy πH,V̂ obtained by running fitted-Q iteration on

the learned model to convergence can be bounded as:

Jπ
∗

− JπH,V̂ ≤
2

1− γH
[C(ε̃m, C̃,H, γ) + γHεv]

where

C(ε̃m, C̃,H, γ) =
2(1− γH)

1− γ

(

1

1− γ

√

2ε̃mC̃

)

Proof. In this section we analyze the performance of H-step lookahead policies under the assumptions
for Fitted Q Iteration [41]. This analysis extends the fitted-Q iteration analysis from greedy to H-step
lookahead policies.

Let ‖g‖p,ν denote a weighted p-norm under distribution ν given by ‖g‖p,ν= Es∼ν [|g(s)|
p]

1
p . We

start by reusing the previous analysis in Theorem 1 under the new stated assumptions to replace the
bound for Eqn. 26. Let π∗

Ĥ
be denoted by π̂H and π∗

H by π∗
H for ease of notation. In this analysis

π̂H is the 1-step greedy policy obtained from Qk the learned Q-function after k iterations of fitted-Q

iteration on the H-step MDP Ĥ.

Rewriting Eqn. 26:

Eτ∼pτ

[

∑

γtr(st, at) + γH V̂ (sH)
]

− Eτ̂∼pτ̂

[

∑

γtr(st, at) + γH V̂ (sH)
]

(45)

= J
π∗

H

H − J π̂H

H (46)

Using performance difference lemma we can write:

J
π∗

H

H − J π̂H

H ≤
H
∑

t=1

γt−1
Es∼dπ̂H

[

V π∗

H (s)−Qπ∗

H (s, π̂H)
]

(47)

≤
H
∑

t=1

γt−1
Es∼dπ̂H

[

V π∗

H (s)−Qk(s, π
∗
H) +Qk(s, π̂H)−Qπ∗

H (s, π̂H)
]

(48)

≤
H
∑

t=1

γt−1
(

‖Qπ∗

H −Qk‖1,dπ̂H×π∗

H
+‖Qπ∗

H −Qk‖1,dπ̂H×π̂H

)

(49)

≤
H
∑

t=1

γt−1
(

‖Qπ∗

H −Qk‖dπ̂H×π∗

H
+‖Qπ∗

H −Qk‖dπ̂H×π̂H

)

(50)

The second line follows from the fact that Qk(s, π̂H) ≥ Qk(s, π
∗
H) since π̂H maximizes Qk.The

concentrability assumptions allows us to compare weighted norms under state distribution induced

by any policy ν(s, a) and dπD (s, a) as follows: ‖.‖ν≤
√

C̃‖.‖dπD . We can bound ‖Qπ∗

H −Qk‖µ,π
for arbitrary state distribution µ and policy π as:

‖Qπ∗

H −Qk‖µ×π = ‖Qπ∗

H − T Qk−1 + T Qk−1 −Qk‖ (51)

≤ ‖T Qπ∗

H − T Qk−1‖µ×π+‖T Qk−1 −Qk‖µ×π (52)

≤ ‖T Qπ∗

H − T Qk−1‖µ×π+
√

C̃‖T Qk−1 −Qk‖dπD (53)

= γ‖Qk−1(·, πQk−1
)−Qπ∗

H (·, π∗
H)‖P (µ×π)+

√

C̃‖T Qk−1 −Qk‖dπD (54)
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where P (µ × π) as distribution over S where s, a ∼ µ, s′ ∼ p(s, a). Define πmix =
argmaxa∈A(Q

π∗

H (s, a), Qk−1(s, a)). Then we have:

‖Qπ∗

H −Qk‖ν,π = γ‖Qk−1(., πQk−1
)−Qπ∗

H (., π∗
H)‖P (µ×π)+

√

|A|C̃‖T Qk−1 −Qk‖dπD (55)

≤
√

C̃‖T Qk−1 −Qk‖dπD+γ‖Qk−1 −Qπ∗

H‖P (µ×π)×πmix
(56)

The second term ‖Qk−1 −Qπ∗

H‖P (µ×π)×πmix
can be expanded via recursion for k times, since the

same analysis holds. We now bound ‖T Qk−1 −Qk‖dπD .

‖T Qk−1 −Qk‖
2
dπD = LdπD (Qk, Qk−1)− LdπD (T Qk−1, Qk−1) (57)

≤ LD(Qk, Qk−1)− LD(T Qk−1, Qk−1) + 2ε̃m w.p ≥ 1− δ (58)

≤ 2ε̃m (59)

As fitted Q iteration converges k → ∞ for γ < 1, we have:

‖Qπ∗

H −Qk‖µ×π≤
1− γk

1− γ

√

2ε̃mC̃ + γk
Vmax
1− γ

(60)

In this analysis we obtain π̂H by performing fitted Q iteration (k → ∞) under the dataset D.
Therefore our bound for Eqn. 26 from the previous analysis under the current assumptions reduces to:

Eτ∼pτ

[

∑

γtr(st, at) + γH V̂ (sH)
]

− Eτ̂∼pτ̂

[

∑

γtr(st, at) + γH V̂ (sH)
]

(61)

= J
π∗

H

H − J π̂H

H (62)

≤
2(1− γH)

1− γ

(

1

1− γ

√

2ε̃mC̃

)

(63)

≤ C(ε̃m, C̃,H, γ) (64)

Plugging this back in our previous analysis we have the following performance bound for H-step
lookahead policy:

Jπ
∗

− JπH,V̂ ≤
2

1− γH
[C(ε̃m, C̃,H, γ) + γHεv] (65)

where C(ε̃m, C̃,H, γ) = 2(1−γH)
1−γ

(

1
1−γ

√

2ε̃mC̃
)

.

A.4 ARC constrains trajectories close to the parameterized actor

In section 5.1, we use ARC, an iterative importance sampling procedure to solve the constrained
optimization in Eqn. 6. The following lemma shows that the final trajectory distribution output as a
result of finite importance sampling iteration is bounded in total variation to the trajectory distribution
given by the parameterized actor.

Lemma 2. Let pτprior be a distribution over action sequences. Applying M KL-based trust region
steps of size ε to pτprior results in a distribution pτM that satisfies:

DTV (p
τ
prior||p

τ ) ≤ T

√

ε

2
(66)

Proof. This lemma is adapted from [42] and provided for completeness. Let pτk be the distribution at
the k trust region step. pτ0 = pτprior Using Pinsker’s inequality we have:

DKL(p
τ
k||p

τ
k+1) ≤ ε (67)

DTV (p
τ
k||p

τ
k+1) ≤

√

ε

2
(68)

Using triangle inequality we have:

DTV (p
τ
prior||p

τ
M ) ≤ M

√

ε

2
(69)
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B Algorithm Details

B.1 LOOP for online RL

Algorithm 1 LOOP-SAC (for Online RL and Safe RL)

Initialize the parametrized actor πφ, Q-function Qθ, predictive model M̂ψ, empty replay buffer D.
Given planning horizon H.

1: // Training
2: for t = 1..(train_steps) do
3: Select action given by a = ARC(s, πφ). . Use safeARC for safeLOOP
4: Execute a in the environment and observe reward r and new state s′.
5: Store the transition (s, a, r, s′) in replay buffer D.
6: Optimize πφ and Qθ using SAC over replay buffer D.

7: Train model M̂ψ on the replay buffer D until convergence every Km training steps.
8: end for
9: // Evaluation

10: for t = 1..(eval_steps) do
11: Select action given by a = ARC(s, πφ).
12: Execute a in the environment and observe reward r and new state s′.
13: end for

B.2 LOOP for offline RL

Algorithm 2 LOOP-offline

Initialize the parametrized actor πφ, Q-function Qθ, predictive model M̂ψ, empty replay buffer D.
Given planning horizon H.

1: // Training

2: Train model M̂ψ on the replay buffer D till convergence.
3: Run an Offline RL algorithm till convergence on D to learn Qθ and πφ.
4: // Evaluation
5: for t = 1..(eval_steps) do
6: Select action given by a = ARC(st, πφ).
7: Execute a in the environment and observe reward r and new state s′.
8: end for
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B.3 Actor Regularized Control (ARC)

Eqn. 6 gives a general constrained optimization for policy update. In Eqn. 6, with terminal state-action
value functions,when [pτprior = Uniform , H = 0], we recover the SAC [5] deployment policy, when

[pτprior = πβ , H = 0], we recover the AWAC [45] deployment policy and when πprior = N (0, σ),
we recover the MPPI [35] deployment policy.

In the LOOP framework we use ARC as our trajectory optimization routine to solve Eqn. 6.
Algorithm 3 shows the pseudocode for ARC routine used for Online and Offline RL experiments.

Algorithm 3 Actor Regularized Control (ARC)

Input: sT , πφ
Given the parameterized actor πφ, Q-function Qθ, predictive model M̂ψ, reward model r̂, replay

buffer D, Planning Horizon H, 1-timestep shifted solution from the previous timestep µT−1, ARC
iterations nARC , number of trajectories (population size) N .

1: for i = 1..nARC do
2: R1:N = 0 . Rewards of N trajectories
3: A1:N,1:H = 0 . N action sequences with horizon H
4: for j = 1..N trajectories do
5: // Generate a trajectory with the model
6: s1 = sT
7: for t = 1..H horizon do
8: // Generate actions from a mixture prior

9: Aj,t = at = βπφ(st) + (1− β)N (µT−1
t , σ)

10: st+1 = M̂ψ(st, at)
11: end for
12: // Rollout the action sequence P times in each model within the ensemble
13: R = 0
14: for k = 1..Kmodels do
15: for p = 1..P particles do
16: s1 = sT
17: for t = 1..H horizon do
18: at = Aj,t

19: st+1 = M̂ψ(st, at)
20: R = R+ γt−1(1(t = H)Qθ(st, at) + 1(t 6= H)r̂(st, at))
21: end for
22: end for
23: end for
24: //Uncertainty penalized average reward

25: Rj =
1
K

(

∑K
k=1(R/P )− βpess

∑

(R/P −
∑K
k=1(

R
KP ))

2
)

26: end for
27: µnew,1:H = weighted-mean(A1:N , weights = exp(R1:N/η))

28: Σnew,1:H = weighted-mean((A1:N − µnew)
2, weights = exp(R1:N/η))

29: µTi+1 = α ∗ µnew + (1− α)µTi . Update mean

30: ΣTi+1 = α ∗ Σnew + (1− α)ΣTi . Update variance
31: end for

Output: µT = µTnARC+1

βpess is set to zero for Online RL experiments and safe RL experiments where trajectories are scored
by unpenalized average. It is tuned for Offline RL experiments as detailed in Appendix C.
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B.3.1 ARC for safe-RL

We optimize for the following objective in LOOP for safe RL:

argmaxatEM̂

[

RH,V̂ (st)
]

s.t. max
[K]

H
∑

t=0

γtc(st, aT ) ≤ d0 (70)

where [K] are the model ensembles, c is the constraint cost function and RH,V̂ is the H-horizon

lookahead objective defined in Eqn. 3. We incorporate safety in the trajectory optimization procedure
following previous work [62, 63]. The pseudocode for safeARC used in safeLOOP is shown in
Algorithm 4.

B.4 Discussion on the choice of terminal value function

LOOP-SAC, LOOP-SARSA and POLO use different ways to learn a terminal value funcion. LOOP-
SARSA is evaluating the "replay buffer policy" instead of the H-step lookahead policy because we
are using off-policy data (where the original SARSA is an on-policy algorithm). We believe this is the
main reason behind its poor performance. Unfortunately, on-policy LOOP-SARSA would be too slow,
due to the need for collecting on-policy data. POLO is formulated to evaluate V π with the model.
However, POLO requires running trajectory optimization during the value function update, which is
computationally expensive. In contrast to these methods, LOOP uses an off-policy algorithm to learn
V ∗. We found that this approach has good performance and it is significantly more computationally
efficient than POLO. An interesting direction of future work could be to try to combine LOOP with
an efficient off-policy evaluation algorithm to estimate V π .
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Algorithm 4 safeARC

Input: sT , πφ
Given the parameterized actor πφ, Q-function Qθ, predictive model M̂ψ, reward model r̂, replay

buffer D, planning horizon H, 1 timestep shifted solution from the previous timestep µT−1, safety
threshold d0, minimal safe trajectories m, ARC iterations nARC , number of trajectories (population
size) N .

1: for i = 1..nARC do
2: R1:N = 0 . Rewards of N trajectories
3: C1:N = 0 . Cost of N trajectories
4: A1:N,1:H = 0 . N action sequences with horizon H
5: for j = 1..N trajectories do
6: // Generate a trajectory with the model
7: s1 = sT
8: for t = 1..H horizon do
9: // Generate actions from a mixture prior

10: Aj,t = at = βπφ(st) + (1− β)N (µT−1
t , σ)

11: st+1 = M̂ψ(st, at)
12: end for
13: // Rollout the action sequence P times in each model within the ensemble
14: R = 0
15: for k = 1..K models do
16: for p = 1..P particles do
17: s1 = sT
18: for t = 1..H horizon do
19: at = Aj,t

20: st+1 = M̂ψ(st, at)
21: R = R+ γt−1(1(t = H)Qθ(st, at) + 1(t 6= H)r̂(st, at))
22: C = C + γt−1(ĉ(st, at))
23: end for
24: end for
25: end for
26: Rj =

1
K

∑K
k=1(R/P ) . Average Reward across the ensemble

27: Cj = max[K] max[P ](C) . Maximum Cost across the ensemble and particles
28: end for
29: if count(C1:N < d0) < m then
30: µnew = weighted-mean(A1:N , weights = exp(−CN/η))
31: Σnew = weighted-mean((A1:N − µnew)

2, weights = exp(−CN/η))
32: . Weighted mean w.r.t neg-cost
33: else
34: safe-idx = {i for Ci < d0}
35: µnew= weighted-mean(Asafe-idx, weights = exp(Rsafe-idx/η))

36: Σnew = weighted-mean(Asafe-idx − µnew)
2, weights = exp(Rsafe-idx/η))

37: . Weighted mean w.r.t safe actions
38: end if
39: µTi+1 = α ∗ µnew + (1− α)µTi . Update mean

40: ΣTi+1 = α ∗ Σnew + (1− α)ΣTi . Update variance
41: end for

Output: µT = µTnARC+1

C Experiment Details

We use the same hyperparameters for the underlying off-policy method (SAC) and the ensemble
dynamics models following previous work for LOOP and all the baselines [21, 17, 5]. All the results
presented are averaged over 5 random seeds.
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C.1 Implementation Details for the Dynamics Model Ensemble

Following [21, 17], we use probabilistic ensembles of dynamics models that capture the epistemic

uncertainty as well as the aleatoric uncertainty in forward predictions [64]. The dynamics model M̂
is comprised of K neural networks. Each individual network is randomly initialized and trained with
the same dataset. Using the transition dataset, we train the dynamics model to predict the next state
as well as the reward. In practice, instead of directly regressing to the next state, we instead predict
∆t+1, where ∆t+1 = st+1 − st parametrized as a Gaussian distribution with a diagonal covariance
matrix. We regress directly to the scalar reward.

C.2 Online RL

Additional details on PenGoal-v1 and Claw-v1: We modify the original Pen-v1 environment 2

to have a narrower range of goals given by: [0.7, 0.7] + N (0, 0.1) and name this environment
as PenGoal-v1. We use the Claw-v1 environment from Nagabandi et al. [21] using the original
implementation3 but we find the scale of rewards to be different from the paper.

Baselines: We use the original implementation for MBPO4. For SAC, we use a public implementa-
tion 5. We use a planning horizon of 3 for PETS-restricted which is the same as LOOP. LOOP-SARSA
is based on the same H-step lookahead idea, but with a terminal value function that is a evaluation of
the replay buffer. The value function is updated using the following SARSA update from the replay
buffer transitions:

T πDQ(st, at) = r(st, at) + γQ(st+1, at+1) ,where (st, at, rt, st+1, at+1 ∼ D) (71)

This baseline is similar to MBOP [33]. The main difference is that in this case the Q-function is
learned via TD-backups for evaluation whereas MBOP uses Monte Carlo Evaluation. For SAC-VE,
we implement H-step value expansion from [15] on top of SAC for a fair comparison. This is
following the value expansions baseline implemented in MBPO [13].

Training Details: For LOOP-SAC we use SAC [5] as the underlying off-policy RL algorithm. Both
the policy network (the parameterized actor) and the Q-function are parameterized by (256, 256)
MLP with ReLU activations. The output of the policy network is a tanh squashed Gaussian. We use
Adam to optimize both the policy and the Q-network with a learning rate of 3e-4. The temperature
for SAC is learned to match a predefined target entropy. The replay buffer has a size of 1e6 and we
use a batch size of 256. The target networks are updated with polyak averaging. Dynamics model
related hyperparameters are listed in Table 2 and ARC related hyperparameters are in Table 3.

Hyperparameter Value

Model Update frequency (Km) 250
Ensemble Size (K) 5
Network Architecture (200,200,200,200)
Model Learning rate 0.001

Table 2: Dynamics Model Hyperparameters

C.3 Offline RL

Baselines: We reimplement the CRR baseline in Pytorch. For PLAS, we use the original implemen-
tation 6. Note that LOOP requires terminal Q-functions which estimate the cumulative value of future
rewards. Some offline RL methods such as CQL will not be suitable to be combined with LOOP
because CQL estimates a conservative lower-bound of the Q-function [31]. For MBOP [33], we
report the results from their paper.

Training Details: For both LOOP-CRR and LOOP-PLAS we use the provided hyperparameters in
the original papers. To optimize for the H-step lookahead objective given in Eqn. 3, we use ARC with

2https://github.com/vikashplus/mj_envs
3https://github.com/google-research/pddm/tree/master/pddm
4https://github.com/JannerM/mbpo
5https://github.com/openai/spinningup
6https://github.com/Wenxuan-Zhou/PLAS
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Baselines: We compare against CPO [57], LBPO [58], and PPO-lagrangian [59]. We use the original
implementation for LBPO7 and the safety benchmark [55] for CPO and PPO-lagrangian. All of the
three baselines require a threshold to be set in order to optimize for safety. SafeLOOP optimizes for
in-horizon safety whereas the baselines optimize for the infinite-step cumulative discounted return,
so it becomes difficult to compare the methods directly. We design safeLOOP to optimize for 0 cost
within the planning horizon and use the asymptotic safety cost reached by safeLOOP as the threshold
for the baselines. We see that safeLOOP can reach average infinite horizon cost less than 10 which is
lower than the threshold of 25 used in the official benchmark.

Training details: We use the safeARC algorithm presented in Algorithm 4 to solve the constrained
optimization objective in Eqn. 10. The ARC parameters are the same as given in Table 3 with the
Iterations(N) changed to 8 and Planning horizon(H) changed to 8. For OpenAI safety environments
we use an action repeat of 5 across our method and the baselines.

7https://github.com/hari-sikchi/LBPO
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D.3 Offline RL experiments for D4RL

Table 5 shows the performance of LOOP on four types of D4RL locomotion datasets. The random
dataset is generated by a randomly initialized policy. The medium dataset is generated by executing a
“medium quality” policy trained up to half of the final performance at convergence. The medium-
replay dataset is the replay buffer of the medium quality policy. The medium-expert dataset is
generated by a medium quality policy and a fully trained policy.

Dataset
Env CRR LOOP Improve% PLAS LOOP Improve% MBOP

CRR PLAS

random
hopper 10.40 10.68 2.7 10.35 10.71 3.5 10.8

halfcheetah 4.23 7.55 78.5 26.05 26.14 0.3 6.3
walker2d 1.94 2.04 5.2 0.89 2.83 218.0 8.1

medium
hopper 65.73 85.83 30.6 32.08 56.47 76.0 48.8

halfcheetah 41.14 41.54 1.0 39.33 39.54 0.5 44.6
walker2d 69.98 79.18 13.1 46.20 52.66 14.0 41.0

med-replay
hopper 27.69 29.08 5.0 29.29 31.29 6.8 12.4

halfcheetah 42.29 42.84 1.3 43.96 44.25 0.7 42.3
walker2d 19.84 27.30 37.6 35.59 41.16 15.7 9.7

med-expert
hopper 112.02 113.71 1.5 110.95 114.32 3.0 55.1

halfcheetah 21.48 24.19 12.6 93.08 98.16 5.5 105.9
walker2d 103.77 105.76 1.9 90.07 99.03 9.9 70.2

Table 5: Normalized scores for LOOP on the D4RL datasets comparing to the underlying offline RL
algorithms and a baseline MBOP. LOOP improves the base algorithm across various types of datasets
and environments.

D.4 Pessimism ablation for Offline RL

Table 6 shows an ablation of the pessimism term βpess in Eqn. 9 as used in LOOP for Offline RL
experiments. We note that the pessimistic term is not itself one of our contributions; this pessimistic
term was used in previous works in model-based offline RL like [49, 50] which learn a policy given
the data in an uncertainty penalized MDP. We observe that being pessimistic allows us to control
incorrect extrapolation and obtain higher returns in most of the environments.

Dataset
Env LOOP LOOP β∗ LOOP LOOP β∗

CRR CRR PLAS PLAS
(β = 0) (β = β∗) (β = 0) (β = β∗)

random
hopper 10.31 10.68 0.5 10.67 10.71 0.5

halfcheetah 5.12 7.55 5.0 26.14 26.14 0.0
walker2d 2.04 2.04 0.0 2.83 2.83 0.0

medium
hopper 78.56 85.83 1.0 54.97 56.47 0.5

halfcheetah 41.54 41.54 0.0 38.01 39.54 1.0
walker2d 75.21 79.18 0.5 52.66 52.66 0.0

med-replay
hopper 28.28 29.08 0.5 31.08 31.29 1.0

halfcheetah 42.71 42.84 0.5 44.01 44.25 5.0
walker2d 23.17 27.30 0.5 32.99 41.16 0.5

med-expert
hopper 104.57 113.71 1.0 98.87 114.32 5.0

halfcheetah 23.84 24.19 5.0 94.19 98.16 0.5
walker2d 104.57 105.76 1.0 97.87 99.03 1.0

Table 6: Normalized scores for LOOP on the D4RL datasets ablating the pessimism parameter.

D.5 Empirical analysis for ARC

In this section, we aim to verify how the ARC and its specfic hyperparameters affect the performance
of LOOP for both the online RL and offline RL settings.
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