
SoK: Practical Foundations for Software Spectre Defenses

Sunjay Cauligi

UC San Diego

MPI Security & Privacy

Craig Disselkoen

UC San Diego

Daniel Moghimi

UC San Diego

Gilles Barthe

MPI Security & Privacy

IMDEA Software Institute

Deian Stefan

UC San Diego

AbstractÐSpectre vulnerabilities violate our fundamental as-
sumptions about architectural abstractions, allowing attackers
to steal sensitive data despite previously state-of-the-art counter-
measures. To defend against Spectre, developers of verification
tools and compiler-based mitigations are forced to reason about
microarchitectural details such as speculative execution. In order
to aid developers with these attacks in a principled way, the
research community has sought formal foundations for speculative
execution upon which to rebuild provable security guarantees.

This paper systematizes the community’s current knowledge
about software verification and mitigation for Spectre. We
study state-of-the-art software defenses, both with and without
associated formal models, and use a cohesive framework to
compare the security properties each defense provides. We
explore a wide variety of tradeoffs in the expressiveness of
formal frameworks, the complexity of defense tools, and the
resulting security guarantees. As a result of our analysis, we
suggest practical choices for developers of analysis and mitigation
tools, and we identify several open problems in this area to guide
future work on grounded software defenses.

I. INTRODUCTION

Spectre attacks have upended the foundations of computer

security [44]. With Spectre, attackers can steal secrets across

security boundariesÐboth hardware boundaries provided by

the process abstraction [84], and software boundaries provided

by memory safe languages and software-based fault isolation

(SFI) techniques [79]. In response, the security community has

been working on program analysis tools to both find Spectre

vulnerabilities and to guide mitigations (e.g., compiler passes)

that can be used to secure programs in the presence of this

class of attacks. But Spectre attacksÐand speculative execution

in generalÐviolate our typical assumptions and abstractions

and have proven particularly challenging to reason about and

defend against.

Many existing defense mechanisms against Spectre are either

incomplete (and thus miss possible attacks) or overly conser-

vative (and thus slow). For example, the MSVC compiler’s

/Qspectre passÐone of the first compiler-based defenses

against Spectre [55]Ðinserts mitigations by finding Spectre

gadgets (or patterns). Since these patterns are not based on any

rigorous analysis, the compiler misses similarly vulnerable code

patterns [60]. As another example, Google Chrome adopted

process isolation as its core defense mechanism against Spectre

attacks [64]. This is also unsound: Canella et al. [13], for

example, show that Spectre attacks can be performed across

the process boundary. On the other side of the spectrum,

inserting fences at every load or control flow point is sound

but prohibitively slow [59].

Language-based security can help us achieveÐor at least

understand the trade-offs of giving up onÐperformance and

provable security guarantees. Historically, the security commu-

nity has turned to language-based security to solidify intricate

defense techniquesÐfrom SFI enforcement on x86 [58], to

information flow control enforcement [66], to eliminating

side-channel attacks with constant-time programming [6]. At

the core of language-based security are program semanticsÐ

rigorous models of program behavior which serve as the basis

for formal security policies or foundations. These policies

help us carefully and explicitly spell out our assumptions

about the attacker’s strength and ensure that our tools are

sound with respect to this class of attackersÐe.g., that Spectre

vulnerability-detection or -mitigation tools find and mitigate

the vulnerabilities they claim to find and mitigate.

Formal foundations are key to performance too. Without

formalizations, Spectre defenses are usually either overly

conservative (which leads to unnecessary and slow mitigations)

or crude (and thus vulnerable). For example, speculative

load hardening [14] is safeÐit safely eliminates Spectre-PHT

attacksÐbut is overly conservative and slow: It assumes that all

array indexing operations must be hardened. In practice, this is

not the case [35, 77]. Crude techniques like oo7 [81] are both

inefficient and unsafeÐthey impose unnecessary restrictions

yet also miss vulnerable code patterns. Foundations allow us

to craft defenses that are minimal (e.g., they target the precise

array indexes that need hardening [29, 77]) and provably secure.

Alas, not all foundations are equally practical. Since spec-

ulative execution breaks common assumptions about pro-

gram semanticsÐthe cornerstone of language-based methodsÐ

existing Spectre foundations explore different design choices,

many of which have important ramifications on defense tools

and the software produced or analyzed by these tools (Figure 2).

For instance, one key choice is the leakage model of the

semantics, which determines what the attacker is allowed

to observe. Another choice is the execution model, which

simultaneously captures the attacker’s strength and which

Spectre variants the resulting analysis (or mitigation) tool can

reason about. These choices in turn determine which security

policies can be verified or enforced by these tools.

While formal design decisions fundamentally impact the

soundness and precision of Spectre analysis and mitigation

tools, they have not been systematically explored by the security

community. For example, while there are many choices for a

leakage model, the constant-time [6] and sandbox isolation [29]

models are the most pragmatic; leakage models that only con-



sider the data cache trade off security for no clear benefits (e.g.,

scalability or precision). As another example, the most practical

execution models borrow (again) from work on constant-time:

They are detailed enough to capture practical attacks, but

abstract across different hardwareÐand are thus useful for

both software-based verification and mitigation techniques.

Models which capture microarchitectural details like cache

structures make the analysis unnecessarily complicated: They

do not fundamentally capture additional attacks and give up

on portability.

Contributions. In this paper, we systematize the community’s

knowledge on Spectre foundations and identify the different

design choices made by existing work and their tradeoffs. This

complements existing, excellent surveys [12, 13, 85] on the

low-level details of Spectre attacks and defenses which do

not consider foundations or, for example, high-level security

policies. Throughout, we discuss the limitations of existing

formal frameworks, the defense tools built on top of these

foundations, and future directions for research. In summary,

we make the following contributions:

• Study existing foundations for Spectre analysis in the form

of semantics, discuss the different design choices which

can be made in a semantics, and describe the tradeoffs of

each choice.

• Compare many proposed Spectre defensesÐboth with and

without formal foundationsÐusing a unifying framework,

which allows us to understand differences in the security

guarantees they offer.

• Identify open research problems, both for foundations and

for Spectre software defenses in general.

• Provide recommendations both for developers and for

the research community that could result in tools with

stronger security guarantees.

Scope. In this systematization, we focus on software-only

defenses against Spectre attacks. We focus on Spectre because

most other transient attacks (e.g., Meltdown [48], LVI [76],

MDS [34], or Foreshadow [75]) can efficiently be addressed

in the hardware, through microcode updates or new hardware

designs. (This is also the reason existing software-based tools

against transient execution attacks focus solely on Spectre, as

we discuss in Section IV-D.) We focus on defenses because

prior work, notably Canella et al. [13], already give an excellent

overview of the types of Spectre vulnerabilities and the power-

ful capabilities they give attackers. And we focus on software-

only defensesÐalthough proposals for hardware defenses are

extremely valuable, hardware design cycles (and hardware

upgrade cycles) are very long. Moreover, software foundations

are useful for understanding hardware and hardware-software

co-designs (e.g., they directly affect execution and leakage

models). Having secure software foundations allows us to

defend against today’s attacks on today’s hardware, and

tomorrow’s as well.

II. PRELIMINARIES

In this section, we first discuss Spectre attacks and how they

violate security in two particular application domains: high-

if (i < arrALen) { // mispredicted

int x = arrA[i]; // x is oob value

int y = arrB[x]; // leaked via address!

// ...

Fig. 1. Code snippet which an attacker can exploit using Spectre. If an
attacker can control i and cause the processor to transiently enter the branch,
the attacker can load an arbitrary value from memory into x, which is then
leaked via the following memory access.

assurance cryptography and isolation of untrusted code. Then,

we provide an introduction to formal semantics for security and

its relevance to secure speculation in these application domains.

A. Spectre vulnerabilities

Spectre [3, 5, 32, 42, 44, 45, 51, 88] is a recently discovered

family of vulnerabilities stemming from speculative execution

on modern processors. Spectre allows attackers to learn

sensitive information by causing the processor to mispredict the

targets of control flow (e.g., conditional jumps or indirect calls)

or data flow (e.g., aliasing or value forwarding). When the

processor realizes it has mispredicted, it rolls back execution,

erasing the programmer-visible effects of the speculation.

However, microarchitectural stateÐsuch as the state of the data

cacheÐis still modified during speculative execution; these

changes can be leaked during speculation and can persist even

after rollback. As a result, the attacker can recover sensitive

information from the microarchitectural state, even if the

sensitive information was only speculatively accessed.

Figure 1 gives an example of a vulnerable function: An

attacker can exploit branch misprediction to leak arbitrary

memory via the data cache. The attacker first primes the branch

to predict that the condition i < arrALen is true by causing

the code to repeatedly run with appropriate (small) values of

i. Then, the attacker provides an out-of-bounds value for i.

The processor (mis)predicts that the condition is still true and

speculatively loads out-of-bounds (potentially secret) data into

x; subsequently, it uses the value x as part of the address of a

memory read operation. This encodes the value of x into the

data cache stateÐdepending on the value of x, different cache

lines will be accessed and cached. Once the processor resolves

the misprediction, it rolls back execution, but the data cache

state persists. The attacker can later interpret the data cache

state in order to infer the value of x.

B. Breaking cryptography with Spectre

High-assurance cryptography has long relied on constant-

time programming [6] in order to create software which

is secure from timing side-channel attacks. Constant-time

programming ensures that program execution does not depend

on secrets. It does this via three rules of thumb [6, 8]: control

flow (e.g., conditional branches) should not depend on secrets,

memory access patterns (e.g., offsets into arrays) should not

be influenced by secrets, and secrets should not be used as

operands to variable-latency instructions (e.g., floating-point

instructions or integer division on many processors). These

rules ensure that secrets remain safe from an attacker powerful



enough to perform cache attacks, exfiltrate data via branch

predictor state, or snoop data via port contention [10].

In the face of Spectre, constant-time programming is not

sufficient. The snippet in Figure 1 is indeed constant-time if

arrA contains only public data (and i and arrALen are also

public). Yet, a Spectre attack can still abuse this code to leak

secrets from anywhere in memory.

Cache-based leaks are not the only way for an attacker

to learn cryptographic secrets: In the following example, an

attacker can again (speculatively) leak out-of-bounds data, but

this time the leak is via control flow.

if (i < arrALen) {

int x = arrA[i];

switch(x) { // leak via branching!

case 'A': /* ... */

case 'B': /* ... */

// ...

This code uses x as part of a branch condition (in a switch

statement). Just as before, the attacker can speculatively read

arbitrary memory into x. They can then leak the value of

x in several ways, including: (1) Based on the different

execution times of the various cases; (2) through the data

cache, based on differing (benign) memory accesses performed

in the various cases; (3) through the instruction cache or micro-

op cache [65], based on which instructions were (speculatively)

accessed; or (4) through port contention [10], branch predictor

state [38], or other microarchitectural resources that differ

among the branches.

C. Breaking software isolation with Spectre

Spectre attacks also break important guarantees in the domain

of software isolation. In this domain, a host application executes

untrusted code and wants to ensure that the untrusted code

cannot access any of the host’s data. Common examples

of software isolation include JavaScript or WebAssembly

runtimes, or even the Linux kernel, through eBPF [23]. Spectre

attacks can break the memory safety and isolation mechanisms

commonly used in these settings [39, 52, 59, 72].

We demonstrate with a small example:

int guest_func() {

get_host_val(1);

get_host_val(1);

// ... repeat ...

char c = get_host_val(99999);

// ... leak c

}

char get_host_val(int idx) {

if (idx < 100) { // check if within bounds

return host_arr[idx];

} else {

return 0;

} }

Here, an attacker-supplied guest function guest_func calls

the host function get_host_val to get values from an

array. Although get_host_val() implements a bounds check,

the attacker can still speculatively access out-of-bounds data

by mistraining the branch predictorÐbreaking any isolation

guarantees. Once the attacker (speculatively) obtains an out-of-

bounds value of their choosing, they can leak the value (e.g., via

data cache, etc.) and recover it after the speculative rollback.

In this setting, we need to ensure that, even speculatively,

untrusted code cannot break isolation.

D. Security properties and execution semantics

Formally, we will define safety from Spectre attacks as a

security property of a formal (operational) semantics. The

semantics abstractly captures how a processor executes a

program as a series of state transitions. The states, which

we will write as σ, include any information the developer will

need to track for their analysis, such as the current instruction

or command and the contents of memory and registers. The

developer then defines an execution modelÐa set of transition

rules that specify how state changes during execution. For

example, in a semantics for a low-level assembly, a rule for

a store instruction will update the resulting state’s memory

with a new value.

The rules in the execution model determine how and

when speculative effects happen. For example, in a sequential

semantics, a conditional branch will evaluate its condition then

step to the appropriate branch. A semantics that models branch

prediction will instead predict the condition result and step

to the predicted branch. We adapt notation from Guarnieri

et al. [29], writing J · Kseq to represent the execution model

for standard sequential execution. We notate other execution

models similarly; for example, J · Kpht models prediction for

Spectre-PHT attacksÐi.e., conditional branch prediction. Other

execution models are listed in Figure 3.

Next, to precisely specify the attacker model, the developer

must define which leakage observationsÐinformation produced

during an execution stepÐare visible to an attacker. For

example, they may decide that rules with memory accesses leak

the addresses being accessed. The set of leakage observations

in a semantics’ rules is its leakage model. We again borrow

notation from Guarnieri et al. [29], which defines the leakage

models J · Kct and J · Karch. The J · Kct model exposes leakage

observations relevant to constant-time security: The sequence of

control flow (the execution trace) and the sequence of addresses

accessed in memory (the memory trace).1 The J · Karch model,

on the other hand, exposes all values loaded from memory in

addition to the addresses themselves (or equivalently, it exposes

the trace of register values) [29]. Under this model, an attacker

is allowed to observe all architectural computation; for a value

to remain unobserved, it cannot be accessed at all over the

course of execution, adversarial or otherwise. Since the leakage

observations in J · Karch are a strict superset of those in J · Kct,

we say that J · Karch is stronger than J · Kct (i.e., it models a

more powerful attacker). These properties make J · Karch most

useful for software isolation, as any out-of-bounds accesses

will immediately show up in an J · Karch leakage trace.

Surprisingly, the J · Kct and J · Karch leakage models generalize

well to speculative executionÐfor example, if we want to

1Like Guarnieri et al. [29], we omit variable-latency instructions from our
formal model for simplicity.



construct a semantics for Spectre-PHT attacks, we need only

modify a sequential constant-time semantics to account for

branch misprediction. Indeed, the execution model and leakage

model of a semantics are orthogonal; we call the combination of

the two the contract provided by the semanticsÐa sequential

constant-time semantics has the contract J · Kseq
ct , while our

hypothetical Spectre-PHT semantics would provide the contract

J · Kpht
ct . Formally, the contract governs the attacker-visible

information produced when executing a program: Given a

program p, a semantics with contract J · Kαℓ , and an initial state

σ, we write JpKαℓ (σ) for the sequence (or trace) of leakage

observations the semantics produces when executing p.

After determining a proper contract, the developer must

finally define the policy that their security property enforces:

Precisely which data can and cannot be leaked to the attacker.

Formally, a policy π is defined in terms of an equivalence

relation ≃π over states, where σ1 ≃π σ2 iff σ1 and σ2 agree

on all values that are public (but may differ on sensitive values).

Armed with these definitions, we can state security as a

non-interference property: A program satisfies non-interference

if, for any two π-equivalent initial states for a program p, an

attacker cannot distinguish the two resulting leakage traces

when executing p. A developer has several choices when

crafting a suitable semantics and security policy; these choices

greatly influence how easy or difficult it is to detect or mitigate

Spectre vulnerabilities. We cover these choices in detail in

Section III: Sections III-A and III-B discuss choices in leakage

models J · Kℓ and security policies π. Sections III-C and III-D

discuss tradeoffs for different execution models J · Kα and the

transition rules in a semantics. In Section III-E, we discuss

how the input language of the semantics affects analysis; and

finally, in Section III-F, we discuss which microarchitectural

features to include in formal models.

III. CHOICES IN SEMANTICS

The foundation of a well-designed Spectre analysis tool

is a carefully constructed formal semantics. Developers face

a wide variety of choices when designing their semanticsÐ

choices which heavily depend on the attacker model (and

thus the intended application area) as well as specifics about

the tool they want to develop. Cryptographic code requires

different security properties, and therefore different semantics

and tools, than in-process isolation. Many of these choices

also look different for detection tools, focused only on finding

Spectre vulnerabilities, vs. mitigation tools, which transform

programs to be secure. In this section, we describe the important

choices about semantics that developers face, and explain those

choices’ consequences for Spectre analysis tools and for their

associated security guarantees. We also point out a number of

open problems to guide future work in this area.

What makes a practical semantics? A practical semantics

should make an appropriate tradeoff between detail and

abstraction: It should be detailed enough to capture the

microarchitectural behaviors which we’re interested in, but it

should also be abstract enough that it applies to all (reasonable)

hardware. For example, we do not want the security of our

code to be dependent on a specific cache replacement policy

or branch predictor implementation.

In the non-speculative world, formalisms for constant-time

have been successful: The principles of constant-time program-

ming (no secrets for branches, no secrets for addresses) create

secure code without introducing processor-specific abstractions.

Speculative semantics should follow this trend, producing

portable tools which can defend against powerful attackers

on today’s (and tomorrow’s) microarchitectures.

A. Leakage models

Any semantics intended to model side-channel attacks needs

to precisely define its attacker model. An important part of the

attacker model for a semantics is the leakage modelÐthat is,

what information does the attacker get to observe? Leakage

models intended to support sound mitigation schemes should be

strongÐmodeling a powerful attackerÐand hardware-agnostic,

so that security guarantees are portable. That said, the best

choice for a leakage model depends in large part on the intended

application domain.

Leakage models for cryptography. As we saw in Section II-B,

high-assurance cryptography implementations have long relied

on the constant-time programming model; thus, semantics

intended for cryptographic programs naturally choose the J · Kct

leakage model. Like the constant-time programming model in

the non-speculative world, the J · Kct leakage model is strong

and hardware-agnostic, making it a solid foundation for security

guarantees. The J · Kct leakage model is a popular choice among

existing formalizations: As we highlight in Figure 2, over half

of the formal semantics for Spectre use the J · Kct leakage

model (or an equivalent) [7, 15, 20, 27, 28, 61, 77]. Guarnieri

et al. [29] leave the leakage model abstract, allowing the

semantics to be used with several different leakage models,

including J · Kct.

Leakage models for isolation. Sections II-C and II-D describe

the J · Karch leakage model, which is a better fit for modeling

speculative isolation, e.g., for a WebAssembly runtime execut-

ing untrusted code [59] or a kernel defending against memory

region probing [26]. Under J · Karch, all values in the program

are observableÐthis is what lets it easily model properties for

software isolation: If we define a policy π where all values

and memory regions outside the isolation boundary are secret,

then software isolation security (or speculative memory safety)

is simply non-interference with respect to J · Karch (and this π).

The J · Karch leakage model appears less frequently than

J · Kct in formal models: Only two of the semantics in Fig-

ure 2 ([17, 29]) use the J · Karch leakage model. On the

other hand, Spectre sandbox isolation frameworks such as

Swivel [59], Venkman [72], and ELFbac [39] implicitly use

the J · Karch model, as do the detection tools SpecFuzz [60],

ASTCVW [43], SpecTaint [63], and the ªweakº and ªv1.1º

modes of oo7 [81]. The three isolation frameworks all explicitly

prevent memory reads or writes to any locations outside of

the isolation boundaryÐi.e., enforcing non-interference under

J · Karch. The detection tools, meanwhile, look for gadgets



Semantics or tool name Level Leakage Variants Nondet. Fence OOO Win. Hij. Tool Impl.

Cauligi et al. [15] (Pitchfork) Low J · Kct P,B,M P,B,R,S Directives ✓ ✓ ✓ ✓ Det* Taint

Cheang et al. [17] Low J · Karch P,M,S,R P Oracle ✓ × ✓ × Det/Mit SelfC+

Daniel et al. [20] (Binsec/Haunted) Low J · Kct P,M P,S Mispredict × × ✓ × Det SelfC

Guanciale et al. [27] (InSpectre) Low J · Kct P,M P,B,R,S Ð ✓ ✓ × ✓ Ð Ð

Guarnieri et al. [28] (Spectector) Low J · Kct P,B,M P Oracle ✓ × ✓ → Det SelfC+

Guarnieri et al. [29] Low (parametrized) P
1

Oracle ✓ ✓ ✓ × Det SelfC+

Mcilroy et al. [54] Low J · Kcache T P
2

Oracle ∽ × ✓ → Mit* Manual

Barthe et al. [7] (Jasmin) Medium J · Kct P,B,M P,S Directives ✓ × × × Det Safety

Patrignani and Guarnieri [61] Medium J · Kct P,B,M,L
3

P
1

Mispredict ✓ × ✓ × Ð Ð

Vassena et al. [77] (Blade) Medium J · Kct B,M P Directives ✓ ✓ × × Mit Flow

Colvin and Winter [18] High J · Kmem M P Weak-mem ✓ ✓ × × Val Model

Disselkoen et al. [21] High J · Kmem M P Weak-mem ✓ ✓ × × Ð Ð

P. de LeÂon and Kinder [62] (Kaibyo) High J · Kmem M P,S Weak-mem ✓ ✓ ✓ × Det Model

AISE [83] Ð J · Kcache C P Mispredict × × ✓ × Det Cache+

ASTCVW [43] Ð J · Karch L P
4

Ð × × × × Det Taint

ELFbac [39] Ð J · Karch L P Ð ×
5

× × ✓ Mit Struct

KLEESpectre [80]
(w/ cache) Ð J · Kcache C P Mispredict ✓ × ✓ × Det Cache

(w/o cache) Ð J · Kmem M P Mispredict ✓ × ✓ × Det Taint

oo7 [81]
(v1 pattern) Ð J · Kmem M P Ð ∽ × ✓ × Det/Mit Flow

(ªweakº and v1.1 patterns) Ð J · Karch L P Ð ∽ × ✓ ∽ Det/Mit Flow

Specfuscator [71] Ð Ð
6

Ð P,B,R Ð ×
5

× × ✓ Mit Struct

SpecFuzz [60] Ð J · Karch L P Mispredict Ð Ð Ð ✓ Det Fuzz

SpecTaint [63] Ð J · Kmem
7

M P Mispredict ✓ × ✓ ∽ Det Taint

SpecuSym [30] Ð J · Kcache C P Mispredict × × ✓ × Det SelfC+

Swivel [59]
(poisoning protection) Ð J · Kmem M P,B,R Ð ∽

8
× × ✓ Mit Struct

(breakout protection) Ð J · Karch L P,B,R Ð ∽
8

× × ✓ Mit Struct

Venkman [72] Ð J · Karch L P,B,R Ð ∽ × × ✓ Mit Struct

Level ± How abstract is the semantics? (Section III-E) Leakage ± What can the attacker observe? (Section III-A) Variants (Section III-C)

Low Assembly-style, with branch instructions P ± Path / instructions executed L ± Values loaded from memory P ± Spectre-PHT

Medium Structured control flow such as if-then-else B ± Speculation rollbacks R ± Values in registers B ± Spectre-BTB

High In the style of weak memory models M ± Addresses of memory operations S ± Branch predictor state R ± Spectre-RSB

Ð The work has no associated formal semantics C ± Cache lines / cache state T ± Step counter / timer S ± Spectre-STL

Fence ± Does it reason about speculation fences? Hijack ± Can it model or mitigate speculative hijack?

✓ Fully reasons about fences in the target/input code ✓ Models/mitigates speculative hijack attacks

∽
The mitigation tool inserts fences, but the analysis does not reason about fences → Models/mitigates forward-edge (ijmp) hijack only

in the target/input code (and thus cannot verify the mitigated code as secure) ∽ Models/mitigates hijack only via speculative stores

× Does not reason about, or insert, fences × Does not model/mitigate speculative hijack attacks

Nondet. ± How is nondeterminism handled? (Section III-D)

OOO ± Models out-of-order execution? (Section III-F)

Win. ± Can reason about speculation windows? (Section III-C)

Tool ± Does the paper include a tool? Implementation ± How does the tool detect or mitigate vulnerabilities? (Section III-D)

Det Tool detects insecure programs or verifies secure programs Taint Taint tracking (abstract execution) Manual Manual effort

Mit Tool modifies programs to ensure they are secure Safety Memory safety (abstract execution) Fuzz Fuzzing

Val
Tool is only used to validate the semantics, does not SelfC Self composition (abstract execution) Flow Data flow analysis

automatically perform any security analysis Cache Cache must-hit analysis (abstract execution) Struct Structured compilation

Ð Does not include a tool Model Model checking over the whole program

*
Tool’s connection to the semantics is incomplete or unclear (e.g., tool

does not implement the full semantics)
+ Includes additional work or constraints to remove sequential trace (Section III-B)

Fig. 2. Comparison of various semantics and tools. Semantics are sorted by Level, then alphabetically; works without semantics are ordered last.
1
Extension

to other variants is discussed, but not performed.
2
Semantics includes indirect jumps and rules to update the indirect branch predictor state, but cannot

mispredict indirect jump targets.
3
ªWeakº variants of semantics leak loaded values during non-speculative execution.

4
Detects only ªspeculative type confusion

vulnerabilitiesº, a specific subset of Spectre-PHT.
5
Mitigates Spectre-PHT without inserting fences.

6
Defends by effectively preventing speculation, so leakage

model is irrelevant.
7
Effectively J · Kmem for loads, but detects any speculative store to an attacker-controlled address, which is more similar to J · Karch for stores.

8
Swivel operates on WebAssembly, which does not have fences. However, Swivel can insert fences in its assembly backend.



that can speculatively access arbitrary (or attacker-controlled)

memory locationsÐi.e., breaking speculative memory safety.

Unfortunately, these tools are not formalized, so their leakage

models are not made explicit (nor clear).

Weaker leakage models. The remaining semantics and tools

in Figure 2 consider only the memory trace of a program,

but not its execution trace. The J · Kmem leakage model, like

J · Kct, allows an attacker to observe the sequence of memory

accesses during the execution of the program; the J · Kcache

leakage model instead only tracks (an abstraction of) cache state.

The attacker in this model can only observe cached addresses

at the granularity of cache lines. A few tools have even weaker

leakage modelsÐfor instance, oo7 only emits leakages that

can be influenced by malicious input (see Section III-C) and

KLEESpectre (with cache modeling enabled) only allows the

attacker to observe the final state of the cache upon termination.

All of these models, including J · Kmem and J · Kcache, are

weaker than J · KctÐthey model less powerful attackers who

cannot observe control flow. As a result, they miss attacks which

leak via the instruction cache or which otherwise exploit timing

differences in the execution of the program. They even miss

some attacks that exploit the data cache: If a sensitive value

influences a branch, an attacker could infer the sensitive value

through the data cache based on differing (benign) memory

access patterns on the two sides of the branch, even if no

sensitive value directly influences a memory address. For

instance, in the following code, even though cond is not used

to calculate the memory address, an attacker can infer the value

of cond based on whether arr[a] gets cached or not:

if (cond)

b = arr[a];

else

b = 0;

Because the J · Kmem and J · Kcache leakage models miss these

attacks, they cannot provide the strong guarantees necessary

for secure cryptography or software isolation. Tools which

want to provide sound verification or mitigation should instead

choose a strong leakage model appropriate for their application

domain, such as J · Kct or J · Karch.

That said, weaker leakage models are still useful in certain

settings: Tools which are interested in only certain vulnerability

classes can use these weaker models to reduce the number of

false positives in their analysis or reduce the complexity of

their mitigation. Even though these models may miss some

Spectre attacks, detection tools can still use the J · Kcache or

J · Kmem models to find Spectre vulnerabilities in real codebases.

Using a leakage model which ignores control flow leakage

may help the detection tool scale to larger codebases.

Some tools [30, 80] also provide the ability to reason about

what attacks are possible with particular cache configurationsÐ

e.g., with a particular associativity, cache size, or line size. This

is a valuable capability for a detection tool: It helps an attacker

zero in on vulnerabilities which are more easily exploitable

on a particular target machine. However, security guarantees

based on this kind of analysis are not portable, as executing a

program on a different machine with a different cache model

invalidates the security analysis. Tools that instead want to

make guarantees for all possible architectures, such as verifiers

or compilers, will need more conservative leakage modelsÐ

models that assume the entire memory trace (and execution

trace) is always leaked.

Open problems: Leakage models for weak-memory-style

semantics. We have described leakage models only in terms of

observations of execution traces; this is a natural way to define

leakage for operational semantics, where execution is modeled

simply as a set of program traces. However, the weak-memory-

style speculative semantics proposed by Colvin and Winter [18],

Disselkoen et al. [21], and Ponce de LeÂon and Kinder [62]

have a more structured view of program execution (for instance,

using dependency analysis or pomsets [25]). These semantics

define leakage equivalent to the J · Kmem leakage model; it

remains an open problem to explore how to define J · Kct or

J · Karch leakage in this more structured execution modelÐin

particular, what it means for such a semantics to allow an

attacker to observe control-flow.

Open problems: Leakage models for language-based isolation.

As with most work on Spectre foundations, we focus on

cryptography and software-based isolation. Spectre, though, can

be used to break most other software abstractions as wellÐfrom

module systems [31] and object capabilities [50] to language-

based isolation techniques like information flow control [66].

How do we adopt these abstractions in the presence of

speculative execution? What formal security property should

we prove? And what leakage model should be used?

B. Non-interference and policies

After the leakage model, we must determine what secrecy

policy we consider for our attacker modelÐi.e., which values

can and cannot be leaked. Domains such as cryptography and

isolation already have defined policies for sequential security

properties: For cryptography, memory that contains secret

data (e.g., encryption keys) is considered sensitive; isolation

simply declares that all memory outside the program’s assigned

sandbox region should not be leaked.

The straightforward extension of sequential non-interference

to speculative execution is to enforce the same leakage model

(e.g., J · Kct) with the same security policyÐno secrets should

be leaked whether in normal or speculative execution. We refer

to this simple extension as a direct non-interference property,

or direct NI.

Definition 1 (Direct non-interference). Program p satisfies

direct non-interference with respect to a given contract J · K
and policy π if, for all pairs of π-equivalent initial states σ

and σ′, executing p with each initial state produces the same

trace. That is, p ⊢ NI (π, J · K) is defined as

∀σ, σ′ : σ ≃π σ′ ⇒ JpK(σ) = JpK(σ′).

We elide writing π for brevityÐe.g., NI (J · Kpht
ct ) expresses

constant-time security under Spectre-PHT semantics.

Alternatively, we may instead want to assert that the

speculative trace of a program has no new sensitive leaks



as compared to its sequential trace. This is a useful property

for compilers and mitigation tools that may not know the

secrecy policy of an input program, but want to ensure the

resulting program does not leak any additional information.

We term this a relative non-interference property, or relative

NI; a program that satisfies relative NI is no less secure than

its sequential execution.

Definition 2 (Relative non-interference). Program p satisfies

relative non-interference from contract J · Kseq
a to J · Kβb and

with policy π if: For all pairs of π-equivalent initial states

σ and σ′, if executing p under J · Kseq
a produces equal traces,

then executing p under J · Kβb produces equal traces. That is,

p ⊢ NI (π, J · Kseq
a ⇒ J · Kβb ) is defined as

∀σ, σ′ : σ ≃π σ′ ∧ JpKseq
a (σ) = JpKseq

a (σ′)

=⇒ JpKβb (σ) = JpKβb (σ
′).

For non-terminating programs, we can compare finite prefixes

of JpKβ against their sequential projections to JpKseqÐsince

speculative execution must preserve sequential semantics, there

will always be a valid sequential projection. As before, we

may elide π for brevity.

Interestingly, any relative non-interference property

NI(π, J · Kseq
a ⇒ J · Kβb ) for a program p can be expressed

equivalently as a direct property NI(π′, J · Kβb ), where

π′ = π \ canLeak(p, J · Kseq
a ). That is, we treat anything that

could possibly leak under contract J · Kseq
a as public. Relative

NI is thus a (semantically) weaker property than direct NI,

as it implicitly declassifies anything that might leak during

sequential execution.

However, relative NI is still a stronger property than a con-

ventional implication. For example, the property NI (J · Kseq
ct ) ⇒

NI (J · Kpht
ct ) makes no guarantees at all about a program that

is not sequentially constant-time. Conversely, the relative NI

property NI (J · Kseq
ct ⇒ J · Kpht

ct ) guarantees that even if a program

is not sequentially constant-time, the sensitive information an

attacker can learn during the program’s speculative execution

is limited to what it already might leak sequentially.

In Figure 3, we classify security properties of different works

by which direct or relative NI properties they verify or enforce.

We find that tools focused on verifying cryptography or memory

isolation verify direct NI properties, whereas frameworks

concerned with compilation or inserting Spectre mitigations

for general programs tend towards relative NI.

Verifying programs. Direct NI unconditionally guarantees that

sensitive data is not leaked, whether executing sequentially

or speculatively. This makes it ideal for domains that already

have clear policies about what data is sensitive, such as cryp-

tography (e.g., secret keys) or software isolation (e.g., memory

outside the sandbox). Indeed, tools that target cryptographic

applications ([7, 15, 20, 77]) all verify that programs satisfy

the direct speculative constant-time (SCT) property.

Additionally, we find that current tools that verify relative

NI [17, 28] are indeed capable of verifying direct NI, but

intentionally add constraints to their respective checkers

to ªremoveº sequential leaks from their speculative traces.

Although this is just as precise, it is an open problem whether

tools can verify relative NI for programs without relying on a

direct NI analysis.

Verifying compilers. On the other hand, compilers and miti-

gation tools are better suited to verify or enforce relative NI

properties: The compiler guarantees that its output program

contains no new leakages as compared to its input program.

This way, developers can reason about their programs assuming

a sequential model, and the compiler will mitigate any

speculative effects. For instance, if a program p is already

sequentially constant-time NI (J · Kseq
ct ), then a compiler that

enforces NI (J · Kseq
ct ⇒ J · Kpht

ct ) will compile p to a program

that is speculatively constant-time NI (J · Kpht
ct ). Similarly, if

a program is properly sandboxed under sequential execution

NI (J · Kseq
arch) and is compiled with a compiler that introduces no

new arch leakage, the resulting program will remain sandboxed

even under speculative execution [29].

Similarly, Patrignani and Guarnieri [61] explore whether

compilers preserve robust non-interference properties. A secu-

rity property is robust if a program remains secure even when

linked against adversarial code (i.e., if the program is called

with arbitrary or adversarial inputs). A compiler preserves a

non-interference property if, after compilation from a source

to a target language, the property still holds. In Patrignani

and Guarnieri’s framework, the source language describes

sequential execution while the target language has speculative

semantics, making their notion of compiler preservation very

similar to enforcing relative NI.

C. Execution models

To reason about Spectre attacks, a semantics must be able to

reason about the leakage of sensitive data in a speculative

execution model. A speculative execution model is what

differentiates a speculative semantics from standard sequential

analysis, and determines what speculation the abstract processor

can perform. For developers, choosing a proper execution model

is a tradeoff: On the one hand, the choice of behaviors their

model allowsÐi.e., which microarchitectural predictors they

includeÐdetermines which Spectre variants their tools can

capture. On the other hand, considering additional kinds of

mispredictions inevitably makes their analysis more complex.

Spectre variants and predictors. Most semantics and tools

in Figure 2 only consider the conditional branch predictor,

and thus only Spectre-PHT attacks. (Mis)predictions from

the conditional branch predictor are constrainedÐthere are

only two possible choices for every decisionÐso the analysis

remains fairly tractable. Jasmin [7], Binsec/Haunted [20],

Pitchfork [15], and Kaibyo [62] all additionally model store-

to-load (STL) predictions, where a processor forwards data to

a memory load from a prior store to the same address. If there

are multiple pending stores to that address, the processor may

choose the wrong store to forward the dataÐthis is the root

of a Spectre-STL attack. STL predictions are less constrained

than predictions from the conditional branch predictor: In the



Property or tool name Non-interference prop. Precision

Mcilroy et al. [54] ≈NI (J · Kpht
ct ) hyper

oo7 [81]
Φspectre ≈NI (J · Kpht

mem)
taint1

Φweak
spectre, Φv1.1

spectre ≈NI (J · Kpht

arch)

Cache analysis
[30, 83]

NI (J · Kpht

cache)
hyper

[80] taint

Weak memory modeling
[18, 21] NI (J · Kpht

mem) hyper
[62] NI (J · Kpht-stl

mem )

[77] NI (J · Kpht
ct ) taint

Speculative constant-time (SCT)2 [7, 20] NI (J · Kpht-stl
ct ) hyper

[15] NI (J · Kpbrs
ct )3 hyper, taint

Speculative non-interference (SNI) [28, 29] NI (J · Kseq
ct ⇒ J · Kpht

Ð )4 hyper

Robust speculative non-interference (RSNI) [61]
NI (J · Kseq

ct ⇒ J · Kpht
ct )

hyper
Robust speculative safety (RSS) [61] taint

Conditional noninterference [27] NI (J · Kseq
ct ⇒ J · Kpbrs

ct ) hyper

Weak speculative non-interference (wSNI) [29] NI (J · Kseq

arch ⇒ J · Kpht
Ð )4,5 hyper

Weak robust speculative non-interference (RSNI−) [61]

NI (J · Kseq

arch ⇒ J · Kpht
ct )

hyper
Trace property-dependent observational determinism (TPOD) [17] hyper

Weak robust speculative safety (RSS−) [61] taint

Execution models (Section III-C) Precision of the defined security property

J · Kseq Sequential execution hyper Non-interference hyperproperty, requires two π-equivalent executions

J · Kpht Captures Spectre-PHT taint Sound approximation using taint tracking, requires only one execution

J · Kpht-stl Captures Spectre-PHT/-STL

J · Kpbrs Captures Spectre-PHT/-BTB/-RSB/-STL

Fig. 3. Speculative security properties in prior works and their equivalent non-interference statements. We write ≈NI (· · ·) for unsound approximations of

non-interference properties.
1
[81] tracks taint of attacker influence rather than value sensitivity.

2
These works all derive their property from the definition given

in [15] and share the same property name despite differences in execution mode.
3
The analysis tool of [15], Pitchfork, only verifies the weaker property

NI (J · K
pht-stl
ct ). 4

The definitions of SNI and wSNI are parameterized over the target leakage model.
5
The definition of wSNI in [29] does not require that the

initial states be π-equivalent.

absence of additional constraints, they allow for a load to draw

data from any prior store to the same address.

Other control-flow mechanisms are significantly more com-

plex: Return instructions and indirect jumps can be spec-

ulatively hijacked to send execution to arbitrary (attacker-

controlled) points in the program.2 An attacker can trivially

hijack a victim program if they can control (mis)prediction of

the RSB (for returns) [45, 51] or BTB (for indirect jumps) [44].

Even without this ability, an attacker can hijack control-

flow if they speculatively overwrite the target address of a

return or jump (e.g., by exploiting a prior PHT mispredic-

tion) [42, 53, 73]. Formally, these attacks still fit within our

non-interference frameworkÐif a program can be arbitrarily

hijacked, then it will be unable to satisfy any non-interference

property. However, to formally verify that this is the case, a

semantics must model these behaviors.

Although capturing all speculative behaviors in a semantics

is possible, the resulting analysis is neither practical nor useful;

in practice, developers need to make tradeoffs. For example,

2Including, on x86-family processors, into the middle of an instruction [9].

the semantics proposed by Cauligi et al. [15] can simulate all of

the aforementioned speculative attacks, but their analysis tool

Pitchfork only detects PHT- and STL-based vulnerabilities. On

the other hand, tools like oo7 (with the ªv1.1º pattern) [81] and

SpecTaint [63] conservatively assume that writes to transient

addresses can overwrite anything, and thus immediately flag

this behavior as vulnerable.

The InSpectre semantics [27] proceeds in the opposite

directionÐit allows the processor to predict arbitrary values,

even the values of constants. InSpectre also allows more out-of-

order behavior than most other semantics (see Section III-F)Ð

in particular, it allows the processor to commit writes to

memory out-of-order. As a result, InSpectre is very expressive:

It is capable of describing a wide variety of Spectre variants

both known and unrealized. But, as a result, InSpectre cannot

feasibly be used to verify programs; instead, the authors pose

InSpectre as a framework for reasoning about and analyzing

microarchitectural features themselves.

Speculation windows. Several semantics and tools in Figure 2

limit speculative execution by way of a speculation window.

This models how hardware has finite resources for speculation,



and can only speculate through a certain number of instructions

or branches at a time.

Explicitly modeling a speculation window serves two pur-

poses for detection tools. One, it reduces false positives:

a mispredicted branch will not lead to a speculative leak

thousands of instructions later. Two, it bounds the complexity

of the semantics and thus the analysis. Since the abstract

processor can only speculate up to a certain depth, an analysis

tool need only consider the latest window of instructions

under speculative execution. Some semantics refine this idea

even further: Binsec/Haunted [20], for example, uses different

speculation windows for load-store forwarding than it uses for

branch speculation.

Speculation windows are also valuable for mitigation tools:

although tools like Blade [77] and Jasmin [7] are able to

prove security without reasoning about speculation windows,

modeling a speculation window reduces the number of fences

(or other mitigations) these tools need to insert, improving the

performance of the compiled code.

Eliminating variants. Instead of modeling all speculative

behaviors, compilers and mitigation tools can use clever

techniques to sidestep particularly problematic Spectre variants.

For example, even though Jasmin [7] does not model the RSB,

Jasmin programs do not suffer from Spectre-RSB attacks: The

Jasmin compiler inlines all functions, so there are no returns to

mispredict. Mitigation tools can also disable certain classes of

speculation with hardware flags [33]. After eliminating complex

or otherwise troublesome speculative behavior, a tool need only

consider those that remain.

Cross-address-space attacks. Previous systematizations of

Spectre attacks [13] differentiate between same-address-space

and cross-address-space attacks. Same-address-space attacks

rely on repeatedly causing the victim code to execute in order

to train a microarchitectural predictor. Cross-address-space

attacks are more powerful, as they allow an attacker to perform

the training step on a branch within the attacker’s own code.

Most of the semantics and tools in Figure 2 make no

distinction between same-address-space and cross-address-

space attacks, as they ignore the mechanics of training

and consider all predictions to be potentially malicious. A

notable exception is oo7 [81], which explicitly tracks attacker

influence. Specifically, oo7 only considers mispredictions for

conditional branches which can be influenced by attacker input.

Thus, oo7 effectively models only same-address-space attacks.

Unfortunately, as a result, oo7 misses Spectre vulnerabilities

in real code, as demonstrated by Wang et al. [80].

D. Nondeterminism

Speculative execution is inherently nondeterministic: Any

given branch in a program may proceed either correctly or

incorrectly, regardless of the actual condition value. More

generally, speculative hijack attacks can send execution to

entirely indeterminate locations. All of the semantics in Figure 2

allow these nondeterministic choices to be actively adversarialÐ

for instance, given by attacker-specified directives [15, 77] or by

consulting an abstract oracle [17, 28, 29, 54]. These semantics

all (conservatively) assume that the attacker has full control of

microarchitectural prediction and scheduling; we explore the

different techniques they use to verify or enforce security in

the face of adversarial nondeterminism.

Exploring nondeterminism. Several Spectre analysis tools

are built on some form of abstract execution: They simulate

speculative execution of the program by tracking ranges or

properties of different values. By checking these properties

throughout the program, these tools determine if sensitive

data can be leaked. Standard tools for (non-speculative)

abstract execution are designed only to consider concrete

execution paths; they must be adapted to handle the many

possible nondeterministic execution paths from speculation.

SpecuSym [30], KLEESpectre [80], and AISE [83] handle this

nondeterminism by following an always-mispredict strategy.

When they encounter a conditional branch, they first explore

the execution path which mispredicts this branch, up to a

given speculation depth. Then, when they exhaust this path,

they return to the correct branch. This technique, though, only

handles the conditional branch predictor; i.e., Spectre-PHT

attacks. Pitchfork [15] and Binsec/Haunted [20] adapt the

always-mispredict strategy to account for out-of-order exe-

cution and Spectre-STL. Although it may not be immediately

clear that always-mispredict strategies are sufficient to prove

securityÐespecially when the attacker can make any number of

antagonistic choicesÐthese strategies do indeed form a sound

analysis [15, 20, 28].

Unfortunately, simulating execution only works for semantics

where nondeterminism is relatively constrained: Conditional

branches are a simple boolean choice, and store-to-load

predictions are limited by the speculation window. If we pursue

other Spectre variants, we will quickly become overwhelmedÐ

again, an unconstrained hijack gadget can redirect control to

almost anywhere in a program. The always-mispredict strategy

here is nonsensical at best; abstract execution is thus necessarily

limited in what it can soundly explore.

Abstracting out nondeterminism. Mitigation tools have more

flexibility dealing with nondeterminism: Tools like Blade [77]

and oo7 [81] apply dataflow analysis to determine which values

may be leaked along any path, instead of reasoning about

each path individually. Then, these tools insert speculation

barriers to preemptively block potential leaks of sensitive

data. This style of analysis comes at the cost of some

precision: Blade, for example, conservatively treats all memory

accesses as if they may speculatively load sensitive values,

as its analysis cannot reason about the contents of memory.

Similarly, oo7’s ªv1.1º pattern detection conservatively flags

all (attacker-controlled) transient stores, as they may lead to

speculative hijack. However, Blade and oo7Ðand mitigation

tools in generalÐcan afford to be less precise than verification

or detection tools; these, conversely, must maintain higher

precision to avoid floods of false positives.

Restricting nondeterminism. Compilers such as Swivel [59],

Venkman [72], and ELFbac [39] restructure programs entirely,



imposing their own restricted set of speculative behavior at

the software layer. ELFbac allocates sensitive data in separate

memory regions and uses page permission bits to disallow

untrusted code from accessing these regionsÐregardless of how

a program may misspeculate, it will not be able to read (and

thus cannot leak) sensitive data. Swivel and Venkman compile

code into carefully aligned blocks so that control flow always

land at the tops of protected code blocks, even speculatively;

Swivel accomplishes this by clearing the BTB state after

untrusted execution, while Venkman recompiles all programs

on the system to mask addresses before jumping. Both systems

also enforce speculative control-flow integrity (CFI) checks to

prevent speculative hijacking, whether by relying on hardware

features [37] or by implementing custom CFI checks with

branchless assembly instructions. Developers that use these

compilers can then reason about their programs much more

simply, as the set of speculative behaviors is restricted enough to

make the analysis tractable. Of the techniques discussed in this

section, this line of work seems the most promising: It produces

mitigation tools with strong security guarantees, without relying

on an abundance of speculation barriers (as often results from

dataflow analysis) or resorting to heavyweight simulation (e.g.,

symbolic execution).

Open problems: Rigorous performance comparison. To the

best of our knowledge, no work has rigorously compared the

performance of all the tools in Figure 2. Perhaps the most

complete comparison is by Daniel et al. [20], who compare the

detection tools KLEESpectre, Pitchfork, and Binsec/Haunted

in terms of the analysis time required to detect known

violations in a few chosen targets. A general and objective

performance comparison is difficult, if not impossible: The tools

in Figure 2 operate on different types of programs (general-

purpose, cryptographic, sandboxing) and different languages

(x86, LLVM, WebAssembly). They also provide different

security guarantees, as we discuss above. An intermediate step

towards an expanded performance comparison, which would be

a valuable contribution on its own, would be to develop a larger

corpus of known attacks on realistic (medium-to-large-size)

programs. This corpus would help evaluate both the security

and performance of existing or newly-proposed tools.

E. Higher-level abstractions

Spectre attacksÐand speculative executionÐfundamentally

break our intuitive assumptions about how programs should

execute. Higher-level guarantees about programs no longer

apply: Type systems or module systems are meaningless when

even basic control flow can go awry. In order to rebuild higher-

level security guarantees, we first need to repair our model

of how programs execute, starting from low-level semantics.

Once these foundations are firmly in place, only then can we

rebuild higher-level abstractions.

Semantics for assembly or IRs. The majority of formal

semantics in Figure 2 operate on abstract assembly-like

languages, with commands that map to simple architectural

instructions. Semantics at this level implement control flow

directly in terms of jumps to program pointsÐusually in-

dices into memory or an array of program instructionsÐand

treat memory as largely unstructured. Since these low-level

semantics closely correspond to the behavior of real hardware,

they capture speculative behaviors in a straightforward manner,

and provide a foundational model for higher-level reasoning.

Similarly, many concrete analysis tools for constant-time or

Spectre operate directly on binaries or compiler intermediate

representations (IRs) [15, 19, 20, 28, 80]. These tools operate

at this lowest level so that their analysis will be valid for

the program unalteredÐcompiler optimizations for higher-

level languages can end up transforming programs in insecure

ways [8, 19, 20]. As a result however, these tools necessarily

lose access to higher-level information such as control flow

structure or how variables are mapped in memory.

Semantics for structured languages. The semantics proposed

by Jasmin [7], Patrignani and Guarnieri [61], and Blade [77]

build on top of these lower-level ideas to describe what we term

ªmedium-levelº languagesÐthose with structured control flow

and memory, e.g., explicit loops and arrays. For these medium-

level semantics, it is less straightforward to express speculative

behavior: For instance, instead of modeling speculation directly,

Vassena et al. [77] first translate programs in their source

language to lower-level commands, then apply speculative

execution at that lower level.

In exchange, the structure in a medium-level semantics lends

itself well to program analysis. For example, Vassena et al. are

able to use a simple type system to prove security properties

about a program. Barthe et al. [7] also take advantage of

structured semantics: They prove that if a sequentially constant-

time program is speculatively (memory) safeÐi.e., all memory

operations are in-bounds array accessesÐthen the program is

also speculatively constant-time. Since their source semantics

only accesses memory through array operations, they can

statically verify whether a program is speculatively safeÐand

thus speculatively secure. An interesting question for future

work is whether their concept of speculative (memory) safety

combines with other sequential security properties to give

corresponding guarantees, such as for sandboxing, information

flow, or rich type systems.

Weak-memory-style semantics. Weak-memory-style semantics

present a fundamentally different approach, lifting the concept

of speculative execution directly to a higher level. As these

models are abstracted away from microarchitectural details, they

are well-suited for analyzing Spectre variants in terms of data

flow: Indeed, both Colvin and Winter [18] and Disselkoen et

al. [21] treat Spectre-PHT as a constrained form of instruction

reordering, while Ponce de LeÂon and Kinder [62] analyze

dependency relations between instructions.

However, it remains challenging to translate a flexible

semantics of this style into a concrete analysis tool: Of the

three works discussed here, only Ponce de LeÂon and Kinder

present a tool which can automatically perform a security



analysis of a target program,3 though even they admit that it is

slower than comparative tools based on operational semantics.

That said, this high-level approach to speculative semantics is

certainly underexplored compared to the larger body of work

on operational semantics, and is worthy of further investigation.

Compiler mitigations. With adequate foundations in place,

one avenue to regaining higher-level abstractions is to modify

compilers of higher-level languages to produce speculatively

secure low-level programs. Many compilers already include op-

tions to conservatively insert speculation barriers or hardening

into programs, which (when done properly) provides strong

security guarantees. Although some such hardening passes have

been verified [61], they are overly conservative and incur a

significant performance cost. Other compiler mitigations been

shown unsound [60]Ðor worse, even introduce new Spectre

vulnerabilities [20]Ðfurther reinforcing that these techniques

must be grounded in a formal semantics.

Open problems: Formalization of new compilation techniques.

Swivel [59], Venkman [72], and ELFbac [39] show how the

structure of code itself can provide security guarantees at a

reduced performance cost. For instance, both Venkman and

Swivel demonstrate that organizing instructions into bundles

or linear blocks (respectively) can mitigate speculative hijacks,

making these transient attacks tractable to analyze and prevent.

However, none of these compiler-based approaches are yet

grounded in a formal semantics. Formalizing these systems

would increase our confidence in the strong guarantees they

claim to provide.

Open problems: New languages. Another promising approach

is to design new languages which are inherently safe from

Spectre attacks. Prior work has produced secure languages

like FaCT [16], which is (sequentially) constant-time by

construction. An extension of FaCT, or a new language built

on its ideas, could prevent Spectre attacks as well. Vassena

et al. [77] have already taken a first step in this direction:

They construct a simple while-language which is guaranteed

safe from Spectre-PHT attacks when compiled with their

fence insertion algorithm. It would be valuable to extend

this further, both to more realistic (higher-level) languages,

and to more Spectre variants. The key question is whether

dedicated language support can provide a path to secure code

that outperforms the de-facto approachÐthat is, compiling

standard C code and inserting Spectre mitigations.

F. Expressivity and microarchitectural features

One theme of this paper is that a good (practical) semantics

needs to have an appropriate amount of expressivity: On one

hand, we want a semantics which is expressiveÐable to model

a wide range of possible behaviors (e.g., Spectre variants).

This allows us to model powerful attackers. On the other

hand, a semantics which allows too many possible behaviors

makes many analyses intractable. Indeed, a fundamental

purpose of semantics is to provide a reasonable abstraction or

3Colvin and Winter do present a tool, but it is only used to mechanically
explore manually translated programs.

simplification of hardware to ease analysis; a semantics which

is too expressive simply punts this problem to the analysis

writer. Thus, choosing how much expressivity to include in a

semantics represents an interesting tradeoff.

By far the most important choice for the expressivity

of a semantics is which misprediction behaviors to allowÐ

i.e., which Spectre variants to reason about (discussed in

Section III-C). But beyond speculative execution itself, there

are many other microarchitectural features which are relevant

for a security analysis, and which have beenÐor could beÐ

modeled in a speculative semantics. These features also affect

the expressivity of the semantics, which means that choosing

whether to include them results in similar tradeoffs.

Out-of-order execution. Many speculative semantics simulate

a processor feature called out-of-order execution: They allow

instructions to be executed in any order, as long as those

instructions’ dependencies (operands) are ready. Out-of-order

execution is mostly orthogonal to speculative execution; in

fact, out-of-order execution is not required to model Spectre-

PHT, -BTB, or -RSBÐspeculative execution alone is sufficient.

However, out-of-order execution is included in most modern

processors, and for that reason,4 many speculative semantics

also model it. Modeling out-of-order execution may provide

an easier or more elegant way to express a variety of Spectre

attacks, as opposed to modeling speculative execution alone.

Furthermore, Disselkoen et al. [21] and Guanciale et al. [27]

demonstrate how to abuse out-of-order execution to conduct

(at least theoretical) novel side-channel attacks.5

Although modeling out-of-order execution might make

a semantics simpler, the additional expressivity makes the

resulting analysis more complex. Fully modeling out-of-order

execution leads to an explosion in the number of possible

executions of a program; naively incorporating out-of-order

execution into a detection or mitigation tool results in an

intractable analysis. Indeed, while Guarnieri et al. [29] and

Colvin and Winter [18] present analysis tools based on their

respective out-of-order semantics, they only analyze very simple

Spectre gadgets and not code used in real programs. Instead,

for analysis tools based on out-of-order semantics to scale

to real programs, developers need to use lemmas to reduce

the number of possibilities the analysis needs to consider. As

one example, Pitchfork [15] operates on a set of ªworst-case

schedulesº which represent a small subset of all possible out-

of-order schedulesÐthe developers formally show that this

reduction does not affect the soundness of Pitchfork’s analysis.

Caches and TLBs. Some speculative semantics and tools [30,

54, 80, 83] include abstract models of caches, tracking which

addresses may be in the cache at a given time. One could

imagine also including detailed models of TLBs. As discussed

in Section III-A, modeling caches or TLBs is probably not

helpful, at least for mitigation or verification toolsÐnot only

4Or perhaps, because out-of-order execution is often discussed alongside
(or even confused with) speculative execution.

5Disselkoen et al. [21] propose to abuse compile-time instruction reordering,
which is different from microarchitectural out-of-order execution, but related.



does it make the semantics more complicated, but it potentially

leads to non-portable guarantees. In particular, including a

model of the cache usually leads to the J · Kcache leakage model,

rather than the J · Kct or J · Karch leakage models which provide

stronger defensive guarantees. Following in the tradition of

constant-time programming in the non-speculative world, it

seems wiser for our analyses and mitigations to be based on

microarchitecture-agnostic principles as much as possible, and

not depend on details of the cache or TLB structure.

Other leakage channels. There are a variety of specific microar-

chitectural mechanisms which can result in leakages beyond

the ones we directly focus on in this paper. For instance, in the

presence of multithreading, port contention in the processor’s

execution units can reveal sensitive information [10]; and many

processor instructions, e.g., floating-point or SIMD instructions,

can reveal information about their operands through timing

side channels [4]. Most existing semantics do not model

these specific effects. However, the commonly-used J · Kct

and J · Karch leakage models are already strong enough to

capture leakages from most of these sources: For instance,

port contention can only reveal sensitive data if the sensitive

data influenced which instructions are being executedÐand

the J · Kct leakage model already considers the sensitive data

to be leaked once it influences control flow. For variable-

time instructions, most definitions of J · Kct do not capture this

leakageÐbut extending those definitions is straightforward [2].

In both of these examples, the J · Karch leakage model captures

all leaks, as it (even more conservatively) already considers the

sensitive data as leaked once it reaches a registerÐlong before

the data can influence control-flow or be used in an instruction.

Although modeling any of these effects more precisely can

increase the precision with which an analysis detects potential

vulnerabilities, the tradeoff in analysis complexity is probably

not worth it, and for mitigation and verification tools, the

J · Kct and J · Karch leakage models provide stronger and more

generalizable guarantees.

In a similar vein, most semantics and tools do not explicitly

model parallelism or concurrency: They reason only about

single-threaded programs and processors. Instead, they abstract

away these details by giving attackers broad powers in their

modelsÐe.g., complete power over all microarchitectural

predictions, and the capability to observe the full cache state

after every execution step. The notable exceptions are the weak-

memory-style semantics [18, 21, 62]Ðmultiple threads are an

inherent feature for this style, making them a promising vehicle

for further exploring the interaction between speculation and

concurrency.

Open problems: Process isolation. In practice, a common

response to Spectre attacks has been to move all secret data

into a separate processÐe.g., Chrome isolates different sites in

separate processes [64]. This shifts the burden from application

and runtime system engineers to OS engineers. Developing

Spectre foundations to model the process abstraction will

elucidate the security guarantees of such systems. This is

especially useful, as the process boundary does not keep

an attacker from performing out-of-place training of the

conditional branch predictor, nor from leaking secrets via the

cache state [13].

IV. RELATED WORK

Both in industry and in academia, there has been a lot

of interest in Spectre and other transient execution attacks.

We discuss other systematization papers that address Spectre

attacks and defenses, and we briefly survey related work which

otherwise falls outside the scope of this paper.

A. Systematization of Spectre attacks and defenses

Canella et al. [13] present a comprehensive systematization

and analysis of Spectre and Meltdown attacks and defenses.

They first classify transient execution attacks by whether they

are a result of misprediction (Spectre) or an execution fault

(Meltdown); and further classify the attacks by their root

microarchitectural cause, yielding the nomenclature we use in

this paper (e.g., Spectre-PHT is named for the Pattern History

Table). They then categorize previously known Spectre attacks,

revealing several new variants and exploitation techniques.

Canella et al. also propose a sequence of ªphasesº for a

successful Spectre or Meltdown attack, and group published

defenses by the phase they target. A followup survey by Canella

et al. [12] expands on the idea of attack phases, categorizing

both hardware and software Spectre defenses according to

which attack phase they prevent: Preparation, misspeculation,

data access, data encoding, leakage, or decoding. Separately,

Xiong et al. [85] also survey transient execution attacks, with a

specific focus on the mechanics of exploits for these attacks. In

contrast, our systematization focuses on the formal semantics

behind Spectre analysis and mitigation tools rather than the

specifics of attack variants or types of defenses.

B. Hardware-based Spectre defenses

In this paper, we focus only on software-based techniques

for existing hardware. The research community has also

proposed several hardware-based Spectre defenses based on

cache partitioning [41], cleaning up the cache state after

misprediction [67], or making the cache invisible to speculation

by incorporating some separate internal state [1, 40, 86].

Unfortunately, attackers can still use side channels other than

the cache to exploit speculative execution [10, 70]. NDA [82],

DOLMA [49], and Speculative Taint Tracking (STT) [87]

block additional speculative covert channels by analyzing and

classifying instructions that can leak information.

Fadiheh et al. [22] define a property for hardware execution

that they term UPEC: A hardware that satisfies UPEC will

not leak speculatively anything more than it would leak

sequentially. In other words, UPEC is equivalent to the relative

non-interference property NI (π, J · Kseq
arch ⇒ J · Kpht

arch).

The insights and recommendations from our work can guide

future hardware mitigations; properties like J · Kct or J · Karch can

serve as contracts of what software expects from hardware [29].



C. Software-hardware co-design

Although hardware-only approaches are promising for future

designs, they require significant modifications and introduce

non-negligible performance overhead for all workloads. Several

works instead propose a software-hardware co-design approach.

Taram et al. [74] propose context-sensitive fencing, making

various speculative barriers available to software. Li et al. [47]

propose memory instructions with a conditional speculation flag.

Context [68] and SpectreGuard [24] allow software to mark

secrets in memory. This information is propagated through the

microarchitecture to block speculative access to the marked

regions. SpecCFI [46] suggests a hardware extension similar

to Intel CET [37] that provides target label instructions with

speculative guarantees. Finally, several recent proposals allow

partitioning branch predictors based on context provided by the

software [78, 89]. As these approaches require both software

and hardware changes, should develop a formal semantics to

apply them correctly.

D. Other transient execution attacks

We focus exclusively on Spectre, as other transient execution

attacks are better addressed in hardware. For completeness, we

briefly discuss these other attacks.

Meltdown variants. The Meltdown attack [48] bypasses implicit

memory permission checks within the CPU during transient

execution. Unlike Spectre, Meltdown does not rely on executing

instructions in the victim domain, so it cannot be mitigated

purely by changes to the victim’s code. Foreshadow [75] and

microarchitectural data sampling (MDS) [11, 34] demonstrate

that transient faults and microcode assists can still leak data

from other security domains, even on CPUs that are resistant

to Meltdown. Researchers have extensively evaluated these

Meltdown-style attacks leading to new vulnerabilities [56, 57,

69], but most recent Intel CPUs have hardware-level mitigations

for all these vulnerabilities in the form of microcode patches

or proprietary hardware fixes [36].

Load value injection. Load value injection (LVI) [76] exploits

the same root cause as Meltdown, Foreshadow, and MDS, but

reverses these attacks: The attacker induces the transient fault

into the victim domain instead of crafting arbitrary gadgets

in their own code space. This inverse effect is subject to an

exploitation technique similar to Spectre-BTB for transiently

hijacking control flow. Although there are software-based

mitigations proposed against LVI [35, 76], Intel only suggests

applying them to legacy enclave software. Like Meltdown, LVI

does not need software-based mitigation on recent Intel CPUs.

V. CONCLUSION

Spectre attacks break the abstractions afforded to us by

conventional execution models, fundamentally changing how

we must reason about security. We systematize the community’s

work towards rebuilding foundations for formal analysis atop

the loose earth of speculative execution, evaluating current

efforts in a shared formal framework and pointing out open

areas for future work in this field.

We find that, as with previous work in the sequential

domain, solid foundations for speculative analyses require

proper choices for semantics and attacker models. Most

importantly, developers must consider leakage models no

weaker than J · Karch or J · Kct. Weaker modelsÐthose that only

capture leaks via memory or the data cacheÐlead to weaker

security guarantees with no clear benefit. Next, though many

frameworks focus on Spectre-PHT, sound tools must consider

all Spectre variants. Although this increases the complexity

of analysis, developers can combine analyses with structured

compilation techniques to restrict or remove entire categories

of Spectre attacks by construction. Finally, we recommend

against modeling unnecessary (micro)architectural details in

favor of the simpler J · Karch and J · Kct models; details like

cache structures or port contention introduce complexity and

reduce portability.

When properly rooted in formal guarantees, software Spectre

defenses provide a firm foundation on which to rebuild

secure systems. We intend this systematization to serve as

a reference and guide for those seeking to build or employ

formal frameworks and to develop sound Spectre defenses with

strong, precise security guarantees.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful feed-

back. We thank Matthew Kolosick for helping us understand

some of the formal systems discussed and in organizing the

paper. This work was supported in part by gifts from Intel

and Google; by the NSF under Grant Numbers CNS-2120642,

CCF-1918573 and CAREER CNS-2048262; by the CONIX

Research Center, one of six centers in JUMP, a Semiconductor

Research Corporation (SRC) program sponsored by DARPA;

and, by the Office of Naval Research (ONR) under project

N00014-15-1-2750.

REFERENCES

[1] S. Ainsworth and T. M. Jones. MuonTrap: Preventing cross-
domain Spectre-like attacks by capturing speculative state. In
ISCA, 2020.

[2] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and
M. Emmi. Verifying constant-time implementations. In USENIX
SEC, 2016.

[3] AMD. Security analysis of AMD predictive store for-
warding. https://www.amd.com/system/files/documents/security-
analysis-predictive-store-forwarding.pdf, 2020.

[4] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala, S. Lerner,
and H. Shacham. On subnormal floating point and abnormal
timing. In IEEE S&P, 2015.

[5] ARM. Straight-line speculation. https://developer.arm.
com/support/arm-security-updates/speculative-processor-
vulnerability/downloads/straight-line-speculation, 2020.

[6] G. Barthe, G. Betarte, J. Campo, C. Luna, and D. Pichardie.
System-level non-interference for constant-time cryptography.
In CCS, 2014.

[7] G. Barthe, S. Cauligi, B. Gregoire, A. Koutsos, K. Liao,
T. Oliveira, S. Priya, T. Rezk, and P. Schwabe. High-assurance
cryptography in the Spectre era. In IEEE S&P, 2021.

[8] G. Barthe, B. GrÂegoire, and V. Laporte. Secure compilation
of side-channel countermeasures: the case of cryptographic
ªconstant-timeº. In CSF, 2018.



[9] A. Bhattacharyya, A. SÂanchez, E. M. Koruyeh, N. Abu-Ghazaleh,
C. Song, and M. Payer. SpecROP: Speculative exploitation of
ROP chains. In RAID, 2020.

[10] A. Bhattacharyya, A. Sandulescu, M. Neugschwandtner,
A. Sorniotti, B. Falsafi, M. Payer, and A. Kurmus. SMoTher-
Spectre: exploiting speculative execution through port contention.
In CCS, 2019.

[11] C. Canella, D. Genkin, L. Giner, D. Gruss, M. Lipp, M. Minkin,
D. Moghimi, F. Piessens, M. Schwarz, B. Sunar, J. Van Bulck,
and Y. Yarom. Fallout: Leaking data on Meltdown-resistant
CPUs. In CCS, 2019.

[12] C. Canella, S. M. Pudukotai Dinakarrao, D. Gruss, and K. N.
Khasawneh. Evolution of defenses against transient-execution
attacks. In Great Lakes Symposium on VLSI, 2020.

[13] C. Canella, J. Van Bulck, M. Schwarz, M. Lipp, B. von Berg,
P. Ortner, F. Piessens, D. Evtyushkin, and D. Gruss. A Systematic
Evaluation of Transient Execution Attacks and Defenses. In
USENIX SEC, 2019.

[14] C. Carruth. RFC: Speculative load hardening (a Spectre variant
#1 mitigation). https://lists.llvm.org/pipermail/llvm-dev/2018-
March/122085.html, 2018.

[15] S. Cauligi, C. Disselkoen, K. v. Gleissenthall, D. Tullsen,
D. Stefan, T. Rezk, and G. Barthe. Constant-time foundations
for the new Spectre era. In PLDI, 2020.

[16] S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby,
J. Renner, B. GrÂegoire, G. Barthe, R. Jhala, and D. Stefan. FaCT:
a DSL for timing-sensitive computation. In PLDI, 2019.

[17] K. Cheang, C. Rasmussen, S. Seshia, and P. Subramanyan. A
formal approach to secure speculation. In CSF, 2019.

[18] R. J. Colvin and K. Winter. An abstract semantics of speculative
execution for reasoning about security vulnerabilities. In FM,
2019.

[19] L.-A. Daniel, S. Bardin, and T. Rezk. Binsec/Rel: Efficient
relational symbolic execution for constant-time at binary-level.
In IEEE S&P, 2020.

[20] L.-A. Daniel, S. Bardin, and T. Rezk. Hunting the haunter Ð
efficient relational symbolic execution for Spectre with Haunted
RelSE. In NDSS, 2021.

[21] C. Disselkoen, R. Jagadeesan, A. Jeffrey, and J. Riely. The code
that never ran: Modeling attacks on speculative evaluation. In
IEEE S&P, 2019.

[22] M. R. Fadiheh, J. MÈuller, R. Brinkmann, S. Mitra, D. Stoffel,
and W. Kunz. A formal approach for detecting vulnerabilities to
transient execution attacks in out-of-order processors. In DAC,
2020.

[23] M. Fleming. A thorough introduction to eBPF. Linux Weekly
News, 2017.

[24] J. Fustos, F. Farshchi, and H. Yun. SpectreGuard: An efficient
data-centric defense mechanism against Spectre attacks. In DAC,
2019.

[25] J. L. Gischer. The equational theory of pomsets. Theoretical
Computer Science, 1988.

[26] E. GÈoktas, K. Razavi, G. Portokalidis, H. Bos, and C. Giuffrida.
Speculative probing: Hacking blind in the Spectre era. In CCS,
2020.

[27] R. Guanciale, M. Balliu, and M. Dam. Inspectre: Breaking and
fixing microarchitectural vulnerabilities by formal analysis. In
CCS, 2020.

[28] M. Guarnieri, B. KÈopf, J. F. Morales, J. Reineke, and A. SÂanchez.
SPECTECTOR: Principled detection of speculative information
flows. In IEEE S&P, 2020.

[29] M. Guarnieri, B. KÈopf, J. Reineke, and P. Vila. Hardware-
software contracts for secure speculation. In IEEE S&P, 2021.

[30] S. Guo, Y. Chen, P. Li, Y. Cheng, H. Wang, M. Wu, and Z. Zuo.
SpecuSym: Speculative symbolic execution for cache timing
leak detection. In ICSE, 2020.

[31] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,

D. Gohman, L. Wagner, A. Zakai, and J. Bastien. Bringing the
web up to speed with WebAssembly. In PLDI, 2017.

[32] J. Horn. Speculative execution, variant 4: speculative store
bypass, 2018.

[33] Intel. Speculative store bypass / CVE-2018-3639 / INTEL-SA-
00115. https://software.intel.com/security-software-guidance/
software-guidance/speculative-store-bypass, 2018.

[34] Intel. Deep dive: Intel analysis of microarchitectural data
sampling, 2019.

[35] Intel. An Optimized Mitigation Approach for Load Value Injec-
tion. https://software.intel.com/security-software-guidance/best-
practices/optimized-mitigation-approach-load-value-injection,
2020.

[36] Intel. Side channel mitigation by product CPU
model. https://software.intel.com/security-software-
guidance/processors-affected-transient-execution-attack-
mitigation-product-cpu-model, 2020.

[37] Intel 64 and IA-32 architectures software developer’s manual,
2021.

[38] M. H. Islam Chowdhuryy, H. Liu, and F. Yao. BranchSpec: infor-
mation leakage attacks exploiting speculative branch instruction
executions. In ICCD, 2020.

[39] I. R. Jenkins, P. Anantharaman, R. Shapiro, J. P. Brady, S. Bratus,
and S. W. Smith. Ghostbusting: Mitigating Spectre with
intraprocess memory isolation. In HotSos, 2020.

[40] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin,
D. Ponomarev, and N. Abu-Ghazaleh. Safespec: Banishing the
Spectre of a Meltdown with leakage-free speculation. In DAC,
2019.

[41] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and
J. Emer. DAWG: A defense against cache timing attacks in
speculative execution processors. In MICRO, 2018.

[42] V. Kiriansky and C. Waldspurger. Speculative Buffer Overflows:
Attacks and Defenses. arXiv:1807.03757, 2018.

[43] O. Kirzner and A. Morrison. An analysis of speculative type
confusion vulnerabilities in the wild. In USENIX SEC, 2021.

[44] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom. Spectre attacks: Exploiting speculative execution.
In IEEE S&P, 2019.

[45] E. M. Koruyeh, K. Khasawneh, C. Song, and N. Abu-Ghazaleh.
Spectre returns! Speculation attacks using the return stack buffer.
In WOOT, 2018.

[46] E. M. Koruyeh, S. H. A. Shirazi, K. N. Khasawneh, C. Song,
and N. Abu-Ghazaleh. SPECCFI: Mitigating Spectre attacks
using CFI informed speculation. In IEEE S&P, 2020.

[47] P. Li, L. Zhao, R. Hou, L. Zhang, and D. Meng. Conditional
speculation: An effective approach to safeguard out-of-order
execution against Spectre attacks. In HPCA, 2019.

[48] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and
M. Hamburg. Meltdown: Reading kernel memory from user
space. In USENIX SEC, 2018.

[49] K. Loughlin, I. Neal, J. Ma, E. Tsai, O. Weisse, S. Narayanasamy,
and B. Kasikci. DOLMA: Securing speculation with the principle
of transient non-observability. In USENIX SEC, 2021.

[50] S. Maffeis, J. C. Mitchell, and A. Taly. Object capabilities and
isolation of untrusted web applications. In IEEE S&P, 2010.

[51] G. Maisuradze and C. Rossow. ret2spec: Speculative execution
using return stack buffers. In CCS, 2018.

[52] A. Mambretti, M. Neugschwandtner, A. Sorniotti, E. Kirda,
W. Robertson, and A. Kurmus. Speculator: a tool to analyze
speculative execution attacks and mitigations. In ACSAC, 2019.

[53] A. Mambretti, A. Sandulescu, A. Sorniotti, W. Robertson,
E. Kirda, and A. Kurmus. Bypassing memory safety mechanisms
through speculative control flow hijacks. In EuroS&P, 2021.

[54] R. Mcilroy, J. Sevcik, T. Tebbi, B. L. Titzer, and T. Verwaest.



Spectre is here to stay: An analysis of side-channels and
speculative execution. arXiv:1902.05178, 2019.

[55] Microsoft. Spectre mitigations in MSVC. https://devblogs.
microsoft.com/cppblog/spectre-mitigations-in-msvc/, 2018.

[56] D. Moghimi. Data sampling on MDS-resistant 10th Generation
Intel Core (Ice Lake). arXiv:2007.07428, 2020.

[57] D. Moghimi, M. Lipp, B. Sunar, and M. Schwarz. Medusa:
Microarchitectural data leakage via automated attack synthesis.
In USENIX SEC, 2020.

[58] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan.
RockSalt: better, faster, stronger SFI for the x86. In PLDI, 2012.

[59] S. Narayan, C. Disselkoen, D. Moghimi, S. Cauligi, E. Johnson,
Z. Gang, A. Vahldiek-Oberwagner, R. Sahita, H. Shacham,
D. Tullsen, and D. Stefan. Swivel: Hardening WebAssembly
against Spectre. In USENIX SEC, 2021.

[60] O. Oleksenko, B. Trach, M. Silberstein, and C. Fetzer. SpecFuzz:
Bringing Spectre-type vulnerabilities to the surface. In USENIX
SEC, 2020.

[61] M. Patrignani and M. Guarnieri. Exorcising Spectres with secure
compilers. In CCS, 2021.

[62] H. Ponce de LeÂon and J. Kinder. Cats vs. Spectre: An axiomatic
approach to modeling speculative execution attacks. In IEEE
S&P, 2022.

[63] Z. Qi, Q. Feng, Y. Cheng, M. Yan, P. Li, H. Yin, and T. Wei.
SpecTaint: Speculative taint analysis for discovering Spectre
gadgets. In NDSS, 2021.

[64] C. Reis, A. Moshchuk, and N. Oskov. Site isolation: Process
separation for web sites within the browser. In USENIX SEC,
2019.

[65] X. Ren, L. Moody, M. Taram, M. Jordan, D. M. Tullsen, and
A. Venkat. I see dead µops: Leaking secrets via Intel/AMD
micro-op caches. In ISCA, 2021.

[66] A. Sabelfeld and A. C. Myers. Language-based information-flow
security. Journal on Selected Areas in Communications, 21(1),
2003.

[67] G. Saileshwar and M. K. Qureshi. CleanupSpec: An ªundoº
approach to safe speculation. In MICRO, 2019.

[68] M. Schwarz, M. Lipp, C. Canella, R. Schilling, F. Kargl, and
D. Gruss. ConTExT: A generic approach for mitigating Spectre.
In NDSS, 2020.

[69] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss. ZombieLoad: Cross-privilege-
boundary data sampling. In CCS, 2019.

[70] M. Schwarz, M. Schwarzl, M. Lipp, J. Masters, and D. Gruss.
NetSpectre: Read arbitrary memory over network. In European
Symposium on Research in Computer Security, 2019.

[71] M. Schwarzl, C. Canella, D. Gruss, and M. Schwarz. Specfus-
cator: Evaluating branch removal as a Spectre mitigation. In
FC, 2021.

[72] Z. Shen, J. Zhou, D. Ojha, and J. Criswell. Restricting
control flow during speculative execution with Venkman.
arXiv:1903.10651, 2019.

[73] M. Sternberger. Spectre-ng: An avalanche of attacks. In Wies-
baden Workshop on Advanced Microkernel Operating Systems
(WAMOS), 2018.

[74] M. Taram, A. Venkat, and D. Tullsen. Context-sensitive fencing:
Securing speculative execution via microcode customization. In
ASPLOS, 2019.

[75] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and
R. Strackx. Foreshadow: Extracting the keys to the Intel SGX
kingdom with transient out-of-order execution. In USENIX SEC,
2018.

[76] J. Van Bulck, D. Moghimi, M. Schwarz, M. Lipp, M. Minkin,
D. Genkin, Y. Yuval, B. Sunar, D. Gruss, and F. Piessens. LVI:
Hijacking transient execution through microarchitectural load
value injection. In IEEE S&P, 2020.

[77] M. Vassena, C. Disselkoen, K. V. Gleissenthall, S. Cauligi,
R. G. Kici, R. Jhala, D. Tullsen, and D. Stefan. Automatically
eliminating speculative leaks from cryptographic code with Blade.
In POPL, 2021.

[78] I. Vougioukas, N. Nikoleris, A. Sandberg, S. Diestelhorst, B. M.
Al-Hashimi, and G. V. Merrett. BRB: Mitigating branch predictor
side-channels. In HPCA, 2019.

[79] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. In SOSP, 1993.

[80] G. Wang, S. Chattopadhyay, A. K. Biswas, T. Mitra, and
A. Roychoudhury. KLEESpectre: Detecting information leakage
through speculative cache attacks via symbolic execution. ACM
TOSEM, 2020.

[81] G. Wang, S. Chattopadhyay, I. Gotovchits, T. Mitra, and
A. Roychoudhury. oo7: Low-overhead defense against Spectre
attacks via program analysis. IEEE Transactions on Software
Engineering, 2019.

[82] O. Weisse, I. Neal, K. Loughlin, T. F. Wenisch, and B. Kasikci.
NDA: Preventing speculative execution attacks at their source.
In MICRO, 2019.

[83] M. Wu and C. Wang. Abstract interpretation under speculative
execution. In PLDI, 2019.

[84] Y. Wu, S. Sathyanarayan, R. H. Yap, and Z. Liang. Codejail:
Application-transparent isolation of libraries with tight program
interactions. In European Symposium on Research in Computer
Security, 2012.

[85] W. Xiong and J. Szefer. Survey of transient execution attacks
and their mitigations. ACM Computing Surveys, 2021.

[86] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, and
J. Torrellas. Invisispec: Making speculative execution invisible
in the cache hierarchy. In MICRO, 2018.

[87] J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and C. W.
Fletcher. Speculative taint tracking (STT): A comprehensive
protection for speculatively accessed data. In MICRO, 2019.

[88] T. Zhang, K. Koltermann, and D. Evtyushkin. Exploring
branch predictors for constructing transient execution trojans. In
ASPLOS, 2020.

[89] L. Zhao, P. Li, R. Hou, J. Li, M. C. Huang, L. Zhang, X. Qian,
and D. Meng. A lightweight isolation mechanism for secure
branch predictors. In DAC, 2021.


