
A Case Study of Middle Schoolers’ Use of
Computational Thinking Concepts and Practices

during Coded Music Composition
Yifan Zhang

Computer and Information Sciences
University of Delaware

ericzh@udel.edu

Douglas Lusa Krug
Computer Science

Virginia Commonwealth University
Instituto Federal do Paraná - IFPR

krugdl@vcu.edu

Chrystalla Mouza
School of Education

University of Delaware
cmouza@udel.edu

David C. Shepherd
Computer Science

Virginia Commonwealth University
shepherdd@vcu.edu

Lori Pollock
Computer and Information Sciences

University of Delaware
pollock@udel.edu

ABSTRACT
Researchers and practitioners have demonstrated various benefits
of introducing computational thinking (CT) through music com-
position coding. While researchers have studied the impacts on
participant attitudes towards CT and their learning of CT concepts,
more case studies are needed on both learning CT concepts as well
as CT practices, i.e., the processes of constructing music coding
projects. This paper presents a case study of middle schoolers in
an informal learning environment focused on integrating music
composition with coding in TunePad. Specifically, we collected and
analyzed logs of coding events, final code products, and surveys to
explore both CT concept use and CT practices exhibited by the par-
ticipants as they completed open-ended music coding activities to
create their own melodies with specific music and CT requirements
and recommendations.

CCS CONCEPTS
• Social and professional topics → K-12 education; Computa-
tional thinking; Informal education; • Applied computing→
Sound and music computing.

KEYWORDS
computational thinking (CT), music composition, informal learning
ACM Reference Format:
Yifan Zhang, Douglas Lusa Krug, Chrystalla Mouza, David C. Shepherd,
and Lori Pollock. 2022. A Case Study of Middle Schoolers’ Use of Computa-
tional Thinking Concepts and Practices during CodedMusic Composition. In
Proceedings of the 27th ACMConference on Innovation and Technology in Com-
puter Science Education Vol 1 (ITiCSE 2022), July 8–13, 2022, Dublin, Ireland.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3502718.3524757

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ITiCSE 2022, July 8–13, 2022, Dublin, Ireland.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9201-3/22/07. . . $15.00
https://doi.org/10.1145/3502718.3524757

1 INTRODUCTION
Since Wing’s [28] seminal paper, Computational Thinking (CT)
has been increasingly studied, especially in K-12 education [16].
Barr and Stephenson defined CT as a problem-solving methodology
that can be automated, transferred, and applied across disciplines
[4]. With the challenges of fitting CT into already full curricula,
teachers are interested in ways of integrating CT into the learning
of other subjects. By integrating CT with content, students avoid
seeing CT in isolation, class time is used efficiently, and students
who might not see themselves attracted to CT may find it more
naturally applicable to them [5, 20].

While CT is often viewed as machine-centric in the context of
computer science, the integration of music and CT is particularly
promising as music is an art encouraging creativity, communica-
tion and teamwork. At the same time, music and CT share several
commonalities in the use of notation, sequence, repetition, and
creativity [5]. Several researchers including Bell and Bell [5], Baratè
et al. [3], and Petrie [24] examined meaningful ways of integrating
CT with music learning and studied students’ learning outcomes in
relation to CT concepts such as decomposition, pattern recognition,
abstraction, and algorithmic thinking. Their results demonstrate
multiple benefits as a result of integrating music learning and CT.

The above studies, however, mostly focused on the learning of
CT concepts alone. Yet Brennan and Resnick [6], as well as other
researchers such as Horst et al. [15], Zhang and Nouri [29], and All-
sop [2], strongly recommend that in addition to examining learning
of CT concepts, research in this area should also examine learning
of CT practices. CT practices are the processes students follow to
construct their projects, that is, the design practices that students
are using as they think and learn. Examples of such practices, in-
clude: (a) being incremental and iterative, (b) testing and debugging,
(c) reusing and remixing, and (d) abstracting and modularizing [6].
To our knowledge, research focusing on how students develop CT
practices in addition to CT concepts during integrated CT andmusic
learning is lacking from the literature.

In this paper, we describe a case study focusing on assessing
students’ CT concepts and practices in the context of CT-integrated
music. The work was conducted in the context of an informal
learning environment where participants composed music through

https://doi.org/10.1145/3502718.3524757
https://doi.org/10.1145/3502718.3524757

coding in TunePad, a free, online platform for creating music using
the Python programming language [14]. Specifically, we examine
middle schoolers (grades 5-8) CT concepts and practices through
their participation in a two-week online summer camp.We analyzed
the participants’ coding process logs to explore their CT practices
along with the participants’ coding products to identify the CT
concepts used to meet the requirements and recommendations of
daily camp activities.

To explore CT practices, we logged participants’ events during
their coding and used a framework by Brennan and Resnick to
analyze the process logs. The example CT practices proposed by
Brennan and Resnick are similar to tinkering behaviors in coding.
Specifically, in the context of block-based coding environments,
Dong et al. [8] defined tinkering as the process by which students
engage with testing, debugging, and struggling with code in or-
der to achieve a goal particularly in an open-ended programming
assignment. Unlike most introductions to programming where stu-
dents are coding to create a well-specified outcome, activities in
our summer camp were all open-ended with specific requirements
and recommendations, but no correct melody that all students were
aiming to create. Given the freedom to code creatively through
music composition, we sought to use process logs to identify tin-
kering. We also developed an assessment metric for CT concepts
that captures completion of requirements and recommendations in
the context of the camp activities.

Specifically, we designed our study to answer the following
research questions:
RQ1: What CT concepts are evident in participants’ coding products?
What percentage of participants met the requirements and recom-
mendations of daily activities?

RQ2: What CT practices, in the form of tinkering behaviors, were
exhibited in participants’ process logs during music coding in daily
activities?

RQ3: How did participants’ tinkering behaviors during daily tasks
compare with their tinkering behaviors during the final competition
capstone task?

2 RELATEDWORK
Related research can be categorized in three strands: coding envi-
ronments for music composition, approaches to integrating music
and CT learning, and research focusing on student learning when
integrating CT and music.

The major music coding environments currently used include
EarSketch [22], TunePad [14], Sonic Pi [1], and general block-based
programming environments such as Scratch that also support mu-
sic coding [26]. EarSketch, developed by Magerko et al. primarily
for introductory computer science, allows users to remix music
by manipulating audio samples using the Python programming
language, which is commonly used to teach computer science at
the introductory level [22]. More recently, Horn et al. developed an
interactive web-based environment called TunePad, which is built
on EarSketch and utilize the Python programming language [14].
Sonic Pi, developed by Aaron et al., enables music coding through
a language based on the Ruby programming language. Sonic Pi’s
unique feature is its ability to support live coding where the user

can modify the code while it is being played, continuing to generate
music [1]. Unlike these environments that are designed specifically
for music coding, some block-based languages can be used to create
music. Greher and Heines are particularly credited with showing
how Scratch can be used for music coding [12].

To date, there has been work on developing music and CT inte-
grated curricula in various contexts. An early, notable integration
of music and CT was the media computation course developed by
Guzdial for introducing computation to university non-majors [13].
Focusing on K-12 students, Bell and Bell explored and tested creative
ways to connect CT and music, including parallel sorting through
comparing musical elements such as note pitches, exploring binary
representations using music, and coding music in Scratch [5]. Sim-
ilarly, Baratè et al. developed coding exercises for middle school
students by customizing the Blockly block-based environment to
enable creation of melodies [3]. Recently, Krug et al. presented Code
Beats, an approach that teaches middle school students to program
using hip hop beats, intentionally leveraging a genre of music that
appeals to a wide array of urban youth of color using Sonic Pi [21].

To examine the impacts of CT-integrated music approaches
on participants, researchers have used surveys, interviews, focus
groups, and final coding products. For instance, several studies
have shown that EarSketch coding can promote student engage-
ment [9, 11, 17], creativity [9, 11], and other affective outcomes
[23] in high school classrooms. Similarly, Koppe reported that a
diverse group of participants coding with Sonic Pi in a workshop
developed medium to highly complex programs and demonstrated
positive attitude towards their experience [18]. In a team-based
learning context using Sonic Pi, Traversaro et al.’s results showed
better student performance and reduced course dropout compared
to individual learning and positive student attitudes [27]. Further,
Burnard et al.’s work demonstrated that music and CT integration
contributed to increases in confidence in both subjects [7]. Finally,
through a case study using pre and post semi-structured interviews,
class quizzes, and student reflections, Petrie found that middle
schoolers participating in integrated music coding with Sonic Pi
demonstrated learning of CT concepts, practices, and perspectives
[24].

While these studies are useful, they all focus on students’ learn-
ing as evident in final products. To our knowledge, no studies exist
that analyze process logs to gain a better understanding of CT
practices.

3 CONTEXT OF OUR CASE STUDY
This section describes the informal learning structure, participants,
music coding environment (i.e., TunePad), and open-ended music
coding activities.
Informal Learning Structure. The context of our study is a 2-
week (10 days) summer camp where each day consisted of a 1-hour
online streamed learning session followed by an after-class pro-
gramming assignment to reinforce the music and coding concepts
taught that day. The learning session included introduction of com-
puting concepts by computer scientists, music theory by a music
expert, a workedmusic coding example in TunePadwith live coding,
highly scaffolded in-class coding activities, and a quiz competition.
We held a 1-hour office hour immediately after the live streaming

for participants who wanted individual help. The participants were
strongly encouraged to upload their music coding products each
day for review.

For each daily after-class coding activity, participants were pro-
vided initial code sequences and instructions, which included both
requirements to complete the activity and recommended commands
to try in their coding. In this paper, we refer to these as the activity
requirements and recommendations. In all cases, the activities were
open-ended, leaving room for creativity and multiple potential so-
lutions to complete the requirements. The last camp activity was
a capstone project competition, where participants chose among
three different initial music codes and added at least one original
track through coding to create their own melody.
Participants.We held two instantiations of the 2-week summer
camp to accommodate student interest. In total, 195 middle school-
ers participated in at least one of the camps. Of those, 132 students
agreed to participate in this research through parent signed con-
sent and student assent. In the rest of this paper, we refer to the
132 who signed the consent form as the participants. However, it
is important to note that not all 132 students completed all camp
activities. This research is approved by the Institutional Review
Board (IRB).
Music Coding Environment. With easy accessibility through a
web browser from any platform, TunePad was used as our music
coding environment [14]. The interface consists of a set of playable
musical instruments at the top, a music timeline that shows the
timing of different tracks with respect to each other, and an editing
panel where Python code is written to create coded music.
Open-ended Music Composition Coding Tasks. In this paper,
we focus on analyzing the data from the daily after-class activities
and the capstone project, which were more open-ended than the
short in-class coding activities. Due to the volume of data and space
constraints, we selected two representative daily assignment tasks
for this case study. Day 5, which covered the use of lists in music
coding, was the last day of the first week of camp, midway through
the camp. Day 8, which covered repetition (iteration) in music
coding, was the last day of after-class activities before participants
worked on their individual capstone projects. Lists and repetition
as well as sequences, which are included in both of these days, are
important overlapping concepts in both CT and music.

Table 1 presents the coding, music, and CT concepts covered
during the instructional sessions followed by the after-class activity
instructions in terms of task requirements and recommendations.
On day 5, the music expert described chords while the computer
scientist demonstrated lists in music coding, building on concepts
students had already seen, including sequence, parallelism, and data.
In the after-class activity, participants were given a song with 8
background instruments and asked to create 2 instruments (Chords
- Intro and Chords - Verse) using commands playNote with available
chords. In both instruments, we predefined 7 notes (i.e., C = 60, D =
50, etc) and 1 chords (i.e., F_major = [F, A, C]). We also predefined
4 empty chords and asked participants to fill in proper notes in
each chords (i.e., E_min = [], D_min = [], etc). We provided several
measures with code comments and three functions with different
beat lengths as the basic structure of the instruments. Each measure
was required to contain 4 beats, and recommended chords were
listed as code comments (see Figure 1).

Table 1: Music coding tasks: concepts, requirements, and
recommendations

Category Items Day 5 Day 8

Coding Concepts Lists
√

Repetition with nested lists
√

Music Concepts Chords
√

Chord progression
√

CT Concepts

Sequence
√ √

Parallelism
√ √

Data
√ √

Loop
√

Task
Requirements

Define 4 new chords
√

Use given chords
√

Each measure has 4 beats
√ √

Task
Recommendations

Play recommended chords
for each measure

√

Use for with lists to create
a melody

√

On day 8, the instructional session focused on musical chord
progression and coding repetition with nested lists. Similar to day
5, participants were given 6 background instruments and asked to
create 2 instruments. We asked participants to use the initial chords
to compose their melody and include 4 beats with each measure.
We also recommended that they use the for command with lists to
create their melody.

1 F_maj = [F , A , C]
2 # Measure 1−2
3 # Try us ing chords F major , E minor and D minor
4 p layNote (F_maj , 2)

Figure 1: Example initial Python code

For the final capstone project competition, we offered 3 initial
codes for students to choose from as the basic structure of their
competition song. These 3 initial sketches were identical in the
types of instruments and number of tracks; the only difference was
the beats length.

4 STUDY METHODOLOGY
Table 2 presents our data collection and analysis methods for our
three research questions. We collected and analyzed three types of
data: coding process logs, coding products, and participant survey
data. Of the 31 and 22 middle schoolers who participated in the
day 5 and day 8 instructional sessions respectively, 22 and 16 of
them actually engaged in editing code for the after-class activities
for those days, respectively. We believe the high attrition rate is
due to the online camp which provided no supervision of after
camp activities. We collected and analyzed data for the 22 and 16
participants from day 5 and day 8, respectively. While 51 middle
schoolers participated in the final capstone project competition, we

studied the subset who also edited code for the after-class activity
of either day 5 or day 8 activities, which was 14 participants.

Table 2: Questions, data sources, and methodology

Research
Questions

Data Source Analysis Method

RQ1 Coding product
Assessment metric measuring
task requirements and
recommendations completed

RQ2, RQ3 Process log data
Survey data

Measurement for tinkering
behavior and link to survey data

4.1 Data Collection
We collaborated with the TunePad developers to log user events as
each participant in our camp (who provided consent) coded within
the TunePad environment throughout the 2-week camp. To identify
potential events to log, we started with the log data structure of
the ProgSnap2 standard [25] and adapted it appropriately for music
coding. We logged both coding process and code editing events.
Coding process events include edit-instrument, error-instrument,
play-instrument, and play-project. Play events in music coding are
analogous to run/execute code events in general programming.
Code editing event granularity is line-based and is logged when
users move their input cursor to a new line.

In total, we logged 138,735 events over all participants through-
out the two 2-week camps from the first day to the end of capstone
project. For our case study days 5, 8, and capstone project, we
logged 2,260, 1,459, and 21,110 events respectively.

As we collected event data, we also collected associated code
snapshots (i.e., code at the time of that event). This enabled us to
examine the state of the code at the time different events were
taking place. We designate the final code product for each activity
to be the final code snapshot for that activity’s event log.

The pre-camp survey provided participant demographics and
their prior music/coding knowledge/interests. This enabled us to
situate our data. For day 5 (n=22), 11 identified as boys, 8 as girls, and
3 preferred not to identify; 12 indicated that they were interested
in computing while 10 indicated they were interested in music. For
day 8 (n=16), 6 identified as boys, 7 as girls, and 3 preferred not
to identify; 8 were interested in computing and 6 were interested
in music. For capstone (n=14), 9 identified as boys, 4 as girls, 1
preferred not to identify; 10 were interested in computing and 9
were interested in music.

4.2 Data Analysis
All data analysis was conducted by researchers not involved in
camp instructions. For RQ1, which examines how participants met
the requirements and followed recommendations, we organized
the requirements and recommendations for each day’s after-class
activity by music and coding concepts, as presented in Table 3. We
manually examined each participant’s final code product to deter-
mine whether they met each requirement in the chart and followed
each recommendation. We maintained a count of the number of
participants who edited their code and met each requirement and
recommendation, and computed percentages based on the students

who edited code (n=22 on day 5 and n=16 on day 8). In Table 3, R
represents requirement and C represents recommendation. Unla-
beled descriptions were features that appeared in some codes as
indicated by the counts but were not requirements or recommen-
dations. For example, On day 5, 16 of 22 participants defined the
required chords, and 6 of 22 participants played the recommended
chords.

For RQ2, which attempts to analyze tinkering behavior during
music coding, we focused on the coding process log data. Krieger
et al. [19] conceptualized tinkering behaviors into four categories,
which include exploratory behavior, deviation from instructions,
lack of reliance on formal instruction, and use of trial and error. In
this study, we focused on studying potential exploratory behavior
and use of trial and error. For exploratory behavior, we adapted
Dong et al.’s construction-based tinkering [8], which they define
as "a behavior where students make major changes in the code, like
adding, deleting, or rearranging blocks... Construction-based tinker-
ing behavior indicates that a student is likely pursuing an idea on
how to solve the exercise, but still demonstrates some hesitation or
uncertainty. We differentiate construction-based tinkering from non-
tinkering construction behavior based on the amount of hesitation or
uncertainty exhibited."

Specifically, we analyzed two kinds of code changes: program-
ming language token changes and added or deleted lines of code
in TunePad. Similar to Dong et al. [8], we related more changes
with more tinkering. We developed a parser to parse participants’
coded music into several tokens, such as list, function, parame-
ter, and loop. We then compared code snapshots associated with
consecutive log events to measure token changes and augmented
each edit-instrument event with tokens (i.e., edit-list, edit-function).
Sometimes, participants added or deleted whole lines of code. We
separated these kinds of changes from token changes, and com-
pared consecutive code snapshots to determine these line change
counts.

For trial and error, we counted the number of edits between plays
(i.e., code executions) based on Dong et al.’s definition of test-based
tinkering - "Test-based tinkering is a type of behavior that involves
executing the part of the code the student is editing. Students who
exhibit test-based tinkering tend to test their scripts frequently within
a few edits... students generally start with a script not working as
intended, usually for an unknown reason. The student would make
minor changes in the script followed by immediate testing in an
attempt to fix the anomaly." Thus, participants with lower number
of edits between plays were viewed as exhibiting more test-based
tinkering.

For RQ3, which compares tinkering behavior during daily tasks
with behavior during the final competition capstone project, we
compared the measures from RQ2 for the day 5 and day 8 activi-
ties against the same measures for the final competition capstone
project. We performed the comparison only for participants who
edited code in the daily activities.

5 FINDINGS
We present our findings for n=22 and n=16 middle schoolers in
after-class music coding activities of day 5 and 8 of the online
summer music coding camp, towards better understanding how we

can assess the development of CT concepts and practices during
coding with music.

RQ1:What CT concepts are evident in participants’ coding
products? What percentage of participants met the require-
ments and recommendations of daily activities?

Table 3 presents our results for CT concepts embedded in final
code products. The last two columns indicate the number (and per-
centage) of participants who met each requirement and followed
each recommendation for each day’s music coding activity. Require-
ments are labeled R, while recommendations are labeled C. A note
in music is analogous to a variable in programming (e.g., C = 60),
while a chord is implemented in TunePad as a list (e.g., F_maj = [F,
A, C]). To illustrate, Figure 2 shows an example music code with
chords and looping. Not in shown in the table is the fact that only
one participant’s code had a remaining syntax error.
1 D_maj7 = [D , fSharp , A , cSharp]
2 B_min9 = [B , D , fSharp2 , A]
3 chords = [B_min9 , B_min9 , D_maj7]
4 for chord in chords :
5 p layNote (chord , b e a t s =4)

Figure 2: Example music code with chords and loop

Overall, in addition to what is shown on Table 3, 9 of 38 partici-
pants (23.7%) met all requirements and followed all recommenda-
tions on both days (2/22 on day 5 (9.1%) and 7/16 on day 8 (43.8%));
5 of 38 participants (13.2%) followed all recommendations but did
not meet all requirements; none of the participants met all require-
ments but not followed all recommendations. Across the two days’
activities, the majority of the participants showed success in defin-
ing (even nested) chords and using given chords. Approximately
half of the participants used loops when they were recommended
on day 8 and a few of them played functions with recommended
chords. Only 10-50% ensured there were the required 4 beats in
each measure. It is not surprising that participants did not define
new or change notes as the initial code had predefined notes, and
adding or changing notes was not part of the requirements or rec-
ommendations for these two days.

RQ2: What CT practices, in the form of tinkering behav-
iors, were exhibited in participants’ process logs during mu-
sic coding in daily activities?

Figure 3 shows the number of code changes (both token-based
and added/deleted lines of code) per participant for day 5, day 8,
and the final capstone project. We show the results separately for
the token-based changes, which are related to the CT concepts
that were covered by each day’s after-class activity. Since tasks are
different for each day, we are illustrating the results, but we are not
comparing across days.

Overall, on average participants made between 2 and 20 code
changes across both after-class activities. We believe this indicates
a fairly broad range of construction-based tinkering among partici-
pants given the nature of the after-class activities, which required
limited code. Participants exhibited more exploratory tinkering
with functions and parameter tokens than lists and loops. We be-
lieve this is related to the requirements and recommendationswhich
required and recommended fewer lists and loops than functions and
parameters. Specifically for parameters, which are used in music
coding primarily for beat length, we observed that less than 50%

Table 3: Participants following requirements (R) and recom-
mendations (C) in final music code product

Concept Require/Recommend
Num of Participants
Day 5
(n = 22)

Day 8
(n = 16)

Note
(Variable)

Define new notes 0 1 (6.3%)
Change notes 1 (4.5%) 0

Chord
(List)

Define required chords R 15 (68.2%)
Define nested chords 10 (62.5%)
Use given chords R 15 (93.8%)
Play recommend chords C 7 (31.8%)

Function

4 beats in each measure R 2 (9.1%) R 8 (50%)
1-5 functions called 7 (31.8%)
6-10 functions called 4 (18.2%)
11-15 functions called 4 (18.2%)
15+ functions called 7 (31.8%)
0 function changed 14 (63.6%)
1-2 functions changed 7 (31.8%)
3+ functions changed 1 (4.5%)

Loop Use loop C 9 (56.3%)

of the participants met the required 4 beats per measure, but they
exhibited higher levels of exploratory behavior than other concepts.
This may be due to creatively exploring different music flavors.

Figure 4 presents our test-based tinkering behavior findings for
day 5 and 8 and the final capstone project in terms of number of
edits between two melody plays. There was a fairly small spread
between participants. The majority of participants made 3 to 5
edit events between two plays across both days. The low number
of edits between plays suggests that participants were following
test-based tinkering behavior during their music coding.

When we split the data by gender, we saw little difference be-
tween boys and girls in their tinkering behaviors. In addition to
gender, our pre-camp survey also asked participants about their
prior music experience and interest in computing. For both rep-
resentative days, more than 60% of participants had prior music
experience and approximately half of the participants had a prior
interest in computing. We did not observe any significant differ-
ences in tinkering behaviors between different groups. The findings
suggest that in this context, gender, prior music experience, and
interest in computing have no correlation with tinkering behaviors.

RQ3: How did participants’ tinkering behaviors during
daily tasks compare with their tinkering behaviors during
the final competition capstone task?

Figures 3 and 4 include the findings on tinkering behaviors dur-
ing the final capstone project competition. Note that the x-axis in
Figure 3 is a considerably different scale than the daily after-class
activities, primarily due to the capstone project being larger in
scope engaging participants considerably longer in making code
changes and exploring music coding. However, the tinkering be-
haviors among the tokens and lines of code changes show similar

Figure 3: Construction-based, exploratory tinkering during
after-class activities and capstone project

Figure 4: Test-based tinkering during after-class activities
and capstone project

patterns. For example, similar to daily after-class activities, lists and
loops are the two less frequently tinkered tokens. For other mea-
surements, the range of the results (x-axis) is significantly larger
than daily tasks. Figure 4 shows that in terms of test-based tinker-
ing, the average number of edits between plays has a narrower
range of variability among participants, but still in the same range
of 2 to 6 edits between plays per participant in general.

6 SUMMARY AND CONCLUSIONS
To summarize, we expected more participants to meet the require-
ments and recommendations during the after-class activities. The
overall lower than expected percentages may be due to the online
nature of the camp, where students did not have in-person sup-
port for help and engagement, or the creative nature of music. We
observed a broad range of construction-based tinkering among par-
ticipants, which did not appear to be related to gender, prior music
experience or prior interests in computing. Since a major goal of
our work is to broaden participation in computing, this finding is
encouraging. Nonetheless, we plan to investigate potential reasons
for this variation. In contrast, overall, all participants demonstrated
some test-based tinkering with few edits between plays.

One threat to validity is the small number of participants who
actually edited code during the after-class activities. We plan to
increase that number in future in-person offerings of the summer
camp to gather more data. Moreover, we did not collect any quali-
tative data focusing on students’ thinking processes while coding,
which may be important for identifying CT practices. This limi-
tation could be mitigated using think-aloud methods, as students
frequently have difficulties recalling their thoughts after finishing
a task [6, 10].

To our knowledge, this case study is one of the first to use pro-
cess logs in music coding to explore CT practices in an integrated
approach to CT learning. Future work includes collecting a greater
volume of process log data that may help uncover additional pat-
terns in the development of CT practices while coding with music.

ACKNOWLEDGMENTS
This paper is based upon work supported by the National Science Foundation under
grants 2048793 and 2048792.

REFERENCES
[1] Sam Aaron. 2016. Sonic Pi–performance in education, technology and art. Inter-

national Journal of Performance Arts and Digital Media 12, 2 (2016), 171–178.
[2] Yasemin Allsop. 2019. Assessing computational thinking process using a multiple

evaluation approach. International journal of child-computer interaction 19 (2019),
30–55.

[3] Adriano Baratè, Andrea Formica, Luca A Ludovico, and Dario Malchiodi. 2017.
Fostering computational thinking in secondary school through music-an ed-
ucational experience based on google blockly. In International Conference on
Computer Supported Education, Vol. 2. SCITEPRESS, 117–124.

[4] Valerie Barr and Chris Stephenson. 2011. Bringing computational thinking to
K-12: what is Involved and what is the role of the computer science education
community? Acm Inroads 2, 1 (2011), 48–54.

[5] Judith Bell and Tim Bell. 2018. Integrating computational thinking with a music
education context. Informatics in Education 17, 2 (2018), 151–166.

[6] Karen Brennan and Mitchel Resnick. 2012. New frameworks for studying and as-
sessing the development of computational thinking. In Proceedings of the 2012 an-
nual meeting of the American educational research association, Vancouver, Canada,
Vol. 1. 25.

[7] Pam Burnard, Zsolt Lavicza, Carrie Anne Philbin, et al. 2016. Strictly coding:
Connecting mathematics and music through digital making. Proceedings of
Bridges 2016: Mathematics, Music, Art, Architecture, Education, Culture (2016),
345–350.

[8] Yihuan Dong, Samiha Marwan, Veronica Catete, Thomas Price, and Tiffany
Barnes. 2019. Defining tinkering behavior in open-ended block-based program-
ming assignments. In Proceedings of the 50th ACM Technical Symposium on Com-
puter Science Education. 1204–1210.

[9] Shelly Engelman, Brian Magerko, Tom McKlin, Morgan Miller, Doug Edwards,
and Jason Freeman. 2017. Creativity in authentic STEAM education with EarS-
ketch. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education. 183–188.

[10] John H Flavell. 1979. Metacognition and cognitive monitoring: A new area of
cognitive–developmental inquiry. American psychologist 34, 10 (1979), 906.

[11] Jason Freeman, Brian Magerko, Doug Edwards, Tom Mcklin, Taneisha Lee, and
Roxanne Moore. 2019. EarSketch: engaging broad populations in computing
through music. Commun. ACM 62, 9 (2019), 78–85.

[12] Gena R. Greher and Jesse M. Heines. 2014. Computational Thinking in Sound:
Teaching the Art and Science of Music and Technology. Oxford University Press,
Inc., USA.

[13] Mark Guzdial. 2003. A Media Computation Course for Non-Majors. SIGCSE Bull.
35, 3 (jun 2003), 104–108. https://doi.org/10.1145/961290.961542

[14] Michael Horn, Amartya Banerjee, Melanie West, Nichole Pinkard, Amy Pratt,
Jason Freeman, Brian Magerko, and Tom McKlin. 2020. TunePad: Engaging
learners at the intersection of music and code. (2020).

[15] Rachel Horst, Kedrick James, Yuya Takeda, and William Rowluck. 2020. From
play to creative extrapolation: Fostering emergent computational thinking in
the makerspace. Journal of Strategic Innovation and Sustainability 15, 5 (2020),
40–54.

[16] Ulas Ilic, Halil İbrahim Haseski, and Ufuk Tugtekin. 2018. Publication Trends
over 10 Years of Computational Thinking Research. Contemporary Educational
Technology 9, 2 (2018), 131–153.

[17] Fatemeh Jamshidi and Daniela Marghitu. 2019. Using music to foster engagement
in introductory computing courses. In Proceedings of the 50th ACM Technical
Symposium on Computer Science Education. 1278–1278.

[18] Christian Köppe. 2020. Program a Hit–Using Music as Motivator for Introducing
Programming Concepts. In Proceedings of the 2020 ACM Conference on Innovation
and Technology in Computer Science Education. 266–272.

[19] Samantha Krieger, Meghan Allen, and Catherine Rawn. 2015. Are females disin-
clined to tinker in computer science?. In Proceedings of the 46th ACM Technical
Symposium on Computer Science Education. 102–107.

[20] James Lockwood and AidanMooney. 2018. Computational Thinking in Secondary
Education:Where Does It Fit? A Systematic Literary Review. International Journal
of Computer Science Education in Schools 2, 1 (2018), n1.

[21] Douglas Lusa Krug, Edtwuan Bowman, Taylor Barnett, Lori Pollock, and David
Shepherd. 2021. Code Beats: A Virtual Camp for Middle Schoolers Coding Hip
Hop. Association for Computing Machinery, New York, NY, USA, 397–403.
https://doi.org/10.1145/3408877.3432424

[22] Brian Magerko, Jason Freeman, Tom Mcklin, Mike Reilly, Elise Livingston, Scott
Mccoid, and Andrea Crews-Brown. 2016. Earsketch: A steam-based approach for
underrepresented populations in high school computer science education. ACM
Transactions on Computing Education (TOCE) 16, 4 (2016), 1–25.

[23] TomMcKlin, DanaWanzer, Taneisha Lee, Brian Magerko, Doug Edwards, Sabrina
Grossman, and Jason Freeman. 2019. Implementing EarSketch: Connecting
classroom implementation to student outcomes. In Proceedings of the 50th ACM
Technical Symposium on Computer Science Education. 634–640.

[24] Christopher Petrie. 2021. Interdisciplinary computational thinking with music
and programming: a case study on algorithmic music composition with Sonic Pi.
Computer Science Education (2021), 1–23.

[25] Thomas W Price, David Hovemeyer, Kelly Rivers, Ge Gao, Austin Cory Bart,
Ayaan M Kazerouni, Brett A Becker, Andrew Petersen, Luke Gusukuma,
Stephen H Edwards, et al. 2020. Progsnap2: A flexible format for program-
ming process data. In Proceedings of the 2020 ACM Conference on Innovation and
Technology in Computer Science Education. 356–362.

[26] Mitchel Resnick, JohnMaloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: Programming for All. Commun.
ACM 52, 11 (nov 2009), 60–67. https://doi.org/10.1145/1592761.1592779

[27] Daniele Traversaro, Giovanna Guerrini, and Giorgio Delzanno. 2020. Sonic Pi for
TBL Teaching Units in an Introductory Programming Course. In Adjunct Publica-
tion of the 28th ACM Conference on User Modeling, Adaptation and Personalization.
143–150.

[28] Jeannette M Wing. 2006. Computational thinking. Commun. ACM 49, 3 (2006),
33–35.

[29] LeChen Zhang and Jalal Nouri. 2019. A systematic review of learning compu-
tational thinking through Scratch in K-9. Computers & Education 141 (2019),
103607.

https://doi.org/10.1145/961290.961542
https://doi.org/10.1145/3408877.3432424
https://doi.org/10.1145/1592761.1592779

	Abstract
	1 Introduction
	2 Related Work
	3 Context of Our Case Study
	4 Study Methodology
	4.1 Data Collection
	4.2 Data Analysis

	5 Findings
	6 Summary and Conclusions
	Acknowledgments
	References

