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ABSTRACT

In contrast to single-objective optimization (SOO), multi-objective optimization
(MOO) requires an optimizer to find the Pareto frontier, a subset of feasible solu-
tions that are not dominated by other feasible solutions. In this paper, we propose
LaMOO, a novel multi-objective optimizer that learns a model from observed
samples to partition the search space and then focus on promising regions that
are likely to contain a subset of the Pareto frontier. The partitioning is based on
the dominance number, which measures “how close” a data point is to the Pareto
frontier among existing samples. To account for possible partition errors due
to limited samples and model mismatch, we leverage Monte Carlo Tree Search
(MCTS) to exploit promising regions while exploring suboptimal regions that may
turn out to contain good solutions later. Theoretically, we prove the efficacy of
learning space partitioning via LaMOO under certain assumptions. Empirically, on
the HyperVolume (HV) benchmark, a popular MOO metric, LaMOO substantially
outperforms strong baselines on multiple real-world MOO tasks, by up to 225% in
sample efficiency for neural architecture search on Nasbench201, and up to 10%
for molecular design.

1 INTRODUCTION

Multi-objective optimization (MOO) has been extensively used in many practical scenarios involving
trade-offs between multiple objectives. For example, in automobile design (Chang, 2015), we
must maximize the performance of the engine while simultaneously minimizing emissions and fuel
consumption. In finance (Gunantara, 2018), one prefers a portfolio that maximizes the expected
return while minimizing risk.

Mathematically, in MOO we optimize M objectives f(x) = [f1(x), fa(X), ..., far(x)] € RM:

min  fi(x), f2(x), ..., far(x) ey
s.t. xe€Q

While we could set arbitrary weights for each objective to turn it into a single-objective optimization
(SOO0) problem, modern MOO methods aim to find the problem’s entire Pareto frontier: the set of
solutions that are not dominated by any other feasible solutions! (see Fig. 1 for illustration). The
Pareto frontier yields a global picture of optimal solution structures rather than focusing on one
specific weighted combination of objectives.

As a result, MOO is fundamentally different from SOO. Instead of focusing on a single optimal
solution, a strong MOO optimizer should cover the search space broadly to explore the Pareto frontier.
Popular quality indicators in MOO, such as hypervolume (HV), capture this aspect by computing
the volume of the currently estimated frontier. Specifically, given a reference point R € R, as
shown in Fig. 1(a), the hypervolume of a finite approximate Pareto set P is the M-dimensional

"Here we define dominance y <¢ x as fi(x) < fi(y) for all functions f;, and exists at least one i s.t.
fi(x) < fi(y), 1 < ¢ < M. That is, solution x is always better than solution y, regardless of how the M
objectives are weighted.
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Figure 1: Left: A basic setting in Multi-objective Optimization (MOO), optimizing M = 2 objectives in
Eqn. 1. (a) depicts the objective space (f1, f2) and (b) shows the search space x € €. In (a), P denotes the
Pareto frontier, R is the reference point, the hypervolume H'V is the space of the shaded area, and o(x) are the
dominance numbers. In (b), once a few samples are collected within 2, LaMOQO learns to partition the search
space €2 into sub-regions (i.e. 2g004 and $25,4) according to the dominance number in objective space, and then
focuses future sampling on the good regions that are close to the Pareto Frontier. This procedure can be repeated
to further partition $24004 and 2yq4. Right: A table shows the properties of MOO methods used in experiments.

Lebesgue measure Aj; of the space dominated by P and bounded from below by R. That is,

HV(P,R) =\ M(Ulzll [R, y;]), where [R,y;] denotes the hyper-rectangle bounded by reference
point R and y;. Consequently, the optimizer must consider the diversity of solutions in addition to
their optimality.

While several previous works have proposed approaches to capture this diversity-optimality trade-off
(Deb et al., 2002a; Knowles, 2006; Igel et al., 2007; Deb & Jain, 2014; Daulton et al., 2020), in
this paper, we take a fundamentally different route by learning promising candidate regions from
past explored samples. Ideally, to find the Pareto frontier in as few function evaluations as possible,
we want to sample heavily in the Pareto optimal set {2 p, defined as the region of input vectors that
corresponds to the Pareto frontier.

One way to focus samples on 2p is to gradually narrow the full search space down to the subregion
containing {2p via partitioning. For example, in the case of quadratic objective functions, {2p can
be separated from the non-optimal set Q\Qp via simple linear classifiers (see Observation 1,2).
Motivated by these observations, we thus design LaMOO, a novel MOO meta-optimizer that progres-
sively partitions regions into sub-regions and then focuses on sub-regions that are likely to contain
Pareto-optimal regions, where existing solvers can help. Therefore, LaMOO is a meta-algorithm.

Unlike cutting-plane methods (Loganathan & Sherali, 1987; Hinder, 2018; Vieira & Lisboa, 2019)
that leverage the (sub)-gradient of convex objectives as the cutting plane, with global optimality
guarantees, LaMOO is data-driven: it leverages previous samples to build classifiers to learn the
partition and focuses future samples in these promising regions. No analytical formula of objectives
or their sub-gradients is needed. LaMOO is a multi-objective extension of recent works (Wang et al.,
2020; Yang et al., 2021) that also learn space partitions but for a single black-box objective.

Empirically, LaMOO outperforms existing approaches on many benchmarks, including standard
benchmarks in multi-objective black-box optimization, and real-world multi-objective problems like
neural architecture search (NAS) (Cai et al., 2019; 2020) and molecule design. For example, as a
meta-algorithm, LaMOO combined with CMA-ES as an inner routine requires only 62.5%, 8%, and
29% as many samples to reach the same hypervolume as the original CMA-ES (Igel et al., 2007a) in
BraninCurrin (Belakaria et al., 2019), VehicleSafety (Liao et al., 2008) and Nasbench201 (Dong &
Yang, 2020), respectively. On average, compared to gEHVI, LaMOO uses 50% samples to achieve
the same performance in these problems. In addition, LaMOO with qgEHVI (Daulton et al., 2020) and
CMA-ES require 71% and 31% fewer samples on average, compared to naive gEHVI and CMA-ES,
to achieve the same performance in molecule discovery.

2 RELATED WORK

Bayesian Optimization (BO) (Zitzler et al., 2003; Knowles, 2006; Ponweiser et al., 2008; Couckuyt
et al., 2014; Paria et al., 2018; Yang et al., 2019; Daulton et al., 2020) is a popular family of methods
to optimize black-box single and multi-objectives. Using observed samples, BO learns a surrogate
model f(x), search for new promising candidates based on acquisition function built on f(x), and
query the quality of these candidates with the ground truth black-box objective(s). In multi-objective
Bayesian optimization (MOBO), most approaches leverage Expected Hypervolume Improvement
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(EHVI) as their acquisition function (Zitzler et al., 2003; Couckuyt et al., 2014; Yang et al., 2019),
since finding the Pareto frontier is equivalent to maximizing the hypervolume given a finite search
space (Fleischer, 2003). There are methods (Knowles, 2006; Ponweiser et al., 2008; Paria et al., 2018)
that use different acquisition functions like expected improvement (Jones et al., 1998) and Thompson
sampling (Thompson, 1933). EVHI is computationally expensive: its cost increases exponentially
with the number of objectives. To address this problem, gEHVI (Daulton et al., 2020) accelerates
optimization by computing EHVT in parallel, and has become the state-of-the-art MOBO algorithm.
In this paper, we leverage qEHVI as a candidate inner solver in our proposed LaMOQO algorithm.

Evolutionary algorithms (EAs) (Deb et al., 2002a; Igel et al., 2007a; Zhang & Li, 2007; Beume
et al., 2007; Fang et al., 2018) are also popular methods for MOO tasks. One category of MOO-
EAs (Srinivas & Deb, 1994; Deb et al., 2002a; Deb & Jain, 2014) leverages Pareto dominance to
simultaneously optimize all objectives. A second category (e.g., (Zhang & Li, 2007)) decomposes a
multi-objective optimization problem into a number of single-objective sub-problems, converting
a difficult MOO into several SOOs. Another category is quality indicator-based methods, such as
(Beume et al., 2007) and (Igel et al., 2007a). They scalarize the current Pareto frontier using quality
indicators (e.g., HV) and transfer a MOO to a SOO. New samples are generated by crossover and
mutation operations from existing ones. However the drawbacks of non-quality indicator-based
methods (i.e., the first two categories) can be not overlooked. Specifically, for MOO with many
objectives, NSGA-II (Deb et al., 2002a) easily gets stuck in a dominance resistant solution (Pang et al.,
2020) which is far from the true Pareto frontier. while MOEA/D perform better in MOO but how to
specify the weight vector for problems with unknown Pareto front is the main challenge (Deb & Jain,
2014). In addition, A* search based algorithms are also considered to be extended to MOO (Stewart
& White, 1991; Tung Tung & Lin Chew, 1992; De la Cruz et al., 2005).

Quality Indicators. Besides hypervolume, there are several other quality indicators (Van Veldhuizen
& Lamont, 1998; Zitzler et al., 2000; Bosman & Thierens, 2003) for evaluating sample quality, which
can be used to scalarize the MOO to SOO. The performance of a quality indicator can be evaluated
by three metrics (Deng et al., 2007; Li et al., 2014), including convergence (closeness to the Pareto
frontier), uniformity (the extent of the samples satisfy the uniform distribution), and spread (the
extent of the obtained approximate Pareto frontier). Sec. B specifically illustrates the merits of each
quality indicator. HyperVolume is the only metric we explored that can simultaneously satisfy the
evaluation of convergence, uniformity, and spread without the knowledge of the true Pareto frontier
while it may suffer from expensive calculation in many-objective problems. Therefore, throughout
this work, we use HV to evaluate the optimization performance of different algorithms.

3 LEARNING SPACE PARTITIONS: A THEORETICAL UNDERSTANDING

Searching in high-dimensional space to find the optimal solution to a function is in general a
challenging problem, especially when the function’s properties are unknown to the search algorithm.
The difficulty is mainly due to the curse of dimensionality: to adequately cover a d-dimensional
space, in general, an exponential number of samples are needed.

For this, many works use a “coarse-to-fine” approach: partition the search space and then focusing
on promising regions. Traditionally, manually defined criteria are used, e.g., axis-aligned parti-
tions (Munos, 2011b), Voronoi diagrams (Kim et al., 2020), etc. Recently, (Wang et al., 2019;
2020; Yang et al., 2021) learn space partitions based on the data collected thus far, and show strong
performance in NeurIPS black box optimization challenges (Sazanovich et al.; Kim et al.).

On the other hand, there is little quantitative understanding of space partition. In this paper, we
first give a formal theoretical analysis on why learning plays an important role in space-partition
approaches for SOO. Leveraging our understanding of how space partitioning works, we propose
LaMOO which empirically outperforms existing SOTA methods on multiple MOO benchmarks.

3.1 PROBLEM SETTING

Intuitively, learning space partitions will yield strong performance if the classifier can determine
which regions are promising given few data points. We formalize this intuition below and show why
it is better than fixed and manually defined criteria for space partitioning.

Consider the following sequential decision task. We have N samples in a discrete subset Sy and there
exists one sample x* that achieves a minimal value of a scalar function f. Note that f can be any
property we want, e.g., in the Pareto optimal set. The goal is to construct a subset S C Sy after T’
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steps, so that (1) x* € St and (2) |S7| is as small as possible. More formally, we define the reward
function r as the probability that we get x* by randomly sampling from the resulting subset S:

r

1
= —P
|ST|

It is clear that 0 < r < 1. » = 1 means that we already found the optimal sample x*.

(x* € Sr) 2)

Here we use discrete case for simplicity and leave continuous case (i.e., partitioning a region {2
instead of a discrete set Sp) to future work. Note IV could be large, so here we consider it infeasible
to enumerate .Sy to find x*. However, sampling from Sy, as well as comparing the quality of sampled
solutions are allowed. An obvious baseline is to simply set St := Sy, then 7, = N~!. Now the
question is: can we do better? Here we seek help from the following oracle:

Definition 1 ((«, n)-Oracle). Given a subset S that contains X*, after taking k samples from S, the
oracle can find a good subset Sgooq With |Sgood| < |S|/2 and

k
P(x* € Spooalx"€8)>1—exp| ———— 3)

Lemma 1. The algorithm to uniformly draw k samples in S, pick the best and return is a (1, 1)-oracle.

See Appendix for proof. Note that a (1, 1)-oracle is very weak, and is of little use in obtaining
higher reward r. We typically hope for an oracle with smaller o and 7 (i.e., both smaller than 1).
Intuitively, such oracles are more sample-efficient: with few samples, they can narrow down the
region containing the optimal solution x* with high probability.

Note that o < 1 corresponds to semi-parametric models. In these cases, the oracle has generalization
property: with substantially fewer samples than N (i.e., on the order of N), the oracle is able to put
the optimal solution x* on the right side. In its extreme case when a = 0 (or parametric models),
whether we classify the optimal solution x* on the correct side only depends on the absolute number
of samples collected in .S, and is independent of its size. For example, if the function to be optimized
is linear, then with d + 1 samples, we can completely characterize the property of all |S| samples.

Relation with cutting plane. Our setting can be regarded as a data-driven extension of cutting plane
methods (Loganathan & Sherali, 1987; Vieira & Lisboa, 2019; Hinder, 2018) in optimization, in which
a cutting plane is found at the current solution to reduce the search space. For example, if f is convex
and its gradient V f(x) is available, then we can set Sgood := {X : Vf(%0) " (x —x0) < 0,x € Sp},
since for any x € Sy \ Sgood, convexity gives f(x) > f(xo) + Vf(x0) " (x —x0) > f(x0) and
thus x is not better than current xo. However, the cutting plane method relies on certain function
properties like convexity. In contrast, learning space partition can leverage knowledge about the
function forms, combined with observed samples so far, to better partition the space.

3.2 REWARDS UNDER OPTIMAL ACTION SEQUENCE
We now consider applying the («, n)-oracle iteratively for T steps, by drawing k; samples from

S¢—1 and setting Sy := Sgo0d,t—1. We assume a total sample budget K, so ZtT:l k; = K. Note that
T < log, N since we halve the set size with each iteration. Now the question is twofold. (1) How
can we determine the action sequences {k; } in order to maximize the total reward r? (2) Following
the optimal action sequences {k; }, can r* be better than the baseline r, = N ~1? The answer is yes.

Theorem 1. The algorithm yields a reward r* lower bounded by the following:

r* > rpexp {<log 2 — W) T] 4

K

where ry, := N~Y and ¢(a, T) := (1 —27°T) /(1 — 27%).
¢(aT)

Remarks. Following Theorem 1, a key condition to make r* > ry, is to ensure log 2 > ni® %

This holds if when W — 0. Note that since 7' < log, N, the final reward r* is upper
bounded by 1 (rather than goes to +-00). We consider some common practical scenarios below.

Non-parametric models (o« = 1). In this case, ¢(«,T) < 2 and the condition becomes %logQ >

nN/K. This happens when the total sample budget K = O(N), i.e., on the same order of N, which
means that the partitioning algorithm obtains little advantage over exhaustive search.
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Semi-parametric models (o« < 1). In this case, ¢(a, T) < 1/(1 —27%) and the condition becomes
(1 -=27%)log2 > nN*/K. This happens when the total sample budget K = ©(N®). In this case,
we could use many fewer samples than exhaustive search to achieve better reward, thanks to the
generalization property of the oracle.

Parametric models (o = 0). Now ¢(«,T) = T and the condition becomes log2 > % Since
T < log, N, the total sample budget can be set to be K = ©(log V). Intuitively, the algorithm
performs iterative halving (or binary search) to narrow down the search toward promising regions.

3.3 EXTENSION TO MULTI-OBJECTIVE OPTIMIZATION

Given our understanding of space partitioning, we now extend this idea to MOO. Intuitively, we want
“good” regions to be always picked by the space partition. For SOQ, it is possible since the optimal
solution is a single point. How about MOO?

Unlike SO0, in MOO we aim for a continuous region, the Pareto optimal set Qp := {x : Px' # x :
f(x’) < f(x)}. A key variable is the regularity of Qp: if it is highly non-regular and not captured by
a simple partition boundary (ideally a parametric boundary), then learning a space partition would be
difficult. Interestingly, the shape of 2p can be characterized for quadratic objectives:

Observation 1. Ifall f; are isotropic, f;j(x) = ||x — c;

Observation 2. If M = 2 and f;(x) = (x — c;) " H;(x — c;) where H; are positive definite
symmetric matrices, then there exists w1 := Ha(co — ¢1) and wo := H;(c1 — ¢3), so that for any
x € Qp, w] (x —c1) > 0and wy (x — c3) > 0.

2, then Qp = ConvexHull(cq, ..., ¢,).

In both cases, 2p can be separated from non-Pareto regions Q\Qp via a linear hyperplane. Empir-
ically, (2p only occupies a small region of the entire search space (Sec. 4), and quickly focusing
samples on the promising regions is critical for high sample efficiency.

In the general case, characterizing (2p is analytically hard and requires domain knowledge about
the objectives (Li et al., 2014). However, for MOO algorithms in practice, knowing that Qp can be
separated from Q\Qp via simple decision planes is already useful: we could learn such decision
planes given previous data that are already collected, and sample further in promising regions.

4 LAMOO: LATENT ACTION MULTI-OBJECTIVE OPTIMIZATION

In Sec. 3, for convenience, we only analyze a greedy approach, which makes decisions on space
partitions and never revises them afterwards. While this greedy approach indeed works (as shown in
Sec. 5.3), an early incorrect partition could easily rule out regions that turn out to be good but weren’t
identified with few samples. In practice, we want to keep the decision softer: while exploiting the
promising region, we also explore regions that are currently believed to be sub-optimal given limited
samples. It is possible that these regions turn out to contain good solutions when more samples are
available, and the oracle can then make a different partition.

To balance the trade-off between exploration and exploitation to cope with the generalization error of
the learned classifier, we leverage Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvari, 2006) and
propose our algorithm LaMOO. As shown in Alg. 1, LaMOO has four steps: (1) learn to partition the
search space given previous observed data points D, which are collected {x;, f(x;)} from iterations
0 to t. (2) With this information, we partition the region into promising and non-promising regions,
and learn a classifier i(-) to separate them. (3) We select the region to sample from, based on the
UCB value of each node. (4) We sample selected regions to obtain future data points Dy 1.

Learning Space Partitions. We construct the partition oracle using the dominance number. Let D;
be the collected samples up to iteration ¢ and D, ; := D, N ); be the samples within the region
2; we want to partition. For each sample x € D, ;, its dominance number o, ;(x) at iteration ¢t is
defined as the number of samples in €2, that dominate x (here I[-] is the indicator function):

o (%)= D I[x <¢ xi, X # xi] )

X;€Dy ;

While naive computation requires O(| Dy ;|?) operations, we use Maxima Set (Kung et al., 1975)
which runs in O(|D; ;|log|D; ;|). For x € Qp, o(x) = 0.
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Algorithm 1 LaMOO Pseudocode.

1: Inputs: Initial Dy from uniform sampling, sample budget 7.
2: fort=0,...,7do

3: Set £ < {Qoot } (collections of regions to be split).
4: while £ # () do
5 Q; < pop_first_element(L), Dy ; < D: N, ne; < | Dy jl.
6: Compute dominance number o ; of Dy ; using Eqn. 5 and train SVM model A(+).
7: If (Dy,j, 04,5) is splittable by SVM, then L « £ U Partition(€2;, h(+)).
8: end while
9: for k = root, k is not leaf node do
10: Dy < De N Qu, e,k < HyperVolume(Dy i), nik < |Dekl-
11: k <+ arg max UCBy,c, where UCB¢ . := vt + 2Cp 4/ 2los(ns,k)
¢ € children(k) ’ Nt c
12: end for
13: Diy1 < D¢ U Dpew, Where Dhey, is drawn from €2, based on qEHVI or CMA-ES.
14: end for
%
g
P (0=0) g 3
g %
) C ® QD '% UCBg=5
° -0 OBy =" c
~e s o Ok %
N =3 C C Only samples
~ o0 O o g y samples
© o © 2 UCB.=3 from Qg based on
° Q.5 sample methods
o o C ’
Qp 4
Search Space UCBp=7 UCBg=8 ” @
— f1 Learn to partition h(-) Expand the tree Select w.r.tuch QE
Low o(x) High o(x) Qc
(a) Split (b) Select (c) Sample

Figure 2: (a) The leaf nodes D and E that correspond to the non-splittable space 2p and Q. (b). The node
selection procedure based on the UCB value. (c). The new samples generation from the selected space (g for
bayesian optimization.

For each D ;, we then get good (small o(x)) and bad (large o(x)) samples by ranking them according
to o(x). The smallest 50% are labeled to be positive while others are negative. Based on the labeled
samples, a classifier (e.g., Support Vector Machine (SVM)) is trained to learn a decision boundary as
the latent action. We choose SVM since the classifier needs to be decent in regions with few samples,
and has the flexibility of being parametric or non-parametric.

Exploration Using Upper Confidence Bounds(UCB). As shown in Fig. 2, LaMOQO selects the final
leaf node by always choosing the child node with larger UCB value. The UCB value for a node j is
defined as UCB; := v; 4 2C), \/2 1og Nparent(j) /75> Where n; is the number of samples in node j,
C) is a tunable hyperparameter which controls the degree of exploration, and v; is the hypervolume
of the samples in node j. The selected leaf corresponds the partitioned region 2, as shown in Alg. 1.

Sampling in Search Region. We use existing algorithms as a sampling strategy in a leaf node, e.g.,
qEHVI (Daulton et al., 2020)) and CMA-ES (Igel et al., 2007a). Therefore, LaMOO can be regarded
as a meta-algorithm, applicable to any existing SOO/MOO solver to boost its performance.

LaMOO with qEHVI. As a multi-objective solver, qEHVI finds data points to maximize a parallel
version of Expected Hypervolume Improvement (EHVI) via Bayesian Optimization (BO). To incorpo-
rate qEHVI into LaMOOQO’s sampling step, we confine gEHVI’s search space using the tree-structured
partition to better search MOO solutions.

LaMOO with CMA-ES. CMA-ES is an evolutionary algorithm (EA) originally designed for single-
objective optimization. As a leaf sampler, CMA-ES is used to pick a sample that maximizes the
dominance number o(x) within the leaf. Since o(x) changes over iterations, at iteration ¢, we first
update o (x) of all previous samples at ¢’ < t to 0;(x), then use CMA-ES. Similar to the qEHVI
case, we constrain our search to be within the leaf region.




Published as a conference paper at ICLR 2022

Once a set of new samples D, is obtained (as well as its multiple function values f(Dyew)), we
update all partitions along its path and the entire procedure is repeated.

5 EXPERIMENTS

We evaluate the performance of LaMOO in a diverse set of scenarios. This includes synthetic
functions, and several real-world MOO problems like neural architecture search, automobile safety
design, and molecule discovery. In such real problems, often a bunch of criteria needs to be optimized
at the same time. For example, for molecule (drug) discovery, one wants the designed drug to be
effective towards the target disease, able to be easily synthesized, and be non-toxic to human body.

5.1 SMALL-SCALE PROBLEMS

Synthetic Functions. Branin-Currin (Belakaria et al., 2019) is a function with 2-dimensional input
and 2 objectives. DTLZ2 (Deb et al., 2002b) is a classical scalable multi-objective problem and is
popularly used as a benchmark in the MOO community. We evaluate LaMOQO as well as baselines in
DTLZ2 with 18 dimensions and 2 objectives, and 12 dimensions and 10 objectives, respectively.

Structural Optimization in Automobile Safety Design (vehicle safety) is a real-world problem
with 5-dimensional input and 3 objectives, including (1) the mass of the vehicle, (2) the collision
acceleration in a full-frontal crash, and (3) the toe-board intrusion (Liao et al., 2008).

Nasbench201 is a public benchmark to evaluate NAS algorithms (Dong & Yang, 2020).
There are 15625 architectures in Nasbench201, with groundtruth #FLOPs and accuracy in CI-
FAR10 (Krizhevsky, 2009). Our goal is to minimize #FLOPs and maximize accuracy in this search
space. We normalized #FLOPs to range [—1, 0] and accuracy to [0, 1].

~——— QEHVI+LaMOO  —— QqPAREGO 2.0 ~— QEHVI+LaMOO  —— QPAREGO 0.0 —— QEHVI+LaMOO  —— QqPAREGO
E1s qEHVI & GEHVI & . QEHVI
a a ¥ a
@ 1.5 [
£ £
31.0 3 E —-0.2
[=} [ o
< 1.0 2
€05 g g
o 2 5-04
[=d 20.5 o
o Q b3
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0.0 -0.6
20 40 60 80 100 ' 20 40 60 80 100 20 40 60 80 100
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—— CMAES+LaMOO  —— NSGA-II —— CMAES+LaMOO  —— NSGA-Il ~—— CMAES+LaMOO  —— NSGA-II
- CMAES —— MOEAD = 2.0 CMAES —— MOEAD . 0.00 CMAES ~—— MOEAD
5 15 —— NSGA-IIl 5 —— NSGA-IIl o —— NSGA-Il
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c c 2
Sos5 8.4 g-0.75
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g0 gL g
-1.25
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Figure 3: Left: Branin-Currin with 2 dimensions and 2 objectives. Middle: VehicleSafety with 5 dimensions
and 3 objectives. Right: Nasbench201 with 6 dimensions and 2 objectives. We ran each algorithm 7 times
(shaded area is + std of the mean). Top: Bayesian Optimization w/o LaMOO. Bottom: evolutionary algorithms
w/o LaMOO. Note the two algorithm families show very different sample efficiency in MOO tasks.

We compare LaMOO with 4 classical evolutionary algorithms (CMA-ES (Igel et al., 2007a),
MOEA/D (Zhang & Li, 2007), NSGA-II (Deb et al., 2002a), and NSGA-III (Deb & Jain, 2014)) and
2 state-of-the-art BO methods (QEHVI (Daulton et al., 2020) and gParego (Knowles, 2006)).

Evaluation Criterion. we first obtain the maximal hypervolume (either by ground truth or from
the estimation of massive sampling), then run each algorithm and compute the log hypervolume
difference (Daulton et al., 2020):

HVvlog_diff = IOg(vaax - H‘/cur) (6)

where H V., is the hypervolume of current samples obtained by the algorithm with given budget.

Result. As shown in Fig. 3, LaMOO with qEHVI outperforms all our BO baselines and LaMOO
with CMA-ES outperforms all our EA baselines, in terms of H Viog difr-



Published as a conference paper at ICLR 2022

-0.50 qevl 0414 |
— qPareco E

~0.75 0.40

— QEHVI+LaMOO

o o
W oW
S o
o
Y
S

— CMAES+LaMOO

o
N
]

e o
W
@
=)
N
°

— CMAES+LaMOO

@

Log Hypervolume Diff

S o

Log Hypervolume Diff
bbb
o N o
S & 3
Log Hypervolume Diff
°©
w
<

Log Hypervolume Diff

[T
o

0.36 0.30{ — moEaD
-1.75

50 100 150 200 50 100 150 200 50 100 150 200 50 100 150 200
Samples Ssamples Ssamples Samples

Figure 4: DTLZ2 with many objectives, We ran each algorithm 7 times (shaded area is =+ std of the mean).
From left to right: BO with 2 objectives; EA with 2 objectives; BO with 10 objectives; EA with 10 objectives.

Evolutionary algorithms rely on mutation and crossover of previous samples to generate new ones,
and may be trapped into local optima. Thanks to MCTS, LaMOO also considers exploration and
greatly improves upon vanilla CMA-ES over three different tasks with 1000/200 samples in small-
scale /many objective problems. In addition, by plugging in BO, LaMOO+qEHVI achieves 225%
sample efficiency compared to other BO algorithms on Nasbench201. This result indicates that for
high-dimensional problems (6 in Nasbench201), space partitioning leads to faster optimization. We
further analyze very high-dimensional problems on Sec. 5.2 and visualize Pareto frontier in Fig. 12.

Optimization of Many Objectives. While NSGA-II and NSGA-III perform well in the two-objective
problems, all evolutionary-based baselines get stuck in the ten-objective problems. In contrast,
LaMOQO performs reasonably well. From Fig. 4, gEHVI+LaMOO shows strong performance in ten
objectives. When combined with a CMA-ES, LaMOO helps it escape the initial region to focus on a
smaller promising region by space partitioning.

5.2 MULTI-OBJECTIVE MOLECULE DISCOVERY
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Figure 5: Molecule Discovery: Left: Molecule discovery with two objectives (GSK35+JNK3). Middle:
Molecule discovery with three objectives (QED+SA+SARS). Right: Molecule Discovery with four objectives
(GSK3B+INK3+QED+SA). We ran each algorithm 15 times (shaded area is + std of the mean).

Next, we tackle the practical problem of multi-objective molecular generation, which is a high-
dimensional problem (search space is 32-dimensional). Molecular generation models are a critical
component of pharmaceutical drug discovery, wherein a cheap-to-run in silico model proposes
promising molecules which can then be synthesized and tested in a lab (Vamathevan et al., 2019).
However, one commonly requires the generated molecule to satisfy multiple constraints: for example,
new drugs should generally be non-toxic and ideally easy-to-synthesize, in addition to their primary
purpose. Therefore, in this work, we consider several multi-objective molecular generation setups
from prior work on molecular generation (Yu et al., 2019; Jin et al., 2020b; Yang et al., 2021): (1)
activity against biological targets GSK33 and JNK3, (2) the same targets together with QED (a
standard measure of “drug-likeness”) and SA (a standard measure of synthetic accessibility), and
(3) activity against SARS together with QED and SA. In each task, we propose samples from a pre-
trained 32-dimensional latent space from (Jin et al., 2020a), which are then decoded into molecular
strings and fed into the property evaluators from prior work.

Fig. 5 shows that LaMOO+qEHVI outperforms all baselines by up to 10% on various combinations
of objectives. While EA struggles to optimize these high-dimensional problems due to the limitations
mentioned in Sec. 2, LaMOQO helps them (e.g., CMA-ES) to perform much better.

5.3 ABLATION STUDIES

Visualization of LaMOO. To understand how LaMOO works, we visualize its optimization pro-
cedure for Branin-Currin. First, the Pareto optimal set (2p is estimated from 10% random samples
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Figure 6: Visualization of selected region at different search iterations and nodes. (a) The Monte-Carlo tree
with colored leaves. Selected path is marked in red. (b) Visualization of the regions(2s, Qx, Qr, Qg, Qr, Qa)
that are consistent with leaves in (a) in the search space. (c) Visualization of selected path at final iteration. (d)
Visualization of samples during search; bottom left is the Pareto frontier estimated from one million samples.

(marked as black stars), as shown in both search and objective space (Fig. 6(b) and bottom left of
Fig. 6(c)). Over several iterations, LaMOO progressively prunes away unpromising regions so that the
remaining regions approach Q2 p (Fig 6(c)). Fig 6(a) shows the final tree structure. The color of each
leaf node corresponds to a region in the search space (Fig 6(b)). The selected region is recursively
bounded by SVM classifiers corresponding to nodes on the selected path (red arrow in Fig 6(a)). The
new samples are only generated from the most promising region €y, improving sample efficiency.
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Figure 7: Ablation studies on hyperparameters and sampling methods in LaMOO. Left: Sampling without
Bayesian/CMA-ES. Middle: Sampling with different C},. Right: Partitioning with different svm kernels

Ablation of Design Choices. We show how different hyperparameters and sampling methods play a
role in the performance. We perform the study in VehicleSafety below.

Sampling methods. LaMOO can be integrated with different sample methods, including Bayesian
Optimization (e.g., gEHVI) and evolutionary algorithms (e.g., CMA-ES). Fig. 7(left) shows that
compared to random sampling, qEHVI improves a lot while CMA-ES only improves slightly. This is
consistent with our previous finding that for MOO, BO is much more efficient than EA.

The exploration factor C), controls the balance of exploration and exploitation. A larger C,, guides
LaMOQO to visit the sub-optimal regions more often. Based on the results in Fig. 7(middle), greedy
search (C), = 0) leads to worse performance compared to a proper C), value (i.e. 10% of maximum
hypervolume), which justifies our usage of MCTS. On the other hand, over-exploration can also yield
even worse results than greedy search. Therefore, a "rule of thumb" is to set the C), to be roughly
10% of the maximum hypervolume HV,ax. When H V., is unknown, C), can be set empirically.

SVM kernels. As shown in Fig. 7(right), we find that the RBF kernel performs the best, in agreement
with (Wang et al., 2020). Thanks to the non-linearity of the polynomial and RBF kernels, their region
partitions perform better compared to a linear one.

6 CONCLUSION

We propose a search space partition optimizer called LaMOO as a meta-algorithm that extends prior
single-objective works (Wang et al., 2020; Yang et al., 2021) to multi-objective optimization. We
demonstrated both theoretically and via experiments on multiple MOO tasks that LaMOO significantly
improves the search performance compared to strong baselines like gEHVI and CMA-ES.
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A PROOFS
Lemma 1. The algorithm to uniformly draw k samples in S, pick the best and return is a (1, 1)-oracle.

Proof. Consider the following simple (1, 1)-oracle for single-objective optimization: after sampling
k samples, we rank them according to their function values, and split them into two k/2 smaller

subsets Sgood and Sbad Other points are randomly assigned to either of the two subsets. Then if x*
happens to be among the & collected samples (which happens with probability k/|.S|), definitely we
have x* € Sgo04. Therefore, we have:

k k
P (x* € Sgooa|x™ € 5) > \S| — exp (_|S|) @)

which is an oracle with « = 17 = 1. The last inequality is due to e* > 1 + x (and thus e™* >
1—2x). O]

Lemma 2. Define g(A\) : RT — R™ as:

T
1
A) A 1 1+ — 8
g(N) th_;wtOg(‘i‘/\wt) ®)
The following maximization problem
T T
maxz log (1—e ™) s.t. Z wiz = K )
S gt t=1
has optimal solutions
1
z; = log(1+)\>, 1<t<T (10)
Wy

where \ is determined by g(\) = K. With optimal {z}}, the objective reaches —_, log(1 + Awy).

Proof. Its Lagrange is:

T
J({z}) = Zlog ) =\ (Z Wiz — K) an

Taking derivative w.r.t. z; and we have:

oJ et
— =—— —Jduw; =0.
Ozg 1—e * we
L 1—A 0
1= )w =
1—e !
1
— =14 dwy
1—e 2
. (12)
1l—e™ =
].+ )\wt
1 /\wt

A — _ —

1+)\wt - 1+A"U.)t

A 14 A 1
2 = —log —oL_ — log — Ut _ g (1+ )
t

(9]

14+ dwy Aw Awy
O
Lemma 3. Both g()\) and g~ '(y) are monotonously decreasing. Furthermore, let w :=
-1
T (Zle w[1> be the Harmonic mean of {w;} and wyay = maxi_, wy, we have:
——1 -1
w —1 Wmax T
= =g ()= - < - (13)
exp(w~ty/T) -1 ) exp(Wmaxy/T) —1 ~ ¥y
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Figure 8: Upper and lower bounds of g~'(y) with different {w;}. Left: w; = 2linspace(-0.1,10),
Right: w; = 2linspace(2.5) gmall {w;} span leads to better bounds.

Proof. Tt is easy to see when X increases, each term in g(\) decreases and thus g(\) is a decreasing
function of \. Therefore, its inverse mapping g~ (y) is also decreasing.

Let u(y) :=1/g7(y) > 0. Then we have:

T
y:Zwtlog <1+¥) (14)
t=1 t
It is clear that when y = 0, u(y) = 0. Taking derivative with respect to y in both side, we have:
o
_ I
L=y (y)Z—1+ e (15)
where 1/ (y) = du (yy) is the derivative of u(y ) Using the property of Harmonic mean, we have:
T - T r)
1 211t 1 w(y)
! — - < == W . — P/
W) (ZHM) <= A CRa (16)
t=1 Wi
This gives:
/
Wy <1 1 (17)
T+ ply)/w ~
Integrate on both side starting from y = 0, we have:
y y
log(1 + u(y)/v)| <+ (18)
0 0
Using 1(0) = 0 we thus have:
wlog(l + p(y)/w) < % (19)
This leads to p(y) < w [exp(yw—'/T) —1]. With g='(y) = 1/u(y), we arrive the final lower

bound for g~ (y).

For an alternative upper bound of ¢! (y), we just notice that (here wyayx := maxy wy):

/ T\ T\ 1 1(y)
u(y>=<ZW > () =7 (1 a2) .

wt Wmax

Using the same technique as above, we have i(y) > wmax [exp(ywyt,/T) — 1] and the upper
bound of g~ (y) follows.

Finally, note that e* > 1 + z, we have

—1 —1
max < wmax — z (21)

exp(wmaxy/T) =1 ~ wmaxy/T Y

w
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Theorem 1. Following optimal sequence, the algorithm yields a reward r* lower bounded by the

following:
N T
* > exp Klog 92— 77‘?(@‘)) T] (22)

where ry, := N~Y and ¢(a, T) := (1 —27°T) /(1 — 27%).

Proof. Firstnote that | S| < [Sp|/2T and thus \s > 27 /N. So we just need to bound P(x* € St),
which can be written as:

T T
.P(X>k S ST) = HP(X* € St|x* S Stfl) > H <1 — exp <—"7|Skt|a>> (23)
t=1 t=1 =1

Therefore we have

k
log P(x* € St) > Zlog ( — exp <77|Stt1|a)> (24)

We want to find the action sequence {k;} so that log P(x* € St) is maximized. Let w; := 1|S;_1|*
and z; := k;/w;, applying Lemma 2, and we know that

max log P(x* € St) log(1 + Aw (25)
max log ( T) tzl g( t)

where the Lagrangian multiplier A satisfies the equation g(\) = K.

Now we have:

T T
Zlog(l + Awy) %) Zlog (1 + Ij;wt> (26)
t=1 t=1
@ d T t—1\«
£ s (1+ Foirzy) @n
@ TN 1
< K — Qa(t—l) (28)
= oo (29)

Here (D) is due to Lemma 3 which tells that A = g~ }(K) < T/K, @ is due to w; := n|S;_1|* and
|S;_1] < N/2t=1, and ® due to log(1 + ) < .

Putting all of them together, we know that

1 2T
r* >max—Px € St) > —exp | —o(a,T
o P € 1) > o (oo 1)

nTN“) (30)

K
O

Optimal action sequence {k;}. From the proof, we could also write down the optimal action
sequence that achieves the best reward: k; = w; log (1 + /\%Ut), where w; := 1|S;—1|*. Using
Lemma 3, we could compute the upper and lower bound estimation of A\ = g~ !(K). Here w :=

-1
(Zt LWy ) be the Harmonic mean of {w;} and wyax 1= maxy_; wy:

)\ < max 31
exp(w 'K/T)—1~"— exp(w;liXK/T) -1 G

With A, we could compute approximate {k;}}. Here we make a rough estimation of {k;} if we
terminate the algorithm when |S7| is still fairly large. This case corresponds to the setting 7' =
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Blogy N where 8 < 1 and all w; ~ N*. With K = ©(N®) as in semi-parametric case, 0 1 K =
O(1), exp(w 1K/T) —1~w 'K/T and Mw; ~ logy N > 1. Since log(1 + z) ~ « for small z,
we have kf ~ w;+— /\w = 1/, which is independent of ¢. Therefore, a constant amount of sampling at
each stage is approxunately optimal.

Observation 1. Ifall f; are isotropic, f;(x) = ||x — c;||3, then 2p = ConvexHull(cy, ..., car).

Proof. Consider J(x; p) := Zﬁl 11 fj(x) where the weights ; > 0 satisfies 3, 1; = 1. For
brevity, we write the constraint as A := {: p1; > 0, p; = 1}

Now consider the Pareto Set p := {x : Ipu € A : VyJ(x;u) = 0}. We have the following:

Vil (x;0) =0 (32)
= ) 1 Vuli(x) =0 (33)

J
= ) pix—c;)=0 (34)

J

Zj HjCj
= X=—== 15C; (35)
Ej 14 ; e}

The last step is due to the fact that > M = 1. Therefore, for any x € (lp, x is a convex
combination of {c1,...,cp} and thus x € ConvexHull(cy,...,cps). Conversely, for any x €
ConvexHull(cy, . ..,cpr), we know Vi J(x; 1) = 0 and thus x € Qp. O

Observation 2. If M = 2 and f;(x) = (x — c;) " H;(x — c;) where H; are positive definite
symmetric matrices, then there exists w1 := Ha(co — ¢1) and wo := H;(c1 — ¢32), so that for any
X € Qp, w] (x —c1) > 0and wy (x —c3) > 0.

Proof. Following Observation 1, similarly we have for all z € Qp, g H i(x —¢;) =0, which
gives:

-1
J J

Note that this is an expression of the Pareto Set p.
Let Aj := (32, pjH;) " iy Hj. Then -, A; = I. Note that while Y= 1 H; and (3, pj H;) " are
positive definite matrix. A; may not be.

Let M := )", u;H;. Since u € A, M is a PD matrix. Note that we have

Z,ujHjCj = Z/LjHjCj _ZﬂjHjCk+ZﬂjHjck (37)
J J J J
= ZMjHj(Cj —cp)+ Mcy (38)
Jj#k

Using Eqn. 36, we know that x = M ' 3", pjHjc; = cp + M~ 30, puiH (e — cp).
For M = 2, we have x = co + M~y Hi(c1 — c3). So we have
(Cl — CQ)TH1X = (Cl — CQ)TH1C2 + (C1 — CQ)THlMilHl(Cl — CQ) (39)
> (Cl — CQ)TchQ (40)

This is because (¢; — co) Hy M ~1H;(c; — ¢c3) > 0 since Hy M~ H; is a PSD matrix. Therefore,

let wo := Hj(c; — c2) and we have w, (X — c3) > 0, which is independent of ;2 € A. This means

it holds for any x € Qp.

Let w; = Hy(cy — c), then similarly we have w{ (x — ¢;) > 0 for all x € Qp. O
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B QUALITY INDICATORS COMPARISON

Table 1: The review of different scalarizing methods.

Quality Indicator | Convergence | Uniformity | Spread | No reference set required
HyperVolume V4 V4 V4 V4

GD V4

1GD v v v

MS v/

s v

ONVGR v

Generational Distance(GD) (Van Veldhuizen & Lamont, 1998) measures the distance the pareto
frontier of approximation samples and true pareto frontier, which requires prior knowledge of true
pareto frontier and only convergence is considered. IGD (Bosman & Thierens, 2003) is improved
version of GD. IGD calculates the distance the points on true pareto frontier to the closest point on
pareto frontier of current samples. Inverted Generational Distance(IGD) satisfies all three evaluation
metrics of QI but requires true pareto frontier which is hardly to get in real-world problem. Maximum
Spread(MS) (Zitzler et al., 2000) computes the distance between the farthest two points of samples to
evaluate the spread. Spacing(S) (Bandyopadhyay et al., 2004) measures how close the distribution of
pareto frontier of samples is to uniform distribution. Overall Non-dominated Vector Generation and
Ratio(ONVGR) is the ratio of number of samples in true pareto-frontier. The table 1 demonstrates
the good characteristics of each quality indicators.

C END-TO-END LAMOO PSEUDOCODE

Below we list the pseudocode for the end-to-end workflow of LaMOO in Algorithm 2. Specfically,
it includes search space partition in Function Split. Node(promising region) selection in Function
Select, and new samples generation in Function Sample.

Algorithm 2 LaMOO Pseudocode.

1: Inputs: Initial Dy from uniform sampling, sample budget 7'.
2: fort=0,...,7T do
3: Set £ < {Qroot } (collections of regions to be split).
4: V,v,n < Split(L, D)
5: k < Select(C,, D;)
6: Dy11 < Sample(k)
7: end for
8:
9: Function Split(L, D;)
10: while £ # 0 do
11: Q; < pop_first_element(L), Di; < D: N Qj, ngj < | Dy jl.
12: Compute dominance number oy ; of D, ; using Eqn. 5 and train SVM model A(-).
13: If (D ;, 04,;) is splittable by SVM, then £ < £ U Partition($;, h(-)).
14: end while
15:
16: Function Select(C),, D)
17: for k£ = root, k is not leaf node do
18: Dy <+ Dy N Qp, v < HyperVolume(Ds k), nek < |Dekl-
19: k <+ arg max UCB4,¢, where UCBy¢ ¢ := ve,c + 2Cp4/ 2105&
¢ € children(k) t,e
20: end for
21: return &
22:

23: Function Sample(k)

24: Di11 < D¢ U Dyew, where Dyey, is drawn from €2, based on gEHVI or CMA-ES.
25: return D; U D,,cyp

19



Published as a conference paper at ICLR 2022

D EXPLORATION FACTOR(C,) SETUP WITH UNKNOWN MAXIMUM
HYPERVOLUME
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Figure 9: Sampling with static C,(10% of H Vi,az) and dynamic Cp((10% of H Veyrrent))

As we mentioned in the paper, a "rule of thumb" is to set the C), to be roughly 10% of the maximum
hypervolume HVmax. If HVmax is unknown, C), can be dynamically set to 10% of the hypervolume
of current samples in each search iteration. The figures below demonstrate the difference between
10% HVmax and 10% current hypervolume in three problems(Branin-Currin, VehicleSafety, and
Nasbench201 from left to right). The final performances by using 10% HVmax and 10% current
hypervolume are similar.

E WALL CLOCK TIME IN DIFFERENT PROBLEMS
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Figure 10: Wall clock time in different problems

Fig. 10 shows the wall clock time of different search algorithms in BraninCurrin(Belakaria et al.,
2019), VehicleSafefy (Liao et al., 2008) and Nasbench201 (Dong & Yang, 2020).

F DETAILS OF BENCHMARK PROBLEMS

F.1 PROBLEM DESCRIPTION

BraninCurrin (Belakaria et al., 2019):

5.1 % (1521 — 5)%  7hxy — 25 10
FO (21, 29) = (1520 — * (4 x; ) NRRLLE —5)2 4 (10 — 8—) * cos(1bxy — b)
™ T

FOer ) = 1 —exp (= )| 230028 + 190023 + 20921 + 60
B (222) 10023 + 50022 + 4z; + 20
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where 21,22 € [0, 1].

VehicleSafefy (Liao et al., 2008):

fi(z) = 1640.2823 + 2.3573285x1 + 2.3220035x5 + 4.5688768x3 + 7.7213633x4 + 4.4559504x5
fa(x) = 6.5856 + 1.1521 — 1.0427x5 + 0.9738z3 + 0.8364x4 — 0.36952124 + 0.0861z1 25

+0.3628x524 + 0.110627 — 0.3437x3 + 0.1764z]
f3(x) = —0.0551 + 0.0181x1 + 0.1024z5 4 0.042123 — 0.0073x1 25 + 0.024x023 — 0.0118z914

—0.0204z324 — 0.008z325 — 0.024123 + 0.010923

where x € [1,3]5.
Nasbench201 (Dong & Yang, 2020):

— zeroize
Q ——  skip-connect

O Q _ 1x1 convolution
we 3x3 convolution
3x3 average pool

Figure 11: A general architecture of Nasbench201

In Nasbench201, the architectures are made by stacking the cells together. The difference among
architectures in Nasbench201 is the design of the cells, see fig 11. Specifically, each cell contains 4
nodes, and there is a particular operation connecting to two nodes including zeroize, skip-connect,
1x1 convolution, 3x3 convolution, and 3x3 average pooling. Therefore, there are C = 6 edges in
a cell and 5% =15625 unique architectures in Nasbench201. According to this background, Each
architecture can be encoded into a 6-dimensional vector with 5 discrete numbers (i.e., 0, 1, 2, 3, 4 that
corresponds to zeroize, skip-connect, 1x1 convolution, 3x3 convolution, and 3x3 average pooling).

fi1(x) = Accuracy(x)
foz) = #FLOPs ()

where z € {0,1,2,3,4}°.
DTLZ2 (Deb et al., 2002b):

f3(x) = (1 + g(@ar)) cos (

fi(x) = (1 + g(xr)) cos (gxl) cos (gxM_Q) cos (g:rM_l)
fa(x) = (1 + g(xr)) cos (garl) cos (gIM_Q) sin (ga:M_l)
2 2

Fur(@) = (1 + g(zar)) sin (gxl)

where g(z) = Y, cp, (2i — 0.5)%, @ € [0,1]%, and x5/ represents the last d — M + 1 elements of
x.
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F.2 VISUALIZATION OF PARETO-FRONTIER FOR BENCHMARK PROBLEMS
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Figure 12: Visualization of Pareto-frontier in BraninCurrin, VehicleSafety as well as Nasbench201.

F.3 REFERENCE POINTS

f: M represents the number of objectives.

Problem Reference Point
BraninCurrin (18.0, 6.0)
VehicleSafety (1864.72022, 11.81993945, 0.2903999384)
Nasbench201 (-3.0, -6.0)
DTLZ2 (1.1,.,1.1) € RMT
Molucule Discovery 0.0, ...,0.0) € RMT

Table 2: The reference points for all problems in this work.

The reference point R € RM is defined to measure the hypervolume of a problem. Different reference
point would result in a different hypervolume. The details can be found at sec 1. Table 2 elaborates
the reference points in the problems throughout the paper.

F.4 MAXIMUM HYPERVOLUME OF EACH PROBLEM

Problem Maximum Hypervolume
BraninCurrin 59.36011874867746
VehicleSafety 246.81607081187002
Nasbench201 8.06987476348877

DTLZ2(2 objectives) 1.4460165933151778
DTLZ2(10 objectives) | 2.5912520655298095
Molucule Discovery N/A

Table 3: The maximum hypervolume for all problems in this work.

Table 3 elaborates the observed maximal hypervolume in the problems throughout the paper. We
used these value to calculate the log hypervolume difference in fig 3 and fig 4.

G EXPERIMENTS SETUP

Experiment details: For small-scale problems(i.e. Branin-Currin, VehicleSafety, and Nasbench201)
and DTLZ2 with 2 and 10 objectives. We randomly generate 10 samples as the initialization. For
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multi-objective molecule discovery, the number of initial samples is 150. In each iteration, we update
5 batched samples(q value) for all search algorithms.

Hyperparameters of LAMOQO: For all problems, we leverage polynomials as the kernel type of SVM
and the degree of the polynomial kernel function is set to 4. The minimum samples in the leaf
of MCTS is 10. The cp is roughly set to 10% of maximum of hypervolume(i.e. Branin-Currin ->
5, VehicleSafety -> 20, Nasbench201 -> 6, DTLZ2(2 objectives) -> 0.1, DTLZ2(10 objectives) ->
0.25, molecule discovery(2 objectives) -> 0.03, molecule discovery(3 objectives) -> 0.2, molecule
discovery(4 objectives) -> 0.06).

Hyperparameters of gEHVI and qParEGO: The number of q is set to 5. The acquisition function is
optimized with L-BFGS-B (with a maximum of 200 iterations). In each iteration, 256 raw samples
used for the initialization heuristic are generated to be selected by the acquisition function. In original
work Daulton et al. (2020), they used 1024 raw samples but we decrease this number to 256 to sample
budget of all methods for comparison, which speeds up the search but may lead to lower performance
such as vehiclesafty problem in fig. 3. As the same claim in Daulton et al. (2020), each generated
sample is modeled with an independent Gaussian process with a Matern 5/2 ARD kernel.

H VERIFICATION OF LAMOO ON MANY-OBJECTIVE PROBLEMS

Figure 13: Dominance number distribution with 50 random samples on DTLZ2(10 objectives)

"
ally

-

"

r T 1
good whole space bad
selected region

HyperVolume

Figure 14: The range of hypervolume for 50 samples randomly generated from different regions in DTLZ2(10
objectives). We generate 25 times of 50 samples in total.

While it is theoretically hard to label the samples into good and bad based on their dominance number
in many-objective problems due the the lack of dominance pressure(All samples are non-dominated
with each other). If number of objective is not too large(i.e. M < 10), the samples can be still split
by dominance number. Given the problem(DTLZ2 with 10 objectives) shown in fig 4, we randomly
generate 50 samples in the search space and draw the dominance distribution of them(see fig 13). We
did this experiment 5 times.

We then partition the search space by a SVM classifier based on the labeled samples into “good”
and “bad”, and randomly generate 50 samples in “good region”, “bad region”, and whole space,
respectively. We did this process 5 times with different initial samples. Fig. 14 shows the range of
hypervolume of the samples generated from good regions, the whole space, and bad regions. From
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the figure, we can see that the hypervolume of samples generated from good regions are significantly
higher than others.

I COMPUTATIONAL COMPLEXITY ANALYSIS OF LAMOO

Here is a detailed breakdown of the computational complexity of our algorithm (Alg. 1)

Line.6: Compute dominance: O(M Nnod62) where N, o4 is the number of samples in the node and
M is the number of dimensions.

Line 7: Time complexity of SVM : O(N,, odeQ) where N o4e is the number of samples in the node.

Line 10: Hypervolume: O(N T+ N log N) (M > 3) (Beume & Rudolph, 2006) or
O(Nlog N)(M < 3) (Beume et al., 2009), where N is number of searched samples in total and D is
the number of dimensions.

Total time complexity: Zf: L O(N®)(M < 3), where t is the total number of nodes. 22:1 O(N*% +
N, log N;) (M > 3), where ¢ is the total number of nodes.

When there are more than 3 objectives (M > 3), HV computation is the dominant factor. When
M < 3, the optimization cost of SVM is the dominant factor.

J VARIATION OF LAMOO WITH A CHEAPER OVERHEAD

Algorithm 3 LaMOO Pseudocode with leaf based selection.

1: Inputs: Initial Dy from uniform sampling, sample budget 7.
2: fort=0,...,7do

3 Set £ + {Qoot } (collections of regions to be split).
4 while £ # ( do
5 Q; < pop_first_element(L), D, < D: N Qj, nej < |Dyjl.
6: Compute dominance number o ; of D; ; using Eqn. 5 and train SVM model A(-).
7: If (Dy,j, 04,) is splittable by SVM, then L < £ U Partition(€2;, h(-)).
8: end while
9: for k = root, k is not leaf node do
10: Dtvk «~— DN Qk, Ntk < |Dt,k|-
11: end for
12: for [ is leaf node do
13: vy, + HyperVolume(Dy )
14: end for
15: k <+ arg _ max UCB4,;, where UCBy; := vy + 20, % where p is the parent of {.
€ leaf nodes t,
16: Diy1 < D¢ U Dpew, Where Dhey, is drawn from €2, based on qEHVI or CMA-ES.
17: end for
== —— LaMOO LaMOO with leaf selection 2.0 —— LaMOO LaMOO with leaf selection —— LaMOO LaMOO with leaf selection
151 |\ £ £ oo
o \ 015 2 \
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Figure 15: Search progress with sample
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Figure 16: Search progress with time

Instead of traversing down the search tree to trace the current most promising search path, this
variation of LaMOO directly select the leaf node with the highest UCB value. Algorithm. 3 illustrates
the detail of this variation. Therefore, this variation avoids calculating the hypervolume in the
non-leaf nodes of the tree, where hypervolume calculation is the main computational cost of LaMOO
especially in many-objective problems. Figure. 15 and figure. 16 validate the variation that is able
to reach similar performance of searched samples but saves lots of time. We leave the validation of
others problems in the future works.

K ADDITIONAL RELATED WORKS

(Hashimoto et al., 2018a; Kumar et al., 2018; Hashimoto et al., 2018b) indeed leverage classifiers to
partition search space and draw the new samples from the good region. However, (Hashimoto et al.,
2018a; Kumar et al., 2018; Hashimoto et al., 2018b) randomly sampled in selected regions without
integrating existing optimizers (e.g. Bayesian optimization, evolutionary algorithms). In addition,
they progressively select the good regions without a trade-off of exploration and exploitation as we
did by leveraging Monte Carlo Tree Search (MCTS). (Munos, 2011a; Wang et al., 2014; Kawaguchi
et al., 2015) can be seen as the first work to use MCTS to build hierarchical space partitions. But
their partitions are predefined (e.g., Voronoi graph, axis-aligned partition, etc) without learning
(or adapting to) observed samples so far, except for (Wang et al., 2019; 2020; Yang et al., 2021),
which are learning extensions coupled with MCTS. However, they all deal with single-objective
optimization.

For multi-objective optimization, (Loshchilov et al., 2010; Seah et al., 2012; Pan et al., 2019) learns
to predict the dominance rank of samples, without computing them algorithmic-ally, a slow process
with many previous samples, in order to speed up the MOEAs algorithms. Unlike our paper, they
do not partition the search space into good/bad regions. In contrast, LaMOO computes the rank
algorithmic-ally. Therefore, our contributions are complementary to theirs. We leave a combination
of both as one of the future works.

LaMOO V.S. LaMCTS/LaNAS: First, the mechanism of the partitioning of the search space is
different. LaMOOQO uses dominance rank to separate good from bad regions, while LaMCTS uses
a k-mean for region separation. LaNAS is even more simple: it uses the median from the single
objectives of currently collected samples and a linear classifier to separate regions.

LaMOO V.S. LaP3: LAP? is a planning algorithm tailored to RL with a single objective function.
LAP? also utilizes the representation learning for the partition space and planning space, while our
LaMOO doesn’t.
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