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ABSTRACT

In contrast to single-objective optimization (SOO), multi-objective optimization
(MOO) requires an optimizer to find the Pareto frontier, a subset of feasible solu-
tions that are not dominated by other feasible solutions. In this paper, we propose
LaMOO, a novel multi-objective optimizer that learns a model from observed
samples to partition the search space and then focus on promising regions that
are likely to contain a subset of the Pareto frontier. The partitioning is based on
the dominance number, which measures “how close” a data point is to the Pareto
frontier among existing samples. To account for possible partition errors due
to limited samples and model mismatch, we leverage Monte Carlo Tree Search
(MCTS) to exploit promising regions while exploring suboptimal regions that may
turn out to contain good solutions later. Theoretically, we prove the efficacy of
learning space partitioning via LaMOO under certain assumptions. Empirically, on
the HyperVolume (HV) benchmark, a popular MOO metric, LaMOO substantially
outperforms strong baselines on multiple real-world MOO tasks, by up to 225% in
sample efficiency for neural architecture search on Nasbench201, and up to 10%
for molecular design.

1 INTRODUCTION

Multi-objective optimization (MOO) has been extensively used in many practical scenarios involving
trade-offs between multiple objectives. For example, in automobile design (Chang, 2015), we
must maximize the performance of the engine while simultaneously minimizing emissions and fuel
consumption. In finance (Gunantara, 2018), one prefers a portfolio that maximizes the expected
return while minimizing risk.

Mathematically, in MOO we optimize M objectives f(x) = [f1(x), f2(x), . . . , fM (x)] ∈ RM :

min f1(x), f2(x), ..., fM (x) (1)

s.t. x ∈ Ω

While we could set arbitrary weights for each objective to turn it into a single-objective optimization
(SOO) problem, modern MOO methods aim to find the problem’s entire Pareto frontier: the set of
solutions that are not dominated by any other feasible solutions1 (see Fig. 1 for illustration). The
Pareto frontier yields a global picture of optimal solution structures rather than focusing on one
specific weighted combination of objectives.

As a result, MOO is fundamentally different from SOO. Instead of focusing on a single optimal
solution, a strong MOO optimizer should cover the search space broadly to explore the Pareto frontier.
Popular quality indicators in MOO, such as hypervolume (HV), capture this aspect by computing
the volume of the currently estimated frontier. Specifically, given a reference point R ∈ RM , as
shown in Fig. 1(a), the hypervolume of a finite approximate Pareto set P is the M-dimensional

1Here we define dominance y ≺f x as fi(x) ≤ fi(y) for all functions fi, and exists at least one i s.t.
fi(x) < fi(y), 1 ≤ i ≤ M . That is, solution x is always better than solution y, regardless of how the M
objectives are weighted.
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(EHVI) as their acquisition function (Zitzler et al., 2003; Couckuyt et al., 2014; Yang et al., 2019),
since finding the Pareto frontier is equivalent to maximizing the hypervolume given a finite search
space (Fleischer, 2003). There are methods (Knowles, 2006; Ponweiser et al., 2008; Paria et al., 2018)
that use different acquisition functions like expected improvement (Jones et al., 1998) and Thompson
sampling (Thompson, 1933). EVHI is computationally expensive: its cost increases exponentially
with the number of objectives. To address this problem, qEHVI (Daulton et al., 2020) accelerates
optimization by computing EHVI in parallel, and has become the state-of-the-art MOBO algorithm.
In this paper, we leverage qEHVI as a candidate inner solver in our proposed LaMOO algorithm.

Evolutionary algorithms (EAs) (Deb et al., 2002a; Igel et al., 2007a; Zhang & Li, 2007; Beume
et al., 2007; Fang et al., 2018) are also popular methods for MOO tasks. One category of MOO-
EAs (Srinivas & Deb, 1994; Deb et al., 2002a; Deb & Jain, 2014) leverages Pareto dominance to
simultaneously optimize all objectives. A second category (e.g., (Zhang & Li, 2007)) decomposes a
multi-objective optimization problem into a number of single-objective sub-problems, converting
a difficult MOO into several SOOs. Another category is quality indicator-based methods, such as
(Beume et al., 2007) and (Igel et al., 2007a). They scalarize the current Pareto frontier using quality
indicators (e.g., HV) and transfer a MOO to a SOO. New samples are generated by crossover and
mutation operations from existing ones. However the drawbacks of non-quality indicator-based
methods (i.e., the first two categories) can be not overlooked. Specifically, for MOO with many
objectives, NSGA-II (Deb et al., 2002a) easily gets stuck in a dominance resistant solution (Pang et al.,
2020) which is far from the true Pareto frontier. while MOEA/D perform better in MOO but how to
specify the weight vector for problems with unknown Pareto front is the main challenge (Deb & Jain,
2014). In addition, A* search based algorithms are also considered to be extended to MOO (Stewart
& White, 1991; Tung Tung & Lin Chew, 1992; De la Cruz et al., 2005).

Quality Indicators. Besides hypervolume, there are several other quality indicators (Van Veldhuizen
& Lamont, 1998; Zitzler et al., 2000; Bosman & Thierens, 2003) for evaluating sample quality, which
can be used to scalarize the MOO to SOO. The performance of a quality indicator can be evaluated
by three metrics (Deng et al., 2007; Li et al., 2014), including convergence (closeness to the Pareto
frontier), uniformity (the extent of the samples satisfy the uniform distribution), and spread (the
extent of the obtained approximate Pareto frontier). Sec. B specifically illustrates the merits of each
quality indicator. HyperVolume is the only metric we explored that can simultaneously satisfy the
evaluation of convergence, uniformity, and spread without the knowledge of the true Pareto frontier
while it may suffer from expensive calculation in many-objective problems. Therefore, throughout
this work, we use HV to evaluate the optimization performance of different algorithms.

3 LEARNING SPACE PARTITIONS: A THEORETICAL UNDERSTANDING

Searching in high-dimensional space to find the optimal solution to a function is in general a
challenging problem, especially when the function’s properties are unknown to the search algorithm.
The difficulty is mainly due to the curse of dimensionality: to adequately cover a d-dimensional
space, in general, an exponential number of samples are needed.

For this, many works use a “coarse-to-fine” approach: partition the search space and then focusing
on promising regions. Traditionally, manually defined criteria are used, e.g., axis-aligned parti-
tions (Munos, 2011b), Voronoi diagrams (Kim et al., 2020), etc. Recently, (Wang et al., 2019;
2020; Yang et al., 2021) learn space partitions based on the data collected thus far, and show strong
performance in NeurIPS black box optimization challenges (Sazanovich et al.; Kim et al.).

On the other hand, there is little quantitative understanding of space partition. In this paper, we
first give a formal theoretical analysis on why learning plays an important role in space-partition
approaches for SOO. Leveraging our understanding of how space partitioning works, we propose
LaMOO which empirically outperforms existing SoTA methods on multiple MOO benchmarks.

3.1 PROBLEM SETTING

Intuitively, learning space partitions will yield strong performance if the classifier can determine
which regions are promising given few data points. We formalize this intuition below and show why
it is better than fixed and manually defined criteria for space partitioning.

Consider the following sequential decision task. We have N samples in a discrete subset S0 and there
exists one sample x

∗ that achieves a minimal value of a scalar function f . Note that f can be any
property we want, e.g., in the Pareto optimal set. The goal is to construct a subset ST ⊆ S0 after T
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steps, so that (1) x∗ ∈ ST and (2) |ST | is as small as possible. More formally, we define the reward
function r as the probability that we get x∗ by randomly sampling from the resulting subset ST :

r :=
1

|ST |
P (x∗ ∈ ST ) (2)

It is clear that 0 ≤ r ≤ 1. r = 1 means that we already found the optimal sample x
∗.

Here we use discrete case for simplicity and leave continuous case (i.e., partitioning a region Ω0

instead of a discrete set S0) to future work. Note N could be large, so here we consider it infeasible
to enumerate S0 to find x

∗. However, sampling from S0, as well as comparing the quality of sampled
solutions are allowed. An obvious baseline is to simply set ST := S0, then rb = N−1. Now the
question is: can we do better? Here we seek help from the following oracle:

Definition 1 ((α, η)-Oracle). Given a subset S that contains x∗, after taking k samples from S, the
oracle can find a good subset Sgood with |Sgood| ≤ |S|/2 and

P (x∗ ∈ Sgood|x
∗ ∈ S) ≥ 1− exp

(

−
k

η|S|α

)

(3)

Lemma 1. The algorithm to uniformly draw k samples in S, pick the best and return is a (1, 1)-oracle.

See Appendix for proof. Note that a (1, 1)-oracle is very weak, and is of little use in obtaining
higher reward r. We typically hope for an oracle with smaller α and η (i.e., both smaller than 1).
Intuitively, such oracles are more sample-efficient: with few samples, they can narrow down the
region containing the optimal solution x

∗ with high probability.

Note that α < 1 corresponds to semi-parametric models. In these cases, the oracle has generalization
property: with substantially fewer samples than N (i.e., on the order of Nα), the oracle is able to put
the optimal solution x

∗ on the right side. In its extreme case when α = 0 (or parametric models),
whether we classify the optimal solution x

∗ on the correct side only depends on the absolute number
of samples collected in S, and is independent of its size. For example, if the function to be optimized
is linear, then with d+ 1 samples, we can completely characterize the property of all |S| samples.

Relation with cutting plane. Our setting can be regarded as a data-driven extension of cutting plane
methods (Loganathan & Sherali, 1987; Vieira & Lisboa, 2019; Hinder, 2018) in optimization, in which
a cutting plane is found at the current solution to reduce the search space. For example, if f is convex
and its gradient ∇f(x) is available, then we can set Sgood := {x : ∇f(x0)

⊤(x− x0) ≤ 0,x ∈ S0},
since for any x ∈ S0 \ Sgood, convexity gives f(x) ≥ f(x0) + ∇f(x0)

⊤(x − x0) > f(x0) and
thus x is not better than current x0. However, the cutting plane method relies on certain function
properties like convexity. In contrast, learning space partition can leverage knowledge about the
function forms, combined with observed samples so far, to better partition the space.

3.2 REWARDS UNDER OPTIMAL ACTION SEQUENCE

We now consider applying the (α, η)-oracle iteratively for T steps, by drawing kt samples from
St−1 and setting St := Sgood,t−1. We assume a total sample budget K, so

∑T

t=1 kt = K. Note that
T ≤ log2 N since we halve the set size with each iteration. Now the question is twofold. (1) How
can we determine the action sequences {kt} in order to maximize the total reward r? (2) Following
the optimal action sequences {k∗t }, can r∗ be better than the baseline rb = N−1? The answer is yes.

Theorem 1. The algorithm yields a reward r∗ lower bounded by the following:

r∗ ≥ rb exp

[(

log 2−
ηNαφ(α, T )

K

)

T

]

(4)

where rb := N−1 and φ(α, T ) := (1− 2−αT )/(1− 2−α).

Remarks. Following Theorem 1, a key condition to make r∗ > rb is to ensure log 2 > ηNαφ(α,T )
K

.

This holds if when ηNαφ(α,T )
K

→ 0. Note that since T ≤ log2 N , the final reward r∗ is upper
bounded by 1 (rather than goes to +∞). We consider some common practical scenarios below.

Non-parametric models (α = 1). In this case, φ(α, T ) ≤ 2 and the condition becomes 1
2 log 2 >

ηN/K. This happens when the total sample budget K = Θ(N), i.e., on the same order of N , which
means that the partitioning algorithm obtains little advantage over exhaustive search.
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Semi-parametric models (α < 1). In this case, φ(α, T ) ≤ 1/(1− 2−α) and the condition becomes
(1− 2−α) log 2 > ηNα/K. This happens when the total sample budget K = Θ(Nα). In this case,
we could use many fewer samples than exhaustive search to achieve better reward, thanks to the
generalization property of the oracle.

Parametric models (α = 0). Now φ(α, T ) = T and the condition becomes log 2 > ηT
K

. Since
T ≤ log2 N , the total sample budget can be set to be K = Θ(logN). Intuitively, the algorithm
performs iterative halving (or binary search) to narrow down the search toward promising regions.

3.3 EXTENSION TO MULTI-OBJECTIVE OPTIMIZATION

Given our understanding of space partitioning, we now extend this idea to MOO. Intuitively, we want
“good” regions to be always picked by the space partition. For SOO, it is possible since the optimal
solution is a single point. How about MOO?

Unlike SOO, in MOO we aim for a continuous region, the Pareto optimal set ΩP := {x : ∄x′ 6= x :
f(x′) ≺ f(x)}. A key variable is the regularity of ΩP : if it is highly non-regular and not captured by
a simple partition boundary (ideally a parametric boundary), then learning a space partition would be
difficult. Interestingly, the shape of ΩP can be characterized for quadratic objectives:

Observation 1. If all fj are isotropic, fj(x) = ‖x− cj‖
2
2, then ΩP = ConvexHull(c1, . . . , cq).

Observation 2. If M = 2 and fj(x) = (x − cj)
⊤Hj(x − cj) where Hj are positive definite

symmetric matrices, then there exists w1 := H2(c2 − c1) and w2 := H1(c1 − c2), so that for any
x ∈ ΩP , w⊤

1 (x− c1) ≥ 0 and w
⊤
2 (x− c2) ≥ 0.

In both cases, ΩP can be separated from non-Pareto regions Ω\ΩP via a linear hyperplane. Empir-
ically, ΩP only occupies a small region of the entire search space (Sec. 4), and quickly focusing
samples on the promising regions is critical for high sample efficiency.

In the general case, characterizing ΩP is analytically hard and requires domain knowledge about
the objectives (Li et al., 2014). However, for MOO algorithms in practice, knowing that ΩP can be
separated from Ω\ΩP via simple decision planes is already useful: we could learn such decision
planes given previous data that are already collected, and sample further in promising regions.

4 LAMOO: LATENT ACTION MULTI-OBJECTIVE OPTIMIZATION

In Sec. 3, for convenience, we only analyze a greedy approach, which makes decisions on space
partitions and never revises them afterwards. While this greedy approach indeed works (as shown in
Sec. 5.3), an early incorrect partition could easily rule out regions that turn out to be good but weren’t
identified with few samples. In practice, we want to keep the decision softer: while exploiting the
promising region, we also explore regions that are currently believed to be sub-optimal given limited
samples. It is possible that these regions turn out to contain good solutions when more samples are
available, and the oracle can then make a different partition.

To balance the trade-off between exploration and exploitation to cope with the generalization error of
the learned classifier, we leverage Monte Carlo Tree Search (MCTS) (Kocsis & Szepesvári, 2006) and
propose our algorithm LaMOO. As shown in Alg. 1, LaMOO has four steps: (1) learn to partition the
search space given previous observed data points Dt, which are collected {xi, f(xi)} from iterations
0 to t. (2) With this information, we partition the region into promising and non-promising regions,
and learn a classifier h(·) to separate them. (3) We select the region to sample from, based on the
UCB value of each node. (4) We sample selected regions to obtain future data points Dt+1.

Learning Space Partitions. We construct the partition oracle using the dominance number. Let Dt

be the collected samples up to iteration t and Dt,j := Dt ∩ Ωj be the samples within the region
Ωj we want to partition. For each sample x ∈ Dt,j , its dominance number ot,j(x) at iteration t is
defined as the number of samples in Ωj that dominate x (here I[·] is the indicator function):

ot,j(x) :=
∑

xi∈Dt,j

I[x ≺f xi, x 6= xi] (5)

While naive computation requires O(|Dt,j |
2) operations, we use Maxima Set (Kung et al., 1975)

which runs in O(|Dt,j | log |Dt,j |). For x ∈ ΩP , o(x) = 0.
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A PROOFS

Lemma 1. The algorithm to uniformly draw k samples in S, pick the best and return is a (1, 1)-oracle.

Proof. Consider the following simple (1, 1)-oracle for single-objective optimization: after sampling
k samples, we rank them according to their function values, and split them into two k/2 smaller
subsets S̃good and S̃bad. Other points are randomly assigned to either of the two subsets. Then if x∗

happens to be among the k collected samples (which happens with probability k/|S|), definitely we
have x

∗ ∈ Sgood. Therefore, we have:

P (x∗ ∈ Sgood|x
∗ ∈ S) ≥

k

|S|
≥ 1− exp

(

−
k

|S|

)

(7)

which is an oracle with α = η = 1. The last inequality is due to ex ≥ 1 + x (and thus e−x ≥
1− x).

Lemma 2. Define g(λ) : R+ 7→ R+ as:

g(λ) : λ 7→

T
∑

t=1

wt log

(

1 +
1

λwt

)

(8)

The following maximization problem

max
{zt}

T
∑

t=1

log
(

1− e−zt
)

s.t.

T
∑

t=1

wtzt = K (9)

has optimal solutions

z∗t = log

(

1 +
1

λwt

)

, 1 ≤ t ≤ T (10)

where λ is determined by g(λ) = K. With optimal {z∗t }, the objective reaches −
∑

t log(1 + λwt).

Proof. Its Lagrange is:

J ({zt}) =

T
∑

t=1

log
(

1− e−zt
)

− λ

(

T
∑

t=1

wtzt −K

)

(11)

Taking derivative w.r.t. zt and we have:

∂J

∂zt
=

e−zt

1− e−zt
− λwt = 0.

1

1− e−zt
− 1− λwt = 0

1

1− e−zt
= 1 + λwt

1− e−zt =
1

1 + λwt

e−zt = 1−
1

1 + λwt

=
λwt

1 + λwt

zt = − log
λwt

1 + λwt

= log
1 + λwt

λwt

= log

(

1 +
1

λwt

)

(12)

Lemma 3. Both g(λ) and g−1(y) are monotonously decreasing. Furthermore, let w̄ :=

T
(

∑T

t=1 w
−1
t

)−1

be the Harmonic mean of {wt} and wmax := maxTt=1 wt, we have:

w̄−1

exp(w̄−1y/T )− 1
≤ g−1(y) ≤

w−1
max

exp(w−1
maxy/T )− 1

≤
T

y
. (13)
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Theorem 1. Following optimal sequence, the algorithm yields a reward r∗ lower bounded by the
following:

r∗ ≥ rb exp

[(

log 2−
ηNαφ(α, T )

K

)

T

]

(22)

where rb := N−1 and φ(α, T ) := (1− 2−αT )/(1− 2−α).

Proof. First note that |ST | ≤ |S0|/2
T and thus 1

|ST | ≥ 2T /N . So we just need to bound P (x∗ ∈ ST ),
which can be written as:

P (x∗ ∈ ST ) =

T
∏

t=1

P (x∗ ∈ St|x
∗ ∈ St−1) ≥

T
∏

t=1

(

1− exp

(

−
kt

η|St−1|α

))

(23)

Therefore we have

logP (x∗ ∈ ST ) ≥
T
∑

t=1

log

(

1− exp

(

−
kt

η|St−1|α

))

(24)

We want to find the action sequence {kt} so that logP (x∗ ∈ ST ) is maximized. Let wt := η|St−1|
α

and zt := kt/wt, applying Lemma 2, and we know that

max
{kt}

logP (x∗ ∈ ST ) ≥ −

T
∑

t=1

log(1 + λwt) (25)

where the Lagrangian multiplier λ satisfies the equation g(λ) = K.

Now we have:
T
∑

t=1

log(1 + λwt)
1©
≤

T
∑

t=1

log

(

1 +
T

K
wt

)

(26)

2©
≤

T
∑

t=1

log

(

1 +
T

K
η(N/2t−1)α

)

(27)

3©
≤

ηTNα

K

T
∑

t=1

1

2α(t−1)
(28)

= φ(α, T )
ηTNα

K
(29)

Here 1© is due to Lemma 3 which tells that λ = g−1(K) ≤ T/K, 2© is due to wt := η|St−1|
α and

|St−1| ≤ N/2t−1, and 3© due to log(1 + x) ≤ x.

Putting all of them together, we know that

r∗ ≥ max
{kt}

1

|ST |
P (x∗ ∈ ST ) ≥

2T

N
exp

(

−φ(α, T )
ηTNα

K

)

(30)

Optimal action sequence {k∗t }. From the proof, we could also write down the optimal action

sequence that achieves the best reward: k∗t = wt log
(

1 + 1
λwt

)

, where wt := η|St−1|
α. Using

Lemma 3, we could compute the upper and lower bound estimation of λ = g−1(K). Here w̄ :=

T
(

∑T

t=1 w
−1
t

)−1

be the Harmonic mean of {wt} and wmax := maxTt=1 wt:

w̄−1

exp(w̄−1K/T )− 1
≤ λ ≤

w−1
max

exp(w−1
maxK/T )− 1

(31)

With λ, we could compute approximate {k∗t }. Here we make a rough estimation of {k∗t } if we
terminate the algorithm when |ST | is still fairly large. This case corresponds to the setting T =
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β log2 N where β < 1 and all wt ∼ Nα. With K = Θ(Nα) as in semi-parametric case, w̄−1K =
Θ(1), exp(w̄−1K/T )− 1 ≈ w̄−1K/T and λwt ∼ log2 N ≫ 1. Since log(1 + x) ≈ x for small x,
we have k∗t ≈ wt

1
λwt

= 1/λ, which is independent of t. Therefore, a constant amount of sampling at
each stage is approximately optimal.

Observation 1. If all fj are isotropic, fj(x) = ‖x− cj‖
2
2, then ΩP = ConvexHull(c1, . . . , cM ).

Proof. Consider J(x;µ) :=
∑M

j=1 µjfj(x) where the weights µj ≥ 0 satisfies
∑

j µj = 1. For
brevity, we write the constraint as ∆ := {µ : µj ≥ 0,

∑

j µj = 1}.

Now consider the Pareto Set ΩP := {x : ∃µ ∈ ∆ : ∇xJ(x;µ) = 0}. We have the following:

∇xJ(x;µ) = 0 (32)

⇐⇒
∑

j

µj∇xfj(x) = 0 (33)

⇐⇒
∑

j

µj(x− cj) = 0 (34)

⇐⇒ x =

∑

j µjcj
∑

j µj

=
∑

j

µjcj (35)

The last step is due to the fact that
∑

j µj = 1. Therefore, for any x ∈ ΩP , x is a convex
combination of {c1, . . . , cM} and thus x ∈ ConvexHull(c1, . . . , cM ). Conversely, for any x ∈
ConvexHull(c1, . . . , cM ), we know ∇xJ(x;µ) = 0 and thus x ∈ ΩP .

Observation 2. If M = 2 and fj(x) = (x − cj)
⊤Hj(x − cj) where Hj are positive definite

symmetric matrices, then there exists w1 := H2(c2 − c1) and w2 := H1(c1 − c2), so that for any
x ∈ ΩP , w⊤

1 (x− c1) ≥ 0 and w
⊤
2 (x− c2) ≥ 0.

Proof. Following Observation 1, similarly we have for all x ∈ ΩP ,
∑

j µjHj(x− cj) = 0, which
gives:

x =





∑

j

µjHj





−1
∑

j

µjHjcj (36)

Note that this is an expression of the Pareto Set ΩP .

Let Aj := (
∑

j µjHj)
−1µjHj . Then

∑

j Aj = I . Note that while
∑

j µjHj and (
∑

j µjHj)
−1 are

positive definite matrix. Aj may not be.

Let M :=
∑

i µiHi. Since µ ∈ ∆, M is a PD matrix. Note that we have
∑

j

µjHjcj =
∑

j

µjHjcj −
∑

j

µjHjck +
∑

j

µjHjck (37)

=
∑

j 6=k

µjHj(cj − ck) +Mck (38)

Using Eqn. 36, we know that x = M−1
∑

j µjHjcj = ck +M−1
∑

j 6=k µjHj(cj − ck).

For M = 2, we have x = c2 +M−1µ1H1(c1 − c2). So we have

(c1 − c2)
⊤H1x = (c1 − c2)

⊤H1c2 + (c1 − c2)
⊤H1M

−1H1(c1 − c2) (39)

≥ (c1 − c2)
⊤H1c2 (40)

This is because (c1 − c2)H1M
−1H1(c1 − c2) ≥ 0 since H1M

−1H1 is a PSD matrix. Therefore,
let w2 := H1(c1 − c2) and we have w

⊤
2 (x− c2) ≥ 0, which is independent of µ ∈ ∆. This means

it holds for any x ∈ ΩP .

Let w1 = H2(c2 − c1), then similarly we have w
⊤
1 (x− c1) ≥ 0 for all x ∈ ΩP .
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B QUALITY INDICATORS COMPARISON

Table 1: The review of different scalarizing methods.

Quality Indicator Convergence Uniformity Spread No reference set required
HyperVolume

√ √ √ √
GD

√
IGD

√ √ √
MS

√
S

√
ONVGR

√

Generational Distance(GD) (Van Veldhuizen & Lamont, 1998) measures the distance the pareto
frontier of approximation samples and true pareto frontier, which requires prior knowledge of true
pareto frontier and only convergence is considered. IGD (Bosman & Thierens, 2003) is improved
version of GD. IGD calculates the distance the points on true pareto frontier to the closest point on
pareto frontier of current samples. Inverted Generational Distance(IGD) satisfies all three evaluation
metrics of QI but requires true pareto frontier which is hardly to get in real-world problem. Maximum
Spread(MS) (Zitzler et al., 2000) computes the distance between the farthest two points of samples to
evaluate the spread. Spacing(S) (Bandyopadhyay et al., 2004) measures how close the distribution of
pareto frontier of samples is to uniform distribution. Overall Non-dominated Vector Generation and
Ratio(ONVGR) is the ratio of number of samples in true pareto-frontier. The table 1 demonstrates
the good characteristics of each quality indicators.

C END-TO-END LAMOO PSEUDOCODE

Below we list the pseudocode for the end-to-end workflow of LaMOO in Algorithm 2. Specfically,
it includes search space partition in Function Split. Node(promising region) selection in Function
Select, and new samples generation in Function Sample.

Algorithm 2 LaMOO Pseudocode.

1: Inputs: Initial D0 from uniform sampling, sample budget T .
2: for t = 0, . . . , T do
3: Set L ← {Ωroot} (collections of regions to be split).
4: V, v, n← Split(L, Dt)
5: k ← Select(Cp, Dt)
6: Dt+1 ← Sample(k)
7: end for
8:
9: Function Split(L, Dt)

10: while L 6= ∅ do
11: Ωj ← pop_first_element(L), Dt,j ← Dt ∩ Ωj , nt,j ← |Dt,j |.
12: Compute dominance number ot,j of Dt,j using Eqn. 5 and train SVM model h(·).
13: If (Dt,j , ot,j) is splittable by SVM, then L ← L ∪ Partition(Ωj , h(·)).
14: end while
15:
16: Function Select(Cp, Dt)
17: for k = root, k is not leaf node do
18: Dt,k ← Dt ∩ Ωk, vt,k ← HyperVolume(Dt,k), nt,k ← |Dt,k|.
19: k ← arg max

c ∈ children(k)
UCBt,c, where UCBt,c := vt,c + 2Cp

√

2 log(nt,k

nt,c

20: end for
21: return k
22:
23: Function Sample(k)
24: Dt+1 ←Dt ∪Dnew, where Dnew is drawn from Ωk based on qEHVI or CMA-ES.
25: return Dt ∪Dnew

19





Published as a conference paper at ICLR 2022

where x1, x2 ∈ [0, 1].

VehicleSafefy (Liao et al., 2008):

f1(x) = 1640.2823 + 2.3573285x1 + 2.3220035x2 + 4.5688768x3 + 7.7213633x4 + 4.4559504x5

f2(x) = 6.5856 + 1.15x1 − 1.0427x2 + 0.9738x3 + 0.8364x4 − 0.3695x1x4 + 0.0861x1x5

+ 0.3628x2x4 + 0.1106x2
1 − 0.3437x2

3 + 0.1764x2
4

f3(x) = −0.0551 + 0.0181x1 + 0.1024x2 + 0.0421x3 − 0.0073x1x2 + 0.024x2x3 − 0.0118x2x4

− 0.0204x3x4 − 0.008x3x5 − 0.0241x2
2 + 0.0109x2

4

where x ∈ [1, 3]5.

Nasbench201 (Dong & Yang, 2020):

0 1

2

3

zeroize

skip-connect

1x1 convolution

3x3 convolution

3x3 average pool

Figure 11: A general architecture of Nasbench201

In Nasbench201, the architectures are made by stacking the cells together. The difference among
architectures in Nasbench201 is the design of the cells, see fig 11. Specifically, each cell contains 4
nodes, and there is a particular operation connecting to two nodes including zeroize, skip-connect,
1x1 convolution, 3x3 convolution, and 3x3 average pooling. Therefore, there are C2

4 = 6 edges in
a cell and 56 =15625 unique architectures in Nasbench201. According to this background, Each
architecture can be encoded into a 6-dimensional vector with 5 discrete numbers (i.e., 0, 1, 2, 3, 4 that
corresponds to zeroize, skip-connect, 1x1 convolution, 3x3 convolution, and 3x3 average pooling).

f1(x) = Accuracy(x)

f2(x) = #FLOPs(x)

where x ∈ {0, 1, 2, 3, 4}6.

DTLZ2 (Deb et al., 2002b):

f1(x) = (1 + g(xM )) cos
(π

2
x1

)

· · · cos
(π

2
xM−2

)

cos
(π

2
xM−1

)

f2(x) = (1 + g(xM )) cos
(π

2
x1

)

· · · cos
(π

2
xM−2

)

sin
(π

2
xM−1

)

f3(x) = (1 + g(xM )) cos
(π

2
x1

)

· · · sin
(π

2
xM−2

)

...

fM (x) = (1 + g(xM )) sin
(π

2
x1

)

where g(x) =
∑

xi∈xM
(xi − 0.5)2,x ∈ [0, 1]d, and xM represents the last d−M + 1 elements of

x.
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