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Abstract

Generalized  structural — equations models (GSEMs)
(Peters and Halpern 2021), are, as the name suggests,
a generalization of structural equations models (SEMs).
They can deal with (among other things) infinitely many
variables with infinite ranges, which is critical for capturing
dynamical systems. We provide a sound and complete
axiomatization of causal reasoning in GSEMs that is an
extension of the sound and complete axiomatization provided
by Halpern (2000) for SEMs. Considering GSEMs helps
clarify what properties Halpern’s axioms capture.

1 Introduction

Systems that evolve in continuous time are ubiquitous in all
areas of science and engineering. A number of approaches
have been used to model causality in such systems, ranging
from dynamical systems involving differential equations
to rule-based models (Laurent, Yang, and Fontana 2018)
for capturing complex interactions in molecular biology
and hybrid automata (Alur et al. 1992) for describing
mixed discrete-continuous systems. The standard approach
to modeling causality, structural-equations models (SEMs),
introduced by Pearl (2000), cannot handle such systems,
since it allows only finitely many variables, which each have
finite ranges. But continuous systems typically have real-
valued variables indexed by time, which ranges over the
reals (e.g., the temperature at time t).

An extension of SEMs, generalized structural-equations
models (GSEMs), which can capture such systems was
recently proposed (Peters and Halpern 2021).The goal of
this paper is to provide a sound and complete axiomatization
of GSEMs, in the spirit of that provided for SEMs by
Halpern (2000). There are a number of features of GSEMs
that make reasoning about them subtle. We briefly discuss
some of them here.

Like SEMs, GSEMs are defined with respect to a
signature S that describes the variables in the model, their
possible values, and the allowed interventions. The language
L(S) of causal formulas that we consider (like that of
Halpern (2000)) is parameterized by S. A GSEM is a
mapping that, given an intervention (and a confext, see
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Section 2 for details), produces a set of assignments to
the variables given in S, called outcomes; intuitively, they
correspond to possible outcomes after the intervention is
performed. If the signature S is finite (i.e., there are finitely
many variables, each of which can take on only finitely many
values), there can be only finitely many outcomes. This is, in
particular, the case with SEMs. But in general, in a GSEM,
there may be infinitely many outcomes. This complicates
reasoning about them, as we shall see.

Another complication involves allowed interventions. In
SEMs, all possible interventions are allowed; that is, we
can intervene by setting any subset of the variables to any
of the values in their ranges. In GSEMs, we have more
expressive power: we can specify which interventions are
allowed. The idea of limiting the set of interventions has
already appeared in earlier work (Beckers and Halpern 2019;
Rubenstein et al. 2017). Intuitively, allowed interventions
are the ones that are feasible or meaningful. The set of
allowed interventions is part of the signature; it also has an
impact on the language. In the language £(S), we allow a
formula of the form [X « Z]y (which can be read “after
intervening by setting the variables in X to7,  holds”) only
if X « #is an allowed intervention: if an intervention is not
allowed, we cannot talk about it in the language. As shown
by the shell game example in (Peters and Halpern 2021),
restricting to allowed interventions is useful even when the
signature is finite; we can describe interesting situations that
are inconsistent with all interventions being allowed.

Besides creating the possibility for infinitely many
outcomes, the infinitary signatures required for continuous-
time systems pose certain technical problems. If, for
example, we have variables ranging over the reals, and we
can refer to all possible real numbers in the language, then
the language must be uncountable. Although we believe that
all our results continue to hold for uncountable languages,
having uncountably many formulas makes soundness and
completeness arguments much more complicated. We thus
restrict the language so that it can refer explicitly to only
countably many values and countably many interventions.
This still leaves us with an extremely rich language, which
easily suffices to characterize systems that occur in practice.

It is shown in (Peters and Halpern 2021, Theorem 2.1)
that £(S) is rich enough to completely characterize SEMs,



as well as GSEMs over infinitary signatures where there
are only finitely many outcomes to each intervention (so,
in particular, GSEMs with finite signatures); specifically, it
is shown that if each of M and M’ is either a SEM or
a GSEM for which there are only finitely many outcomes
to each intervention, then M and M’ are L(S)-equivalent,
that is, they agree on all formulas in L£(S), iff they
are equivalent, that is, iff they have the same outcomes
under all allowed interventions. (We remark that this is
no longer the case if we consider GSEMs for which there
may be infinitely many outcomes for a given context and
intervention, which can certainly be the case in dynamical
systems; see Example 4.3.)

Halpern (2000) provided axiom systems AX ™ (S) and
AX (S) that he showed were sound and complete for
general SEMs and acyclic SEMs, respectively. In this
paper, we extend AX T (S) to arbitrary GSEMs, and several
interesting subclasses of GSEMs (such as GSEMs with
unique outcomes). First, we show that AX™(S) is sound
and complete for the class of GSEMs satisfying AX T (S),
if S is finite and S is universal; that is, if all interventions
are allowed. This is an easy corollary of (Peters and Halpern
2021, Theorem 3.4), which states that if S is finite and
universal, then every SEM with signature S is equivalent to a
GSEM satisfying AX T (S), and vice versa. The assumption
that S is universal is critical here. Example 4.3 (from
(Peters and Halpern 2021)) gives a GSEM over a finite
signature S that satisfies all the axioms of AX ™ (S) but is
not equivalent to any SEM. This implies that AX+(S) is no
longer complete for SEMs when S is not universal (Theorem
5.6).

We then show that a subsystem of AX T (S) that we call
AX; . (S) is sound and complete for arbitrary GSEMs
over a finite signature S. We also show that, as in SEMs,
extending AX *(S) with one more axiom gives a sound and
complete system for acyclic GSEMs. Proving these results
for arbitrary (possibly infinite) signatures S is nontrivial,
because one of the axioms of AXl;zSic(S) is no longer in
the language £(S) when S is and the axiom corresponding
to acyclicity must be strengthened. We show that this axiom
can be replaced with a new inference rule that gives an
equivalent system when S is finite. Moreover, the resulting
axiom system, AX; .. (S), is sound and complete for
arbitrary GSEMs (Theorem 6.2). We further show that
several properties of SEMs (such as having unique outcomes
for all interventions in all contexts) can be enforced in
GSEMs by adding axioms from AX™(S) to AX} .. (S)
(Theorem 6.2). Doing so helps clarify what properties the
added axioms capture.

2 SEMs: a review

Formally, a structural-equations model M is a pair (S, F),
where S is a signature, which explicitly lists the endogenous
and exogenous variables and characterizes their possible
values, and F defines a set of modifiable structural
equations, relating the values of variables. We extend the
signature to include a set of allowed interventions, as was
done in earlier work (Beckers and Halpern 2019; Rubenstein

et al. 2017). Intuitively, allowed interventions are the ones
that are feasible or meaningful. A signature S is a tuple
(U,V,R,T), where U is a set of exogenous variables, V is
a set of endogenous variables, and R associates with every
variable Y € U UV a nonempty, finite set R(Y") of possible
values for Y (i.e., the set of values over which Y ranges).
We assume (as is typical for SEMs) that &/ and V are finite
sets, and adopt the convention that for Y CUUY, R(?)
denotes the product of the ranges of the variables appearing
inY; thatis, R(Y) := x yey R(Y). Finally, an intervention
I € Tisasetof pairs (X, z), where X € Vand z € R(X).
We abbreviate an intervention I by X « T, where X Cc V.
We allow X to be empty (which amounts to not intervening
at all).

F associates with each endogenous variable X € ) a
function denoted Fx such that Fx : RU UV — {X}) —
R(X). This mathematical notation just makes precise the
fact that F'x determines the value of X, given the values of
all the other variables in ¢/ U V. If there is one exogenous
variable U and three endogenous variables, X, Y, and Z,
then F'x defines the values of X in terms of the values of Y,
Z,and U. For example, we might have Fx (u,y, z) = u+vy,
which is usually written as X = U + Y. Thus, if Y = 3 and
U = 2, then X = 5, regardless of how Z is set.

The structural equations define what happens in the
presence of external interventions. Setting the value of some
variable X to xzina SEM M = (S, F) results in anew SEM,
denoted Mx. ,, which is identical to M, except that the
equation for X in F is replaced by X = z. Interventions on

subsets X of V are defined similarly. Notice that M ¢, . is

X<+
always well defined, even if (X < &) ¢ Z. In earlier work,
the reason that the model included allowed interventions
was that, for example, relationships between two models
were required to hold only for allowed interventions (i.e., the
interventions that were meaningful). Here, the set of allowed
interventions plays a different role, influencing the language
(what we are allowed to talk about).

Given a context u € R(U), the outcomes of a SEM M

under intervention X < & are all assignments of values
v € R(V) such that the assignments u and v together satisfy
the structural equations of M, .. This set of outcomes
is denoted M(u, X < &). Given an outcome v, denote
by v[X] and v[X] the value (resp., tuple of values) that v
assigns to X and the variables in X, respectively.

An acyclic SEM is one for which, for every context
u € R(U), there is some total ordering <, of the
endogenous variables (the ones in V) such that if X <, Y,
then X is independent of Y, that is, Fx(u,...,y,...) =
Fx(u,...,y,...)forally,y’ € R(Y).

3 Axiomatizing SEMs

In order to talk about SEMs and the information they
represent more precisely, we use the formal language £(S)
for SEMs having signature S, introduced by Halpern (2000).

We restrict the language used by Halpern (2000) to
formulas containing only allowed interventions. Fix a



signature S = (U,V,R,Z). A primitive event (over
signature §) has the form X = =z, where X € V
and z € R(V). An event is a Boolean combination of
primitive events. An atomic formula (over S) has the form
[}7 + %), where Y « y € T (ie., it is an allowed
intervention), and ¢ is an event. A causal formula (over
S) is a Boolean combination of atomic formulas. The
language £(S) consists of all causal formulas over S. There
are a number of minor differences between the language
considered here and that considered by Halpern (2000).
First, since Halpern implicitly assumed that all interventions
were allowed, he did not have the restriction to allowed
interventions. Second, Halpern considered a slightly richer
language, where the context u was part of the formula, not
on the left-hand side of the |= (see below). Specifically, a
primitive event had the form X (u) = . It has become
standard not to include the context u in the formula (see,
e.g., (Halpern and Pearl 2005; Halpern 2016)).

Next we define the semantics of £(S). An assignment
v € R(V) satisfies the primitive event X = x, written
v E (X = z) if v[X] = 2. We extend this definition
to Boolean combinations of primitive events by structural
induction in the obvious way, that is, say that v = e; A e
iff v = e1 and v [= e, and similarly for the other Boolean
connectives V and —. Fix a SEM M with signature S. Given
a context u € R(U), we say that M satisfies the atomic
formula [Y < 7]y in context u, written (M, u) |= [Y <«
e, if all outcomes v € M(u,Y < 7) satisfy . Finally,
we extend this definition to causal formulas by structural
induction as above. That is, M, u |= [Y < 7o A[Z « 2]
iff (M,u) = [Y « #l¢ and (M,u) = [Z « Z]¢, and
similarly for VV and —. As usual, (Y < §)¢ is taken to be
an abbreviation for —[Y < 7](—¢). It is easy to check that
(M,u) = (Y « §)¢iff ¢ is true of at least one outcome
v € M(u,Y + 7). The causal formula ¢ is valid in M,
written M = o, if M,u = @ for all u € R(U); ¢ is
satisfied in M if (M, u) |= 1) for some context u € R(U).

We now review Halpern’s axiomatization of SEMs where
all interventions are allowed (which is based on that of
Galles and Pearl (1998)). Below, for dlSjOlIlt sets of variables
X Y and interventions X <« z, Y « 1/, the notation
X « Z, Y « i/ stands for the combined intervention
(X « @) U (Y <« ). Notice that the order in which the
interventions are combined does not matter; that is, X «
ZY + y= Y « Y, X « & To axiomatize acyclic SEMs,
following Halpern, we define Y ~» Z, read “Y affects Z”,
as an abbreviation for the formula

VXY, y¢X 7eR(X) yeR (y) 245 €R(Z)

(X T(Z=2)NX «T,Y «y|(Z="2"));
that is, Y affects Z if there is some setting of some

endogenous variables X for which changing the value of Y’
changes the value of Z. This definition is used in axiom D6
below, which characterizes acyclicity.

Consider the following axioms:

DO0. All instances of propositional tautologies.

DI. [Y « (X =z= X #2)ifz,2/ € R(X),z # 2’
(functionality)

2. [V = G(Vyerxy X = )
3AX DWW =wAp) =
W ¢ X (composition)

D4. [X « (X = 7)
D5. (X « Z,Y <« y)(W =wAZ
W)Y =yAZ=2))

(definiteness)

(X « Z,W « w)(p) if

(effectiveness)

HNX — ZW

= (X « DW =wAY =yAZ = 2),if

Z=V—-(Xu{wyY} (reversibility)

D6. (XO mr XA N X Xk) = —|(Xk ~ Xo)
(recursiveness)

D7. (X « #p A [X « F(p = ) = [X « 7o
(distribution)

D8. [X <« &y if ¢ is a propositional tautology
(generalization)

D9. (Y « Ptrue A (Y « Do = [Y « flp) if Y =
V—{X}orY =V (unique outcomes for V — {X})

D10(a). (Y « {true

D10(b). (Y + o = [Y « e

MP. From ¢ and ¢ = 1), infer ¢

Let AX* consist of axiom schema D0-D5 and D7-D9,
and inference rule MP; let AX . be the result of adding D6

and D10 to AX T, and removn:gDS and D9.
These are not quite the same axioms that Halpern (2000)

used, although they are equivalent for SEMs. In more detail:

(at least one outcome)

(at most one outcome)

(modus ponens)

* Instead of an arbitrary formula ¢ in D3, Halpern had just
formulas of the form Y = /. But since in the case of
SEMs, every propositional formula ¢ is equivalent to a
disjunction of formulas of the form ¥ = 7, and (X «
e V) = (X « BV (X « @) is provable
from the axioms (see the full paper), our version of D3
is easily seen to be equivalent to the original version for
SEMs, but is stronger in the case of GSEMs.

e D5 follows from D2, D3, D6, D7, D8, D10, and MP, so it
is not needed for AX,J,;C (This was already essentially

observed by Galles and Pearl (1998).) Indeed, as we
show in the full paper, in the presence of these other
axioms, D5 holds even without the requirement that 7=
V- {X,Y}.

« Halpern’s version of D4 said [W «+ @, X « z](X =
z). Using DO, D7, and D8 (and some standard modal
logic reasoning), it is easy to see that the two versions
are equivalent.

» Halpern had slightly different versions of D9 and D10.
Specifically, the second conjunct is Halpern’s version of
D9 is \/mER(X)D_; + ¢](X = x). For finite signatures,
our version of D9 is equivalent to Halpern’s in the
presence of the other axioms, as we prove in the full
paper (Halpern and Peters 2022).



* Finally, Halpern also had an additional axiom D11; we
discuss this below.

As mentioned before, the language £(S) considered here
differs from the language considered by Halpern (2000),
which we denote Ly (S), in two ways. First, Halpern
implicitly assumed that all interventions were allowed, so
he did not have the restriction to allowed interventions.
That is, all formulas of the form [Y «+ g]p were included
in Lg(S), where Y C V and y C R(}_}) Second, the
causal formulas in £y (S) were built from atomic events
of the form X (u) = x as opposed to the form X = =z.
Halpern (2000) gave semantics to formulas with respect to
models M, not with respect to pairs (M, u). In Halpern’s

semantics, M = [Y <« #](X(u) = z) if all outcomes
v € M(u,Y « ) satisfy X = z. It is easy to see that
M E [Y « §)(X(u) = =) iff, in the semantics of this
paper, (M, u) = [Y « #](X = ). To deal with the richer
language, Halpern (2000) had an additional axiom:

DIL (Y « DH(er(w) A ... A gr(ugp) & (Y «

PNer(u)A. . ALY — Dor(ug), if @; (u;) is a Boolean

combination of formulas of the form X (u;) = z and

w; # u, fori # j.
D11 is used in Halpern’s completeness proof only to reduce
consideration from formulas that mention multiple contexts
to formulas that mention only one context, which are easily
seen to be equivalent to formulas in £(S). We can show
that the axioms without D11 are sound and complete for
L(S) using exactly the same proof as used by Halpern to
show that the axioms with D11 are sound and complete for
Ly (S), just skipping the step that uses D11 to reduce to
formulas involving just one context. This is formalized in
the following theorem, where a signature S = (4, V, R, T)
is universal if T = T,,,,:», the set of all interventions.

Theorem 3.1: (Halpern 2000) If S is a universal signature,
then AX™T (resp., AX]..) is a sound and complete

axiomatization for the language L(S) for SEMs (resp.,
acyclic SEMs) with a universal signature S.

As we shall see (Theorem 5.6), the assumption that S is
universal is critical here; Theorem 3.1 is not true in general
without it.

4 GSEMs

In this section, we briefly review the definition of GSEMs
(Peters and Halpern 2021); we encourage the reader to
consult (Peters and Halpern 2021) for more details and
intuition. We also prove some results regarding the extent
to which the language L£(S) characterizes GSEMs, and
introduce the class of acyclic GSEMs. We include a few
results from (Peters and Halpern 2021) to help set the scene.

The main purpose of causal modeling is to reason about a
system’s behavior under intervention. A SEM can be viewed
as a function that takes a context u and an intervention
Y < 4/ and returns a set of assignments to the endogenous
variables (i.e., a set of outcomes), namely, the set of all
solutions to the structural equations after replacing the

equations for the variables in Y with Y = . Viewed in this
way, generalized structural-equations models (GSEMs) are
a generalization of SEMs. In a GSEM, there is a function
that takes a context u and an intervention ¥ < ¥ and
returns a set of outcomes. However, the outcomes need not
be obtained by solving a set of suitably modified equations
as they are for SEMs—they may be specified arbitrarily. This
relaxation gives GSEMs the ability to concisely represent
dynamical systems and other systems with infinitely many
variables, and the flexibility to handle situations involving
finitely many variables that cannot be modeled by SEMs.

Formally, a generalized structural-equations model
(GSEM) M is a pair (S,F), where S is a signature, and
F is a mapping from contexts and interventions to sets
of outcomes. As before, a signature S is a quadruple
(U,V,R,T), except that we no longer require I/ and V to
be finite, nor R(Y") to be finite for all Y € &/ U V. The big
difference is that F is a function F : Zx R(U) — P(R(V)),
where P denotes the powerset operation. That is, it maps a
context u € R(U) and an allowed intervention I € Z to a
set of outcomes F(u,I) € P(R(V)). As with SEMs, we
denote these outcomes by M (u, I). We require that each
outcome v € F(u, X « &) satisfy v[X] = Z, since at a
minimum, after intervening to set X to Z, the variables X
should actually have the values . Since the semantics of |=
as we have given it is defined in terms of M (u, I), we can
define = for GSEMs in the identical way.

It is shown by Peters and Halpern (2021) that GSEMs
generalize SEMs in the following sense: Two causal models
M and M’, which may either be SEMs or GSEMs, are
equivalent, denoted M = M’, if they have the same
signature, and they have the same outcomes; that is, if for
all X C V, all values ¥ € R()?) such that X « 7 € Z,
and all contexts u € R(U), we have M(u, X « ) =
M'(u, X + 7).

Theorem 4.1: (Peters and Halpern 2021, Theorem 3.1) For
all SEMs M, there is a GSEM M’ such that M = M.

Recall that in the introduction we defined two models
with signature S to be L(S)-equivalent if they agree on
all formulas in £(S). Call a GSEM M finitary if, for all
contexts and interventions, the set of outcomes is finite. A
GSEM with a finite signature (a finite GSEM) is bound to
be finitary, but even infinite GSEMs may be finitary. As
shown by Peters and Halpern (2021), equivalence and £(S)-
equivalence coincide in SEMs and finitary GSEMs.

Theorem 4.2 (Peters and Halpern 2021, Theorem 2.1) If M
and M’ are finitary causal models over the same signature
S, then M = M’ iff M and M’ are L(S)-equivalent.

As the following example shows, the assumption that M
and M’ are finitary is critical.

Example 4.3: Consider two GSEMs M, M’ with the same
signature S = (U, V,R,Z). V consists of countably many
binary endogenous variables, that is, V = {X;, Xo,...}
and R(X;) = {0, 1} for all 5. The models have only one
context u (i.e., U consists of one exogenous variable with
a single value). There is only one allowed intervention, the



null intervention ). The outcomes of this intervention are as
follows. F(u, () consists of all assignments to the variables
X; where only finitely many of the X; take the value O.
F/(u, D) consists of all assignments to the X; where only
finitely many X; take the value 1. Note that for a finite subset
of the variables, restricting the outcomes of either model
to that subset yields all assignments to that subset. Hence,
a formula of the form (@) is false in both models if -
is valid, and true in both models otherwise, because ¢ is a
finite formula and as such can depend only on finitely many
variables. Hence, the distinct models M and M’ satisfy the
same set of causal formulas over £(S). Il

4.1 Acyclic GSEMs

In this subsection, we introduce a class of GSEMs analogous
to acyclic SEMs. Just as many SEMs used in practice are
acyclic, we expect that many GSEMs of practical interest
will also be acyclic. For example, the GSEMs constructed in
(Peters and Halpern 2021) to model dynamical systems are
acyclic according to our definition.

In SEMs, acyclicity is defined using the notion of
independence. Recall from Section 2 that given a SEM
M and endogenous variables X and Y, we say that Y is
independent of X (in context u) if the structural equation
Fy(u,...) for Y does not depend on X. An acyclic SEM
is a SEM whose endogenous variables } can be totally
ordered (for all contexts u) such that if X <, Y, then X
is independent of Y in context u.

We cannot use this definition for GSEMs, since there
are no equations. But we can generalize an alternate
characterization of acyclicity. In acyclic SEMs, intervening
on a variable X does not affect variables preceding X . More
precisely, let Vo x = {Y € V : Y <, X}. Then the
(unique) outcome v of doing I, X < x in context u and
the outcome v’ of doing I, X < ' in context u agree on
Viox V[V<ux] = V/[V<.x)). In fact, a SEM is acyclic if
and only if there are orderings =<y, such that this condition
holds.

This gives a natural way to extend the definition of
acyclicity to GSEMs. Since the condition v[V< x| =
v/[V<,.x] is a condition on outcomes, it makes sense for
GSEMs. Acyclic GSEMs may have multiple solutions, so
we need to strengthen the condition slightly. Given a set S

of outcomes and a subset Y of )V, define the restriction of S
toY, denoted S[Y], as S[Y] = {v[Y]|v € S}.

Definition 4.4: A GSEM M is acyclic if, for all contexts u,
there is a total ordering <, of V such that:

Acycl. For all X € V, all z,2’ € R(X), and all Y «
¥ € Twith X ¢ Y, we have M(u,(Y + ¢7,X <«
7)) Vx| =M, (Y < ¢, X « 2')[V<,x].

It is natural to wonder whether this condition needs
to involve all variables preceding X. After all, in SEMs,
acyclicity is defined in terms of independence, and
independence is defined pairwise. Indeed, the pairwise
version of this condition is sufficient for SEMs; a SEM M
is acyclic if and only if for all contexts u, there is a total
ordering <, such that the following holds.

Acye2. If Y <y X, then for all ¥ « § with X ¢ Y
and z,z’, we have M(u,(Y < ¥, X « 2))[Y] =
M(u, (Y « 7, X + /)[Y].

Clearly Acycl implies Acyc2. In SEMs, they are
equivalent.

Proposition 4.5: If M is a SEM, then M satisfies Acycl iff
M satisfies Acyc2 (for a fixed context u).

However, in GSEMSs, the two conditions are not
equivalent; we claim that the stronger condition Acycl
is more appropriate for characterizing acyclicity. The
following example illustrates why.

Example 4.6: Define a GSEM M with binary variables
A, B,C, a single context u, allowed interventions Z =
{A+ 0,A+ 1,B+ 0,B+ 1,C + 0,C + 1}, and
the outcomes

M(u,C « 0) = {(0,0,0), (1,1,0)} and
M(u7 C « 1) - {(Ov 1, 1)7 (L 0, 1)}7

where (a, b, c) is short for (A = a,B = b,C = ¢). The
outcomes for A <— a and B < b are similar: for example,
after the intervention A < a, A=aand B = C @ a.

M is not acyclic when acyclicity is defined using Acycl.
To see this, fix an ordering of the variables; since the
model is symmetric, we take the ordering A, B, C' without
loss of generality. Then intervening on C, the last variable
in the ordering, changes the outcomes for the other two;
M(u,C « 0)[{A, BY] = {(0,0),(1,1)}, but M(u,C «
1[{A, B}] = {(0,1),(1,0)}, violating Acycl. This seems
to us the correct classification: M should not be acyclic. The
fact that intervening on C' changes the possible values for
(A, B), but both A and B precede C in <, cannot occur
in acyclic SEMs. However, M is acyclic when acyclicity is
defined using Acyc2. This is because intervening on C' does
not affect the possible values for A (A = 0 and A = 1 in the
two outcomes for each intervention) or for B (B = 0 and
B = 1 in the two outcomes for each intervention). il

As we said above, all the GSEMs introduced in (Peters
and Halpern 2021) for modeling of dynamical systems,
namely, GSEMs for systems of ordinary differential
equations, GSEMs for hybrid automata, and GSEMs for
rule-based models are acyclic. The order <, in each case
corresponds to the natural notion of time in the dynamical
system; intervening on variables at a given time cannot affect
variables earlier in time (or at the same time).

In SEMs, acyclicity corresponds to the axiom D6, which
captures the weaker Acyc2. To get an axiom for acyclicity
for GSEMs, we need a modification of D6 that captures
the stronger Acycl. But we cannot express the full Acycl,
because variables may have infinite ranges, the set V_ X
may be infinite, and the set of interventions may be infinite.
Thus, we consider a finitary version of Acycl.

Given a finite set {Xi,..., X%} of variables, finite
sets U; C R(X;), for i = 1,...,k, and a finite set
T’ of interventions, let X; ~>z/.u, .. U, .X1....Xx X,
describe the following conditions: after performing some
intervention in Z’, intervening on X; affects the joint values



of the variables X _; = (X1,...,Xi—1, Xiy1,..., Xk).
Moreover, for some intervention on X;, the joint value is
mU_; = U; x - xU;_1 X Ui+1 X - X Up. That is,
Xi ~1 Uy, Us, X1,...,X, X —4 1s an abbreviation of

\/:v,z’EUi,gGU,i,ZefeI’,XQZ

72X —a)(Xi1 =) AN[Z 2, X « 2'|(Xi1 # D).

Consider the following axiom:

k
D6". iy ~(Xi ~1 vy v X0 X X i)

(There is an instance of this axiom for all choices of
',Uy,...,Us, and X4,...,X;.) D67 is clearly sound
in acyclic GSEMs, since in an acyclic GSEM, every finite
subset of variables has a maximum element under <, and
this element does not affect the others. Moreover, in SEMs,
D6™ implies D6, which Halpern used for acyclic SEMs.
This is because D6 holds iff there is an ordering <., of the
endogenous variables such that Acycl holds, and D6 holds
iff there is an ordering such that the weaker condition Acyc2
holds. As Theorem 6.2 shows, D6™ captures acyclicity.

5 Axiomatizing finite GSEMs

Our goal is to provide a sound and complete axiomatization
of GSEMs. We start with finite GSEMs, that is, GSEMs over
a finite signature; in the next section, we consider arbitrary
GSEM:s. Note that the language £(S) given above for SEMs
makes perfectly good sense for finite GSEMs; the semantics
of the language for GSEMs is identical to the semantics
for SEMs. Because GSEMs are more flexible than SEMs,
they do not satisfy all the axioms in AX'. As we now
show, a strict subset of AX ™ provides a sound and complete
axiomatization of finite GSEMs.

Definition 5.1: AX ;;Sic consists of axiom schema DO, D1,

D2, D4, D7, D8, and inference rule MP.

Theorem 5.2: AX;

bsic 18 sound and complete for finite
GSEMs.

The proof of this and all other results can be found in
the full paper (Halpern and Peters 2022). Let AX,'

basic,rec

consist of the axioms in AX;" . along with axiom schema

basic
D6™. Then
Theorem 5.3 : AX;;SZ.CJ,EC is sound and complete for
acyclic finite GSEMs.

As shown in (Peters and Halpern 2021), if S is a universal
signature, then SEMs over S are equivalent in expressive
power to finite GSEMs where the axioms in AX T hold.

Theorem 5.4 (Peters and Halpern 2021) If S is a universal
signature, then for every finite GSEM over S that satisfies
the axioms of AX ™ (S) there is an equivalent SEM over S,
and for every SEM over S there is an equivalent finite GSEM
over S that satisfies the axioms of AX*(S).

Since equivalence is the same as £(S)-equivalence for
finitary models (Theorem 4.2), this immediately implies the
following.

Corollary 5.5: If S is a universal signature, then AX™(S)
is a sound and complete axiomatization for L(S) for finite
GSEMs over S satisfying AX*(S).

Although it may seem trivial, Corollary 5.5 does not
hold in general for non-universal signatures, as (Peters and
Halpern 2021, Example 3.6) shows. This example is a
GSEM over a finite signature S that satisfies the axioms of
AXT(S) but is not equivalent to a SEM.

The existence of a finite GSEM satisfying AX ™ that is
not equivalent to an SEM has a significant implication.

Theorem 5.6: There is a (non-universal) signature S for
which AX T (8), although sound, is not complete for SEMs
of signature S.

6 Axiomatizing infinite GSEMs

Things change significantly in infinite GSEMs. To see just
one of the problems, note that if X is a variable with infinite
range, then instances of D2 corresponding to X, namely
Y « Y1V er(x) X = ), are no longer in the language,
since the disjunction is infinitary. Moreover, if R(X) is
uncountable and the language includes all formulas of the
form X = z for x € R(X), then the language will be
uncountable. While there is no difficulty giving semantics
to this uncountable language, there seem to be nontrivial
technical problems when it comes to axiomatizations.

On the other hand, suppose that, for example, the range
of X is the real numbers. In practice, we do not want to
make statements like X = 72 — e. It should certainly suffice
in practice to be able to mention explicitly only countably
many real numbers. (Indeed, we expect that, in practice, it
will suffice to talk explicitly about only finitely many real
numbers.) Similarly, it should suffice to talk explicitly about
only countably many variables and interventions. To get a
countable language, we thus proceed as follows.

Given a signature S = (U, V, R, I), let W be a countable

subset of V; we call the elements of W named variables.
For each named variable X, let R’(X) be a countable subset
of R(X), except that we require that (a) if R(X) is finite,
then R'(X) = R(X) and (b) if R(X) is infinite, then so
is R'(X). The elements of R'(X) are called named values.
Finally, let Z’ be an arbitrary countable subset of Z, except
that we require that if X « # €T, then X C W and
Z C R/(X) and we assume that Z' is closed under finite
differences with T, so thatif I, € 7/, I, € Z, (I — I5) U
(I — I) is finite, and I, = X < Z, where X C W and
T e R’(X) then Io € 7’. That is, if we are willing to talk
about the intervention /1, and I is an allowable intervention
that differs from I; only in how it sets a finite number
of variables, all of which we are willing to talk about, as
well as the values that they are set to, then we should be
willing to talk about /> as well. The language L . 7,(S)
consists of Boolean combinations of basic causal formulas

—

Y < ¢lo where Y <« ¢ € 7’ and ¢ is a Boolean
combination of events of the form X = x, where X € W
and z € R'(X). Ly »/ 7,(S) is clearly a sublanguage
of L(S). Intuitively, it consists only of entities (variables,



values, and interventions) that can be named. Since there are
only countably many entities that can be named, it easily
follows that Ly, 5, 7,(S) is countable. Ly », 1,(S) is
quite expressive. For example, if the exogenous variables are
X, for ¢ ranging over the real numbers, we could choose w
to be the subset of {X; | t € R} for which ¢ is rational.
Likewise, if each variable X, ranges over the real numbers,
we could choose R(X;) to be the rationals.

We are interested in axiomatizing classes of GSEMs
essentially using subsets of the axioms in AX ™, but it seems
that we need one new inference rule. While we keep axiom
D2, it applies only to variables X such that R(X) is finite.
However, even if R(X) is infinite, we still want to be able

to conclude something like [Y « 7](3z(X = z)): after

setting Y to 7, X takes on some value. Of course, we cannot
say this, since we have no existential quantification in the
language. Although it is far from obvious, the following
rule of inference plays the same role as D2 for variables X
with infinite ranges.

D2*. Suppose that S C R'(X) is a finite subset of values

of X that contains all the values of X mentioned in the

formula ¢ = [Y « ¢]t, and some value in R’(X) not

in the formula if there is such a value. Then from ¢ =

NeeslY < §)(¢¥ = (X # x)) infer p = [V <+ §]—.
Note that if R(X) is infinite, since we have assumed that
R’(X) is infinite if R(X) is, there will always be an element
in R'(X) that is not mentioned in ¢ or 1.

While D2% may not look anything like D2, we can show
that in the case of variables X with finite range, it is
equivalent to D2 in the following precise sense:

Proposition 6.1: If AX] . is the result of replacing D2
with D21 in AX ;fm. .+ then we can derive D2 for variables
with finite ranges in AX; Moreover, D2% is derivable

basic’
in AX;;SiC for variables X with finite range, in the sense

that if AX;L . F @ = Nees]Y « §l(v = (X # x)) and
R(X) is finite, then AX,} ;. & ¢ = [Y « 7.

While D2* is unnecessary for finite GSEMs, it is
necessary for infinite GSEMs. Let AX} . (S, W, R, T
consist of all the axioms and inference rules in AX ,;Sic(S )
together with D27, restricted to formulas in EVT/,RGI’ (S).

Then AX; (S,W,R’ ,Z') is sound and complete for

basic
GSEMs over S (see Theorem 6.2 below).!

Considering GSEMs also helps explain the role of some
of the other axioms. A GSEM S is coherent if for all
interventions X < Z,Y <« ¢ in Z (with X and Y disjoint),

"We remark that the soundness of D27 depends on the fact that
we have assumed no structure on the domain, so the only way we
have of comparing variable values is by equality. If we assumed
an ordering on the domain, so that, for example, we could write
X > x in addition to X = z and X # x, then D27 would no
longer be sound. For example, taking ¢ = true, p = (X > 2),
S={1,2},and Y =0, from X >2= (X #2AX # 1), we
would not want to infer X < 2! While we can extend D27 to deal
with > and other “nice” relations, pursuing this topic would take
us too far afield here.

if Y is finite, v € F(u,X « Z), and v[Y] = 7, then
v € F(u,X « &Y « {). The intuition for coherence
is straightforward: setting the variables in Y to values m
they already have (in some outcome v & F(u,)? ,— )
resulting from setting X to Z) does not affect the outcome
v (soitis also in F(u, X « Z,Y < §)). As we show, D3
correponds to coherence and D6 corresponds to acyclicity.
D10(a) corresponds to each intervention having at least one
outcome (in any given context), and D10(b) corresponds to
each intervention having at most one outcome, so D10 (i.e.,
the combination of 10(a) and 10(b)) corresponds to each
intervention having a unique outcome. This is made precise
in Theorem 6.2 below.

On the other hand, D5 and D9 do not seem meaningful in
GSEMs. They do not have analogues if we have infinitely
many variables, since we cannot express 7 = Z, and there
are uncountably many complete interventions (interventions
of the form Y « gfor Y =V — {X}).

Let G (S) denote the class of GSEMs over S. Let G=1(S)
and G=1(S) denote the class of GSEMs over S where each
intervention has at least one and at most one outcome,
respectively; let G denote the class of coherent GSEMs
over S; let G*Y¢ denote the class of acyclic GSEMs over
S. Given a subset A of {D3, D6™, D10(a), D10(b)}, let
A be the corresponding subset of {coh, acyc, >1,<1}. Let
AXGogie.a(S, W, R/, T) be the axiom system consisting of
the axioms and rules of inference of AX}, . together with
the axioms in A, restricted to the language Ly 5, 7,(S). Let

G be the class of GSEMs satisfying the properties in A;
thatis, G4 = N pc 4 G7. Then

Theorem 6.2 :  AX} .. ,(S,W,R',T') is sound and
complete for the class G* of GSEMs with signature S over
language Ly 5, 7.(S).

We remark that the completeness proof requires several
nontrivial ideas beyond what is needed for the analogous
results for SEMs; see the full paper for details.

Theorem 6.2 shows that each of the axioms D3, D67,
D10(a), and D10(b) independently enforces a corresponding
property in GSEMs; namely, coherence, acyclicity, having at
most one outcome, and having at least one outcome. Since
in finite GSEMs, D67 is equivalent to D6, and acyclicity
is equivalent to the usual acyclicity in SEMs, Theorem
6.2 also implies that each of Halpern’s axioms D3, D6,
and D10 independently enforce coherence, acyclicity, and
unique outcomes in SEMs. In (Peters and Halpern 2021),
we make the case that GSEMs are the most general class
of causal models that have the same input and output as
SEMs (and satisfy effectiveness). Putting the pieces together
gives a full picture of how each of Halpern’s original
axioms relates to the properties of SEMs. The axioms of
AX g:m . are just enough to prove statements that hold in
all causal models with the same input and output as SEMs
(and satisfying effectiveness). Each of the remaining axioms
simply independently enforces a natural property of SEMs.
This may be of interest completely independently of GSEMs
and their applications.
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