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Abstract— Process mining aims to extract useful process
knowledge and provide valuable insights to better understand,
monitor, and improve current business processes. The most
critical learning task in process mining is process discovery.
Process discovery takes an event log as an input and generates a
process model as an output. In the last two decades, processing
mining communities have proposed several process discovery
algorithms. Many of these algorithms are based on or are
extensions of three commonly used process mining algorithms.
These algorithms are known as the α algorithm, the Heuristic
algorithm and the Inductive algorithm. This study provides an
evaluation of these three algorithms using both artificial event
logs and real-life event logs. We study the impact of dependency
patterns, noise, and complexity. Our work aims to provide
clear guidelines for academics or business organizations that
are interested in using process mining algorithms to discover
their hidden process models and choose the most appropriate
process discovery algorithm.

I. INTRODUCTION

Over the past decade, process mining has emerged as
a new research area that uses the available data in an
organization, such as event logs, to better understand how
processes are being executed in real life [31]. Given an event
log, process mining aims to extract patterns and process
knowledge to produce a process model. A process model
can provide valuable insights that can help a business to
understand, monitor, and improve a current process. The
most crucial learning task in the broad field of process
mining is process discovery. Process discovery is concerned
with the derivation of process models from event logs.

Process discovery can be defined as extracting a control-
flow model from an event log. To do this, the process
discovery algorithm relies on a set of traces [21]. In an event
log, each trace corresponds to a sequence of events. In the
last two decades, several process discovery algorithms have
been proposed [1], [3], [2], [4], [5], [6], [7], [8] that follow
this technique. Additionally, these algorithms are based upon
or are extensions of three commonly used process mining
algorithms, which are: the α algorithm [1], the Heuristic
algorithm [2], and the Inductive algorithm [8].

Throughout the literature, they often use two dimensions
to measure the quality of process discovery algorithms;
these dimensions are the fitness and the precision. The
fitness measures the ability to replay the event logs from a
discovered process model. The precision measures the level
at which the generated traces from the discovered process
model belong to the original event logs. We give the formal
definition of these two metrics in section 2.4. In addition to

these two metrics, we also consider each algorithm’s running
time as a quality metric to help show the trade-off between
the running time of a specific algorithm and the results of
the quality measurements.

Many comparisons have been made on different process
mining algorithms in the traditional process mining literature.
However, these comparisons are evaluated using small sam-
ples and a limited range of event logs. For example, Augusto
et al. [26] conducted an experimental comparison based on
twelve published real-life event logs. Another comparison
by De Weerd et al. [27] focuses on eight real-life event logs
and an additional twenty artificial event logs. Because of
their small sample sizes, the conclusions in both works may
require further investigation. Furthermore, these studies only
focus on the given event logs and potential changes in the
process discovery algorithms. Process model complexities
and noise types that are inherent in the event logs are not
studied in these works. As such, our work focuses on the
experiments used in previous work but extends the depth of
each experiment to account for various dependency patterns
and noise types.

When using artificial event logs, we also consider another
perspective called rediscovery. Rediscovery measures the
similarity between the original process models that gen-
erate artificial event logs and the models discovered by
the algorithms. The relationship between the previous two
measurement metrics and rediscovery is shown in Fig. 1.

The purpose of this empirical study is to understand
how each of these three commonly used process mining
algorithms behave under different conditions. We achieve
this by increasing the complexities of the process models
by introducing different dependency patterns and applying
different types of noise to artificial event logs. Additionally,
this study will also look into the validity of the conclusions
made by Augusto et al. [26] and De Weerd et al. [27] by
introducing these new perspectives and extending the results.
The ultimate goal of our work is to provide clear guidelines
for academics or business organizations that are interested
in using process mining algorithms to discover their hidden
process models and choose the most appropriate process
discovery algorithm.

The rest of the paper organize as follows: Section II
introduces terms and definitions that are used throughout
the paper. This section will also briefly summarize the
related work in the field and provide quality measurements
to help understand our results. In Section III, we present our
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Fig. 1. Traditional model quality assessment (fitness, precision, general-
ization) and rediscovery.[13]

experimental evaluation in detail. Next, we list our findings
and observations in Section IV. Lastly, we conclude and
reveal our future work in Section V.

II. TERMS AND DEFINITIONS

In this section, we introduce terms and definitions that are
used in the empirical study.

A. Event Logs

An event log is a set of traces. Each trace contains an
identifier, a sequence of events, and other optional attributes.
Events can be ordered merely as a sequence but are typically
ordered based on a timestamp. We cite the formal definition
given by Van Der Aalst [21].

Definition 1: (Event log [21]). An event log L is a set
of event traces, i.e., L = {σ1, ...,σn}, where σ denote event
trace. And we use |L| to denote the number of traces in the
event log.

B. Process Model Representations

A process model describes a set of ordered activities that
a trace must follow to be considered valid. Many different
languages are used to model processes, such as BPMN
(Business Process Modeling Notation), EPC (Event-Driven
Process Chains), and Petri nets [19]. In this paper, we use
Petri nets to model our processes.

Definition 2: (Petri net [19]). A Petri net is a tuple N =
(P,T,F,π) where P and T are a set of places and transitions,
respectively, F ⊆ (T ×P)∪ (P×T ) is a set of directed arcs
connecting places and transitions, π : T →A∪τ is a function
mapping transitions to either activities or τ (unobservable
activities).

C. Process Discovery Algorithms

Several process discovery algorithms have been proposed
in the last two decades. But we will focus on three families
of commonly used process discovery algorithms:
• The α algorithm [1] and its derivatives;
• The Heuristic algorithm [2] and its derivatives
• The Inductive algorithm [8] and its derivatives
The α algorithm [1] is the first process discovery algo-

rithm proposed by the process mining research community.
The main idea behind the α algorithm is to find the relation-
ships between each event and form a process model based
on these relationships. There are four different relationships
defined in the α algorithm: the Sequence, choice, parallel,
and loop relations. An example of these four relationship
patterns is shown in Fig 2. Although the α algorithm is

easy to understand, it has many shortcomings. For example,
the algorithm is not good enough to handle loops that
are less than a length of 3. To overcome this challenge,
many derivatives have been proposed, such as the α+ [4],
α ++ [11], and α∗ [7]. These variants also explore the
ordering relations of events and generate a more robust Petri
net as a process model.

Fig. 2. Four basic dependency patterns in Petri net

The Heuristic algorithm [2] is a frequency-based approach.
It takes the frequencies of events and sequences into account
to construct a process model similar to a causal net [21].
Like the al pha algorithm, there are many variants, i.e.,
the Streaming Heuristic Miner [25] is proposed to handle
streaming data.

The Inductive algorithm [8] uses a divide and conquer
strategy to split the event log recursively into sub-logs.
The Inductive miner uses the same set of relationships, i.e.,
Sequence, choice, parallel, and loop to construct process
models. Similar to the α and heuristic algorithms, various
inductive process discovery techniques have also been de-
veloped [12], [13]. The Inductive algorithm follows the rules
to discover a model with perfect fitness that equal to 1 by
adding invisible transitions.

D. Comparison Metrics

Our experimental study uses a set of comparison metrics
that are commonly used in the literature. They are fitness,
precision, F1 Score, Behavioral precision/recall, and struc-
tural precision/recall. These metrics will be displayed in
section 3 and 4 to show the advantages and disadvantages
of each algorithm. Their formal definitions are given below.

Definition 3: (Fitness [28] ). Let k be the number of
different traces from the aggregated log. For each log trace i
(1 ≤ i ≤ k), ni is the number of process instances combined
into the current trace, mi is the number of missing tokens,
ri is the number of remaining tokens, ci is the number of
consumed tokens, and pi is the number of produced tokens
during log replay of the current trace. The token-based fitness
metric f is defined as follows :

f =
1
2
(1− ∑

k
i=1 nimi

∑
k
i=1 nici

)+
1
2
(1− ∑

k
i=1 niri

∑
k
i=1 ni pi

) (1)

Note that, for all i, mi ≤ ci and ri ≤ pi, therefore 0≤ f ≤ 1.
Definition 4: (Precision [28]). Let k be the number of

different traces from the aggregated log. For each log trace i
(1 ≤ i ≤ k), ni is the number of process instances combined
into the current trace, and xi is the mean number of enabled
transitions during log replay of the current trace (note that
invisible tasks may enable succeeding labeled tasks but they
are not counted themselves). Furthermore, TV is the set of
visible tasks in the Petri net model. The precision metric p
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is defined as follows:

p =
∑

k
i=1ni(|TV |− xi)

(|TV |−1) ·∑k
i=1 ni

(2)

Definition 5: (F1 score [21]). The fitness and precision
are two aspects of a process model that may not always be
consistent. The F1 score is defined as the harmonic mean of
fitness f and precision p.

F1 =
2× f × p

f + p
(3)

To measure rediscovery, we use behavioral and structural
precision/recall to calculate the similarity between the refer-
enced model and mined model [5].

Definition 6: (Behavioral precision and recall [29]). Let σ

be a trace in an event log. L(σ) be the number of occurrences
of σ in an event log. Nr and Nm be the respective Petri net
for the reference and the mined models. Cr and Cm be the
respective causality relations for Nr and Nm. The behavioral
precision Bpand recall Br is defined as:

Bp =
∑σ∈L(

L(σ)
|σ | ×∑

|σ |−1
i=0

Enabled(Cr ,σ ,i)∩Enabled(Cm,σ ,i))
Enabled(Cm,σ ,i) )

∑σ∈L L(σ)
(4)

Br =
∑σ∈L(

L(σ)
|σ | ×∑

|σ |−1
i=0

Enabled(Cr ,σ ,i)∩Enabled(Cm,σ ,i))
Enabled(Cr ,σ ,i) )

∑σ∈L L(σ)
(5)

Definition 7: (Structural precision and recall [29]). Let
Cr and Cm be the respective causality relations for Nr and
Nm. The structural precision and structural recall are defined
as:

Sp =
|Cr ∩Cm|
|Cm|

(6)

Sr =
|Cr ∩Cm|
|Cr|

(7)

III. EMPIRICAL STUDIES

This experimental study has two major goals: first, to com-
pare the three commonly-used process mining algorithms
under different conditions. In particular, we will study the
impact of (1) dependency patterns, (2) the complexities of
process models, (3) and the noise types that are inherent
in a given event log. To do this, we will measure the
quality of each process discovery algorithm in terms of
the measurement criteria we defined in II. Although there
are many comparisons done in the literature on different
process discovery algorithms, to the best of our knowledge,
no study has been done in evaluating different process mining
algorithms’ resilience to dependency patterns, complexity
levels and noise changes. The second goal is to further
validate the conclusions made by Augusto and De Weerd
by applying the quality measures to real-life event logs and
a small set of artificial event logs.

A. Datasets and Setup

In order to achieve these two major goals, we use both
artificial event logs and real-life event logs.

Dataset: We use two collections of artificial event logs.
The first is a collection of public artificial event logs down-
loaded from 4TU.ResearchData. These event logs have been

made available from the Eindhoven University of Technol-
ogy [24]. In this collection, we use twelve artificial event
logs all containing one thousand event traces. The number
of distinct activities ranges from eight to eighty. There is
only one dependency pattern inherently existing in each
event log. The second set of artificial logs are generated
from the Processes and Logs Generator (Plg) [20]. Plg is
an open-source software tool that creates process models
and generates artificial event logs. We generate artificial
event logs based on the complexities of process models and
the types of noise. We also use seven real-life event logs
downloaded from the same website [23]. The characteristics
of these real-life event logs are summarized in Table I.

TABLE I
REAL-LIFE EVENT LOG

Real-life Event Log #Trace #Event 6= Event Average Event
BPIC 2013 819 2351 5 2.87
BPIC 2020 10500 56437 17 5.37

Hospital Billing 100000 451359 18 4.51
Prepaid Travel Cost 2099 18246 29 8.69

Receipt Phase 1434 8577 27 2.07
Review Process 10000 236360 20 23.63

Road Traffic Fine 150370 561470 11 3.73

Setup: We performed our experiments using a single
machine with the following hardware and software: an
Intel(R) Core(TM) CPU i7-9750H @2.60GHz with 32GB
RAM running Java 8 and python 3.7.

B. Comparison of The Process Mining Algorithms under
Different Conditions

The Impact of Dependency Patterns Our first set of
experiments explores whether the presence of a dependency
pattern in a given event log can impact the quality of
each process discovery algorithm. In this experiment, we
assume that one dependency pattern is present in a log
and we apply three process mining algorithms to each log.
More specifically, given an artificial event log, we apply
the three commonly-used process mining algorithms using
ProM and record the running time. ProM is an open-source
framework for process mining algorithms[14] that can be
used to generate different types of process models. For the
process models derived from the three algorithms, we apply
quality measurements to calculate the fitness, precision, and
F1 score. Fig. 4, Fig. 3, Fig. 5, and Fig. 6 show the results
of the fitness, precision, F1 score, and running time applied
to each dependency pattern: the choice pattern, the sequence
pattern, the parallel pattern, and the loop pattern.

The Impact of Reference Model Complexity This set of
experiments is designed to evaluate the different complexities
of process models that can be inherent in event logs. For eval-
uating the quality of algorithms, six levels of complexity are
considered by using four different dependency patterns [29].
Level 0 only contains the sequence pattern. Levels 1 and 2
incorporate the choice pattern and the parallel pattern into
a sequence pattern. Level 3 combines the parallel pattern
and the choice pattern into a sequence pattern. Level 4
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(a) Fitness (b) Precision

(c) F1 Score (d) Running Time(ms)

Fig. 3. Sequence Pattern

(a) Fitness (b) Precision

(c) F1 Score (d) Running Time(ms)

Fig. 4. Choice Pattern

then combines all the dependency patterns. Lastly, Level 5
shows a more complex model where we also have all four
dependency patterns. However, at this level, the number of
activities for each pattern is increased. For instance, we can
have a parallel pattern with three activities, such as B, F, and
G. In the previous levels, we only consider parallel patterns
with two activities such as D and E.

In this experiment, we randomly generated ten process
models for each level of complexity as reference models.
For each reference process model, we randomly generate five
artificial event logs using the Plg. For this set of artificial
logs, we assume that there are one thousand event traces.
We apply the α algorithm, the Heuristic algorithm, and the
Inductive algorithm to each artificial event log and discover
the mined models. Finally, we calculate the average behavior
precision Bp, behavior recall Br, structural precision Sp and
structural recall Sr for reference models and the mined
models. The results are depicted in Table II.

The Impact of Noise Types Our final experiments explore
whether different noise types can impact the quality of the
three process mining algorithms. There are seven types of
noise as follows: missing head of a trace, missing tail of
a trace, missing episode of a trace, a trace with perturbed
order, a trace with an additional event, a trace with an alien
event, and traces with a changed name event [22]. For each
type of noise, we generate 300 artificial event logs and inject

(a) Fitness (b) Precision

(c) F1 Score (d) Running Time(ms)

Fig. 5. Parallel Pattern

(a) Fitness (b) Precision

(c) F1 Score (d) Running Time(ms)

Fig. 6. Loop Pattern

them with different amounts of noise ranging from 0% to
20%. These noise ranges are incremented by 5%. These
event logs are generated from sixty process models using
the six complexity levels that we have mentioned above.
For each artificial event log, we apply the three commonly
used process mining algorithms to obtain the process models
and calculate the average fitness and precision using pm4py,
which is an open-source framework for python users [15].
The results are shown in Fig. 8, Fig. 9, Fig. 10.

C. Comparison of The Process Mining Algorithms on Real-
life Event Logs

In these experiments, we first apply the process mining
algorithms on seven real-life event logs that are presented
in Table I to discover the process models. We use pm4py
to calculate the fitness, precision, F1 score, and the running
time. The results are depicted in Fig.7.

IV. FINDINGS AND DISCUSSIONS
A. The Impact of Dependency Patterns

In general, the Heuristic algorithm has a higher F1 score,
the Inductive algorithm has a higher fitness, abd the α

algorithm has the fastest running time. Below we discuss
the effects of each of the four dependency patterns.

For sequence patterns, the order of activities is critical
when decide the relations. The α algorithm determines two
activities as non relations when the order is not consistent.
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(a) Fitness (b) Precision

(c) F1 Score (d) Running Time(ms)

Fig. 7. Real-life Event Logs

(a) Missing Head Fitness (b) Missing Head Precision

(c) Missing Tail Fitness (d) Missing Tail Precision

(e) Missing Episode Fitness (f) Missing Episode Precision

(g) Perturbed Order Fitness (h) Perturbed Order Precision

(i) Double Activity Fitness (j) Double Activity Precision

Fig. 8. Alpha Algorithm

TABLE II
REDISCOVERY

Level Algorithm Bp Br Sp Sr
0 Alpha 1 1 1 1
0 Heuristic 1 1 1 1
0 Inductive 1 1 1 1
1 Alpha 1 1 1 1
1 Heuristic 1 1 1 1
1 Inductive 1 1 1 1
2 Alpha 1 1 1 1
2 Heuristic 1 1 1 1
2 Inductive 0.696 1 0.759 1
3 Alpha 1 1 1 1
3 Heuristic 1 1 1 1
3 Inductive 0.841 1 0.808 1
4 Alpha 1 0.8758 1 0.97
4 Heuristic 1 1 1 1
4 Inductive 0.883 1 0.837 1
5 Alpha 1 0.9204 1 0.9181
5 Heuristic 1 1 1 1
5 Inductive 0.7574 1 0.802 1

So these activities are not connected in the process model
which holds a higher fitness because it can be replayed
anywhere. However, precision tends to decrease because it
allows more behaviors. The reason cause fitness decrease
using the Heuristic algorithm is that some arcs are not
shown due to the frequency, so we missed tokens when
we calculate fitness. The Inductive algorithm keeps a higher
fitness by using invisible transitions, so fitness is high and
approaching 1. When activity numbers increase, the model
is huge, which allows more behaviors in sequence patterns.
This causes precision decrease in three algorithm. So the
Heuristic algorithm is better when considering F1 score.

For choice patterns, the α algorithm is better when activity
numbers are small. When we consider a more complex model
with more activity numbers, the Heuristic algorithm is better.
However, fitness and precision decrease and then increase
for both the α algorithm and the Heuristic algorithm as the
complexity increases. Overall, the Inductive algorithm holds
the highest fitness, and its precision increases as the activity
numbers increase.

For parallel patterns, when the activity numbers increase,
fitness and precision of all three algorithms decrease. Fitness
decrease dramatically using the α algorithm. Because for
some parallel exist once, the α algorithm consider it as
choice, which cause missing tokens. Precision decreases for
the Inductive algorithm because it adds invisible transitions
for each parallel pattern, which leads to a ”flower model”.
The flower model allows for all behaviors to be observed.
Therefore, it has perfect fitness and zero precision, which
abstracts away the transactions of each event [27].

For loop patterns, the α algorithm is not useful. When the
activity numbers increases, the α has some errors using ProM
and cannot create a Petri net within two hours. Therefore,
the result just shows the activities number to 16. The running
time for the Inductive algorithm is very high. Therefore, the
Heuristic algorithm should be considered the best option for
handling loops in terms of the running time and the F1 value.
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(a) Missing Head Fitness (b) Missing Head Precision

(c) Missing Tail Fitness (d) Missing Tail Precision

(e) Missing Episode Fitness (f) Missing Episode Precision

(g) Perturbed Order Fitness (h) Perturbed Order Precision

(i) Double Activity Fitness (j) Double Activity Precision

(k) Alient Activity Fitness (l) Alient Activity Precision

(m) Change Name Fitness (n) Change Name Precision

Fig. 9. The Heuristic Algorithm

B. The Impact of Reference Model Complexities

In general, in lower levels, we can use the α algorithm.
In high levels, we should use the Heuristic algorithm.

In the first two levels, the models are simple, and each
algorithm can discover the referenced model. However, the
α algorithm cannot handle short loops that are less than
a length of 3. When a short loop appears in level 4, the
discovered model from the α algorithm is smaller than the
reference model, so the Br and Sr decrease. As we approach
level 5, the total activity numbers increase, which makes
the percentage of loops decreases. Thus, the Br and Sr are
higher than what is observed in level 4. Overall, the Heuristic

(a) Missing Head Fitness (b) Missing Head Precision

(c) Missing Tail Fitness (d) Missing Tail Precision

(e) Missing Episode Fitness (f) Missing Episode Precision

(g) Perturbed Order Fitness (h) Perturbed Order Precision

(i) Double Activity Fitness (j) Double Activity Precision

(k) Alient Activity Fitness (l) Alient Activity Precision

(m) Change Name Fitness (n) Change Name Precision

Fig. 10. The Inductive Algorithm
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algorithm is better at rediscovery because it can detect all the
relations that exist in the referenced model. As we approach
high levels, the Inductive algorithm uses invisible transitions
to connect parallel relations. These invisible transitions cause
the Bp and Sp to decrease. In level 3 and level 4, the parallel
relations percentage starts to decrease while the Bp and
Sp increases. In level 5 the parallel percentage increases,
whereas Bp and Sp start to decrease.

C. The Impact of Noise Types

In general, for missing head of noise and missing tail of
noise, we can use the α algorithm. For missing episode
noise, perturbed order noise, doubled activity noise, alien
event noise, and change name noise, we can use the Heuris-
tic algorithm. If we just consider fitness, we can use the
Inductive algorithm. Then we talk about each noise types
with the processing mining algorithms.

The quality of the α algorithm is stable when handling
missing head and tail noise. To handle the missing head and
tail noise, the α algorithm adds an additional arc to jump
over the missing head or tail from the start to the second
head or from the second tail to the end. So fitness decreases
due to the missing tokens. However, it is more accurate
and has higher precision. Missing episode noise can also
cause a relational change, which causes fitness and precision
decreases. Perturbed order noise causes a large decrease in
fitness because it changes the order of events and greatly
affects the relations between events [22]. An example of this
is when we observe a change from a directly follows relation
to a parallel relation. If doubled event noise is observed, it
creates a self-loop relation [22]. The α algorithm cannot
solve a self-loop relation so fitness and precision decrease
dramatically. The α algorithm cannot handle alient event
noise and changing name event noise. When we observe
these noise types, we cannot generate a Petri net using ProM
within two hours. Therefore, we do not include this data in
Fig. 8. When the number of alient events increases, it takes
a huge amount of time for the α algorithm to determine the
relations which make it difficult to discover the Petri net.

The Heuristic algorithm considers the probability of re-
lations and ignores rare activities. As a result, when rare
activities exist in event logs, the Heuristic algorithm have the
highest fitness and precision comparing to other algorithms.
For missing head and tail noise, the quality of the Heuris-
tic algorithm is stable. For missing episode noise, when
the noise percentage increases, fitness decreases. However,
precision increases because it becomes more accurate. For
perturbed order noise, fitness decreases when the complexity
level is small, especially in level 0 and level 2. For double
event noise, fitness decreases quickly in level 0 because
we are changing the sequence pattern to a self-looping
pattern. Fitness also decreases because some rare self-loops
are ignored. Precision decreases and eventually maintain
stability. The Heuristic algorithm can handle the alient event
noise, because it considers alient events as rare events and
ignore it. This keeps fitness and precision of the Heuristic
algorithm stable. However, change name noise is a challenge

for the Heuristic algorithm. In level 1, an addition of 5%
noise causes a 4.2% decrease in fitness and 4.5% decrease
in precision. In level 5, when the model is very complex, the
quality of the Heuristic algorithm is still high because small
changes don’t affect the whole structure of the model.

The Inductive algorithm always keeps fitness approaching
1. For every measurement of fitness shown in Fig 10, the
value is equal to 1.0. However, to achieve better fitness,
there must be a trade-off in precision [26]. Precision can
also be affected when an event log contains missing head
noise or missing tail noise. In simple models, there tends to
be a large decrease in precision, while more complicated
models tend to stabilize. Missing episode noise causes a
decrease in precision. In order to achieve a higher fitness,
the Inductive algorithm adds more invisible transitions on
models. In lower levels, the difference is not huge. However,
in level 5, an addition of 5% noise causes a 77.6% decrease
in precision. For perturbed order noise, an addition of 5%
noise causes a huge decrease in precision. However, when
the noise increases, precision starts to also increase. Because
the invisible transitions is considered as a ground truth. When
considering the doubled event, the quality of the Inductive
algorithm is stable. For alient event noise, the Inductive
algorithm also have issues. To deal with alient events, it
adds more invisible transitions for the alient place in the
model. This decision creates a model with a higher fitness
but precision decreases. Changing name noise influences
all 3 algorithms. When a model is complex, the Inductive
algorithm cannot discover a proper model within two hours.
As a result, there are no results in level 4 or level 5.

D. The Performance against Real-life Event Logs
In this section, we talk about the conclusion we made com-

pared to Augusto and De De Weerd. In the first conclusion
De Weerd made, there exists an important difference between
evaluation of process discovery algorithms based on either
artificial or real-life event logs. However our results shows
when the model become complex with noise, the difference
between artificial and real-life event logs is not huge. We can
get a ”spaghetti-like” process model using both artificial and
real-life event logs. Also for Augusto, the Heuristic algorithm
seems better when handling real-life event logs, and same
for artificial event logs when considering F1 score. Inductive
algorithm is not good in fitness, but not good at F1 score.

V. CONCLUSION AND FUTURE WORK
In this paper, we first illustrate different quality metrics

of process discovery algorithms when handling artificial
event logs with different dependency patterns. Next, we use
rediscovery to determine if the algorithms can rediscover
the referenced process model with six levels of complexity.
Then, we introduce different types of noise to the event logs
and measure the changes. Lastly, we apply 3 algorithms
on real-life event logs to see the quality. To conclude of
our work, we use Table III, IV, V to show under which
circumstances, we should choose which algorithm.

There are many issues behind real-life event logs that still
need to be found i.e. scenarios and infrequent behavior will
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TABLE III
CONCLUSION 1

Pattern Algorithm Fitness Precision F1 Score Running Time
Sequence Alpha × ×

Heuristic × ×
Inductive ×

Choice Alpha ×
Heuristic × ×
Inductive ×

Parallel Alpha ×
Heuristic × ×
Inductive ×

Loop Alpha
Heuristic × × ×
Inductive ×

TABLE IV
CONCLUSION 2

Level Alpha Heuristic Inductive
0 × × ×
1 × × ×
2 × ×
3 × ×
4 ×
5 ×

TABLE V
CONCLUSION 3

Condition Metric Alpha Heuristic Inductive
Missing Head Fitness ×
Missing Head Precision ×
Missing Tail Fitness ×
Missing Tail Precision ×

Missing Episode Fitness ×
Missing Episode Precision ×
Perturbed Order Fitness ×
Perturbed Order Precision ×
Double Activity Fitness ×
Double Activity Precision ×
Alien Activity Fitness ×
Alien Activity Precision
Change Name Fitness ×
Change Name Precision ×

also impact the quality of process discovery algorithms [31].
For future work, we will use machine learning techniques to
analyze a given event log. After analyzing the patterns, noise
and complexity, we hope to predict which algorithm is best
suited for a particular event log.
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