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Abstract

This paper studies the problem of expected loss minimization
given a data distribution that is dependent on the decision-
maker’s action and evolves dynamically in time according to
a geometric decay process. Novel algorithms for both the in-
formation setting in which the decision-maker has a first or-
der gradient oracle and the setting in which they have sim-
ply a loss function oracle are are introduced. The algorithms
operate on the same underlying principle: the decision-maker
repeatedly deploys a fixed decision repeatedly over the length
of an epoch, thereby allowing the dynamically changing envi-
ronment to sufficiently mix before updating the decision. The
iteration complexity in each of the settings is shown to match
existing rates for first and zero order stochastic gradient meth-
ods up to logarithmic factors. The algorithms are evaluated
on a “semi-synthetic” example using real world data from the
SFpark dynamic pricing pilot study; it is shown that the an-
nounced prices result in an improvement for the institution’s
objective (target occupancy), while achieving an overall re-
duction in parking rates.

Introduction
Traditionally, supervised machine learning algorithms are
trained based on past data under the assumption that the
past data is representative of the future. However, machine
learning algorithms are increasingly being used in settings
where the output of the algorithm changes the environment
and hence, the data distribution. Indeed, online labor mar-
kets (Anagnostopoulos et al. 2018; Horton 2010), predictive
policing (Lum and Isaac 2016), on-street parking (Pierce and
Shoup 2018; Dowling, Ratliff, and Zhang 2020), and vehicle
sharing markets (Banerjee, Riquelme, and Johari 2015) are
all examples of real-world settings in which the algorithm’s
decisions change the underlying data distribution due to the
fact that the algorithm interacts with strategic users.

To address this problem, the machine learning community
introduced the problem of performative prediction which
models the data distribution as being decision-dependent
thereby accounting for feedback induced distributional shift
(Perdomo et al. 2020; Miller, Perdomo, and Zrnic 2021;
Drusvyatskiy and Xiao 2020; Brown, Hod, and Kalemaj
2020; Mendler-Dünner et al. 2020). With the exception of
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(Brown, Hod, and Kalemaj 2020), this work has focused on
static environments.

In many of the aforementioned application domains, how-
ever, the underlying data distribution also may have memory
or even be changing dynamically in time. When a decision-
making mechanism is announced it may take time to see the
full effect of the decision as the environment and strategic
data sources respond given their prior history or interactions.

For example, many municipalities announce quarterly a
new quasi-static set of prices for on-street parking. In this
setting, the institution may adjust parking rates for certain
blocks in order to to achieve a desired occupancy range to
reduce cruising phenomena and increase business district
vitality (Fiez et al. 2018; Dowling et al. 2017; Pierce and
Shoup 2013; Shoup 2006). For instance, in high traffic ar-
eas, the institution may announce increased parking rates to
free up parking spots and redistribute those drivers to less
populated blocks. However, upon announcing a new price,
the population may react slowly, whether it be from initially
being unaware of the price change, to facing natural incon-
veniences from changing one’s parking routine. This intro-
duces dynamics into our setting; hence, the data distribution
takes time to equilibrate after the pricing change is made.

Motivated by such scenarios, we study the problem of
decision-dependent risk minimization (or, synonymously,
performative prediction) in dynamic settings wherein the un-
derlying decision-dependent distribution evolves according
to a geometrically decaying process. Taking into account the
time it takes for a decision to have the full effect on the en-
vironment, we devise an algorithmic framework for finding
the optimal solution in settings where the decision maker has
access to different types of gradient information.

For both information settings (gradient access and loss
function access, via the appropriate oracle), the decision-
maker deploys the current decision repeatedly for the dura-
tion of an epoch, thereby allowing the dynamically evolving
distribution to approach the fixed point distribution for that
announced decision. At the end of the epoch, the decision is
updated using a first-order or zeroth-order oracle.

One interpretation of this procedure is that the environ-
ment is operating on a faster timescale compared to the up-
date of the decision-maker’s action. For instance, consider
the dynamically changing distribution as the data distribu-
tion corresponding to a population of strategic data sources.



The phase during which the same decision is deployed for
a fixed number of steps can be interpreted as the population
of agents adapting at a faster rate than the update of the de-
cision. This in fact occurs in many practical settings such as
on-street parking, wherein prices and policies more gener-
ally are quasi-static, meaning they are updated infrequently
relative to actual curb space utilization.

Contributions
For the decision-dependent learning problem in geomet-
rically decaying environments, we propose first-order or
zeroth-order oracle algorithms that converge to the optimal
point under appropriate assumptions, which make the risk
minimization problem strongly convex. We obtain the fol-
lowing iteration complexity guarantees:

• Zero Order Oracle (Algorithm 1, Section ): We show
that the sample complexity in the zeroth order setting is
Õ(d

2

ε2 ) which matches the optimal rate for single query
zeroth order methods in strongly convex settings up to
logarithmic factors.

• First Order Oracle (Algorithm 2, Section ): We show
that the same complexity in the first order setting is Õ( 1

ε )
again matching the known rates for first order stochastic
gradient methods up to logarithmic factors.

The technical novelty arises from bounding the error be-
tween expected gradient at the fixed point distribution corre-
sponding to the current decision and the stochastic gradient
at the current distribution at time t.

The algorithms are applied to a set of semi-synthetic ex-
periments using real data from the SFpark pilot study on the
use of dynamic pricing to manage curbside parking (Sec-
tion ). The experiments demonstrate that optimizing taking
into consideration feedback-induced distribution shift even
in a dynamic environment leads to the institution—and per-
haps surprisingly, the user as well—experiencing lower ex-
pected cost. Moreover, there are important secondary effects
of this improvement including increased access to parking—
hence, business district vitality—and reduced circling for
parking and congestion which not only saves users time but
also reduces carbon emissions (Shoup 2006).

A more comprehensive set of experiments is contained
in Appendix D, including purely synthetic simulations and
other semi-synthetic simulations using the ’Give Me Some
Credit’ data set (Kaggle 2011).

Related Work
Dynamic Decision-Dependent Optimization. As hinted
above, dynamic decision-dependent optimization has been
considered quite extensively in the stochastic optimization
literature wherein the problem of recourse arises due to
decision-makers being able to make a secondary decision
after some information has been revealed (Jonsbråten, Wets,
and Woodruff 1998; Goel and Grossmann 2004; Varaiya and
Wets 1988). In this problem, the goal of the institution is to
solve a multi-stage stochastic program, in which the proba-
bility distribution of the population is a function of the de-
cision announced by the institution. This multi-stage proce-

dure models a dynamic process. Unlike the setting consid-
ered in this paper, the institution has the ability to make a
recourse decision upon observing full or partial information
about the stochastic components.

Reinforcement Learning. Reinforcement learning is a
more closely related problem in the sense that a decision is
being made over time where the environment dynamically
changes as a function of the state and the decision-maker’s
actions (Sutton and Barto 2018). A subtle but important dif-
ference is that the setting we consider is such that the deci-
sion maker’s objective is to find the action which optimizes
the decision-dependent expected risk at the fixed point dis-
tribution (cf. Definition 1, Section ) induced by the optimal
action and the environment dynamics. This is in contrast to
finding a policy which is a state-dependent distribution over
actions given an accumulated cost over time. Our setting
can be viewed as a special case of the general reinforcement
learning problem, however with additional structure that is
both practically well-motivated, and beneficial to exploit in
the design and analysis of algorithms. More concretely, we
crucially exploit the assumed model of environment dynam-
ics (in this case, the geometric decay), the distribution de-
pendence, and convexity to obtain strong convergence guar-
antees for the algorithms proposed herein.

Performative prediction. As alluded to in the introduc-
tory remarks, the most closely related body of literature
is on performative prediction wherein the decision-maker
or optimizer takes into consideration that the underlying
data distribution depends on the decision. A naı̈ve strategy
is to re-train the model after using heuristics to determine
when there is sufficient distribution shift. Under the guise
that if retraining is repeated, eventually the distribution will
stabilize, early works on performative prediction—such as
the works of Perdomo et al. (2020) and Mendler-Dünner
et al. (2020)—studied this equilibrium notion, and called
these points performatively stable. Mendler-Dünner et al.
(2020) and Drusvyatskiy and Xiao (2020) study stochastic
optimization algorithms applied to the performative predic-
tion problem and recover optimal convergence guarantees
to the performatively stable point. Yet, performatively stable
points may differ from the optimal solution of the decision-
dependent risk minimization problem as was shown in Per-
domo et al. (2020). Taking this gap between stable and op-
timal points into consideration, Miller, Perdomo, and Zrnic
(2021) characterize when the performative prediction prob-
lem is strongly convex, and devise a two-stage algorithm for
finding the so-called performatively optimal solution—that
is, the optimal solution to the decision-dependent risk min-
imization problem—when the decision-dependent distribu-
tion is from the location-scale family.

None of the aforementioned works consider dynamic en-
vironments. Brown, Hod, and Kalemaj (2020) is the first pa-
per, to our knowledge, to investigate the dynamic setting for
performative prediction. Assuming regularity properties of
the dynamics, they show that classical retraining algorithms
(repeated gradient descent and repeated risk minimization)
converge to the performatively stable point of the expected
risk at the corresponding fixed point distribution. Counter to



this, in this paper we propose algorithms for the dynamic
setting which target performatively optimal points.

Preliminaries
We consider the problem of a single decision-maker facing
a decision dependent learning problem in a geometrically
decaying environment.

Towards formally defining the optimization problem the
decision-maker faces, we first introduce some notation.
Throughout, we let Rd denote a d–dimensional Euclidean
space with inner product 〈·, ·〉 and induced norm ‖x‖ =√
〈x, x〉. The projection of a point y ∈ Rd onto a set

X ⊂ Rd is denoted projX (y) = argminx∈X ‖x−y‖. We are
in interested in random variables taking values in a metric
space. Given a metric space Z with metric d(·, ·) the symbol
P(Z) denotes the set of Radon probability measures ν on
Z with a finite first moment Ez∼ν [d(z, z′)] < ∞ for some
z′ ∈ Z . We measure the deviation between two measures
ν, ν′ ∈ P(Z) using the Wasserstein-1 distance:

W1(ν, µ) = sup
h∈Lip1

{EX∼ν [h(X)]− EY∼µ[h(Y )]},

where Lip1 denotes the set of 1–Lipschitz continuous func-
tions h : Z → R.

The decision-maker seeks to solve

min
x∈X
L(x) (1)

where L(x) = Ez∼D(x)[`(x, z)] is the expected loss. The
decision-space X lies in the Euclidean space Rd, is closed
and convex, and there exists constants r,R > 0 satisfying
rB ⊆ X ⊆ RB where B is the unit ball in dimension d. The
loss function is denoted ` : Rd×Z → R, andD(x) ∈ P(Z)
is a probability measure that depends on the decision x ∈ X .
Definition 1. For a given probability measureD(x) induced
by action x ∈ X , the decision vector x∗ ∈ X is optimal if

x∗ ∈ arg min
x∈X
L(x) = arg min

x∈X
E

z∼D(x)
[`(z, x)].

The main challenge to finding an optimal point is that the
environment is evolving in time according to a geometrically
decaying process. That is, the random variable z depends not
only on the decision xt ∈ X at time t, but also explicitly
on the time instant t. In particular, the random variable z
is governed by the distribution pt which is the probability
measure at time t generated by the process pt+1 = T (pt, xt)
where

T (p, x) = λp+ (1− λ)D(x), (2)
and λ ∈ [0, 1) is the geometric decay rate. Observe that
given the geometrically decaying dynamics in (2), for any
x ∈ X , the distribution D(x) is trivially a fixed point—i.e.,
T (D(x), x) = D(x). Let T n := T ◦ · · · ◦ T denote the
n-times composition of the map T so that, given the form in
(2), we have T n(p, x) = λnp+ (1− λn)D(x).

One interpretation of this transition map is that it captures
the phenomenon that for each time, a (1− λ) fraction of the
population becomes aware of the machine learning model
x being used by the institution. Another interpretation is

that the environment (and strategic data sources in the en-
vironment) has memory based on past interactions which is
captured in the ‘state’ of the distribution, and the effects of
the past decay geometrically at a rate of λ. For instance, it
is known in behavioral economics that humans often com-
pare their decisions to a reference point, and that reference
point may evolve in time and represent an accumulation of
past outcomes (Nar, Ratliff, and Sastry 2017; Kahneman and
Tversky 2013).

Throughout we use the notation∇L to denote the deriva-
tive of L with respect to x. The notation ∇x` and ∇z` de-
notes the partial derivative of ` with respect to x and z, re-
spectively. Further, let ∇x,z` = (∇x`,∇z`) denote the vec-
tor of partial derivatives. We also make the following stand-
ing assumptions on the loss ` and the probability measure
D(x).

Assumption 1 (Standing). The loss ` and distributionD sat-
isfy the following:

a. The loss `(x, z) is C1 smooth in x, and L-Lipschitz con-
tinuous in (x, z).

b. The map (x, z) 7→ ∇x,z`(x, z) is β-Lipschitz continuous.
c. The loss `(x, z) is ξ-strongly convex in x.
d. There exists a constant γ > 0 such that

W1(D(x),D(x′)) ≤ γ‖x− x′‖ ∀ x, x′ ∈ X .

The following assumption implies a convex ordering on
the random variables on which the loss is dependent.

Assumption 2 (Mixture Dominance). The probability mea-
sure D(x) and loss ` satisfy mixture dominance—i.e., for
any x ∈ X and s ∈ (0, 1), Ez∼D(sv+(1−s)w)[`(z, x)] ≤
Ez∼sD(v)+(1−s)D(w)[`(z, x)], for all v, w ∈ X .

Under Assumptions 1 and 2, the expected loss L(x) is
α := (ξ − 2γβ) strongly convex (cf. Theorem 3.1 Miller,
Perdomo, and Zrnic (2021)), so that the optimal point is
unique.

We make the following assumption on the regularity of
the expected loss.

Assumption 3 (Smoothness). The map x 7→ ∇L(x) is
G-Lipschitz continuous, and the map x 7→ ∇2L(x) is H-
Lipschitz continuous.

An important class of distributions in the performative
prediction literature that satisfy this assumption are location-
scale distribution.

Assumption 4 (Parametric family). There exists a probabil-
ity measure P and matrix A such that

z ∼ D(x) ⇐⇒ z = ζ +Ax,

and where ζ has mean µ := Eζ∼P [ζ] and co-variance Σ :=
Eζ∼P [(ζ − µ)(ζ − µ)>], respectively.

This class encompasses a broad set of distributions that
are commonplace in the performative prediction literature.
As observed in Miller, Perdomo, and Zrnic (2021), this class
of probability measures is also γ-Lipschitz continuous and
satisfies the mixture dominance condition when ` is convex.



Algorithm 1: Epoch-Based Zeroth Order Algorithm

Initialization: epoch length nt, step-size ηt = 4
tα ,

initial point x1, query radius δ, horizon T , initial
distribution p0;

for t = 1, 2, . . . , T do
// Step 1: Query-Mix
Sample vector vt from the unit sphere;
Query with xt + δvt for nt steps, so that
pt = T nt(pt−1, xt + δvt);

// Step 2: Update
Oracle reveals ĝt = d

δ `(z, xt + δvt)vt, z ∼ pt;
Update xt+1 = proj(1−δ)X (xt − ηtĝt);

end

Algorithm 2: Epoch-Based First Order Algorithm
Initialization: epoch length nt, step-size ηt, initial
point x1, horizon T , initial distribution p0;

for t = 1, 2, . . . , T do
// Step 1: Query-Mix
Query with xt for nt steps, so that
pt = T nt(pt−1, xt);

// Step 2: Update
Oracle reveals ĝt = ∇`(xt, z), z ∼ pt;
Update xt+1 = projX (xt − ηtĝt);

end

Lemma 1 (Sufficient conditions for Assumption 3). Sup-
pose that Assumption 4 holds and there exists a constants
β, ρ ≥ 0 such that the map (x, z) 7→ ∇x,z`(x, z) is β-
Lipschitz continuous and has a ρ-Lipschitz continuous gra-
dient. Then, Assumption 3 holds with constants

G :=
√
β2 max{1, ‖A‖2op} · (1 + ‖A‖2op),

H :=
√
ρ2 max{1, ‖A‖4op} · (1 + ‖A‖2op).

The proof is contained in Appendix A.

Algorithms & Sample Complexity Analysis
As alluded to in the introduction, the algorithms we propose
for each of the information settings are similar in spirit: they
each operate in epochs by holding fixed a decision for n
steps and querying the environment until the distribution dy-
namics have mixed sufficiently towards the fixed point dis-
tribution corresponding to the current action.

Zero Order Stochastic Gradient Method
The most general information setting we consider is such
that the decision-maker has only ”bandit feedback”. That is,
they only have access to a loss function evaluation oracle.
This does not require the decision-maker to have access to
the decision-dependent probability measure D(x). This is a
more realistic setting given that the form of D(·)—may be
a priori unknown. For example, if the data is generated by

strategic data sources having their own private utility func-
tions and preferences (e.g., as in strategic classification or
prediction, or incentive/pricing design problems), then the
decision-maker does not necessarily have access to the dis-
tribution map D(x) in practice.

The zero-order stochastic gradient method proceeds as
follows. Fix a parameter δ > 0. In each epoch t, the Al-
gorithm 1 samples vt is a unit vector uniformly from the
unit sphere S in dimension d, queries the environment for
nt iterations with xt + δvt, and then the loss oracle reveals
`(xt+ δvt, zt) where zt ∼ λntpt−1 + (1−λnt)D(xt+ δvt)
which the decision maker uses to update xt as follows:

xt+1 = proj
(1−δ)X

(xt − ηĝt) ,

where

ĝt =
d

δ
`(xt + δvt, zt)vt. (3)

This is a one-point gradient estimate of the expected loss at
pt. It can be shown that (3) is an unbiased estimate of the
gradient of the smoothed loss function

Lδt (x) = Ev∼S [Ez∼pt`(x, z)]

at time t (e.g., in the general setting without decision-
dependence this follows from Flaxman, Kalai, and McMa-
han (2004)). The reason for projecting onto the set (1− δ)X
is to ensure that in the next iteration, the decision is in the
feasible set.

Define the smoothed expected risk as follows:

Lδ(x) = Ev∼B[Ez∼D(x+δv)[`(x+ δv, z)]].

It is straightforward to show that Lδ is strongly convex with
parameter (1− c)α for some c ∈ (0, 1) in the regime where
δ ≤ cα/H (cf. Lemma 6, Appendix B).

To obtain convergence guarantees we need the following
additional assumption.

Assumption 5. The quantity `∗ := sup{|`(x, z)| : x ∈
X , z ∈ Z} is finite.

The next lemma provides a crucial step in the proof of
our main convergence result for the bandit feedback setting:
it provides a bound on the bias due to the dynamics.

Lemma 2. Under Assumptions 1, 2, 3, and 5, the error be-
tween the gradient smoothed loss Lδt at pt and the gradient
of the smoothed expected loss Lδ satisfies

‖∇Ev∼B[Ez∼pt [`(z, xt + δv)]]−∇Lδ(xt)‖

≤ L ·
(
λntW (p0) + λnt

4γd

αδ

λ`∗
(1− λ)2

)
where pt = λntpt−1 +(1−λnt)D(xt+ δvt), and W (p0) =
maxx∈X W1(p0,D(x)).

We defer the proof to Appendix B.1.
To obtain the convergence rate, let x̄δ be the optimal point

for Lδ on (1− δ)X .



Theorem 1. Suppose that Assumptions 1, 2, 3, and 5 hold.
Let δ ≤ min{r, α

2H }, and set step size ηt = 4
αt and epoch

length

nt ≥ log

W (p0) + 4γd
αδ

λ`∗
(1−λ)2(

ηt
α
L2

`2∗d
2

4δ2

)1/2
 1

log(1/λ)
.

Then the estimate holds:

E ‖xt − x∗‖2 ≤
max{α2δ2‖x1 − x̄δ‖2, 16d2`2∗}

tα2δ2

+ 2δ2
((

1 +
G

α

)
‖x∗‖+

G

α

)2

The following corollary states the convergence rate.
Corollary 1 (Main result for zero-order oracle). Suppose
the assumptions of Theorem 1 hold. Fix a target accuracy

ε < 4r2((1 + G
α )R+ G

α )2,

and set δ = α
√
ε/4/((α + G)R + G) and ηt = 4/(αt).

Then, the estimate E ‖xt − x∗‖2 ≤ ε holds for all

t ≥ max{8α2εR2, 128((α+G)R+G)2`2∗d
2}

α4ε2
.

In the proceeding corollary, the lower bound on t is in
terms of the number of epochs that Algorithm 1 needs to
be run to obtain the target accuracy. In terms of total it-
erations across all epochs (i.e.,

∑t
k=1 nk), the rate is thus

O
(
d2

ε2 log
(
1
ε

))
.

First Order Stochastic Gradient Method
In many situations, the decision maker has access to a
parametric description of the decision-dependent probabil-
ity measure D(x) in which case the decision-maker can em-
ploy a stochastic gradient method. The challenge of having
the distribution changing in time still remains, and hence the
novelty of the results in this section.

To this end, let the expected loss at time t be given by
Lt(x) = Ez∼pt`(xt, z). (4)

Under Assumption 4 and mild smoothness assumptions, dif-
ferentiating (4) we see that the gradient of Lt is simply

∇Lt(x) = E
z∼pt

[∇x`(x, z) + (1− λn)A>∇z`(x, z)].

Therefore, given a point x, the decision-maker may draw
z ∼ pt and form the vector
ĝt = ∇`(xt, z) = ∇x`(xt, z) + (1− λn)A>∇z`(xt, z).

By definition, ĝt is an unbiased estimator of∇Lt(x), that is
Ez∼pt [ĝt] = ∇Lt(x).

Algorithm 2 proceeds as follows. In round t, the decision
maker queries the environment with xt for n steps so that
pt = λnpt−1 + (1 − λn)D(xt). Then, the gradient oracle
reveals ĝt as defined above where z ∼ pt, and the decision
maker updates xt using xt+1 = projX (xt − ηtĝt).

The following lemma is completely analogous to
Lemma 2, and provides a bound on the gradient error due
to the dynamics.

Lemma 3. Under Assumptions 1, 2, and 4, the gradient er-
ror satisfies

‖∇Ez∼pt [`(z, xt)]]−∇L(xt)‖2

≤ L2 ·
(
λnW 1(p0) + λnγη

L(1 + ‖A‖op)λ

(1− λ)2

)2

where pt = λnpt−1 + (1− λn)D(xt).
We defer the proof to Appendix C.1.

Assumption 6 (Finite Variance). There exists a constant
σ > 0 satisfying

E
z∼pt

[‖ĝt − E
z′∼pt

∇`(x, z′)‖2] ≤ σ2 ∀x ∈ X , ∀t ≥ 1.

To justify the above assumption, we provide sufficient
conditions for the above assumption to hold in terms of the
variance of the partial gradients∇x,z`.
Lemma 4 (Sufficient Conditions for Assumption 6). Sup-
pose there exists constants s1, s2 ≥ 0 such that for all x ∈ X
the estimates hold:

E
z∼pt
‖∇x`(x, z)− E

z′∼pt
∇x`(x, z′)‖2 ≤ s21

E
z∼pt
‖∇z`(x, z)− E

z′∼pt
∇z`(x, z′)‖2 ≤ s22

Then Assumption 6 holds with σ2
t = 2(s21 + ‖A‖2ops22).

Theorem 2. Suppose that Assumptions 1, 2, 3, and 4 hold.
For step-size η ≤ α

2G2 and epoch length

n ≥ log

(
L
W 1(p0) + γηL(1 + ‖A‖op) λ

(1−λ)2

(αη)1/2σ

)
1

log(1/λ)
,

the estimate holds:

E‖xt+1 − x∗‖2 ≤
1

1 + ηα
E‖xt − x∗‖2 +

4η2σ2

1 + ηα
.

We defer the proof to Appendix C.2. Applying a step-
decay schedule on η yeilds the following corollary, the
proof of which follows directly from the recursion in Theo-
rem 2 and generic results on step decay schedules (see, e.g.,
Drusvyatskiy and Xiao (2020, Lemma B.2)).
Corollary 2 (Main result for first order oracle). Suppose
the assumptions of Theorem 2 hold, and that Algorithm 2
is run in super-epochs indexed by k = 1, . . . ,K wherein
each super-epoch is run for Tk epochs with constant step-
size ηk = α

2G2 · 2−k, and such that the last iterate of super-
epoch k is used as the first iterate in super-epoch k + 1. Fix
a target accuracy ε > 0 and suppose R > ‖x1 − x∗‖2 is
available. Set

T1 =
⌈

2
αη1

log( 2R
ε )
⌉
, Tk =

⌈
2 log(4)
αηk

⌉
, for k ≥ 2,

and K = d1 + log2( 2η1σ
2

αε )e. The final iterate x produced
satisfies E ‖x− x∗‖2 ≤ ε, while the total number of epochs
is at most

O

(
G2

α2
log

(
2R

ε

)
+

σ2

α2ε

)
.

It is straightforward to show that the total number of iter-
ations is O

(
G2

α2 log
(
2R
ε

)
+ σ2

α2ε log( 1
ε )
)

.



Figure 1: Results of Algorithm 2 (first and third plots) and Algorithm 1 (second and fourth plots) with different (n, T ) pairs
for 600 Beach ST and time window 1200–1500. Each marker represents a price announcement, and the plots show the prices
and corresponding predicted occupancies. The SFpark prices and occupancies are far from the target and performative optimal
price, whereas the proposed algorithms obtain both points up to theoretical error bounds.

Figure 2: Final prices announced by first and zero order algorithms (Algorithms 2 and 1) run with (n, T ) = (8, 15) and
(n, T ) = (1, 120), respectively, as compared to SFpark for streets depicted in the right graphic (color coded to the bar charts)
during the 900–1200 time period. The center plot shows the corresponding predicted occupancies. The dotted lines represent
performatively optimal price and target occupancy of 70%, in the left and center plots, respectively. The average price overall
is lower for both proposed methods, the occupancy is better distributed, and the average occupancy closer to the desired range.

Numerical Experiments
In this section, we apply our aforementioned algorithms to a
semi-synthetic example based on real data from the dynamic
pricing experiment—namely, SFpark1—for on-street park-
ing in San Francisco. Parking availability, location, and price
are some of the most important factors when people choose
whether or not to use a personal vehicle to make a trip
(Shoup 2006, 2021; Fiez and Ratliff 2020).2 The primary
goal of the SFpark pilot project was to make it easy to find
a parking space. To this end, SFpark targeted a range of 60–
80% occupancy in order to ensure some availability at any
given time, and devised a controlled experiment for demand
responsive pricing. Operational hours are split into distinct
rate periods, and rates are adjusted on a block-by-block ba-
sis, using occupancy data from parking sensors in on-street
parking spaces in the pilot areas. We focus on weekdays in
the numerical experiments; for weekdays, distinct rate pe-
riods are 900–1200, 1200–1500, and 1500–1800. Exclud-
ing special events, SFpark adjusted hourly rates as follows:
a) 80–100% occupancy, rates are increased by $0.25; b)
60 − 80% occupancy, no adjustment is made; c) 30 − 60%
occupancy, rate is decreased by $0.25; d) occupancy below

1SFpark: tinyurl.com/dwtf7wwn
2Code: https://github.com/ratlifflj/D3simulator.git

30%, rate is decreased by $0.50. When a price change is de-
ployed it takes time for users to become aware of the price
change through signage and mobile payment apps (Pierce
and Shoup 2013).

Given the target occupancy, the dynamic decision-
dependent loss is given by

Ez∼pt [`(x, z)] = Ez∼pt [‖z − 0.7‖2 + ν
2‖x‖

2],

where z is the vector of curb occupancies (which is between
zero and one), x is the vector of changes in price from the
nominal price at the beginning of the SFpark study for each
curb, and ν is the regularization parameter. For the initial
distribution p0, we sample from the data at the beginning of
the pilot study where the price is at the nominal (or initial)
price. The distribution D(x) is defined as follows:

z ∼ D(x) ⇐⇒ z = ζ +Ax

where ζ follows the same distribution as p0 described above,
and A is a proxy for the price elasticity which is estimated
by fitting a line to the final and initial occupancy and price
(cf. Appendix D.1).3

3Price elasticity is the change in percentage occupancy for a
given percentage change in price.



Comparing Performative Optimum to SFpark. We run
Algorithms 2 and 1 for Beach ST 600, a representative block
in the Fisherman’s Wharf sub-area, in the time window of
1200–1500 as depicted in Figure 1. Beach ST is frequently
visited by tourists and local residents. For Beach ST 600, we
compute A ≈ −0.157, which means that a $1.00 increase in
the parking rate will lead to a 15% decrease in parking oc-
cupancy at the fixed point distributions. Additionally, we use
the data to compute the geometric decay rate of λ ≈ 0.959
(computations described in Appendix D). Since the initial
price is $3 per hour for this block, we take X = [−3, 5],
since the maximum price that SFpark charges is $8 per hour,
and the minimum price is zero dollars. Additionally, we set
the regularization parameter ν = 1e-3. The algorithms are
run using parameters as dictated by Theorems 1 and 2, re-
spectively, with the exception of epoch length. The epoch
length we set to reasonable values as dictated by the parking
application. In particular, the unit of time for an iteration is
weeks, and we set the epoch length in terms of the number of
weeks the price is held fixed. For instance, the SFpark study
changed prices every eight weeks.4

The first and third plots in Figure 1 show prices an-
nounced and corresponding occupancy, respectively, for Al-
gorithm 2, on 600 Beach Street, with different choices of
n and T ; and, they show the prices announced and corre-
sponding occupancies by SFpark as compared to the per-
formatively optimal point (computed offline). Similarly, the
second and fourth plots in Figure 1 show this same informa-
tion for Algorithm 1. Since Algorithm 1 is zero order, con-
vergence requires more time and has variance coming from
the randomness of the query directions.

SFpark changed prices approximately every eight weeks.
As observed in Figure 1, this choice of n is reasonable—the
estimated λ value is close to one—and leads to convergence
to the optimal price change for both the first order and zero
order algorithms. As n increases, the performance degrades,
an observation that holds more generally for this curb. How-
ever, in our experiments, we found that different curbs had
different optimal epoch lengths, thereby suggesting that a
non-uniform price update schedule may lead to better out-
comes. Appendix D.2 contains additional experiments.

Moreover, the prices under the optimal solution obtained
by the proposed algorithms are lower than the SFpark solu-
tion for the entire trajectory, and the algorithms both reach
the target occupancy while SFpark is far from it. The third
and fourth plots of Figure 1 show the effect of the negative
price elasticity on the occupancy; an increased price causes
a decreased occupancy. An interesting observation is that
for Algorithm 2, a larger choice of n, and consequently a
smaller choice of T , allows for convergence closer to the op-
timal price, but for Algorithm 1, a smaller choice of n, and
consequently, a larger choice of T , allows for quicker (and
with lower variance) convergence to the optimal price. This
is due to the randomness in the query direction for the gra-
dient estimator used in Algorithm 1, meaning that a larger
T is needed to converge quickly to the optimal solution.

4In Appendix D, we run synthetic experiments wherein the
epoch length is chosen according to the theoretical results.

This suggests that in the more realistic case of zero order
feedback, the institution should make more price announce-
ments.

Redistributing Parking Demand. In this semi-synthetic
experiment, we set ν = 1e-3 and take X = [−3.5, 4.5]
since the base distribution for these blocks has a nominal
price of $3.50. We also use the estimated λ and A values
(described in more detail in Appendix D.3). We run Algo-
rithms 2 and 1 (using parameters as dictated by the corre-
sponding sample complexity theorems) for a collection of
blocks during the time period 900–1200 in a highly mixed
use area (i.e., with tourist attractions, a residential building,
restaurants and other businesses). The results are depicted in
Figure 2.

Hawthorne ST 0 is a very high demand street; the occu-
pancy is around 90% on average during the initial distribu-
tion and remains high for SFpark (cf. center, Figure 2). The
performatively optimal point, on the other hand, reduces this
occupancy to within the target range 60–80% for both the
first and zeroth order methods. This occupancy can be seen
as being redistributed to the Folsom ST 500-600 block, as
depicted in Figure 2 (center) for our proposed methods: the
SFpark occupancy is much below the 70% target average for
these blocks, while both the decision-dependent algorithms
lead to occupancy at the target average. Interestingly, this
also comes at a lower price (not just on average, but for each
block) than SFpark.

Hawthorne ST 100 is an interesting case in which both
our approach and SFpark do not perform well. This is be-
cause the performatively optimal price in the unconstrained
case is $9.50 an hour which is well above the maximum
price of $8 in the constrained setting we consider. In addi-
tion, the price elasticity is positive for this block; together
these facts explain the low occupancy. Potentially other con-
trol knobs available to SFpark, such as time limits, can be
used in conjunction with price to manage occupancy; this is
an interesting direction of future work.

Discussion and Future Directions

This work is an important step in understanding performa-
tive prediction in dynamic environments. Moving forward
there are a number of interesting future directions. We con-
sider one class of well-motivated dynamics. Another practi-
cally motivated class of dynamics are period dynamics; in-
deed, in many applications there is an external context which
evolves periodically such as seasonality or other temporal
effects. Devising algorithms for such cases is an interesting
direction of future work. As compared to classical reinforce-
ment learning problems, in this work, we exploit the struc-
ture of the dynamics along with convexity to devise conver-
gent algorithms. However, we only considered general con-
ditions on the class of distributions D(x); it may be possi-
ble to exploit additional structure on D(x) in improving the
sample complexity of the proposed algorithms or devising
more appropriate algorithms that leverage this structure.
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Technical Lemmas and Notation
Notation. Throughout we will use the following derivative and partial derivative notation. For a given function `(z, x), the
partial derivative of ` with respect to z is denoted ∇z`(z, x) and the partial derivative with respect to x is denoted ∇x`(z, x).
For the expected risk Ez∼D(x)[`(z, x)], the total derivative with respect to x is denoted

∇ E
z∼D(x)

[`(z, x)] = ∇
(∫

`(z, x)px(z)dz

)
= E
z∼D(x)

[∇x`(z, x)] + E
z∼D(x)

[`(z, x)∇x log(px(z))]

where px(z) is the density function for D(x) and in the last equality we have applied the so-called ‘log trick’. Throughout, we
use the notation ‖ · ‖ for the Euclidean norm.

Technical Lemmas. The following lemma is a direct consequence of dual form of the Wasserstein-1 distance.

Lemma 5. Let f : Rn → Rn be β-Lipschitz, and let X,X ′ be random vectors with distributions p and p′, respectively. Then,

‖E[f(X)]− E[f(X ′)]‖ ≤ βW1(p, p′).

Lemma 1 (Sufficient conditions for Assumption 3). Suppose that Assumption 4 holds and there exists a constants β, ρ ≥ 0 such
that the map (x, z) 7→ ∇x,z`(x, z) is β-Lipschitz continuous and has a ρ-Lipschitz continuous gradient. Then, Assumption 3
holds with constants

G :=
√
β2 max{1, ‖A‖2op} · (1 + ‖A‖2op),

H :=
√
ρ2 max{1, ‖A‖4op} · (1 + ‖A‖2op).

Proof. Observe that we may write

∇L(x) = E
ζ∼P

V >∇x,z`(z, ζ +Ax) where V =

[
I 0
0 A

]
.

Therefore, we deduce

‖∇L(x)−∇L(y)‖ ≤ ‖V ‖op E
ζ∼P
‖∇x,z`(z, ζ +Ax)−∇x,z`(y, ζ +Ay)‖

≤ max{1, ‖A‖op} · β · E
ζ∼P
‖(z, ζ +Ax)− (y, ζ +Ay)‖

= max{1, ‖A‖op} · β ·
√
‖x− y‖2 + ‖A(x− y)‖2

≤ max{1, ‖A‖op} · β ·
√

(1 + ‖A‖2op) · ‖x− y‖.

Analogously, observe that

∇2L(x) = E
ζ∼P

V >∇2`(x, ζ +Ax)V

where

∇2`(x, z) =

[
∇2
x`(x, z) ∇xz`(x, z)

∇zx`(x, z) ∇2
z`(x, z)

]
is the Hessian of ` with respect to (x, z). Therefore, we deduce

‖∇2L(x)−∇2L(y)‖ ≤ ‖V ‖2op E
ζ∼P
‖∇2`(z, ζ +Ax)−∇2`(y, ζ +Ay)‖

≤ max{1, ‖A‖2op} · ρ · E
ζ∼P
‖(z, ζ +Ax)− (y, ζ +Ay)‖

= max{1, ‖A‖2op} · ρ ·
√
‖x− y‖2 + ‖A(x− y)‖2

≤ max{1, ‖A‖2op} · ρ ·
√

(1 + ‖A‖2op) · ‖x− y‖.

The proof is complete.



Proofs for Zero Order Oracle Setting
Technical Lemmas
Recall that

Lδ(x) = Ev∼B[Ez∼D(x+δv)[`(z, x+ δv)]].

Lemma 6. Suppose that Assumptions 1, 2, and 3 hold. Choose δ ≤ cα/H for some constant c ∈ (0, 1). Then the map Lδ is
strongly convex over X with parameter (1− c)α.

Proof. We first estimate the Lipschitz constant of the difference map

h(x) := ∇Lδ(x)−∇L(x).

To this end, we compute
∇h(x) = Ew∼B[∇2L(x+ µw)−∇2L(x)].

Taking into account that the map x 7→ ∇2L(x) is H-Lipschitz continuous, we deduce

‖∇h(x)‖op ≤ Ew∼B[‖∇2L(x+ δw)−∇2L(x)‖op] ≤ δHEw∼B‖w‖ ≤ δH.
Thus the map h is Lipschitz continuous with parameter δH . We therefore compute

〈∇Lδ(x)−∇Lδ(x′), x− x′〉 = 〈∇L(x)−∇L(x′), x− x′〉 − 〈V (x)− V (x′), x− x′〉 ≥ (α−Hδ)‖x− x′‖2,
which completes the proof.

Lemma 2. Under Assumptions 1, 2, 3, and 5, the error between the gradient smoothed loss Lδt at pt and the gradient of the
smoothed expected loss Lδ satisfies

‖∇Ev∼B[Ez∼pt [`(z, xt + δv)]]−∇Lδ(xt)‖

≤ L ·
(
λntW (p0) + λnt

4γd

αδ

λ`∗
(1− λ)2

)
where pt = λntpt−1 + (1− λnt)D(xt + δvt), and W (p0) = maxx∈X W1(p0,D(x)).

Proof of Lemma 2. Observe that using Jensen’s inequality along with Lemma 5, we deduce

‖∇Ev∼B[Ez∼pt [`(z, xt + δv)]]−∇Lδ(xt)‖2 ≤ Ev∼B
[
‖∇Ez∼pt [`(z, xt + δv)]−∇Ez∼D(xt+δv)[`(z, xt + δv)]‖2

]
≤ Ev∼B[L2(W1(pt,D(xt + δv)))2].

Hence, we need an an upper bound on W1(pt,D(xt + δvt)) which is the Wasserstein-1 distance between the distribution at
time t and the fixed point distribution for the query point xt + δvt.

Upper bound onW1(pt,D(xt+δv)). Using the fact that pt = λntpt−1+(1−λnt)D(xt+δv), we expandW1(D(xt+δv), pt)
as follows:

W1(pt,D(xt + δv)) = W1(λntpt−1 + (1− λnt)D(xt + δv),D(xt + δv), )

≤ λntW1(pt−1,D(xt + δv)) + (1− λnt)W1(D(xt + δv),D(xt + δv))

= λntW1(pt−1,D(xt + δv))

= λntW1(λnt−1pt−2 + (1− λnt−1)D(xt−1 + δv),D(xt + δv))

≤ λnt · λ ·W1(pt−2,D(xt + δv)) + λnt(1− λnt)W1(D(xt−1 + δv),D(xt + δv))

≤ λnt · λ ·W1(pt−2,D(xt + δv)) + λnt(1− λnt) · γ · ‖xt − xt−1‖
≤ λnt · λ ·W1(pt−2,D(xt + δv)) + λnt · γ · ‖xt − xt−1‖,

where we have used the triangle inequality, Assumption 1(d), and the fact that λ > λnt for any t ≥ 1, λnt < λnt−i for any
t ∈ {1, . . . , t− 1}, and 1− λnt < 1. Continuing to unroll the recursion, we have that

EvW1(pt,D(xt + δv)) ≤ λnt · λEvW1(λnt−2pt−3 + (1− λnt−2)D(xt−2 + δvt−2),D(xt + δvt)) + λnt · γ · ‖xt − xt−1‖
≤ λntλ2EvW1(pt−3,D(xt + δv)) + λλntEvW1(D(xt + δv),D(xt−2 + δv))) + λnt · γ‖xt − xt−1‖
≤ λnt · λ2EvW1(pt−3,D(xt + δv)) + λnt · γEv(‖xt − xt−1‖+ λ · ‖xt − xt−2‖)

≤ λntλt−1EvW1(D(xt + δv), p0) + λntγ
t−1∑
i=1

λ(i−1)Ev‖xt − xt−i‖. (5)



Hence, we need a bound on ‖xt − xt−i‖ for each i ∈ {1, . . . , t − 1}. Using the fact that xt = xt−1 − ηt
d
δ `(xt−1 +

δvt−1, zt−1)vt−1 where zt−1 ∼ pt−1, we have that

‖xt − xt−i‖ = ‖xt−1 − ηt−1 dδ `(xt−1 + δvt−1, z)vt−1 − xt−i‖

= ‖xt−2 − ηt−2
d

δ
`(xt−2 + δvt−2, zt−2)vt−2 − ηt−1

d

δ
`(xt−1 + δvt−1, zt−1)vt−1 − xt−i‖

≤ d

δ
η1

t−1∑
j=t−i

|`(xj + δvj , zj)|‖vj‖

≤ η1
d

δ
`∗(i− 1).

Hence, we have that

EvW1(pt,D(xt + δv)) ≤ λntλt−1EvW1(D(xt + δv), p0) + λntγ
t−1∑
i=1

λ(i−1)‖xt − xt−i‖

≤ λntλt−1EvW1(D(xt + δv), p0) + λntγ
t−1∑
i=1

λ(i−1)η1
d

δ
`∗(i− 1)

≤ λntW (p0) + λnt
4γd

αδ

`∗λ

(1− λ)2
,

where the last inequality holds using the fact that
∑t−1
i=1 λ

(i−1)(i− 1) ≤ λ
(1−λ)2 .

Bounding gradient error. Using this bound, we deduce

‖∇Ev∼B[Ez∼pt [`(z, xt + δv)]]−∇Lδ(xt)‖2 ≤ Ev∼B[L2(W1(pt,D(xt + δv)))2]

≤ L2

(
λntW (p0) + λnt

4γd

αδ

λ`∗
(1− λ)2

)2

.

This concludes the proof.

Lemma 7. Suppose that Assumptions 1 and 3 hold. The loss Lδ(x) is differentiable and the map x 7→ ∇Lδ(x) is G-Lipschitz
continuous. Moreover, the estimate holds:

‖∇L(x)−∇Lδ(x)‖ ≤ Gδ ∀ x ∈ X .

Proof. For any point x, x′ ∈ X , we successively estimate

‖∇Lδ(x)−∇Lδ(x′)‖ ≤ E
w∼B

[‖∇L(x+ δw)−∇L(x′ + δw)‖] ≤ G‖x− x′‖

Thus ∇Lδ is G-Lipschitz continuous. Next, we estimate

‖∇L(x)−∇Lδ(x)‖ ≤ E
w∼B

[‖∇L(x+ δw)−∇L(x)‖] ≤ G · E
w∼B
‖w‖ ≤ G · δ,

which concludes the proof.

Define the smoothed loss at pt is defined as

Lδt (x) := E
v∼B

[ E
z∼pt

[`(z, x+ δv)].

Let x̄δ the optimal point of Lδ on (1 − δ)X , and xδ be the optimal point of Lδ on X . We have the following bound on the
distance between the optimum of the performative prediction problem defined by L on X and the optimum of the perturbed
problem defined by Lδ on (1− δ)X .

The normal cone to a convex set X at x ∈ X , denoted by NX (x) is the set

NX (x) = {v ∈ Rd : 〈v, y − x〉 ≤ 0 ∀y ∈ X}.



Lemma 8. Choose δ < min{r, αH }. Then the estimate holds:

‖x∗ − x̄δ‖ ≤ δ
((

1 +
G

α

)
‖x∗‖+

G

α

)
.

Proof. There are two sources of perturbation: one replacing X with (1 − δ)X and the other in replacing L with Lδ . We will
deal with each one individually. To do so, set τ := 1 − δ and let x̃ be the optimal point for L on the shrunken set τX . Thus
x̃ satisfies the inclusion 0 ∈ ∇L(x̃) + NτX (x̃) where NτX (x̃) denotes the normal cone to τX at x̃. The triangle inequality
directly gives

‖x∗ − x̄δ‖ ≤ ‖x∗ − x̃‖+ ‖x̃− x̄δ‖. (6)
Let us bound the first term on the right hand side of (6). To this end, since the map x 7→ ∇L(x) + NτX (x) is α-strongly
monotone, we deduce

α‖x̃− τx∗‖ ≤ dist(0,∇L(τx∗) +NτX (τx∗)). (7)
Let use estimate the right hand side of (7). Since x∗ is optimal, the inclusion 0 ∈ ∇L(x∗)+NX (x∗) holds. Taking into account
the identity NτX (τ∗) = NX (x∗), we deduce

dist(0,∇L(τx∗) +NτX (τx∗)) = dist(0,∇L(τx∗) +NX (x∗)) ≤ ‖∇L(τx∗)−∇L(x∗)‖ ≤ δ ·G · ‖x∗‖,
where the last inequality holds since ∇L is G-Lipschitz continuous. Appealing to (7) and using the triangle inequality, we
therefore deduce

‖x∗ − x̃‖ ≤ ‖x̃− τx∗‖+ δ‖x∗‖ ≤ δ
(

1 +
G

α

)
‖x∗‖.

It remains to upper bound ‖x̃− x∗‖. Since x̃ is optimal, we have that

〈−∇L(x̃), x− x̃〉 ≤ 0, ∀ x ∈ τX . (8)

Analogously, since x̄δ is also optimal, we have that

〈−∇Lδ(x̄δ), x− x̄δ〉 ≤ 0, ∀ x ∈ τX . (9)

Then, by strong convexity of the game and estimates (8) and (9), we get that

α‖x̃− x̄δ‖2 ≤ 〈∇L(x̃)−∇L(x̄δ), x̃− x̄δ〉
≤ 〈∇Lδ(x̄δ)−∇L(x̄δ), x̃− x̄δ〉
≤ ‖∇Lδ(x̄δ)−∇L(x̄δ)‖‖x̃− x̄δ‖
≤ G · δ · ‖x̃− x̄δ‖

where the last inequality follows from Lemma 7.

The following lemma holds by a simple inductive argument.
Lemma 9. Consider a sequence Dt ≥ 0 for t ≥ 1 and constants t0 ≥ 0, a > 0 satisfying

Dt+1 ≤
(

1− 2

t+ t0

)
Dt +

a

(t+ t0)2
.

Then the estimate holds:

Dt ≤
max{(1 + t0)D1, a}

t+ t0
∀t ≥ 1.

Proof of Theorem 1
Theorem 1. Suppose that Assumptions 1, 2, 3, and 5 hold. Let δ ≤ min{r, α

2H }, and set step size ηt = 4
αt and epoch length

nt ≥ log

W (p0) + 4γd
αδ

λ`∗
(1−λ)2(

ηt
α
L2

`2∗d
2

4δ2

)1/2
 1

log(1/λ)
.

Then the estimate holds:

E ‖xt − x∗‖2 ≤
max{α2δ2‖x1 − x̄δ‖2, 16d2`2∗}

tα2δ2

+ 2δ2
((

1 +
G

α

)
‖x∗‖+

G

α

)2



Proof. Adding and subtracting appropriately, we have that
1

2
‖xt+1 − x∗‖2 ≤ ‖xt+1 − x̄δ‖2 + ‖x̄δ − x∗‖2

≤ ‖xt+1 − x̄δ‖2 + δ2
((

1 +
G

α

)
‖x∗‖+

G

α

)2

Now, to bound ‖xt+1 − x̄δ‖, we have that
E[‖xt+1 − x̄δ‖2] ≤ E[‖xt − x̄δ − ηtĝt(xt)‖2]

≤ E[‖xt − x̄δ‖2]− 2ηt E〈ĝt(xt), xt − x̄δ〉+ η2t E ‖ĝt(xt)‖2

= E[‖xt − x̄δ‖2]− 2ηt E〈∇Lδt (xt), xt − x̄δ〉+ η2t E ‖ĝt(xt)‖2

where the last equality holds since E[ĝt(xt)] = ∇Lδt (xt). We rewrite the smoothed gradient of the loss at time t as
∇Lδt (xt) = ∇Lδ(xt) +∇Lδt (xt)−∇Lδ(xt).

Hence
E[‖xt+1 − x̄δ‖2] ≤ E[‖xt − x̄δ − ηtĝt(xt)‖2]

≤ E[‖xt − x̄δ‖2]− 2ηt E〈∇Lδ(xt), xt − x̄δ〉 − 2ηt E〈∇Lδt (xt)−∇Lδ(xt), xt − x̄δ〉+ η2t E ‖ĝt(xt)‖2

≤ (1− ηtα)E[‖xt − x̄δ‖2]− 2ηt E〈∇Lδt (xt)−∇Lδ(xt), xt − x̄δ〉+ η2t
`2∗d

2

2δ2
,

where we used the fact that the smoothed loss is (1 − c)α strongly convex for any c ∈ (0, 1) and we let c := 1/2. Using the
fact that

E |〈∇Lδt (xt)−∇Lδ(xt), xt − x̄δ〉| ≤
1

2∆1
L2

(
λntW (p0) + λnt

4γd

αδ

`∗
(1− λ)2

)2

+
∆1 E ‖xt − x̄δ‖2

2
,

we have that

E[‖xt+1 − x̄δ‖2] ≤ (1− ηtα)E[‖xt − x̄δ‖2] + η2t
`2∗d

2

2δ2

+ 2ηt

(
1

2∆1
L2

(
λntW (p0) + λnt

4γd

αδ

`∗
(1− λ)2

)2

+
∆1 E ‖xt − x̄δ‖2

2

)

= (1− ηt(α−∆1))E[‖xt − x̄δ‖2] + η2t
`2∗d

2

2δ2
+ 2ηt

(
1

2∆1
L2

(
λntW (p0) + λnt

4γd

αδ

`∗
(1− λ)2

)2
)

≤ (1− ηt
α

2
)E[‖xt − x̄δ‖2] + η2t

`2∗d
2

2δ2
+ 2ηt

(
1

α
L2

(
λntW (p0) + λnt

4γd

αδ

`∗
(1− λ)2

)2
)

where we use ∆1 := α/2. Now, since

nt ≥ log

W (p0) + 4γd
αδ

`∗
(1−λ)2(

ηt
α
L2

`2∗d
2

4δ2

)1/2
 1

log(1/λ)
,

we have that

λnt

(
W (p0) +

4γd

αδ

`∗
(1− λ)2

)
≤
(
ηt
α

L2

`2∗d
2

4δ2

)1/2

.

so that

2ηt

(
L2

α

(
λntW (p0) + λnt

4γd

αδ

`∗
(1− λ)2

)2
)
≤ η2t

`2∗d
2

2δ2
.

Therefore, we deduce

E[‖xt+1 − x̄δ‖2] ≤
(

1− ηt
α

2

)
E[‖xt − x̄δ‖2] + η2t

`2∗d
2

δ2

Since ηt = 4/(αt), we apply Lemma 9 to deduce that

E ‖xt+1 − x̄δ‖2 ≤
max{α2δ2‖x1 − x̄δ‖2, 16`2∗d

2}
δ2α2t

∀t ≥ 1.

This concludes the proof.



Proof of Corollary 1
Corollary 1 (Main result for zero-order oracle). Suppose the assumptions of Theorem 1 hold. Fix a target accuracy

ε < 4r2((1 + G
α )R+ G

α )2,

and set δ = α
√
ε/4/((α+G)R+G) and ηt = 4/(αt). Then, the estimate E ‖xt − x∗‖2 ≤ ε holds for all

t ≥ max{8α2εR2, 128((α+G)R+G)2`2∗d
2}

α4ε2
.

Proof. The assumed upper bound on ε directly implies that δ ≤ α
2G and δ < r. An application of Theorem 1 yeilds the estimate

E[‖xt − x∗‖2] ≤ max{δ2α2‖x1 − x̄δ‖2, 16d2`2∗}
tα2δ2

+
ε

2
.

Setting the right side to ε, solving for t, and using the trivial upper bound ‖x1 − x̄δ‖ ≤ 2R completes the proof.

Proofs for First Order Oracle Setting
Proof of Lemma 3
Lemma 3. Under Assumptions 1, 2, and 4, the gradient error satisfies

‖∇Ez∼pt [`(z, xt)]]−∇L(xt)‖2

≤ L2 ·
(
λnW 1(p0) + λnγη

L(1 + ‖A‖op)λ

(1− λ)2

)2

where pt = λnpt−1 + (1− λn)D(xt).

Proof. Observe that using Jensen’s inequality along with Lemma 5, we deduce
‖∇Ez∼pt [`(z, xt)]]−∇L(xt)‖2 =

[
‖∇Ez∼pt [`(z, xt)]−∇Ez∼D(xt)[`(z, xt)]‖

2
]

≤ L2(W1(pt,D(xt)))
2.

The remainder of the proof is identical to the proof of Lemma 2. Indeed, we have that

W1(pt,D(xt)) ≤ λnλt−1W1(D(xt), p0) + λnγ
t−1∑
i=1

λ(i−1)‖xt − xt−i‖.

Hence, we need a bound on ‖xt − xt−i‖ for each i ∈ {1, . . . , t− 1}. Recall that xt = xt−1 − ηĝt−1 where

ĝt−1 = ∇x`(xt−1, zt−1) + (1− λn)A>∇z`(xt−1, zt−1), and zt−1 ∼ pt−1.
Moreover,

‖ĝt‖ ≤ L(1 + ‖A‖op)

since ` is L-Lipschitz continuous. Hence, we have the following bound:
‖xt − xt−i‖ = ‖xt−1 − ηĝt−1 − xt−i‖

= ‖xt−2 − ηĝt−2 − ηt−1ĝt−1 − xt−i‖

≤ η
t−1∑
j=t−i

‖ĝj‖

≤ η · L · (1 + ‖A‖op) · (i− 1).

Therefore, we deduce

W1(pt,D(xt)) ≤ λnλt−1W1(D(xt), p0) + λntγ

t−1∑
i=1

λ(i−1)η · L · (1 + ‖A‖op) · (i− 1)

≤ λnλt−1W1(D(xt), p0) + λnγη · L · (1 + ‖A‖op) · λ

(1− λ)2
,

where the last inequality follows from the fact that
∑t−1
i=1 λ

(i−1)(i − 1) ≤ λ
(1−λ)2 . Using this bound on the Wasserstein-1

distance between the current probability distribution pt at time t and the fixed point probability distribution D(xt) induced by
xt, we have that

‖∇Ez∼pt [`(z, xt)]]−∇L(xt)‖2 ≤ L2 ·
(
λnW 1(p0) + λnγη · L · (1 + ‖A‖op) · λ

(1− λ)2

)2

since λt−1 ≤ 1. This concludes the proof.



Proof of Theorem 2
We restate the theorem for convienience.
Theorem 2. Suppose that Assumptions 1, 2, 3, and 4 hold. For step-size η ≤ α

2G2 and epoch length

n ≥ log

(
L
W 1(p0) + γηL(1 + ‖A‖op) λ

(1−λ)2

(αη)1/2σ

)
1

log(1/λ)
,

the estimate holds:

E‖xt+1 − x∗‖2 ≤
1

1 + ηα
E‖xt − x∗‖2 +

4η2σ2

1 + ηα
.

Note that the gradient ĝt approximates the gradient G(x) := ∇L(x) = ∇Ez∼D(x) `(x, z).

‖xt+1 − xt‖ = ‖xt − ηĝt − xt‖ = ‖xt − ηG(xt)− η(ĝt − G(xt))− xt‖

Noting that xt+1 is the minimizer of the 1–strongly convex function x 7→ 1
2‖xt − ηĝt − x‖

2 over X , we deduce

1

2
‖xt+1 − x∗‖2 ≤

1

2
‖xt − ηĝt − x∗‖2 −

1

2
‖xt − ηĝt − xt+1‖2.

Expanding the squares on the right hand side and combining terms yields

1

2
‖xt+1 − x∗‖2 ≤

1

2
‖xt − x∗‖2 − η〈ĝt, xt+1 − x∗〉 −

1

2
‖xt+1 − xt‖2

=
1

2
‖xt − x∗‖2 − η〈ĝt, xt − x∗〉 −

1

2
‖xt+1 − x∗‖2 − η〈ĝt, xt+1 − xt〉.

Setting µt := Et[ĝt], we successively compute

1

2
Et‖xt+1 − x∗‖2 ≤

1

2
‖xt − x∗‖2 − η〈Etĝt, xt − x∗〉 −

1

2
Et‖xt+1 − x∗‖2 − ηEt〈ĝt, xt+1 − xt〉

≤ 1

2
‖xt − x∗‖2 − η〈µt, xt − x∗〉 −

1

2
Et‖xt+1 − x∗‖2 − ηEt〈ĝt, xt+1 − xt〉

=
1

2
‖xt − x∗‖2 − ηEt〈G(xt+1), xt+1 − x∗〉 −

1

2
Et‖xt+1 − x∗‖2

+ η Et〈ĝt − µt, xt − xt+1〉︸ ︷︷ ︸
P1

+η Et[〈µt − G(xt+1), x∗ − xt+1〉]︸ ︷︷ ︸
P2

.

Strong convexity of L(x) implies that 〈G(xt+1), xt+1 − x∗〉 ≥ α‖xt+1 − x∗‖2 so that

1 + 2ηα

2
Et‖xt+1 − x∗‖2 ≤

1

2
‖xt − x∗‖2 −

1

2
Et‖xt+1 − xt‖2 + η(P1 + P2).

Using Young’s inequality, we upper bound P1 as follows:

P1 ≤
1

2∆1
Et‖ĝt − µt‖2 +

∆1Et‖xt+1 − xt‖2

2

≤ σ2

2∆1
+

∆1Et‖xt+1 − xt‖2

2

using Assumption 6. Using Yong’s inequality again, we have that

P2 ≤
Et‖µt − G(xt+1)‖2

2∆2
+

∆2Et‖xt+1 − x∗‖2

2
.

Next observe that

Et‖µt − G(xt+1)‖2 ≤ 2Et‖µt − G(xt)‖2 + 2Et‖G(xt)− G(xt+1)‖2

≤ 2C2 + 2G2Et‖xt − xt+1‖2,

where

C2 := L2 ·
(
λnW 1(p0) + λnγη · L · (1 + ‖A‖op) · λ

(1− λ)2

)2

.



Therefore

P2 ≤
2C2 + 2G2‖xt − xt+1‖2

2∆2
+

∆2Et‖xt+1 − x∗‖2

2
. (10)

Now we have that

1 + η(2α−∆2)

2
Et‖xt+1 − x∗‖2 ≤

1

2
‖xt − x∗‖2 +

ησ2

2∆1
+
ηC2

∆2
− 1− 2ηG2∆−12 − η∆1

2
Et‖xt+1 − xt‖2. (11)

Setting ∆2 = α and ∆1 = 1
η −

2G2

α ensures the last term on the right hand side is zero. We also have that η ≤ α/(4G2) implies
that ∆1 ≥ 1

2η . Rearranging (11) we get that

Et‖xt+1 − x∗‖2 ≤
1

1 + ηα
‖xt − x∗‖2 +

2η2σ2

1 + ηα
+

2ηC2

α(1 + ηα)
.

Next we verify that our choice of n is large enough so that C
2

α ≤ ησ
2. Indeed, this is equivalent to(

λnW 1(p0) + λnγ
4

αG2
· L · (1 + ‖A‖op) · λ

(1− λ)2

)
≤ α1/2

L
η1/2σ

which is in turn equivalent to

n ≥ log

(
L
W 1(p0) + γ 4

αG2L(1 + ‖A‖op) λ
(1−λ)2

(αη)1/2σ

)
1

log(1/λ)
.

Hence, for our choice of n, we have that

Et‖xt+1 − x∗‖2 ≤
1

1 + ηα
‖xt − x∗‖2 +

4η2σ2

1 + ηα
.

Which completes the proof.

Numerical Simulations
In this section, we start by describing the SFpark data and experiment set-up. Then we provide additional figures and details
for each of the two experiments conducted in the main. Finally, we introduce a synthetic data example which abstracts strategic
classification in settings where agents have memory.

SFPark Data Description
In this section, we provide more details on our data cleaning strategies and our model for the SFpark dataset.

Data cleaning. We start by discussing our data cleaning strategy. Of the many features in the dataset, the key ones of interest
to us were the street name, district name, total time available (number of parking spots multiplied by number of seconds per
hour), total time occupied, and rate. Many of the rates were unavailable in the original dataset, but the rate charged for the day
before and day after were. If we encountered a missing rate, we replaced it with the rate before and after, if those rates were
equal. We only worked with blocks where we could successfully fill in each of the missing rates. This process can be found in
the accompanying code.

Estimating price sensitivity. The model we consider is explained in the main body. To provide more intuition and details,
as an example, consider the 600 block of Beach Street for the time window between 1200–1500. The initial distribution, d0, is
sampled from the data at the initial price for parking along the 600 block of Beach ST (Beach ST 600), which in this case is
x0 = $3 per hour. As described in Section , we assume that for an announced price difference of x = x̃− x0, x̃ is the charged
price and x is the variable of optimization. The occupancy follows a distribution of ζ + A(x̃ − x0), where ζ follows the same
distribution as p0.

The price sensitivity A is a proxy for the price elasticity, in that it provides us a relationship between the change in price and
the change in occupancy mapped to a (0, 1) scale. Indeed, recall that price elasticity is a change in the percentage occupancy for
a given change in percentage price. Hence, price sensitivity as we have defined it has the same sign as price sensitivity except
that it is in the right units of our mathematical abstraction for the problem, and is in this sense a proxy thereof. We compute A
by considering the following:

a. The average occupancy for the initial price over every weekday in the beginning of the pilot study until the price is changed.
b. The average occupancy over every weekday in the final week of the last price announcement.
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Figure 3: Results of Algorithm 2 (first and third plots of each row) and Algorithm 1 (second and fourth plots of each row) with
different (n, T ) pairs for the 500, 700 and 800 blocks of Beach ST for time window 1200–1500. Each marker represents a price
announcement, and the plots show the prices and corresponding predicted occupancies. The SFpark prices and occupancies are
far from the target and performative optimal price, whereas the proposed algorithms obtain both points up to theoretical error
bounds.

As an example, for the 600 block of Beach ST, the initial price was $3.00 per hour and the average occupancy before a new
price was announced was approximately 60.6%, the final price announced during the pilot study was $4.25, and the average
occupancy for the final week was approximately 41.1%. Therefore, for the 600 block of Beach ST, we estimate that

A ≈ 0.411− 0.606

4.25− 3
= −0.156,

where occupancy percentage is mapped to the [0, 1] scale. It was shown in Pierce and Shoup (2018) that price elasticity is in
general a small negative number on average for the SFpark pilot study and experiment. This is consistent with prior studies on
price elasticity for on-street parking where information about price and location plays a crucial role (Fiez and Ratliff 2020; ?).
However, for the SFpark pilot study, the price elasticity also depends highly on the block and neighborhood.

Estimating geometric decay parameter λ. We also use this data to estimate the geometric decay rate, λ. As described in
Section , when a new rate is posted, the effect on the occupancy is not immediate, and so the geometric decay rate, λ, in this
context represents the speed at which this new announced price travels through the population (and consequently affects the
parking occupancy). We group the occupancy data by day of week, in order to account for different traffic patterns on different
weekdays. We assume that the week before a new price is announced is the fixed point distribution of the previous rate. For
example, for the 600 block of Beach ST, a rate of $3.50 per hour was announced on February 14, 2012, which means that we
assumed that the occupancies on February 7–13, 2012 were the fixed point distributions of the previous rate $3.25. We now fix
a day of the week (e.g., Monday), a block (e.g., Beach ST 600), and a time window (e.g., 1200–1500). Suppose the prices {xi}
are announced and D(xi) represents the fixed point distribution of announcing xi, where the price xi is in effect for Ki weeks.



Then, for the k-th week after announcing xi, we assume that the occupancy is represented by λkD(xi−1) + (1−λk)D(xi). For
each week k, and for price xi, the occupancy for the specified day is represented as zi,k. To find the value of λ, for the specified
day and block, we solve the following optimization problem:

minimize
λ∈[0,1]

∑
i

Ki∑
k=1

(λkD(xi−1) + (1− λk)D(xi)− zi,k)2.

We perform projected gradient descent to solve this problem. For the final value of λ that we use for the specified block, we
average the estimated values of delta for each day.

Comparing Performative Optimum to SFpark
Here, we provide experiments for other blocks on Beach Street (beyond just the 600 block in Section ). Each row in Figure 3
shows prices and corresponding occupancies for Algorithm 2 and Algorithm 1 for the 500, 700, and 800 blocks of Beach ST,
respectively. In each instance, we make similar observations to those in Section for the 600 block on Beach ST, namely, that
SFpark consistently overshot the price to reach the target occupancy, and that the choice of n = 8 is reasonable, in that a time
period of 8 weeks is sufficient for the population to equilibriate before announcing a new price.

An interesting observation from Figure 3 comes from the fact that the 500 block of Beach ST has a price sensitivity of
A ≈ −0.844, and the 800 block of Beach ST has a price sensitivity of A ≈ −0.424. Since both of these values have large
magnitudes, we observe that for a small price reduction, the estimated occupancy increases to 100%. Therefore, for blocks
where the magnitude of the price sensitivity is large, our experiments suggest using a smaller choice of n, and consequently a
larger choice of T , in order to reduce the variance for the price announcements to prevent having large fluctuations in occupancy.
All four of the blocks on Beach Street have very similar estimated λ values. Table 1 indicates that each block adjusts to new

Beach ST Block Number (estimated) ≈ λ value
500 0.993
600 0.959
700 0.993
800 0.984

Table 1: Estimated decay rate λ for each block along Beach ST.

price announcements at similar rates. This makes sense given that each of the blocks are on the same street all next to each
other, and located near similar landmarks.

Redistributing Parking Demand
In this appendix subsection, we describe the details for the experiment on redistributing parking demand. The study includes
the four connected blocks Hawthorne ST 0, Hawthorne ST 100, Folsom ST 500, and Folsom ST 600 because the blocks are
adjacent to one another as shown in Figure 2. Thus, we wanted to investigate whether price changes would redistribute the
traffic such that each block had an occupancy closer to the target of 70%. An interesting note is that while Folsom ST 500 and
Folsom ST 600 both have negative price sensitivity values of of A ≈ −0.399 and A ≈ −0.284 respectively, Hawthorne ST
0 and Hawthorne ST 100 have positive price sensitivity values of A ≈ 0.454 and A ≈ 0.044 respectively. Since Hawthorne
ST has a very high initial average occupancy, SFpark should consider decreasing prices on this street in order to shift demand
to the nearby streets. This is exactly what we see done by both Algorithms 1 and 2 so that both streets are closer to the target
occupancy. Although the price sensitivity is very different for these blocks, the estimated λ values are very similar. Hawthorne
ST 0 has λ ≈ 0.853, Hawthorne ST 100 has λ ≈ 0.979, Folsom ST 500 has λ ≈ 0.996, and Folsom ST 600 has λ ≈ 0.793, so
each block adjusts to new price announcements at similar rates.

Synthetic Data: Strategic Classification in Dynamic Environments
In this appendix subsection, we apply our algorithm to a synthetic strategic classification problem—which was considered in
the dynamic setting in Brown, Hod, and Kalemaj (2020) and in the static setting in Drusvyatskiy and Xiao (2020); Miller,
Perdomo, and Zrnic (2021); Perdomo et al. (2020), e.g.—where there is memory in the agent population. For simplicity (and
to support visualization of the classifier performance), each data point contains a feature vector, φi ∈ R2, and a corresponding
label, yi ∈ {−1, 1} where i ∈ {1, . . . ,m} and m is the number of strategic users. The loss incurred by the institution is given
by an `2-regularized logistic loss:

1

2

m∑
i=1

−yi 〈x, φi〉+ log(1 + exp(〈x, φi〉)) +
ν

2
‖x‖2,



where we set m = 1000. The agents are non-strategic (meaning they do not perturb their true feature vector φ̄i) if they have
label yi = 1, and otherwise ‘best respond’ to the announced classifier according to the model

φi = arg max
w
−〈x,w〉 − 1

2ε̃
‖w − φ̄i‖2 = φ̄i − ε̃x.

We take ε̃ = 0.1, but the observations we make hold more generally with the exception of very large magnitude perturbations
for which the problem (even in the static setting) becomes untenable. We randomly select a subset of the two features to treat
as strategic. We also randomly generate a ground truth data set by drawing m× 2 samples from a normal distribution, drawing
the ground truth φgt from a (2 dimensional) normal distribution and then assigning labels according to

yi = (sign(φ>i φgt + 0.1v) + 1)/2, v ∼ N (0, 1).

Specifically, agents are allowed to perturb in the x1 direction as can be seen in Figure 4. Moreover, we take the initial data
distribution p0 to be far from the base distribution for users’ true preferences φ̄i even with performative effects; specifically, p0
is a Gaussian distribution with a mean of 1.0 and scale (standard deviation) of 45. More details on the implementation can be
found in the accompanying code.

We divide the data into a training and test set with a (2/3)–(1/3) split. We set the regularization parameter to ν = 1/mtrain
where mtrain is the size of the training data set. The inner product can be interpreted as the utility of the agent and the norm dif-
ference as the cost of manipulation. We present results for a modest value of n = 20; similar or lower values are consistent with
our observations and as our theory suggests, as n → ∞, the solution obtained by Algorithm 2 approaches the performatively
optimal solution.
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Figure 4: Classifiers and losses for different values of λ and n = 20. In order of appearance from left to right, the first three
plots show the learned classifiers with the data at the distribution D(x) induced by the learned classifier for (λ, n) = (0.5, 20),
(λ, n) = (0.95, 20), (λ, n) = (0.99, 20). The fourth plot from the left is the ground truth data distribution without performative
effects. The differences in the data distributions are subtle, but one can see that the different learned classifiers evoke different
responses from the strategic users. The far right plot shows the losses as a function of iterations.
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Figure 5: Accuracy of the classifiers (via confusion matrix) learned for the data distribution and setting shown in Figure 4. For
this randomly sampled data distribution, λ plays a significant role on the generalization capability (as measured by accuracy
on the test set). Surprisingly, accuracy improves as the mixing parameter λ increases (meaning longer time to mix) and this
also has an impact on auxiliary but related metrics such as the false positive and false negative rates. This observation depends
highly on the data distribution, but exposes interesting directions for future theoretical work on understanding how performative
optimality translates to generalization and robustness guarantees.

We explore different values of λ and n—i.e., the mixing parameter of the geometric dynamics and the epoch length of
Algorithm 2—on not just convergence but also on accuracy. The observations we report actually lead to a number of interesting



open questions for this field including how performative optimality relates to generalization. We find that depending on the
skew of the data distribution and the strength of the perturbation power of the strategic agents—namely, ε̃—that surprisingly,
the performatively optimal point may not generalize very well as compared to the solution obtained by Algorithm 2 when the
mixing parameter λ is large. The latter has better accuracy as can be seen in Figure 5; the loss value per iteration and the
classifiers for different λ values are shown in Figure 4.

In other settings (e.g., with different ground truth data), the solution obtained by Algorithm 2, even with different values of λ
and different choices of epoch length n, performs just as well as the performatively optimal solution as depicted in Figure 7, the
data for which has original distribution depicted in Figure 6, which also contains the learned classifiers and losses per iteration
for different λ values.
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Figure 6: Classifiers and losses for different values of λ and n, for the given original data distribution shown in the far right
plot. (left) Different classifiers (as a function of λ and n) and the data distribution given the strategic best response at the
performatively optimal point. (center) Losses for the different (λ, n) pairs as a function of iteration. (right) original data
distribution and ground truth classifier.
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Figure 7: Accuracy of the classifiers (via confusion matrix) learned for the data distribution and setting shown in Figure 6.
For this randomly sampled data distribution, the value of λ does not play a significant role on the generalization capability (as
measured by accuracy on the test set). Accuracy remains the same across the learned classifiers in each setting.

These observations about the generalization performance of the obtained solution under our proposed algorithm (for different
values of the geometric process or mixing constant λ) as compared to the (performatively) optimal point, while highly dependent
on the underlying data distribution, open up a number of interesting directions for future work on understanding precisely when
the optimal point gives good generalization and robustness guarantees.

Semi-Synthetic Data: Strategic Classification in Dynamic Environments
As a point of comparison to the existing literature, we perform additional numerical experiments on a strategic classification
simulator from the Kaggle Give Me Some Credit dataset discussed in Perdomo et al. (2020) and Brown, Hod, and Kalemaj
(2020). In this dataset, each data point contains a feature vector, φ ∈ Rd, which represents historical information about an
individual, and the label, y ∈ {0, 1}, represents whether or not the individual has defaulted on a loan. For more details on the
dataset itself, see Appendix B.2 in Perdomo et al. (2020).

Let S be the subset of features that an individual can strategically manipulate. We assume that the best response of every
individual to an announced x is given by φS − ε̃xS , where we use the notation xS to be the restriction of x to the subset S and
similarly for φS . The remaining features of the individual stay the same as the original data.
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Figure 8: ‘Give Me Some Credit’ Experiment 1: Results of Algorithm 2 called with different (n, T ) pairs along with standard
implementations of repeated risk minimization (RRM) and repeated gradient descent (RGD) wherein the dynamics and clas-
sifier are updated at each iteration. Each marker represents a new x announcement, and the plots show the Euclidean distance
from the performatively optimal point. Algorithm 2 converges to the performatively optimal point for each value of ε̃ while
RRM and RGD converge to the performatively stable point. The latter may be far from the performatively optimal point for
large perturbation values ε̃ as indicated in the plot, going from left to right.
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Figure 9: ‘Give Me Some Credit’ Experiment 2: Results of Algorithm 2 compared to epoch-based implementations of RRM
and RGD—i.e., where in each epoch the dynamics are updated n times with the same classifier deployed—each called with
(n, T ) ∈ {(10, 1000), (100, 1000)}. Each marker represents a new x announcement, and the plots show the Euclidean distance
from the performatively optimal point.

We conduct two sets of experiments. In the first set, we compare our algorithm on the total number of iterations—i.e., epochs
n multiplied by T—to risk minimization (RRM) (Perdomo et al. 2020; Brown, Hod, and Kalemaj 2020), and repeated gradient
descent (RGD) (Perdomo et al. 2020)—implemented for the dynamic environment which was not considered in Perdomo et al.
(2020)—both of which, notably update x at every iteration in [0, nT ] where as our approach (Algorithm 2) only updates at
every n steps in that same interval.

In the second set of experiments, we compare our approach to an epoch based implementation of both RRM and RGD where
in these implementations the dynamics are also allowed to “mix” and the decision maker updates only every n steps as in our
method. These later experiments are more comparable even though the epoch based implementations of RRM and RGD have
not been studied theoretically. For both experiments, we plot the `2 distance to the optimal point.

Experiment 1: Comparison to Iteration-Based (Classical) RRM and RGD. Figure 8 shows the results of the first set of
experiments, for which we have taken λ = 0.9, which is relatively large meaning that the mixing time for the geometric process
is large. Neither RRM nor RGD target the performatively optimal point, but instead the performatively stable point, i.e., the



point at which repeated retraining will stabilize. As shown in Figure 8, a performatively stable point (the point RRM was shown
to converge to in Brown, Hod, and Kalemaj (2020)) may be far from the peformatively optimal point. Interestingly, we also
observe that for small values of ε̃ (i.e. on the order of 1e-2), the performatively optimal point and the performatively stable
point are very close, and so RGD behaves nearly identically to calling Algorithm 2 with n = 1. This seems to imply that when
performative effects (i.e., size of ε̃ in this set of experiments) are very low, the naı̈ve strategies of RRM or RGD suffice when
trying to find the optimal point. On the other hand, for values of ε̃ on the order of 1e-1 or larger, RRM and RGD do not converge
to the performatively optimal point while Algorithm 2 does, albeit with worse iteration complexity to convergence to the stable
point of the respective algorithm.

Experiment 2: Comparison to Epoch-Based RRM and RGD. Figure 9 shows the results of the second set of experiments.
As noted above, in this set of experiments, we compare to epoch based implementations of RRM and RGD to Algorithm 2
which is also an epoch-based algorithm, the idea here being that these are more comparable algorithms in a sense. As can be
seen in Figure 9, the observations are analogous to the first set of experiments. Epoch-based RRM and RGD converge to the
performatively stable point (as defined in (Perdomo et al. 2020) and (Brown, Hod, and Kalemaj 2020), for the dynamic setting).
For ε̃ on the order of 1e-2, the performatively stable point is close to the performatively optimal point (although still not equal to
it), and for ε̃ on the order of 1e-1 or larger, the performatively stable point is considerably farther away from the performatively
optimal point. On the other hand, Algorithm 2 converges to the performatively optimal point for all shown values of ε̃, the size
of the strategic perturbation.

We note that we did not compare to the zero-th order method since it has different information than both the RRM and RGD
and is thus less comparable. We expect the same observations about non-convergence of RRM and RGD for large ε̃ to persist
and Algorithm 1 will converge as the theory predicts, albeit at a much slower rate than Algorithm 2 due to the bandit feedback.


