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Abstract

We consider the problem of allocating divisible items among multiple agents, and
consider the setting where any agent is allowed to introduce diversity constraints
on the items they are allocated. We motivate this via settings where the items
themselves correspond to user ad slots or task workers with attributes such as
race and gender on which the principal seeks to achieve demographic parity. We
consider the following question: When an agent expresses diversity constraints into
an allocation rule, is the allocation of other agents hurt significantly? If this happens,
the cost of introducing such constraints is disproportionately borne by agents who
do not benefit from diversity. We codify this via two desiderata capturing robustness.
These are no negative externality – other agents are not hurt – and monotonicity –
the agent enforcing the constraint does not see a large increase in value. We show
in a formal sense that the Nash Welfare rule that maximizes product of agent values
is uniquely positioned to be robust when diversity constraints are introduced, while
almost all other natural allocation rules fail this criterion. We also show that the
guarantees achieved by Nash Welfare are nearly optimal within a widely studied
class of allocation rules. We finally perform an empirical simulation on real-world
data that models ad allocations to show that this gap between Nash Welfare and
other rules persists in the wild.

1 Introduction

Allocating heterogeneous divisible items (or resources) among agents with different values over these
items is a central problem in economics, with literature dating back many decades [48, 10, 42, 49, 5].
These problems have gained importance in computer science and machine learning due to their
applications in, among other things, large-scale online advertising [38, 7, 31, 6, 26, 8], resource
allocation in datacenters [30] and sharing economy platforms.

Given their wide applicability, there has been a large body of work on elucidating desirable properties
of such allocations. One desirable property is fairness or equity in the value the allocation provides
to different agents. Though there is no universally agreed-upon notion of fairness, one appealing
notion [49] defines fair allocations as those that are both Pareto-optimal on the value they provide to
the agents as well as envy-free [48], meaning that no agent should derive more value from another
agent’s allocation. A less restrictive notion is the so-called Pigou-Dalton principle [19, 40] or
welfarism, which states that given any fixed total value of the agents, an allocation should prefer
distributing these values so that there is no potential transfer of value from an agent with larger value
(the “rich”) to one with smaller value (the “poor”). This loosely translates to allocations that optimize

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



a (weakly) concave social welfare function over agents’ values. We call rules that optimize separable,
symmetric, concave functions of agent values as welfarist allocation rules.1

Due to their simplicity of implementation and ease of understanding, most allocation rules im-
plemented in practice are welfarist rules. Indeed, even when allocations are supported by prices,
for instance in revenue-maximizing ad auctions, by Myerson’s celebrated transformation [41, 24]
and its generalizations, these can be viewed as optimizing a linear “virtual welfare” function over
allocations [12, 14]. Further, envy-freeness can also be implemented by the welfarist Nash Welfare
rule [42, 23, 49] that optimizes the product of agents’ values, and which we will discuss extensively.

1.1 Allocations with Diversity

In this paper, we consider a different desirable facet of such allocations – diversity. The notion of
fairness presented above attempts to spread value fairly across agents. Suppose, in addition, the items
being allocated were also associated with individuals. For instance, consider the following scenario
motivated by online advertising – the items are ad view slots in an advertising ecosystem, each item
labeled with the attributes, such as race, age, gender, of the viewing individual on a social media site.
The agent represents an advertiser who has different preferences over the viewing individuals. The
agent may not only seek an allocation of slots that maximizes its own value, but may also want these
slots to not be all views by any particular race. In other words, the agent seeks an allocation that is also
diverse on the attributes of the corresponding slots. Similarly, in a team formation platform, an agent
seeking such a team may value diversity in attributes such as gender and race of the team members in
addition to competence. Diversity has become an increasingly important consideration for eliminating
bias in allocation platforms where the items map to humans. Allowing agents to specify some form
of diversity constraints on allocations are one way for achieving this goal [50, 4, 13, 43].

The simplest diversity constraint we consider is the case where the agent wants items with different
attributes (such as race and gender) in fixed proportions, which models the diversity desiderata
in the advertising and team formation settings considered above. We term these “proportionality
constraints"; see Section 2.2 for a formal definition. More generally, such constraints capture
complementarity in the allocation, where an agent can say “I want at least as much of this attribute as
that attribute.” A different application for such constraints is in machine allocation in data centers,
where a client could request machines in different geographic regions in certain proportions [46]. For
simplicity, we call these constraints diversity constraints, though it should be kept in mind that they
model complementarity in general and can easily arise in settings beyond achieving diversity.

In Section 2.2, we model diversity constraints imposed by agent i as simply a convex polytope Pi
such that the empty allocation ~0 ∈ Pi. First, this means such constraints preserve feasibility of the
allocation. More importantly, these constraints, including proportionality constraints considered
above, can have both positive and negative coefficients, and this leads to interesting and non-obvious
behavior of welfarist allocation rules. This forms the focus of this paper.

Externality in Diverse Allocations. One natural solution to incorporating diversity is for the
allocation platform to ask agents for their constraints and add them to the welfarist optimization
problem. Indeed, recent work on large scale online allocation problems [20, 21, 26] shows that even in
the presence of arbitrary convex constraints on the allocations that can run across time, the resulting
problem can be viewed as online stochastic convex programming and admits efficient approximation
algorithms [3, 8]. Similarly, recent works on auctions with diversity constraints [14, 16, 28] also
follow this route and simply add these constraints to an optimization procedure.

In this paper, our main focus is to understand how adding such constraints affects the outcome of
the allocation. More precisely, for any welfarist allocation rule, when an agent imposes diversity
constraints, this changes the allocation of not just this agent, but all other agents as well. Naturally,
seeking a diverse allocation will incur a cost in terms of diminished total value of all the agents. This
cost is, of course, counterbalanced by the benefit of diversity to the agent seeking diversity (which
does not explicitly appear in our model). Since the agent seeking diversity is the one benefiting from
the constraints, it would be desirable from both the other agents’ and the platform’s perspective that
this agent should be the one bearing the majority of this cost, while the values for other agents should

1We borrow this term from [44], though the concept itself is classic [37, 39] (See Section 2.1 for formal
definitions.)
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not be significantly impacted. In other words, there should be little negative externality on other
agents. We present this desideratum formally in Section 2.3.

It is not a priori clear whether the welfarist allocation rules are robust in the above sense and thus
the extent to which imposing diversity constraints, even by one agent, may impact other agents. In
fact, this lack of clarity may be a major reason for a platform to hesitate to implement functionality
enabling agents to specify such diversity constraints, a significant shortcoming for applications such
as team selection and online advertising. Thus the focus of our work is on quantifying the potential
negative externality and on developing recommendations for finding robust allocations.

1.2 Our Results

To start with, one could reasonably hope that welfarist allocation rules that attempt to find equitable
or fair allocations across agents would be naturally robust to the addition of diversity constraints, in
the sense that to a good approximation, the negative externality to other agents’ values is bounded.
Our first analytical result shows that the above intuition is false. In Section 3, we show that almost
all welfarist allocation rules – regardless of how equitably or fairly they distribute value among
agents – are not robust in the sense that the negative externality on other agents that stems from
imposing even a single diversity constraint is unbounded (see Theorem 1.) On the positive side, we
show that the Nash Welfare objective [42, 23], which optimizes the product of agents’ values, is the
exception in that it achieves negative externality that is bounded above by an absolute constant factor
even when a constant number of agents impose arbitrary diversity constraints. Further, this constant
bound is nearly optimal for any number of agents enforcing such constraints since any allocation rule
satisfying the Pigou-Dalton principle also suffers similar negative externality. (Theorems 2 and 3.)

We then consider how an agent’s imposing diversity constraints affects its own value. We define an
allocation rule to be monotone if an agent’s imposing diversity constraints weakly reduces her own
value, and is monotone to a constant factor if the value increases by at most a constant factor. In
Section 4, we show such monotonicity is correlated with how egalitarian the allocation rule is – the
more egalitarian (or concave) a rule is, the closer to monotone it is (see Theorem 4.) Further, the
Nash Welfare allocation rule is monotone to an absolute constant factor.

In Section 5, we use real-world datasets to model ad allocation. For a budget-capped valuation
function that is widely studied in this setting, we compare the negative externality induced by various
allocation rules. In this setting, the social welfare maximizing rule models first price auctions with
budget constrained advertisers, and we empirically show that it indeed suffers large externality and
non-monotonicity. However, the Nash Welfare rule suffers very small externality and is monotone,
hence making a case for that our theoretical insights will apply in the wild as well.

We summarize the upper and lower bounds on the amount of negative externality and non-
monotonicity for various allocation rules in Section 2.3. Taken together, our main contribution
is therefore to show that the Nash Welfare objective is uniquely positioned among a large class of
welfarist allocation rules to be robust, achieving both no negative externality and monotonicity to
within small constant factors. Our results also suggest that care must be exercised by the allocation
platform when allowing agents to express diversity or complementarity constraints. If these are di-
rectly encoded into the optimization like in [14, 21, 26, 3, 6], they may create second-order unfairness
where the resulting decease in value is borne by agents not directly benefiting from the diversity.

1.3 Related Work

Our work studies robustness of allocations when users can express diversity constraints. This can be
equivalently viewed as an agent specifying a different utility function. For instance, a proportionality
constraint corresponds to a user expressing a Leontief utility function over the allocation instead
of linear utility. In that sense, our results can be equivalently viewed as studying the robustness to
agents reporting utility functions that capture diversity. Robustness in our sense has been widely
studied when agents can arbitrarily misreport utility functions. In this context, monotonicity is
simply strategy-proofness, and non-negative externality maps to non-bossiness [47]. The main
result in [47] shows that the only allocation rules that satisfy these properties are variants of serial
dictatorships, where agents go one after the other and choose their optimal allocation, and these rules
are incompatible with Pareto-optimality and welfarist rules. The only exception is settings resembling
matchings [45, 34], which are much more restrictive than the setting we study.
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Note however that a diversity constraint is a very specific type of “misreport" – given any allocation,
the new utility function is necessarily weakly smaller in value, and this is crucial to all our results.
Monotonicity can now be viewed as strategy proofness with such misreports. But now, rules that are
not strategyproof in general can easily be monotone. Indeed, we show in Theorem 4 that the MMF
rule is actually monotone for general constraints, Pareto-optimal, and welfarist, but is trivially very
far from being strategyproof if arbitrary misreports are allowed. In the same vein, the non-negative
externality property is much more specific than non-bossiness with general misreports, and it is a
priori not obvious that is incompatible with welfarist rules (Theorem 3). One of our main results is
to show that even with the specific type of utility “misreports” that diversity constraints imply, this
property is incompatible to any factor with welfarist rules, except for the NW rule.

Several recent works have considered the question of computing solutions to discrete optimization
problems, such as b-matchings [4], stable matching [43], clustering [17], ranking [15, 29], voting [13]
and packing [18], when the items belong to groups that must be allocated fairly in the resulting
solution. For instance, each cluster in the clustering solution must be assigned a balanced cohort of
red and blue points [17]. Our work tackles a normative question that arises in this space – assuming
only a subset of agents care about diversity, what do these constraints mean for the allocations to
other agents? Extending our work to discrete optimization problems is an interesting open question.

For lack of space, we present a detailed comparison with other notions in Economics and related
work on ad auctions in the Supplementary material (Appendix A).

2 The Diverse Allocation Model

There are n agents and m divisible items, each with unit supply.2 The goal of the platform is to
compute an allocation ~x, where xij represents the fraction of item j that is assigned to agent i. Each
item is assigned at most once fractionally, that is,

∑
i xij ≤ 1 ∀ items j.

In the context of ad auctions, an item represents a type of viewer or keyword, available in a certain
quantity. A fractional allocation would allocate the corresponding fraction of the ad slots of that type
to the advertiser (or agent).

We assume that any agent i’s value for an allocation ~xi is linear. We denote the value as Vi(~xi) =∑
j vijxij , where vij is the value of the agent for item j. Our positive results extend to the more

general setting where Vi are arbitrary non-decreasing, continuous, concave functions, while our
negative results apply even to the linear case.

2.1 Welfarist Allocation Rules

We will consider a general subclass of allocation rules called welfarist allocation rules. These optimize∑
i f(Vi(~xi)), where f is a monotonically non-decreasing, continuous and concave function.

Formally, given a choice of f , the welfarist optimization problem is as follows:

Max
∑
i

f(Vi) s.t. ~Vi ∈

Vi =∑
j

vijxij ∀i;
∑
i

xij ≤ 1 ∀j; xij ≥ 0 ∀i, j


Typically, the more concave f is, the more egalitarian across agents is the resulting allocation. The
main class of rules we consider are γ-fair rules [39], defined as:

f(y) =
yγ

γ
, γ ∈ (−∞, 1]

At γ = 0, this rule is defined by its limit as γ → 0, so that f(y) = ln y.

As special cases, this yields well-known rules in increasing order of how concave f is, in a sense
capturing increasing fairness in the resulting allocations.

Social Welfare (SW). f(y) = y, corresponding to γ = 1.
Nash Welfare (NW). As γ → 0, we obtain f(y) = ln y.

2The model trivially generalizes to the setting with arbitrary but known supply by scaling the values.
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Max-min Fairness (MMF). This computes an allocation with ~V such that if Vi < Vj , there is
no other allocation where agent i’s value is larger than Vi and j’s value is smaller than Vj . This
corresponds to γ → −∞.

Among these functions, SW is the least egalitarian, while MMF is the most. We now note some
features of welfarist allocation rules that we will use later.

Pareto-optimality (PO). The optimal allocation ~x is such that there is no other allocation ~y such that
Vi(~yi) ≥ Vi(~xi) for all agents i, with one inequality strict.

Pigou-Dalton (PD) Principle [19, 40]. Consider any two allocations with values ~V and ~V ′ where∑
i Vi =

∑
i V
′
i . Fix two agents k and ` and suppose Vj = V ′j for all j 6= k, `, while Vk < V ′k < V`

and Vk < V ′` < V`. Then the allocation rule weakly prefers ~V ′ to ~V .

Anonymity. We finally say that a rule is anonymous if the allocation only depends on the revealed
vector of values, and not on the identity of the agents. In particular, agents that reveal identical values
receive identical allocations.

Note that all welfarist rules described above satisfy (PO), (PD), and anonymity. The NW rule has
additional desirable properties. First, it is scale invariant: If an agent i scales all her values ~vi by
any factor α with other agents remaining the same, the optimal allocation does not change. Next, the
allocation is proportional: Given n agents, the value obtained by any agent in the NW allocation is
always at least 1/n of the value it could have obtained had it been the only agent in the system.

2.2 Specifying Diversity

We assume an agent i can be interested in receiving a diverse mix of items, and can specify diversity
as a constraint set Pi on the allocation ~xi it receives. This constraint set is added to the welfarist
optimization problem described above. We assume Pi is convex and that ~0 ∈ Pi. As mentioned
before, such constraints are motivated by settings where the items have attributes related to gender,
race, income, etc., and an agent can be interested in obtaining a balanced mix of items, as opposed to
a welfare maximizing set of items. We consider two types of constraints:

Proportionality Constraint. Here, agent i specifies a partition Si1, Si2, . . . , Siki of a subset T of the
items, along with proportions αi1, αi2, . . . , αiki where

∑ki
r=1 αir ≤ 1. It seeks allocations from each

Sir in proportion to αir. In other words, the constraint set Pi is:∑
j∈Sir

xij = αir
∑
j

xij ∀r ∈ {1, 2, . . . ki}

We can also define an ε-approximate notion of proportionality, where the right hand side of the above
equality is constrained to be within (1± ε) factor of the left hand side. In our constructions, we will
only consider exact proportionality.

General Constraint. There is an arbitrary convex set Pi, with ~0 ∈ Pi. The agent needs ~xi ∈ Pi. This
is more general than the proportionality setting, and could for instance capture multiple proportionality
constraints over different partitions of the items. Further, the unconstrained setting where Pi is all
possible allocations is also a special case.

We call an agent who does not specify any constraints an unconstrained agent. A constrained agent
can specify a general constraint set, and this includes being unconstrained. Our positive results
(Theorems 2 and 4) hold in the most general setting with any number of agents who are initially
constrained, while the specific agent switches from being unconstrained to expressing a general
constraint. Note that this captures as a special case, the setting mentioned before where all agents are
initially unconstrained, and one agent switches to expressing a general constraint. Our impossibility
results (Theorems 1, 3 and 4, and Corollaries 1 and 3) on the other hand hold even in the special
case where there are two agents who are unconstrained and one agent switches to expressing a single
proportionality constraint.

2.3 Robustness Desiderata for Allocations with Diversity

The high level question we consider is: For welfarist allocation rules, does providing the ability for
an agent to express diversity constraints lead to undesirable externality in the resulting allocations?
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We study two kinds of externalities: Whether this additional functionality can hurt the agents who do
not use this functionality; and whether an agent can gain by misrepresenting themselves as diversity
constrained when they are unconstrained in reality. Formally, we consider two natural desiderata for
the allocation rule.

Non-negative Externality. (NNE) Suppose ~x is the allocation when agent i is unconstrained. Sup-
pose the agent expresses a diversity constraint Pi and the new allocation with Pi included in the
optimization is ~y. Then for any ` 6= i, we should have V`(~y`) ≥ V`( ~x`). In other words, if agent
i expresses a diversity constraint, it should not create negative externality to other agents. For a
parameter q ∈ [0, 1], we say that an allocation rule is q-NNE if V`(~y`) ≥ qV`( ~x`) for all ` 6= i. For
some of our results, this can be naturally generalized to k agents are initially unconstrained and
simultaneously express arbitrary diversity constraints.

Monotonicity. (MON) Consider the same setting as above. We should have Vi(~xi) ≥ Vi(~yi). In other
words, expressing a diversity constraint should not increase the linear value of the agent, since such
an increase has the undesirable effect of an agent having the incentive to misreport their constraints.
For a parameter p ∈ [0, 1], we say that an allocation rule is p-MON if Vi(~xi) ≥ pVi(~yi).
An allocation rule is (p, q)-robust if it is p-MON, and q-NNE, where p, q ∈ (0, 1) are constants. As
discussed before, robustness is desirable for practical implementation of diversity constraints.

Summary of Results. In the sequel, we will bound the (p, q)-robustness achievable for various
welfarist allocation rules. In particular, we show that among the class of γ-Fair rules, only the Nash
Welfare rule achieves constant q ≥ 1

4 , that is, has bounded negative externality. All other rules have
q = 0. Further, the bound attained by NW cannot be significantly improved: No rule satisfying (PO)
and (PD) as defined in Section 2.1 can achieve q > 1

2 .

For monotonicity, we show that p increases with decreasing γ, that is, as the function f becomes more
concave or fair. At one extreme, for MMF, we have p = 1, and at the other, for SW, we have p = 0.
The Nash Welfare objective achieves p = 1

2 , and the bounds we obtain are tight for all γ ∈ (−∞, 1].

3 The Non-negative Externality (NNE) Condition

In this part, we will assume f is differentiable and study which functions f satisfy the q-NNE condition
for some absolute constant q > 0. At first glance, one might intuit that the more concave or fair f is,
the more likely it is to satisfy q-NNE. Surprisingly, we show this intuition is false. Our main result in
this section is that f needs to have a very specific form that is unrelated to its fairness or concavity
in order for the allocation rule to be q-NNE. In particular, we show that most functions that are not
scale-invariant fail the NNE property regardless of how concave they are, while the scale-invariant
NW allocation satisfies q-NNE for an absolute constant q.

3.1 An Impossibility Result

Define g(y) = yf ′(y). We will assume g is continuous. We need the following technical definition.

Definition 1. For δ ≤ 1, we say that f is δ-scaled if g is continuous and minx,y≥0
g(y)
g(x) = δ.

We show an impossibility result for q-NNE in the following theorem.3

Theorem 1. If f is δ-scaled, then it is not q-NNE for any q > δ.

The above theorem rules out achieving q-NNE for any constant q for a wide range functions. In
particular, we have:
Corollary 1. The γ-Fairness rule for any fixed γ 6= 0 does not satisfy q-NNE for any constant q > 0.

This rules out q-NNE for any constant q > 0 for SW and MMF. A similar corollary holds also for
additional functions commonly considered in the literature. For the Exponential function f(y) =
1− e−λy, note that g(y) = λye−λy, and g(0) = 0. For the Smooth Nash Welfare [27, 25] function
f(y) = ln(1 + y), we have g(y) = y

y+1 , which is increasing with g(0) = 0. Similarly, for
f(y) = ln ln(1 + y), we have g(y) = y

y+1
1

log(y+1) is decreasing with g(y) → 0 as y → ∞.
Therefore, these functions are only δ-scaled for δ → 0, and are hence not q-NNE for any q > 0.

3All omitted proofs are in the Supplementary material (Appendix B).
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3.2 Externality of Nash Welfare

We now show quite surprisingly that in a sense, the converse of Theorem 1 is also true. Specifically,
this theorem does not rule out achieving q-NNE for functions f that are δ-scaled for constant δ > 0.
We show that a subclass of these functions satisfy q-NNE for constant q > 0, and this subclass
includes the NW allocation rule. Further, we show that any allocation rule that is Pareto-optimal and
satisfies the Pigou-Dalton principle incurs an almost matching negative externality.
Theorem 2. Allocation rules where g(y) = yf ′(y) is non-increasing and f is δ-scaled satisfy q-NNE

for q = δ
δ+3 .

The next corollary follows by directly applying the above theorem on NW rule. The proof follows by
observing that for NW, f(y) = ln y, so that g(y) = 1 is a constant, so that it is δ-scaled for δ = 1.
Corollary 2. The NW allocation rule satisfies q-NNE for q = 1

4 .

We note that there could be other functions f satisfying the preconditions of Theorem 2. For instance,
f(x) = 2 lnx− ln(1 + x), which is a combination of Nash Welfare and Smooth Nash Welfare, is
δ-scaled for δ = 1

2 , so that it is q-NNE for q = 1
7 .

To complete the picture, we now show that no rule that satisfies Pareto-optimality (PO) and the
Pigou-Dalton principle (PD) as defined in Section 2.1 can achieve q-NNE for q > 1/2.
Theorem 3. No allocation rule that satisfies (PO) and (PD) satisfies q-NNE for any constant q > 1

2 .

Observations and Extensions. Theorem 2 does not require Vi(~xi) to be a linear function of xi. It
holds as long as Vi(~xi) is any concave non-decreasing function as long as Vi(~0) = 0. The same holds
for all the positive results we subsequently present, e.g., Theorem 4.

As an extension of Theorem 2, suppose k agents express diversity constraints. A naive application
yields q-NNE for q = δk

(δ+3)k
, since each of the k agents expressing a diversity constraint decreases

the value of another agent by a factor of at most δ
δ+3 . However, we show that as long as a small

subset of agents expresses diversity constraints, the externality for δ-scaled functions is bounded.
Corollary 3. For any k, suppose a set S of k agents switch from being unconstrained to expressing
general diversity constraints. Then, allocation rules where g is non-increasing and f is δ-scaled
satisfy q-NNE for q = δ

2k+δ+1 .

Therefore, the NW allocation is q-NNE for q = 1
2(k+1) . We show a matching lower bound below.

Corollary 4. There are instances where any allocation satisfying (PO), (PD), and anonymity is not
q-NNE for q = 1+ε

k+1+ε , where ε > 0 is any constant when each of k agents switches to expressing a
proportionality constraint.

4 The Monotonicity (MON) Condition

Unlike the case of NNE where almost all rules other than NW fail, for monotonicity, we show that
increasing fairness or concavity of f is correlated with achieving p-MON for constant p > 0. This is
surprising since one would expect that if a diversity constraint hurts another agent by an arbitrary
amount, it should help the agent enforcing the constraint also by an arbitrary amount. However, we
show that this intuition is false and MON and NNE are indeed very different properties.

For γ-Fairness, we now show nearly matching upper and lower bounds on p-MON as a function of γ,
and show that p decreases with increasing γ.
Theorem 4. For γ ∈ (−∞, 1], the γ-Fairness rule satisfies p-MON where p is the solution to
p1−γ + p = 1. Further, this bound on p is tight.

The above theorem shows that p increases with decreasing γ, confirming the intuition that achieving
p-MON is easier as the function becomes more concave. In particular, we have the following corollary
by setting γ appropriately:
Corollary 5. The following bounds on p-MON are tight: p = 0 for social welfare (γ = 1); p = 1

2 for
Nash welfare (γ → 0), and p = 1 for max-min fairness (γ → −∞).
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Therefore, the MMF allocation rule satisfies monotonicity, combined with (PO) and (PD), while
Theorem 3 rules out a corresponding result for 1-NNE.

5 Empirical Simulation

We now augment our theoretical analysis with a quantitative empirical demonstration of externality
and monotonicity achieved by various allocation rules. We consider a budget-constrained valuation
function that is widely used in ad allocations [38, 22, 20]. We generate instances from real-world
datasets to mimic bidding data in ad allocation, and empirically compare the externality and mono-
tonicity properties of various allocation rules. We show that even empirically, rules other than Nash
Welfare incur significant negative externality, thus providing evidence that our results are not merely
a worst-case analysis, but correspond to what may also happen in practice.

Datasets and Setup. We use two datasets. The UCI Adult dataset [1] tabulates census information
such as geographic area, job, gender, and race for around 50,000 individuals. The Yahoo A3
dataset [2] contains bid information for advertisers for a set of ads.

For the Adult dataset, we consider the two genders as items, and the 14 job categories as agents. The
value of a gender (item) to a job (agent) is set to be linearly and positively correlated with the number
of people of that gender working in that job. We take the first 500 data points. For the Yahoo dataset,
we consider the advertisements as items, and the advertisers as agents. The value of an advertisement
to an advertiser is set as its bid on the advertisement.4 We take the first 10,000,000 data points.
We arbitrarily take 20 advertisements, together with 6 advertisers who have bid on most of these
advertisements. In both cases, the diversity constraint for an agent is the proportionality constraint
that equalizes the allocation across items where this agent has non-zero values. (We exclude items
with zero value since the agent is clearly not interested in this item.)

In order to make the valuation function mirror advertising applications, we use the budget-capped
valuation function [38, 22], where for each agent i, its value is

Vi(~xi) = min

Bi,∑
j

vijxij

 . (1)

where Bi is the budget of the agent. This function has also been termed liquid welfare, since it is
an upper bound on the amount of welfare the platform can generate given budget constraints of the
advertisers. In our simulation, we draw Bi independently and uniformly from (0, T ). For the Adult
dataset, we set T = 20, and for the Yahoo dataset, we set T = 10. These are chosen commensurate
with the magnitude of the values of the agents for items.

Simulation. We conduct three sets of simulations on each dataset and compare the allocation rules
for γ-Fairness with γ = 1 (Social Welfare), γ = 0.5, γ = 0.1, γ → 0 (Nash Welfare), and γ = −1
(approximating MMF).

In the first single agent simulation, a specific agent expresses the diversity constraint, requiring equal
allocation of all items with non-zero values. For each allocation rule and each agent i, we record the
largest qi such that this rule satisfies qi-NNE when this agent expresses a diversity constraint. We
report qmin = mini qi for each rule. In the second double agent simulation, two agents simultaneously
express diversity constraints, each requiring equal allocations of all items with non-zero value. As
before, we compute the minimum q value achieved over all pairs of agents.

For both these simulations, to prevent the negative externality from being dominated by tiny values,
when computing the negative externality, we ignore agents whose values in the unconstrained case
are less than 10% of their budget.5 We repeat these simulations 10 times with random seeds.

In the third monotonicity simulation, we again consider the case where a single agent expresses a
diversity constraint, requiring its allocation of all items to be equal. For each allocation rule and agent
i, we record the largest pi such that this rule satisfies pi-MON when this agent expresses a diversity
constraint, and report pmin = mini pi for each rule.

4In reality, the value is the bid times the CTR. Though our dataset does not have CTR information, we believe
our results will extend to that case.

5Including these preserves performance of NW and γ-Fairness for γ = 0.1, while other rules only do worse.
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(a) Single Agent simulation. (b) Double Agent Simulation.

Figure 1: The plots of (1− qmin) for Social Welfare (SW), Nash Welfare (NW), and γ-Fairness for
γ = 0.5, 0.1,−1.

Results. In Figures 1a and 1b, we present the box plots of (1 − qmin) for the single and double
agent simulations respectively. For both datasets, Nash Welfare and γ-Fairness for γ = 0.1 give the
best performance with a loss in value below 10% in most cases, while γ = 0.5, SW, and γ = −1
are significantly worse, with negative externality at least twice as large. The exception is the good
performance of γ = −1 on the Adult dataset. Moreover, in the double agent simulation, NW and
γ-Fairness for γ = 0.1 perform much better than the worst-case bounds presented before.

For the monotonicity simulation, we find that pmin = 1 for all rules except SW. In other words, these
rules are monotone. For SW, we have pmin = 0.36 for Yahoo and pmin = 0.94 for Adult.6

Relevance to Ad Auctions. The Social Welfare maximizing rule under the valuation function from
Eq (1) closely mirrors allocation rules used in ad auctions [38, 20, 26, 51]. In particular, via standard
LP duality, the SW allocation has the following structure: It is a first price auction where bid (or
value) of an advertiser is scaled down by an advertiser-dependent parameter. Such an allocation
rule mirrors the widely used smooth delivery allocation rules [51] for budget constrained advertisers.
Further, rules that allocate adwords in an online fashion essentially compute an approximately SW
allocation [38, 20]. Our empirical results show that such a rule suffers large negative externality
when advertisers are allowed to express diversity constraints, and this can be mitigated if the platform
instead uses Nash Welfare. This complements a recent line of work in advertising on implementing
Nash Welfare [8] and regularization [6] as approaches to mitigate unfairness; we show that these
approaches mitigate negative impacts of diversity constraints as well.

6 Conclusion

The conceptual message of this paper is that incorporating diversity constraints into an allocation
platform requires careful selection of the underlying optimization algorithm to prevent negative
externality. One could of course wonder whether negative externality is necessarily a bad thing since
it forces other agents to consider diversity themselves. However, our results should be viewed as
saying that many allocation rules change values of other agents in an unpredictable or counterintuitive
fashion. Since the agents typically are not symmetric in either values or what constraints they
desire, the resulting externalities will also be asymmetric. This argues for minimizing such negative
externality in the first place instead of using it as a disincentive tool.

Our work is just a first step towards understanding the robustness of allocation rules with diversity
constraints, and we now present several open questions. In addition to tightening our bounds, it would
be interesting to study pricing rules and auctions. Though we do not present details, these allocation
rules suffer from similar drawbacks. For instance, truthful auctions [32] or online allocations [38]
with budgets are not Pareto-optimal with diversity constraints, while rules that compute optimal
auctions [41, 14] or market-clearing solutions [5] are not robust to any approximation even with
quasi-linear utilities. We leave a deeper examination of rules with prices and budgets as an interesting
open question. Finally, it would be interesting to study such externality in contexts other than
allocation problems, for instance, discrete ML problems such as ranking or clustering.

6The performance of SW is unstable under different sets of random budgets, while the other four rules are
stable. Thus, for the sake of exposition, we select a bad instance for SW to present here.
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Supplementary Material

A Other Related Work

The Nash Welfare mechanism is classic approach to finding equitable allocations, and achieves
fairness via the notion of market clearing [5, 9, 42]. It was shown in [23] that this objective finds
the solution to the special case of the Fisher market [9]. Given linear valuation functions of agents
and equal initial budgets, this market computes equilibrium prices for the items, such that when
each agent buys their value maximizing allocation subject to exhausting their budget, then each item
with positive price is fully allocated. This concept is also called competitive equilibrium with equal
incomes (CEEI) and is widely studied as a fair allocation rule [35, 11, 49]. The Fisher market with
linear valuation functions satisfies the Gross Substitutes property [33], which states that if the prices
of some items increase, the demand for the other items cannot go down. This implies adding (resp.
removing) an agent weakly reduces (resp. increases) the value obtained by the other agents. This
property is also called competition monotonicity [36].

Though our results about the externality induced by Nash Welfare appear superficially similar to
Gross Substitutes, we cannot find a formal connection. This is because our setting considers the
same set of agents but adds constraints, and these constraints do not preserve the Gross Substitutes
property. Furthermore, in contrast to the Gross Substitutes property that holds in a strict sense for
linear valuation functions, in Section 3, we present a lower bound showing any welfarist allocation
rule must result in some negative externality.

Our work considers the pure allocations problem with additional diversity constraints. In some
settings such as online advertising, it is also possible to consider allocations with prices and budgets.
For instance, if the utility of an agent is its value minus the price it pays (called quasi-linear), then
the dual of the social welfare maximizing allocation also yields an equilibrium [5, 33]. Similarly, the
online algorithms literature [38, 20, 21, 3, 6] considers the model where the total value derived by
an agent is constrained by its budget, while auction literature [41, 12, 14, 16, 32] finds allocations
and prices where agents do not have incentive to misreport. As mentioned before, though some of
these mechanisms suffer from the same drawbacks as welfarist allocation rules, we leave a deeper
examination of rules with prices and budgets (from the perspective of robustness) as an interesting
open question.

B Omitted Proofs

Our proofs will extensively use the following property of the optimal allocation under welfarist rule
f . Let ~V ∗ denote the values of the agents in the optimal solution, and let ~V be the values in any other
feasible allocation. Since the valuation function is concave and continuous and so is f , the space of
feasible ~V is convex. This implies the following gradient optimality property:

∇f( ~V ∗) · (~V − ~V ∗) ≤ 0 (2)

B.1 Proof of Theorem 1

Proof. Consider agents 1 and 2, and items a and b. Set v1a = α, v2b = β, and v1b = v2a = 0. (We
can set the latter values to be any small ε > 0 as well.) In the absence of diversity constraint, we
clearly have x1a = x2b = 1. So V2 = β.

Now, agent 1 expresses a diversity constraint and requires x1a = x1b. Set x1a = x1b = x. Then, we
optimize:

max `(x) = f(αx) + f(β(1− x)), x ∈ [0, 1].

We will show that `′(1− δ) > 0. Since ` is concave, this implies that the optimal solution x̃ > 1− δ,
which in turn implies that V2 < δβ, which thus shows that the allocation rule is not q-NNE for q = δ.

To show this, we observe:

`′(1− δ) = αf ′(α(1− δ))− βf ′(δβ) ≥ g(α)− g(βδ)

δ
,

1



where the final inequality follows since f ′(α(1 − δ)) < f ′(α) by the concavity of f . We now set
α = argmaxyg(y) and β = yδ

δ , where g(yδ) = δmaxy g(y). This yields `′(1− δ) > 0, completing
the proof.

B.2 Proof of Corollary 1

Proof. For γ-Fairness, note that g(y) = xγ and is monotonically increasing and unbounded if
γ ∈ (0, 1] and is monotonicially decreasing and unbounded when γ < 0. Therefore, in either case, it
is not δ-scaled for any δ > 0, which shows that there is no constant q > 0 for which the allocation is
q-NNE.

B.3 Proof of Theorem 2

Proof. Suppose agent i imposes a diversity constraint. Let ~A denote the values of the agents in the
optimal allocation if the constraint is not enforced, and ~B the vector of values in the allocation if the
constraint is enforced. Let rk = Ak

Bk
. Consider an agent ` 6= i.

Since ~B corresponds to the values in a feasible allocation even without agent i’s constraint, by the
gradient optimality condition (Eq (2)), we have:∑

k

(
g(Ak)

1

rk
− g(Ak)

)
=
∑
k

f ′(Ak)(Bk −Ak) ≤ 0,

which can be rewritten as:

g(A`)
1

r`
+
∑
k 6=`

g(Ak)
1

rk
≤
∑
k

g(Ak). (3)

Similarly, suppose we take the allocation without agent i’s constraint and remove agent i’s allocation
from it, the resulting allocation is feasible for the problem where agent i has a constraint. This is
because the empty allocation is feasible for agent i’s constraints. Applying Eq (2) again, we have:

−g(Bi) +
∑
k 6=i

(g(Bk)rk − g(Bk)) = f ′(Bi)(0−Bi) +
∑
k 6=i

f ′(Bk)(Ak −Bk) ≤ 0,

which can be rewritten as:

g(B`)r` +
∑
k 6=i,`

g(Bk)rk ≤
∑
k

g(Bk). (4)

Since g is non-increasing, so is g(x)/x. Therefore, by the Rearrangement inequality, we have for all
k 6= i, `:

g(Ak)
1

rk
+ g(Bk)rk =

g(Ak)

Ak
Bk +

g(Bk)

Bk
Ak ≥

g(Ak)

Ak
Ak +

g(Bk)

Bk
Bk = g(Ak) + g(Bk). (5)

We now have the following, where the first inequality follows from Eq (5),and the final inequality
follows by adding Equations (3) and (4):

g(A`)
1

r`
+ g(B`)r` +

∑
k 6=i,`

(g(Ak) + g(Bk))

≤

g(A`) 1
r`

+
∑
k 6=`

g(Ak)
1

rk

+

g(B`)r` + ∑
k 6=i,`

g(Bk)rk


≤
∑
k

(g(Ak) + g(Bk)).

Simplifying, this further gives:

g(A`)
1

r`
+ g(B`)r` ≤ g(A`) + g(B`) + g(Ai) + g(Bi).

2



Dividing both sides by g(B`) gives:

r` ≤ 1 +
g(A`)

g(B`)
+
g(Ai)

g(B`)
+
g(Bi)

g(B`)
≤ 1 +

3

δ
.

i.e. A`B` = r` ≤ 1 + 3
δ . Therefore, A` ≤ B`

(
1 + 3

δ

)
, showing q-NNE for q ≥ δ

δ+3 .

B.4 Proof of Theorem 3

Proof. Consider the following example: There are 2 items a, b and two agents 1, 2. The values are
v1a = v2a = v2b = 1, and the rest of the values are zero. Agent 2 enforces the proportionality
constraint εx2a = x2b. First consider the setting with no proportionality constraint. Suppose a rule
allocates x1a = 1− x, so that her value is V1 = 1− x. Then x2a = x and x2b = 1 so that the value
of agent 2 is V2 = 1 + x. Since the allocation rule satisfies (PD), this forces x = 0, so that V1 = 1.
Now suppose agent 2 enforces the proportionality constraint and as before, let x2a = x. This forces
x2b = εx, so that V2 = (1 + ε)x. As before V1 = 1− x. If x < 1

2+ε , this allocation cannot satisfy
(PD). Therefore V1 ≤ 1+ε

2+ε for any allocation satisfying (PO) and (PD). Now taking ε→ 0 shows that
the allocation cannot be q-NNE for any constant q > 1

2 .

B.5 Proof of Corollary 3

Proof. Let ` /∈ S denote the agent whose value we are bounding. The inequalities obtained by
generalizing Eq (3) and (4) to omit the set S instead of a single agent i now yields:

g(A`)
1

r`
+
∑
k 6=`

g(Ak)
1

rk
≤
∑
k

g(Ak), g(B`)r` +
∑

k/∈S∪{`}

g(Bk)rk ≤
∑
k

g(Bk).

The same line of reasoning gives:

g(A`)
1

r`
+ g(B`)r` ≤

∑
k∈S∪{`}

(g(Ak) + g(Bk)) .

Dividing both sides by g(B`) gives:

r` ≤ 1 +
g(A`)

g(B`)
+
∑
k∈S

(
g(Ak)

g(B`)
+
g(Bk)

g(B`)

)
≤ 1 +

2k + 1

δ
,

thus showing q-NNE for q ≥ δ
2k+δ+1 .

B.6 Proof of Corollary 4

Proof. The lower bound follows by extending Theorem 3. There is an item a such that for agent
1, v1a = 1. For i ∈ {2, 3, . . . , k + 1}, there is an item i such that agent i has vii = 1. For
i ∈ {2, 3, . . . , k + 1}, we also have via = 1. All other values are zero. Without the diversity
constraint, suppose x2a = x3a = · · · = x and x1a = 1 − kx, then V2 = V3 = · · · = 1 + x and
V1 = 1− kx. Then (PD) implies x = 0 so that V1 = 1.

Now suppose each agent i ∈ {2, 3, . . . , k + 1} express the proportionality constraint εxia = xii.
If x1a = 1 − ky, then by anonymity, we have xia = y and xii = εy for all i ∈ {2, 3, . . . , k + 1}.
Therefore, V1 = 1− ky and V2 = V3 = · · · = (1 + ε)y. Now, any allocation with y < 1

k+1+ε does
not satisfy (PD). Therefore, any allocation satisfying (PO), anonymity, and (PD) has V1 ≤ 1+ε

k+1+ε .
This completes the proof.

B.7 Proof of Theorem 4

Proof. We first present the upper bound. The allocation maximizes
∑
i
1
γV

γ
i . As in the proof of

Theorem 2, let ~A denote the vector of values of the agents if agent i did not have a diversity constraint,
and let ~B denote the vector of values if the constraint is enforced. Assume by scaling all values by

3



the same amount that Ai = 1, and denote Bi = x. Our goal is to upper bound x, which will yield the
value of p. We will assume below that γ 6= 0, and present the proof for γ → 0 separately.

The gradient optimality condition Equation (2) now simplifies to:∑
i

Vi(V
∗
i )

γ−1 ≤
∑
i

(V ∗i )
γ . (6)

Consider the unconstrained allocation, but set agent i’s allocation to zero. This is feasible for the
constrained version whose optimal solution is ~B. Applying Eq (6), we have:

xγ +
∑
k 6=i

Bγk ≥
∑
k 6=i

Ak

B1−γ
k

. (7)

Similarly, the constrained allocation ~B is feasible for the unconstrained problem. Applying Eq (6),
we have:

1 +
∑
k 6=i

Aγk ≥ x+
∑
k 6=i

Bk

A1−γ
k

. (8)

Combining Equations (8) and (7), we have

x− xγ ≤ 1 +
∑
k 6=i

(
Aγk +Bγk −

Ak

B1−γ
k

− Bk

A1−γ
k

)
. (9)

We will now show that
Aγk +Bγk −

Ak

B1−γ
k

− Bk

A1−γ
k

≤ 0.

This is equivalent to: (
1

A1−γ
k

− 1

B1−γ
k

)
(Ak −Bk) ≤ 0.

It is easy to check that for any γ ∈ (−∞, 1], we have Ak ≥ Bk iff A1−γ
k ≥ B1−γ

k . This proves the
inequality. Plugging it into Eq (9), we have

x− xγ ≤ 1.

It is easy to check that for γ ∈ (−∞, 1], x is maximized when x = 1 + xγ , completing the proof.

Nash Welfare. When γ → 0, the above proof does not directly apply. Nevertheless, we can obtain
the bound p = 1

2 as follows. We follow the same outline as the proof of Theorem 2, but do not fix
another agent `. For NW rule, Eq (3) can be rewritten as:

1

ri
+
∑
k 6=i

1

rk
≤ n.

and Eq (4) implies ∑
k 6=i

rk ≤ n.

Our goal now is to upper bound 1
ri

. Therefore, we solve:

min
∑
k 6=i

1

rk
s.t.

∑
k 6=i

rk ≤ n, rk ≥ 0.

This implies rk = n
n−1 in the optimal solution, so that

∑
k 6=i

1
rk
≥ (n−1)2

n . Therefore

1

ri
≤ n−

∑
k 6=i

1

rk
≤ n− (n− 1)2

n
≤ 2.

Therefore, Ai ≥ 1
2Bi, which shows p-MON for p ≥ 1

2 .
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Tight Lower Bound. There are n + 1 of agents {0, 1, 2, . . . , n} where n → ∞ and let c = βn,
where β ∈ (0, 1) is a constant to be determined later. There are 2n+ 1 items {0, 1, 2, . . . , 2n}. We
have v00 = c; for each i ∈ {1, 2, . . . , n} we have v0i = vii = 1; and vi(i+n) = c − 1. All other
values are zero. Agent 0 expresses the proportionality constraint x00 = x01 = · · · = x0n.

We always have xi(i+n) = 1 for i ∈ {1, 2, . . . , n}. In the absence of the diversity constraint, we have
x00 = 1. Suppose x01 = x02 = · · · = x0n = x and x11 = x22 = · · · = xnn = 1− x. The optimal
allocation solves

max n
(c− x)γ

γ
+

(nx+ c)γ

γ
x ∈ [0, 1].

It is easy to check that x = 0 in this solution, so that V0 = nx+ c = c = βn.

When agent 0 adds the diversity constraint, we have x00 = x01 = · · · = x0n = x and x11 = x22 =
· · · = xnn = 1− x. Again, the optimization problem is:

max n
(c− x)γ

γ
+

((n+ c)x)γ

γ
x ∈ [0, 1].

This yields

x = min

(
1, c

(n+ c)
γ

1−γ

n
1

1−γ + (n+ c)
γ

1−γ

)
.

We will constrain c so that
(c− 1)(n+ c)

γ
1−γ ≥ n

1
1−γ , (10)

so that at the optimal solution, we have x = 1 implying V0 = (n + c)x = n + c. This will show
p = c

n+c =
β

1+β .

The constraint Eq (10) can be written as (c− 1)1−γ(n+ c)γ ≥ n. Dividing by n and observing that
when β > 0 and n→∞, c−1n → β, this constraint reduces to:

β1−γ(1 + β)γ ≥ 1.

Setting θ = β
1+β , this implies that this instance is not p-MON for p > θ, where θ is constrained by

θ1−γ + θ ≥ 1, completing the proof.
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