SecNDP: Secure Near-Data Processing
with Untrusted Memory

Wenjie Xiong*§, Liu Ke*T§, Dimitrije Jankov¥, Michael Kounavis*, Xiaochen Wang*, Eric Northup*, Jie Amy Yang*,
Bilge Acun*, Carole-Jean Wu*, Ping Tak Peter Tang*, G. Edward Suh*®, Xuan Zhang", Hsien-Hsin S. Lee*

*Meta, "Washington University in St. Louis, *Rice University, °Cornell University
wenjiex @fb.com, ke.l@wustl.edu, dj16@rice.edu
{michaelkounavis, xiaochenwang, digitaleric, amyyang, acun, carolejeanwu, ptpt, edsuh}@fb.com,
xuan.zhang @wustl.edu, leehs@fb.com

Abstract—Today’s data-intensive applications increasingly suf-
fer from significant performance bottlenecks due to the limited
memory bandwidth of the classical von Neumann architecture.
Near-Data Processing (NDP) has been proposed to perform com-
putation near memory or data storage to reduce data movement
for improving performance and energy consumption. However,
the untrusted NDP processing units (PUs) bring in new threats to
workloads that are private and sensitive, such as private database
queries and private machine learning inferences. Meanwhile,
most existing secure hardware designs do not consider off-chip
components trustworthy. Once data leaving the processor, they
must be protected, e.g., via block cipher encryption. Unfortu-
nately, current encryption schemes do not support computation
over encrypted data stored in memory or storage, hindering the
adoption of NDP techniques for sensitive workloads.

In this paper, we propose SecNDP, a lightweight encryption
and verification scheme for untrusted NDP devices to perform
computation over ciphertext and verify the correctness of linear
operations. Our encryption scheme leverages arithmetic secret
sharing in secure Multi-Party Computation (MPC) to support
operations over ciphertext, and uses counter-mode encryption
to reduce the decryption latency. The security of the scheme is
formally proven. Compared with a non-NDP baseline, secure
computation with SecNDP significantly reduces the memory
bandwidth usage while providing security guarantees. We eval-
uate SecNDP for two workloads of distinct memory access
patterns. In the setting of eight NDP units, we show a speedup
up to 7.46x and energy savings of 18% over an unprotected
non-NDP baseline, approaching the performance gain attained
by native NDP without protection. Furthermore, SecNDP does
not require any security assumption on NDP to hold, thus, using
the same threat model as existing secure processors. SecNDP can
be implemented without changing the NDP protocols and their
inherent hardware design.

Index Terms—Security and Privacy, Near-Data Processing,
Cryptography, Privacy-Preserving Machine Learning

I. INTRODUCTION

The classical von Neumann architecture separates compu-
tation from data storage. However, memory and interconnect
bandwidth have not been able to keep up with the scaling out
and scaling up of the processor cores, hitting the (in)famous

§ The first two authors contributed equally to this work.

The authors grant IACR a non-exclusive and irrevocable license to dis-
tribute the article under the CC BY-NC (creative commons attribution-
noncommercial) license.

Near-Data
Processing (NDP)
Processing Unit (PU)

Bus Snooping

Cold Boot attack

Backdoor/Trojan

Fig. 1. Threat model of SecNDP.

memory wall [73]. For data-intensive applications with high
parallelism and localized memory accesses, memory band-
width has become a major performance bottleneck. Therefore,
techniques such as near-data processing (NDP) offer much
promise in both performance and energy consumption by
offloading computation to main memory (i.e., DRAM) [7],
[91, [27], [35], [77] or even storage [39], [49], [68]. In
Samsung’s Aquabolt-XL. (HBM2-PIM), for example, addition
and multiplication operators are supported in DRAM [40].

At the same time, many data-intensive applications work on
sensitive data, such as queries on private databases (e.g., med-
ical history, user information) and machine learning inference
using private models (e.g., models that need IP protection [16]
or may reveal the private training dataset [64]). As more
computation is outsourced to the cloud, sensitive workloads
are becoming more susceptible to cyber and physical attacks.
In addition to the pursuit of better performance and lower
energy, guaranteeing security and privacy is now considered
a first-class citizen in designing future computing systems.
To protect the confidentiality and/or integrity of program
execution, secure hardware systems designed with a Trusted
Execution Environment (TEE) [1], [2], [4], [13], [70] have
been proposed and implemented in commercial processors
to enforce protection. All of these secure hardware designs
consider off-chip components to be untrusted (in Figure 1)
— be it a TEE design in CPU [13], [70], CPU and GPU
[72], or other accelerators [10], [32]. In this threat model,
off-chip memory needs to be encrypted for confidentiality and
a message authentication code (MAC) for each data block in
memory needs to be computed and checked for integrity.

However, such existing memory protection mechanisms

prevent the adoption of NDP in a TEE, because the NDP Pro-
cessing Units (PUs) only have access to encrypted data, a.k.a.,
ciphertext. One can plausibly apply homomorphic encryp-
tion (HE) [23], [56] to enable computations over ciphertext.
However, the state-of-the-art HE incurs almost four orders of
magnitude performance slowdown [57]. The overhead of HE is
too high to let NDP outperform a TEE without NDP. Another
approach for secure NDP is to include the NDP PUs inside
the TEE [5], [8]. However, this approach requires trusting
multiple hardware vendors, an extra key exchange protocol,
and hardware components on the NDP PUs, resulting in an
undesirably large attack surface for the trusted computing base
(TCB). There is no existing practical solution to achieve secure
NDP for untrusted memory.

In this paper, we propose SecNDP — a lightweight encryp-
tion and verification scheme for a secure processor to use
untrusted NDP. SecNDP uses a secure Multi-Party Compu-
tation (MPC) protocol [19] between the processor and the un-
trusted memory, where a block cipher generates the processor’s
share of secret on-chip without additional off-chip accesses.
Like MPC, SecNDP encryption supports addition and scale
multiplication efficiently. Like counter-mode encryption [69],
SecNDP has low decryption latency with only one adder on the
performance critical path. Furthermore, SecNDP introduces a
verification tag based on a linear checksum [38] to verify
the correctness of the results from the untrusted NDP PU.
To efficiently implement SecNDP, we propose architectural
support in a secure processor. The SecNDP design only
requires relatively small changes in the processor while leaving
the NDP protocols and hardware intact. SecNDP’s perfor-
mance and accuracy are evaluated through detailed cycle-level
simulations using two real-world data-intensive workloads,
deep learning recommendation inference and medical data
analytics. The results show that SecNDP is up to 7.46x
faster while using 18% less memory energy compared to the
unprotected non-NDP baseline, approaching the performance
and energy efficiency of native NDP without protection. The
following summarizes the key contributions:

o We propose the first encryption and verification schemes
that enable practical and provably secure computation in
untrusted NDP.

« We tailor-design the SecNDP architecture, to demonstrate
low decryption and verification latency, and low area and
power overhead on the processor. The design does not
modify NDP PUs and protocols.

o We demonstrate SecNDP’s performance benefits and ac-
curacy on two real-world data-intensive use cases.

II. THREAT MODEL

SecNDP is to be used with a TEE design. We follow
the threat model of a typical TEE, shown in Figure 1.
The processor (CPU, GPU, or an accelerator) is trusted and
considered secure, i.e., there is no hardware backdoor. An
attacker cannot observe or manipulate the internal state of the
processor. We assume an attacker’s software co-located in the
processor cannot access protected data (directly or through

side channels) within the processor. A privileged attacker may
access unencrypted data in memory. Data buses are susceptible
to passive eavesdropping and unauthorized modifications. For
volatile memory such as DRAM, the attacker can conduct a
cold-boot attack [28] to dump the memory content. For non-
volatile memory, the attacker can unplug the storage to access
and modify the content. The NDP processing units (PUs) are
untrusted. NDP PUs may have a backdoor or a Trojan to leak
data or return a malicious computation result.

III. BACKGROUND
A. Near-Data Processing (NDP)

For data-intensive applications, such as machine learn-
ing [9], [35], [46], [49], [77], similarity search [41], data
base [34], graph processing [6], and stencil computing [66],
memory bandwidth has become the major performance bottle-
neck. Many of such workloads deal with vectors and matrices
and conduct linear operations, which is our focus.

Depending on the data reuse rate, moving data from memory
or storage to CPU for computation is inefficient [65]. Many
prior works propose near-memory processing using 3D/2.5D-
stacked DRAM technology (such as HMC/HBM) [22], [33],
[45], [76]. Accelerators inside the data buffer devices in a
commodity DIMM are also proposed to support large-scale
workloads [27]. For specific workloads such as sparse em-
bedding operations in recommendation models, tailor-designed
light-weight NDP systems are proposed to leverage rank-level
parallelism with higher speedup potential [9], [35], [77]. In
addition to near-memory processing, near-storage processing is
proposed to process data near storage with larger capacity [39],
[49], [68]. With the accelerated development of 3D stacking
and emerging memory technologies compatible with CMOS
process [43], [47], productizing NDP on a computing platform
is closer to reality than ever [33], [40], [76].

B. TEEs and Memory Protection

In hardware-based TEE designs, such as AEGIS [70],
Mi6 [13], as well as commercial solutions including Intel
SGX [4], AMD SEV [1], and ARM TrustZone [2], off-chip
memory is untrusted. Data must be encrypted for confidential-
ity protection and data integrity needs to be verified.
Confidentiality Protection with Counter-Mode Encryption:
In counter-mode encryption [38], [50], [69], a data block (e.g.,
a cache line) is eXclusive-ORed (XOR) with a One-Time Pad
(OTP) (Figure 2(a)). The OTP is an encrypted counter z,
generated using a block cipher such as Advanced Encryption
Standard (AES) with the address of the data block and a unique
version number v as inputs. The cipher uses the processor’s
secret key K. The security of the counter-mode encryption
relies on the uniqueness of the version number v for each
address. If the counter is reused for multiple plaintext blocks
at the same address, the attacker can learn the relationship
between the plaintext block versions.

When the processor fetches a data block from memory,
the OTP can be computed using the address and the version
number in parallel with the data access. When the ciphertext

(@) a.k.a., “One time pad (OTP)”|
or “encrypted counter”

X, = Encg (Addr,v)
Plaintext: x, = x,, @D x,

Retrieved X = MACy (x, Addr, v)
———————————————————-

b) Retrieve (C).
MAC: x,

Client

xeZ@v) N =T

Randomr € Z/QZ
Xy =Ty
Xy =X—Ty

2, =a*x1 +bxyi|(d) Processor (TEE)

Block cipher
X, = Ency(Addr, v)
Plaintext: x, = x, — X,

x1,y1 Untrusted
Worker 1

X T T~ pla)i(ntext: = lyez@y) 2TV P z; =a*x, +b*y, | % € Z(2") s
Ciphertext: b }) To_compute:b Untrusted Ciphertext: X
X, pass:fail [z =a*x+bx*y Worker 2 Ontrusted NDP

Fig. 2. (a) Counter mode encryption. (b) Integrity verification using MAC. (c) Arithmetic secret sharing in secure MPC. (d) Proposed SecNDP.

is returned, only one XOR with the OTP is needed for de-
cryption. Counter-mode encryption is widely used for memory
protection due to its functional parallelism resulting in lower
latency [63], [69].

Integrity using Message Authentication Codes (MACs):
To detect an unauthorized modification, a keyed message
signature, a.k.a., Message Authentication Code (MAC), is
stored in memory for each data block. When the processor
fetches a data block from memory, its MAC is also fetched.
Independently, we use the secret key to compute the MAC to
see if it matches with the retrieved one (Figure 2(b)). Without
the secret key, the probability that an attacker generates the
corresponding MAC for an altered message is negligible.
Thus, any change in data from memory will result in a MAC
mismatch. To prevent attacks from replaying stale data values
or copying valid data from a different address with valid MAC,
the address Addr and version number v are also incorporated
into the MAC. The integrity verification passes only when both
the Addr and v also match. To protect the integrity of the
version numbers v, these values are kept on-chip or protected
with an integrity tree [59]. To protect both confidentiality
and integrity, authenticated encryption with associated data
(AEAD) schemes such as the AES GCM mode [50] and the
AES CWC mode [38] are designed to use one secret key to
both encrypt data and generate a MAC.

Linear Checksum and MACs A hash function or checksum
maps messages into short outputs. A universal hash has the
property that the probability of any given pair of messages
having the same checksum is small. Such a universal hash
function can be used as the building block for a MAC. Linear
Modular Hashing [29] is an almost universal hash function
suitable for a fast software or hardware implementation. It
is applicable to variable-sized data and used in fast message
authentication, such as the AES CWC mode [38]. In this paper,
we use a linear modular hash not only for its performance but
also to leverage its linearity to verify linear operations in NDP.

C. Secure Multi-Party Computation (MPC)

One popular approach to outsource sensitive workloads to
untrusted workers is to use secret sharing [19], [52]. MPC
secret sharing splits a secret into multiple shares and dis-
tributes them to workers. Each worker performs computation
over its share locally. Assuming the workers will not collude,
it is information-theoretically impossible for each worker to
recover the secret from its share. SecNDP let the TEE hold
one share and the memory hold another share, and thus, do not
require the non-collusion assumption to hold among NDP PUs.

Arithmetic secret sharing [19], [52] is one of the most
widely used secret sharing schemes. Let Z(2"¢) denote the
integer ring of size 2“¢. The shares are constructed such
that the sum of all shares is equal to the original secret
value x € Z(2"<). Figure 2(c) shows arithmetic sharing
between two workers. Each worker holds a share of x, where
shares are denoted by x; € Z(2"¢) and zy € Z(2%¢), and
T = x1 + x2. Arithmetic secret sharing enables ciphertext-to-
ciphertext additions and additions/multiplications by constants
over ciphertext. For example, to compute z = a * x + b * y,
each worker performs an addition on their respective shares of
x and y. In the end, the client collects the two partial results
z1 and zo, and adds them together to obtain the final result.
Compared to HE schemes on high-dimensional rings [57], the
operations for each worker are simple and lightweight. This
is with arithmetic secret sharing.

All the operations of arithmetic sharing are in the integer
ring Z(2"<). Thus, if the original data are in a floating-point
format, they must be quantized into fixed-point numbers or
integers. For machine learning models, previous studies have
shown that quantization does not have significant impact on the
accuracy of certain ML models [30], [37], [71]. More recently,
MPC in floating-point arithmetic has been explored [25].

IV. SECNDP ENCRYPTION AND VERIFICATION SCHEMES

In this section, we describe an arithmetic encryption and
verification scheme. The encryption supports computation over
ciphertexts while providing confidentiality guarantees. The
verification scheme further protects the integrity of data using
extra data tags. The encryption scheme can be used alone
without verification, or with verification for stronger security.

A. Preliminaries and Notations

We use vector-matrix multiplication as an example operation
as it is the most critical and widely-used kernel in machine
learning and other data-intensive applications. Section VI-A
introduces two use cases that use variants of vector-matrix
multiplication. Our scheme can easily be generalized for other
operations as well. We use P to denote the plaintext of a 2-D
matrix of size n x m, F; ; to denote a element in the array, p
or P; to denote a row vector in P, and a to denote a vector of
dimension n. Each element in p and a is an integer (or a fixed
point number) of width w.. We assume w, to be a power of 2
and smaller than a cache line size. We use E(K, X) to denote
the output of a w,-bit block cipher (e.g., AES) that encrypts a
w,-bit message X using a wx-bit secret key K. The elements
of the matrix are also considered as consisting of chunks that
are w, bits long. Each chunk contains [+ w./w, elements.

Verification Tag Generation,

(O1lladar_Piv)~{ Engi |72 3

|Pi,0*sm+ Pi1*s™1 +.. Pina*s modq |_’

I
T (o [P [o [Pus] [Pimd] (P

(00|jaddr | Pio||v) (O]|addr_| leI”V)
First
—bit| Counter block ‘] w; bits

oL
ot

>

[$)

& od 2% mod e od 2% od 2% modq
Cipher : F F \/erlflcatlon
text ¢;[__Cio ‘ Ci1 ‘ ‘ Ci1 ‘ ‘Ci,ml Tag

Fig. 3. Diagram of the proposed arithmetic encryption and verification
tag generation scheme. Here, [is the number of data elements in a
data block of the block cipher size (i.e., | = w./we). © represents
subtraction in the ring Z(2%¥¢). E;; is the j-th OTP substring
associated with row 1.

Algorithm 1: Arithmetic Encryption, Arith-E(K, P, Addr)

1 Inputs: P, K, Addr; //Addr is the address of P

2 v 4= V(); //unique version, also considered padded with zeros
3 cnte < size(P)/we; //mumber of blocks of block cipher size
4 for i =0 to ecnt. — 1 //each data block

5 do

6 Addr; < Addr+ix(w./8); //addr. of block ¢ in bytes

7 eaddr; +— E(K,00||Addr;||v); //OTP of block 4

s for j =0 to (w./we) — 1. //for every we.-bit element

9 do

10 €j < eaddr;[JXwe : (j + 1) xXwe]; //OTP of element j
1 pj + P[Addri+jXwe:Addri+(j+1) Xwe);

12 ¢j < pj —e; mod 2"¢; //ciphertext of element j

13 end

14 Caddr; < col| ... ||Cw, jw.—1; //concatenating ciphertexts
15 end

16 Return concatenation of all Caq4r;;

B. SecNDP Arithmetic Encryption

SecNDP arithmetic encryption is a combination of arith-
metic secret sharing and counter-mode encryption, as shown
in Figure 2 (d). The scheme details are depicted in Algorithm 1
and Figure 3. First, the plaintext P will be divided into
cnt. binary strings (chunks) of size w.. The starting physical
address of each chunk and the version number v will be used
as the input to the block cipher, which generates an OTP using
a standard block cipher (e.g., AES). The concatenation of all
cnt,. OTP blocks (eg, €1, ...) will have the same number of
bits as the plaintext P.

Then, the plaintext P and the concatenation of all the OTP
blocks e are divided into binary strings of size w.. The j-th
strings are denoted by p; and e;, respectively. The ciphertext
c; is the plaintext p; subtracted by the corresponding OTP
block e; in the ring Z(2"¢). We name the scheme “Arithmetic
Encryption Scheme”, because the ciphertext c; and the OTP
block e; can be seen as the arithmetic shares of the secret p;.

C. Computation over Ciphertext in SecNDP

After the arithmetic encryption completes, each of the
processor and NDP side holds an arithmetic share of the secret.

T0. init. T1. Computation (Query a)

addrv |Vgr|ﬁca_t|3n_(oztlo_nal_) _____ I

Englne |

P; = 1

. c Ever= [o]] i
ST | [res = Cres + EreS mod 2we Tres = hi(res) !

Engine Processor (TEE)y Tres CrrestErres mod q?pass:faill
- data 1 meta-data !
U trans. " trans. :
[(]

CI 1 CTII Cres= aj X Ci : Crres= - X C 1
1 I 1 I
= e e e e e e e = - 1

a) SecNDP
TO. init. T1. Computation (Query a) TO.init. T1. Computation (Query a)
res = x
P; P, P;
Processor (TEE)
data
trans. 1
Ci mad | G fwac P, res=[a] [P,
b) TEE ¢) Unprotected NDP

Fig. 4. Vector-matrix multiplication in SecNDP, TEE, and unpro-
tected NDP. NDP and SecNDP significantly save memory bandwidth
usage, which is the bottleneck for data-intensive workloads. Green
boxes indicate encrypted or protected content. Blue boxes show the
verification tags.

They can then follow the standard MPC protocol [19], [52] to
conduct computation. With arithmetic secret sharing, additive
operations such as addition and multiplication with a non-
private scale are lightweight. In this paper, we demonstrate
how to perform a multiplication with a non-private vector.

Figure 4 (a) shows an example of a non-private vector a
multiplied with a private matrix P. In the initialization step
(TO), the matrix P is encrypted by Alg. 1 and the resulting
ciphertext C' is stored in untrusted memory or data storage.
When there is a vector a to compute a X P (T1 in Figure 4),
the untrusted NDP will compute a x C. The NDP operation
is exactly the same as the one in the unprotected scenario.
Meanwhile, the processor will use the address and the version
number v to generate the OTP blocks E for the entire plaintext
P and compute a x E. In the end, the NDP PU sends its
share of result back to the processor, and the processor adds
the two shares for the final result. The encryption scheme has
the property that £ + C' = P, and thus res = Chres + Eres =
axC+axE=axP.

D. Comparing SecNDP with TEE and Unprotected NDP

Vector-matrix multiplication in a TEE and unprotected NDP
are also shown in Figure 4. All of them have the initialization
step (TO) that initializes data and loads data to memory. In
the TEE and SecNDP, the data is encrypted before being
loaded to memory. Regarding the computations performed,
when compared to a TEE baseline, SecNDP only needs to
transfer the results back to the processor, and thus reduces
memory bandwidth usage and saves energy. When there are

Note that all the operations are in the ring Z(2%e), and thus, overflow
could happen. However, overflow can be detected by our verification scheme.

multiple NDP PUs, they can access memory and perform the
computations in parallel to improve performance. However,
since both the processor and NDP need to compute on their
own share of secret, SecNDP does not save computation on
the processor side. Nonetheless, for data-intensive workloads,
memory bandwidth, rather than computation, is the main
bottleneck. Hence, performance can be significantly improved
by SecNDP over the non-NDP baseline.

Compared to an unprotected NDP, the off-chip operations
and the required data movement are exactly the same. Hence,
there is no modification in the NDP implementation needed
to support SecNDP. For decryption and verification, the OTP
(Eres) and verification tag (E7,,) computations can be done
in parallel with the NDP operations. Only one extra final
addition is added to the performance critical path (more details
in Section V-E3), which results in negligible performance
overhead.

E. Security of the Arithmetic Encryption

The arithmetic encryption applies two-party arithmetic se-
cret sharing between the TEE and the memory, with the TEE’s
share of secret (i.e., OTP) generated from a block cipher. If an
attacker can distinguish c; (in Alg. 1) from a random number,
an oracle can be built to break the block cipher. The security
is similar to that of counter-mode encryption [38], [50].

Let Ep (K, Addr,v) denote the randomized encryption sys-
tems E(K, D||Addr||v). The secret key K €{0, 1}"* is drawn
from the uniform distribution. D is a binary string, which can
be one of ‘01°, ‘00’ or ‘10’ (in Alg. 1, 2, and 3, respectively).
We consider that version values v€{0,1}"" are drawn from
distribution V() and padded with zeros. Version numbers are
not in the control of any adversary but drawn by algorithms
1, 2 and 3. Let AdvEg 0 be the distinguishing advantage
associated with Ep() and query budget |Q|, where version
values are unique per distinct input and not in the control of
the distinguisher.

Theorem 1 (Arithmetic Encryption is Secure). Let
Arith-E(K, P, Addr) be the arithmetic encryption system
of Alg. 1. Let also AégZ"E()’QC be an adaptive chosen
plaintext adversary with query budget |Q.| attacking
Arith-E(K, P, Addr), where plaintext is P, Addr. Then, the
advantage of this adversary is bounded in the following way:

Arith-E(),Qe 1 E
Adv(ALIEDQey < o T Advig! (1)

where |Q|'="22 Q.|

The formal definitions and proof of Theorem 1 is in
Appendix-C. The version number v should be generated
securely and have its integrity protected. We will discuss how
v is managed in Section V-A. The security level depends
on the key size wg and the block cipher. Block ciphers

Distinguishing advantage of block cipher Ep() is the probability that an
attacker can distinguish the output of Ep () from a truly random output, i.e.,
breaking the block cipher.

Algorithm 2: Linear Checksum, hg (P;)

1 Inputs: K, P;, Output: T;

2 P < matrix containing P;; paddr(P) < Address of P;
3 v <= V(); //version padded with zeros, drawn once for P
4 s+ first we bits of E(K,01||paddr(P)|[v);

s Return T; + E;”;Ol Pi; x ™79 mod ¢

Algorithm 3: Encrypted MAC el-MAC(K, P;, Addr;)

1 Inputs: K, P;, Addr; //Address of P;, Output: Cr,

2 T; + hx(P;); /Minear checksum, coming from Alg. 2.

3 v <= V(); //version padded with zeros, drawn once for P

4 Er, « first w, bits of E(K,10||paddr(P;)||v); //OTP for tag
5 Return Cr, <+~ T; — E1; mod g; // ciphertext of tag;

such as AES are considered to be well designed pseudo-
random permutations, and their encryption output is practically
indistinguishable from random output. Thus, if Eg() is based

on AES, Advi is negligible.

F. SecNDP Verification

Since the NDP is not trusted, the secure processor also
needs to verify the correctness of the computation (including
overflow). Here, we propose a verification scheme for linear
operations. We use a MAC-then-encrypt strategy [58] to
construct a verification tag. In the case of linear operations,
we choose Linear Modular Hashing [29], [38] as the MAC
(hk () in Alg. 2) and apply SecNDP arithmetic encryption to
encrypt the resulting MAC (in Alg. 3 and Figure 3). Here, ¢
is a big prime number, e.g., 2'2” — 1 which is w; bits long.
The memory side stores a verification tag C7, for each row
vector P; in P.

To verify the computation results, the secure processor
computes a MAC of the result using the secret key and matches
that with the retrieved MAC, similar to memory integrity
protection in Figure 2(b). Here, the NDP and the processor
need to compute together to retrieve the MAC leveraging
arithmetic encryption. Specifically, as shown in Figure 4 (a),
the NDP computes the result of a vector multiplication over the
encrypted checksums to get an encrypted tag Cr,... = a x Cr.
The processor computes Er... =a x Ep, and Cr,,, + ET,_,
will be used as the retrieved MAC. Due to the linearity of hy,
hi(res) = hx(a x P) = a X hg(P) = ax (Cr + Er) =
Cr,.. + Er.,. holds.

As shown in Figure 4(a), our verification scheme associates
a tag C'r, with each row of the matrix. Like other memory in-
tegrity protection schemes, our scheme requires extra memory
to store the verification tag. However, because the tag is for
each row, the tag is relatively small compared to the data when
the matrix has large row sizes. Furthermore, we use arithmetic
encryption for tags. Thus, NDP computes and returns the tag
of the result Cr,_. = a x Cr, and not all the tags of the rows
that participate in the vector matrix multiplication operation,
reducing the memory bandwidth requirement.

G. Security of the Verification

The security of the verification scheme is derived from the
fact that the verification tags are always encrypted on the
memory side and s remains to be a secret to the untrusted
memory. In order to generate the valid verification tag for
a new value, an attacker needs to correctly guess s. Replay
attacks are prevented by including a version number in the
MAC (Alg. 2).

Theorem 2 (Integrity of the Weighted Summation). Let
ws-MACk (P, Addr) and ws-Verify (C, Addr) be the MAC
and verification oracles associated with the weighted sum-

mation ogyeratzon (i.e., vector matrix multiplication). Let also

Wé MAC(Q@ pe g standard MAC adversary, playing a MAC
forgery game on weighted summation oracles. Qs is the set
of sign queries issued by the MAC adversary. Q. is the set
of verification queries issued by the same adversary. Then,
the probability that this adversary can successfully create a
forgery is bounded in the following way:

Adv (Aws MAC(), QMQU) |Q1J|
4 2)
E E E
Qul- <Adv|5‘f“ +Advigil, +Advigil,)
where |Qlop = e o1 = |Qs 10 =
n-(|Qs| +1Qu1) and qis the prime found in the definition of

Algorithms 2 and 3.

The security level depends on the prime number g, number
of queries served |Qsl, |@Qy|, the dimensions of the matrix in
terms of number of rows n and columns m, and the security
of block ciphers Egg(), Ep1() and E1o(). We choose a prime
number ¢ that is the largest prime number in 2*¢. For example,
we use w; = 127 and ¢ = 227 — 1, considering both security
and performance. If we consider a 1024-dimension matrix
row, we can serve 2°3 queries without changing key, while
maintaining a security level higher than 64 bit.

V. ARCHITECTURAL SUPPORT FOR SECNDP

The SecNDP scheme can be applied to any TEE (CPU,
GPU, ASIC accelerator, etc.) and work with any untrusted
near-memory or near-storage processing hardware. In this
section, we describe a SecNDP architecture and design for
a computing platform supported by a TEE-enabled processor
with near-memory processing.

Baseline NDP Architecture: Figure 5 depicts the components
supporting NDP in a dual in-line memory module (DIMM).
NDP architecture support (blue boxes) comprises of an NDP
protocol (i.e., NDP commands), CPU ISA extensions for
issuing NDP packets, and NDP PUs on the memory side. NDP
PUs can compute and access their memory region in parallel.
For example, the Rank-NDP PUs run in parallel to access the
memory within their DRAM rank simultaneously and perform
computations to obtain the intermediate results. Each NDP PU
contains multiple registers to hold its intermediate results.

ISA extensions for NDP: The processor issues special in-
structions that offload NDP packets to the memory controller,

which then dispatches NDP commands (Figure 5 bottom) to
the NDP PUs. There are two types of NDP instructions (and
the corresponding commands): NDPInst that controls the
arithmetic computation, and NDPLd that loads the value in
an NDP register from and to the processor. NDPInst has
all the operands for issuing an NDP command, including
a data address, the operation Op to be carried out, vector
size vsize, data size dsize, an immediate operand value
Imm, and source/destination register IDs RegID. Figure 5
bottom shows the value in an NDP command for vector-
matrix multiplication a x P. With this instruction, an NDP
command will be issued to let an NDP PU first multiply each
element in the row vector at paddr(P;) by a; and add the
result to the value at the destination register. After adding all
the row vectors, the register will hold the final result. In the
end, NDPLdA is issued to load the results from the NDP PU
register back to the processor.

A. SecNDP Architecture Overview

The green boxes in Figure 5 show the components support-
ing SecNDP. There are two main components: new SecNDP
instructions and a SecNDP engine. Note that SecNDP does not
change the NDP operations. The NDP commands and NDP
PUs remain unchanged.

For efficient version number storage, there are a number
of existing solutions [53], [74]. In this paper, we let version
values v be managed by trusted software inside the TEE.
The integrity of v is then protected by the processor’s TEE.
The software ensures that v is not reused for the same
address. However, a memory region can share the same version
number [53]. For NDP workloads such as machine learning,
many data structures are read-only or are updated in big
chunks. A single data chunk only needs a single version
number. Managing the version numbers by software is flexible
and efficient, although letting software manage v, comes with
the need for new instructions.

B. SecNDP ISA Extensions

The newly proposed instruction ArithEnc is for the initial
arithmetic encryption and verification tag generation. It has all
the operands needed for encryption. SecNDPInst is for NDP
computation over ciphertext. Its format is similar to NDPInst
(see Figure 5 (top)). Compared to NDPInst, SecNDPInst
has two extra fields: the version number v and one extra
bit indicating whether verification is needed. In the micro-
architecture, extra fields in data buffers are required to pass
v to the encryption engine. The changes are similar to how
NDPInst operands are offloaded to the memory controller.
The new instruction SecNDPLJ is similar to NDPLd, but will
also verify the data when loading the data.

C. SecNDP Engine

Since SecNDP is a scheme based on the counter-mode
encryption, the encryption engine will be similar to that found
in the existing secure hardware. The SecNDP engine is located
near the memory controller in the processor.

CPU ArthEnc: [vsize[dsize[addr] v] veri? |
Inst: SecNDPInst: [Add/Mul [vsize [dsize[Imm[NDPRegID[addr] v [veri? |
NDPInst: [Add/Mul [vsize[dsize[Imm|NDPRegID[addr

CPU Inst:
/| NDPInst, NDPLd \
e | ArthEnc, SecNDPInst, SecNDPLd‘

Core Core) Ifrom cache to cachet
18 [ris| E AES Englne 5

Security Boundary = processor

[L2 L1/L2
L LLC Offloading
DRAM access § NDP packets /"

SecNDP Engine

Memory Controller \ NDP-extension [\

e, W, buf.

!Reg OTP PU -
5 dec.
o

________________________________ ¥to mem from meml
I\HH\HHHHHH\'\HHHHHHHHHH\I
NDP PU NDP-Cmd]

Rank0.NDP-Cmd Rank1.NDP-Cmd

Rank-NDP PU Rank-NDP PU
NDP cmd
Cmd: |ACTIRDIPRE|Rank BG BA, Row, CoI|AddlMuI|vsize|dsize||mm| RegID]
paddr(P)) Mul m we a; dest
Fig. 5. Micro-architecture design for SecNDP. Blue boxes show

the components of baseline NDP. Greens boxes show the new
components enabling SecNDP.

1) Encryption Engine: The Encryption Engine has a secret
key K and takes the address paddr and version v as inputs. For
SecNDPInst, the encryption engine will generate an OTP,

e., the processor’s share of secret E in Figure 4. Thus, the
number of AES engines should be chosen to match the NDP
memory throughput (evaluated in Section VII-A).

2) OTP PU: SecNDP needs this processor enhancement
to compute on its share of secret, i.e., E in Figure 4. The
operations in the OTP PU are the same as the NDP operations.
Thus, the OTP PU is designed to have the same number
of registers and the same logic as NDP PUs. The OTP PU
will simply take the NDP commands (paddr, w., m, a) and
replicate the operations. At the end of the computation, the
OTP PU and the NDP PU will each hold their arithmetic
share of the secret in their register. Usually, NDP is supported
by a lightweight processing unit. Likewise, the complexity
of the OTP PU will also be lightweight. For example, for
a vector-matrix multiplication, it only needs an integer ALU.
Moreover, the throughput of the OTP PU should match that
of the encryption engine.

3) Verification Engine: For verification, a MAC (Alg. 2) is
generated from data vectors. Thus, a verification engine is a
part of the SecNDP Engine.

Comparing the SecNDP engine to a conventional encryption
engine in a TEE, only the OTP PU and the final adder is
new. SecNDP would also require more encryption engines
depending on the NDP throughput. Because we let software in
a TEE manage the version numbers, SecNDP saves the logic
and storage to manage versions.

D. Verification Tag Storage and Operation

To store verification tags, extra memory space is required.
As with conventional memory integrity protection choices,
there are three options. (1) Ver-coloc: co-locating the tag
with data. When software allocates memory for data, it also
allocates extra space for the verification tag next to the data.
With co-location, the data and tag are likely to be within the
same DRAM row, saving memory access time and energy.
(2) Ver-sep: allocating tags separately from the data. At the
boot-up time or TEE loading time, a system can allocate a
designated physical address region to store tags. The advantage
of this option is that the software binary layout does not need
to be changed for verification. (3) Ver-ECC: storing the tags
in an ECC chip, and storing the ECC bits in separate memory
space [60]. Both data and its tag are fetched in one memory
access, while ECC bits are fetched only when corruption is
detected. The advantage is that it co-locates the tag with data
and fully utilizes the bandwidth of commercial hardware. The
disadvantage is that the ECC chip has a fixed capacity and
is not flexible for different vector and tag sizes. Also, the
SecNDP scheme only verifies the final computation result over
a potentially large memory region. If the verification fails, all
the ECC of related memory regions need to be checked.

When an NDP operation is to be verified, the NDP needs to
compute on the tags. The operation on the data vector (a; x C;)
will also apply to the tag (a; x Cr,), as shown in Figure 4(a).
There are two possible designs. The SecNDP Engine can issue
an extra NDP instruction to compute the tag. Another possible
design is to extend each operation. Instead of operation on a
vector (a x C;), an operation on a vector and a tag a x [C;|Cr,]
is conducted. The second design needs to change the NDP PU
logic to have extended registers. Note that the computation
for tags is in a prime field. If we choose ¢ = 2'27 — 1, the
computation is similar to standard integer arithmetic, but has
extra logic when an overflow is incurred [12].

E. Implementation of SecNDP Instructions

1) ArithEnc: The AES engines use paddr and v to
generate the OTPs. Each plaintext data value is then subtracted
by its OTP bits (following Alg. 1) and written back to
memory like a cache line flush. If the verification bit is set, a
MAC (Alg. 2) is computed in the verification engine, and the
encryption engine uses paddr, m, v to encrypt the tag (Alg. 3).

2) SecNDPInst: The memory controller passes the
operands to the SecNDP Engine and also issues NDP com-
mands. As shown in Figure 4(a), the OTP PU and the NDP
PU perform the same computation on the OTP and the
ciphertext, respectively. The intermediate results will be in
the corresponding registers in the OTP PU and the NDP
PU. If verification is needed, extra computation on the tag
is performed as described in Section V-D.

3) SecNDPLd: On the SecNDPLd instruction, the value
in the desired NDP PU register is loaded to the resp. buf.
in the processor (see Figure 5). The value of the corresponding
register in the OTP PU register is loaded to dec. buf.
and added to the value from NDP. Only one adder is on

Example SLS Operation (PF=3) Row-wise quantization

.% -g) i) *ay 32-bit 32-bit
sa fid gF Y./ P,;=Pq;;*scale+bias;
%E;'d uEJ) az |Pq‘,1| |Pqi,m |scale‘|biasi|
&, ol% LA ET B-hif
Fig. 6. (Left) Embedding table lookup (SLS operation) in deep

learning recommendation model. (Right) Row-wise quantization to
reduce memory footprint.

TABLE I
PARAMETERS OF DLRM MODELS IN EVALUATION
bottom FC top FC # Emb. total Emb. size
RMC1-small 256-128-32 256-64-1 8 1GB
RMCl-large 256-128-32 256-64-1 12 1.5GB
RMC2-small 256-128-32 256-128-1 24 3GB
RMC2-large 256-128-32 256-128-1 64 8GB

the critical path when the encrypted result is returned to
the processor core. If verification is needed, the data result
is further passed to the Verification Engine to compute the
checksum. Meanwhile, the tag is obtained by adding the
intermediate tag in the OTP PU and the NDP PU. If the
tag matches the checksum of the data result, the verification
passes. Otherwise, the verification fails and an interrupt will
be triggered. The verification can be in the critical path (1-2
cycle), or can be speculated [42].

VI. EVALUATION METHODOLOGY
A. Workloads

We use two categories of representative NDP use cases. A
first one is deep learning recommendation inference [26], [54],
which exhibits sparse and irregular memory access patterns.
A second one is data analytics for bio-medical applications,
which perform accesses over contiguous memory regions. A
pooling factor (PF) denotes the level of data aggregation, i.e.,
the ratio of the raw data size to the size of the computed result.
(1) Deep Learning Recommendation Inference: Recom-
mendation models, such as Deep Learning Recommendation
Model (DLRM) [54] are structured to take advantage of
both continuous and categorical features of individual users.
Other than the fully-connected (FC) layers commonly used in
deep learning, the categorical features are captured by large
embedding tables with sparse lookup and pooling operations.

Embedding tables are organized as a set of potentially
millions of vectors of dimension m. Embedding table lookup
operation (i.e., SparseLengthsSum or SparseLengthsWeight-
edSum (SLS) operation in Caffe2 [3]) performs a weighted
summation for a set of vectors. As illustrated in Figure 6 left,
an SLS query consists of a list of indices [ig, 71, ..., ipr—1] and
a weight vector a of dimension PF. The result of the pooling
is a vector of dimension m and each element of the vector
is res; = kaf(;l a;, X P;, ;. The embedding operations in
recommendation models often access irregular indices from
large tables, impeding the memory performance that further
limits the overall service throughput. Previous works showed
that NDP can significantly speed up embedding lookups in
recommendation models [35], [49].

In our evaluation, we offload the embedding table lookup
(i.e., SLS operations) to NDP and the rest of the model runs

on a CPU. We consider the recommendation models as the
service provider’s intellectual property (IP), while the values
containing users’ private information in the embedding tables
as the data that need to be protected.

Memory footprint optimization by quantization: For
efficiency, the values in the embedding tables are often quan-
tized to a smaller bit width [20]. For example, in row-wise
quantization, a vector of 32-bit values can be quantized into a
vector of 8-bit integers with a scale and bias per row (Figure 6
right). When the vector is queried, each value in the vector is
multiplied by the scale and then the bias is added to recover
the original value (P;; = Pq;; x scale; + bias;). Proper
quantization schemes reduce memory footprint while keeping
the model accuracy [20].

However, when the row-wise quantization is applied, for
each computation there is an extra multiplication with scale
(Pg;,; % scale;), making computation over ciphertext less effi-
cient. Thus, we propose and evaluate table-wise and column-
wise quantization schemes, where the scale and the bias
are assigned on a per-table or a per-column basis. With
table-wise and column-wise quantization, the SLS operation
can be first performed without per-row scale, ie., resq; =

kpjo_l a;, X Pg;, ;. In the last step, the per-table or per-
column scale and bias are used to get the final result, i.e.,
resj = resq; X scalej+bias;. The total size of the per-column
or the per-table scale and the bias is much smaller than the
table size. With the table-wise or column-wise quantization,
the vector-matrix multiplication can be directly applied to
quantized values. For performance evaluation, we assume the
scale and bias for quantization can be cached in the processor.

Recommendation Model Parameters: For performance

evaluation, we use DLRM models with the representative
model parameters in Table I. Each embedding table row has
m = 32 elements. We also consider a different quantization
scheme that quantizes 32-bit values into 8-bit values (i.e., 2
cache lines into about 0.5 cache line per vector.) We use a
randomly-generated query trace with PF = 40 and 80, and
a query trace from a production model with a pooling factor
PF ranging from 50 to 100. For encryption and replay attack
prevention, each embedding table uses a version number, and
the enclave software manages the at most 64 version numbers.
For model accuracy evaluation, we use a production-scale
recommendation model consisting of hundreds of embedding
tables with production data set.
(2) Medical Data Analytics: The second use case we consider
here is data analytics over a private data set. To study whether a
certain disease is related to certain genes, statistical hypothesis
tests need to be performed. Consider a data set containing
the expression level for m = 10000 genes of n = 500, 000
patients (e.g., [15]). This is used to compute the test statistics
(e.g., p-value of t-test [67]), and the summation (or average)
of the gene expression level of patients and non-patients.

The data set contains sensitive medical information (e.g.,
the gene expression level) and needs to be protected. We store
the data set in the memory after encryption. When researchers
want to study a certain disease, they query the data set by

TABLE II
SIMULATION PARAMETERS AND CONFIGURATIONS
DRAM Parameters
DDR4-2400MHz, rank_size=8GB, tRC=55, tRCD=16, tCL=16, tRP=16,
tBL=4, tCCD S=4, tCCD L=6, tRRD S=4, tRRD L=6, tFAW=26
AES Encryption Engine Parameter [21]
Throughput = 111.3Gbps, i.e., 1.15ns per 128-bit block.

giving a list of patient IDs in the data set, and let the NDP unit
compute the summation. A query comprises of a list of patient
IDs which are used for aggregating their gene expression level.
Usually the queried patient IDs are not sparse.

Database Parameters: In performance simulation, we con-
sider a database with m = 1024 genes and conduct summation
over PF = 10,000 patients (40MB in total).

B. Performance Evaluation Setup

SecNDP Performance Simulation. Based on the simula-
tion framework in [35], we built a cycle-level simulation
framework with the following components: (1) a physical
addresses mapping module, (2) an NDP packet generator,
(3) an encryption engine, and (4) an NDP DIMM consisting
of DRAM devices, arithmetic units, and control logic. We
use Ramulator [75], a cycle-level DRAM simulator, for the
DRAM devices. Table II summarizes the parameters and
configurations.

During the simulation, we emulate the packet generation
and scheduling steps taken by the software stack and the
memory controller. First, we apply a standard page mapping
method [51] to generate the physical addresses from a trace of
embedding lookups by assuming that the OS randomly selects
free physical pages for each logical page frame. This physical
address trace is then fed to Ramulator.

We implemented a cycle-level NDP module on top of
Ramulator including the logic in NDP PU. The NDP_rank
parameter denotes the number of Rank-NDP PUs in the
system, and the parameter NDP_reg denotes the number of
registers per NDP PU. To evaluate the NDP latency, the packet
generator divides the physical memory requests into packets of
NDP commands that are then sent to the cycle-level simulator.
NDP activates all ranks under the memory channel. For every
NDP packet, the NDP commands are dispatched to the parallel
ranks and the latency is bounded by the slowest rank. The total
latency of NDP also includes the extra DRAM cycles during
initialization to configure memory-mapped control registers
and a cycle in the final stage to transfer the sum/partial-sum
to the host processor using NDPLd.

To evaluate the throughput of the AES engine and the
OTP PU, we use the performance number of a fully pipelined
AES design [21]. We assume the addition and multiplication
on the counter block are pipelined cycle-by-cycle after AES
encryption. Combining the off-chip NDP latency and the
encryption engine throughput, we estimate the throughput of
SecNDP. The final throughput is the smaller one of the NDP
throughput and the OTP throughput.

Whole System (TEE + SecNDP) Evaluation. In some
cases, only part of the computation will be offloaded to
SecNDP (NDP portion). The remaining part will be executed

TABLE III

SPEEDUP OF SECNDP, COMPARED WITH INSECURE BASELINE AND SGX.

RMCl- RMC1- RMC2- RMC2- Data

small large small large Analytics

lunprotected non-NDP [Ix [Ix [Ix [Ix [1x |
[unprotected NDP | 246x [3.dIx | 405x [444x | 746x |
SGX-CFL 0.0038x | 0.0037x N/A N/A 0.1738x
SGX-ICL (no int. tree) 0.59x 0.60x N/A N/A 0.57x
SecNDP 2.36x 3.02x 3.95x 4.33x 7.46x

in the CPU TEE (CPU portion). To estimate the performance
slowdown of the CPU portion and to establish a CPU TEE
performance reference, we measure the execution time on
two Intel machines with SGX enclaves [4]. One is an Intel
Xeon E-2288G CoffeeLake (CFL) CPU, with 168MB SGX
EPC, 16MB L3, and 32GB DRAM. The other is an Intel
Xeon Platinum 8370C IceLake (ICL) CPU, with 96GB SGX
EPC, 48MB L3, and 192GB DRAM. When the workload fits
in caches (e.g., the CPU portion of DLRM), SGX ICL has
about 5% slowdown. In the end, we ran the whole model
on the ICL machine to obtain the execution time breakdown
between the CPU portion and the NDP portion, and use the
speedup (or slowdown) of each portion to evaluate the end-
to-end execution time.

Arithmetic Precision and Application Accuracy. We apply
a quantization scheme to a production-scale model and use a
production dataset with 40K samples to evaluate the model
accuracy. The accuracy is presented using Logloss [20], a
widely used loss function for prediction models.

Power and Area. We use the memory trace from our perfor-
mance simulation setup and DRAMPower tool [17] to estimate
the DRAM chip energy. We use CACTI-IO [55] to evaluate
the energy between the DRAM chip and the NDP PU (located
inside DIMM’s buffer chip) and the energy of DIMM IO. To
estimate the energy and the area of the SecNDP engine, we
refer to an AES design [21] and use model in [62] for the
OTP PU and the verification engine at 45nm process node.

VII. EVALUATION RESULTS

In this section, we evaluate the performance (in execution
time), precision, energy, and area of SecNDP architecture. The
results show the performance and energy consumption of the
SecNDP approach and that of unprotected NDP. The precision
loss in SecNDP shows negligible impact on the accuracy of
the recommendation model. The area overhead of the SecNDP
engine is also small.

A. Performance Evaluation

Overall End-to-End Performance. Table III illustrates the
performance of SecNDP compared with the non-NDP baseline
and Intel SGX. By leveraging eight NDP PUs, SecNDP
demonstrates 2.3x to 4.3x speedup for end-to-end DLRM
models with batch size=256 and 7.46x for the medical data
analytics. The performance of SecNDP is close to that of an
unprotected NDP. Meanwhile, using SGX processors shows
considerable slowdown (Table III). This is because the work-
ing set sizes of the workloads do not fit in on-chip caches. Due
to the malloc size limit by the current SGX library, we could

only run RMC1 in SGX. We observe 6x—-300x slowdown for
the CFL SGX enclave, and 1.8x — 2.6x slowdown for the ICL
SGX enclave. For SecNDP, Table III shows the performance
with the verification scheme (Ver-ECC) that stores tags in
the ECC chip. SecNDP demonstrates significant performance
improvement over a CPU TEE without NDP. We present the
performance of unprotected NDP and SecNDP with various
verification schemes (introduced in Section V-D) in more
detail next.

NDP Performance - Unprotected. The red bars in Figure 7
summarize the performance of the SLS operations (NDP
portion of DLRM) using different quantization schemes and
that of the data analytics workload across different NDP set-
tings (NDP_rank, NDP_reg). For SLS operations, quantization
provides around 20% speedup for all row-wise (row_quan),
column-wise, and table-wise quantization in both the NDP and
non-NDP settings. This is because the embedding tables are
smaller after quantization. Further, with more NDP_rank and
NDP_reg, NDP tends to have higher speedup. More NDP_rank
allows more parallel memory accesses. More NDP_reg allows
more intermediate SLS results, making the workload among
the NDP PU more evenly distributed. For NDP_rank=8 and
NDP_reg=38, the speedup reaches 5.59x without quantization,
and 6.89x with quantization. The data analytics workload
exhibits more regular memory access patterns that are dis-
tributed evenly across all the NDP_rank PUs. Thus, it results
in higher performance speedup (up to 7.46x) than irregular
SLS operations. Also, since there is only one resulting sum,
more NDP_reg does not help further for the data analytics
workload.

NDP Performance - Encryption-Only. We evaluate the per-
formance of SecNDP over different numbers of AES engines
(Figure 7). When there is only a small number of AES engines,
the decryption becomes the performance bottleneck. As the
number of AES engines increase, the speedup reaches that
of the unprotected NDP in all settings, indicating that the
performance bottleneck eventually shifts to the memory band-
width. When there are sufficient AES engines, the throughput
of SecNDP matches the speedup attained by the unprotected
NDP.

Figure 8 shows the percentage of NDP packets that is
bottlenecked by the AES bandwidth for SLS operations. More
NDP_rank and NDP_reg require more AES engines to match
the bandwidth. Using quantization, only about one third of the
AES engines are needed. This is because less OTP is required
for the decryption. In theory, using the setting in Table II,
when NDP_rank=8, we need ten AES engines to match the
memory throughput in the burst mode. However, as shown in
Figure 8, without quantization, eight AES engines can satisfy
70% of the NDP packets for SLS operations.

NDP Performance - Encryption+Verification. We evaluate
three design options for SecNDP’s verification tags (Ver-coloc,

CFL processors rely on an integrity tree to protect against replay attacks,
and thus only support a limited number of protected memory pages, causing
frequent page swapping in this case.

ICL processors do not have integrity tree for replay attack prevention.

10

TABLE IV
ACCURACY OF DIFFERENT QUANTIZATION SCHEMES

[LogLoss | LogLoss degradation |
32-bit floating point 0.64013 0
32-bit fixed point 0.64013 —3.6+10 10
table-wise quantization (8-bit) 0.64059 0.07%
column-wise quantization (8-bit) 0.64027 0.02%

Ver-sep, and Ver-ECC in Section V-D), and assume the NDP
PUs have enough bandwidth to process tags. We use a 128-bit
tag for each vector. Figure 9 shows the performance results
of NDP_rank=8 and NDP_reg=8. For the data analytics
workload, because the row vector size m is greater than that of
SLS, and the 128-bit tag is relatively small compared to data,
the verification overhead is negligible. Figure 10 presents the
percentage of the NDP packets bottlenecked by the decryption
operation for SLS operations.

As shown in Figure 9, without quantization, Ver-coloc and
Ver-sep show lower speedup because of the extra memory
accesses for the tags. Ver-sep shows more performance degra-
dation because tags and data are not co-located, in other words,
an additional DRAM row buffer activation is required. Ver-
ECC has the same speedup as the encryption-only (Enc-only)
case as no extra DRAM access is required. As shown in
Figure 10 (left), Ver-ECC needs more AES engines to match
the bandwidth requirement.

With quantization, the embedding vector size becomes
shorter than a cache line and the corresponding tags cannot
fit in the ECC chip, Ver-ECC does not work. Hence, we only
show the results for Ver-coloc and Ver-sep in Figure 9. With
Ver-coloc, one cache line fetch can retrieve both data and
tag, and thus the performance is close to Enc-only. But Ver-
coloc still cannot reach the performance of Enc-only, because
with the tag present, the data is not aligned with the cache
line boundary. In some cases, two contiguous cache lines are
still needed. Compared to Enc-only, Ver-coloc requires more
AES engines to decrypt the tag in parallel with the data. Ver-
sep leads to about 40% performance degradation over Enc-
only, because two separate cache lines are accessed instead
of one. Even though Ver-sep does not change an application’s
memory layout and can support a variety of tag sizes, it has the
worst performance. Co-locating tags and data either in ECC
or in the memory has better performance but requires a more
complicated system implementation.

End-to-End Execution Time Breakdown. Figure 11 presents
the breakdown of the end-to-end execution time and how the
performance speedup scales with different batch sizes. Here,
we present the speedup with NDP_rank=8, NDP_reg=8, and
PF=80 for SLS operations without quantization. For batch
size=256, compared with the insecure non-NDP baseline,
SecNDP achieves an end-to-end model inference speedup,
ranging from 2.3x to 4.3x. The results include the slowdown
of CPU portion in TEE. SecNDP provides higher speedup for
larger batch sizes, while SGX does not scale with batch sizes.

I non-NDP (row_gquan) BB non-NDP [EEE NDP (row_gquan) BB NDP [0 SecNDP Enc (AES_eng=2) BB SecNDP Enc (AES_eng=6) B SecNDP Enc (AES_eng=10)

NDP_reg—8 NDP_reg=1
NDP Rank=4 NDP_Rank=8

NDP _reg
NDP_Rank=8_

NDP_reg=8 NDP_reg=1

NDP_Rank=4 NDP_Rank=8 NDP_Rank=8

SLS 32hbit

SLS 8bit quan Data Analytics

Fig. 7. Performance of unprotected non-NDP baseline (in blue), unprotected NDP (in red), and SecNDP-Enc with different numbers of
AES engines (in green). (row_quan) denotes row-wise quantization in Section VI-A-(1). With sufficient AES engines, encryption in SecNDP

shows the same speedup as unprotected NDP.

= Rank=4 PU_reg=1
Rank=8 PU_reg=1

== = Rank=4 PU_reg=2

= Rank=4 PU_reg=8
Rank=8 PU_reg=2

Rank=8 PU_reg=8

by Decryption

'BEER

Packets Bottlenecked

[
number of AES engines
32hit

10 2 a [8
number of AES engines

8bit_quan

10

Fig. 8. Percentage of NDP packets for SLS operations bottlenecked
by decryption bandwidth for confidentiality protect of SecNDP.

]
=
~

3

g 8

]
=
~

[Enconly
Ver coloc
Ver sep

Il Ver ECC

SLS 32bit

SLS 8hit quan Data Analytics

Fig. 9. Speedup of various SecNDP encryption and verification
schemes with NDP_rank=8, NDP_reg=38.

B. Impact of Arithmetic Precision on Application Accuracy

Like in MPC, we only support integer and fixed point
operations in SecNDP. To assess the impact of data type
precision, we evaluate the accuracy impact from the precision
change [31]. We perform the model accuracy evaluation using
production-level recommendation models [35]. As shown in
Table IV, using 32-bit fixed-point values for the embedding
has a negligible impact on the Logloss. Furthermore, using
8-bit table-wise or column-wise quantization leads to simi-
lar, negligible Logloss degradation (<0.07%). The accuracy
results suggest that SecNDP can provide significant speedup
with security guarantee, while maintaining the desired model
accuracy requirement.

C. Energy and Area Overhead

In addition to performance improvement, NDP also saves
energy by reducing the amount of data transfer between
the processor and DIMM. Table V summarizes the energy
consumption of memory (including IO) and the SecNDP
engine. non-NDP Enc shows the energy consumption of a TEE
without NDP. Although SecNDP requires extra computation in
OTP PUs, the energy consumption of OTP PUs is insignificant
compared to the overall memory power savings. When PF=80,
SecNDP saves memory system energy by 18% with encryption
only and by 8% with verification. In addition, there will be

11

Enc+Ver Enc+Ver Enc+Ver

’— Enc only

E tag coloc tag sep ® tagin ECC

[
g5
SE
]
8z \
] .
o 2 4 6 8 10 12 2 a 6 8 10 12

Number of AES engines Number of AES engines
A2bit Bbit_quan

Fig. 10. Percentage of NDP packets for SLS operations bottlenecked
by decryption bandwidth with NDP_rank=8, NDP_reg=38.

[Enconly--CPU
E=T Enc only--NDP

I non-NDP--CPU
Il non-NDP--NDP
10

I Ver coloc--CPU
I Ver coloc--NDP

Il Ver sep--CPU
Il Ver sep-NDP

Il Ver ECC--CPU
Il Ver ECC--NDP

Nomalized

Execution Time

Enc only

=== \ler coloc
| == Versep
= VerECC

F e

!

64 =6 16
RMC1-small RMC1-large

Fig. 11. (Top) Normalized execution time in SecNDP with
NDP_rank=8. The breakdown execution time of NDP portion (—
NDP) and the CPU TEE portion (-CPU) of the workloads is shown
in the stacked bar. (Bottom) Recommendation inference speedup for
different batch sizes in SecNDP.

additional energy savings on the processor cache hierarchy,
because less data is moved in and out of the caches. The area
overhead of SecNDP is estimated to be 1.625 mm? at 45nm
node if we use 10 AES engines and match the throughput
of OTP PUs and the verification engine. The energy/area
overheads can be further reduced with more advanced process
nodes.

VIII. RELATED WORK

Many cryptographic schemes have been proposed to pro-
tect the confidentiality of sensitive workloads on untrusted
platforms, such as HE [14], [18], [23], [48], [56], [57] and
MPC [19], [52]. However, HE incurs about three orders of
magnitude performance overheads [57]. Thus, deploying HE in
untrusted NDP does not outperform the TEE baseline without
NDP. MPC has better performance than HE, however, the
security of MPC relies on the assumption that the untrusted
nodes do not collude, which is not realistic in many system
settings. To further verify the correctness of computations

TABLE V
MEMORY ENERGY CONSUMPTION OF SECNDP (PJ/BIT)
DIMM . Normd. Mem.
DIMM 0 SecNDP Engine Energy (PF=80)
lunprotected non-NDP 27.42xPF | 7.3xPF 0 100%
unprotected NDP 27.42xPF 7.3 0 79.2%
non-NDP Enc 27.42xPF | 7.3xPF 0.5 xPF 101.5%
SecNDP Enc 27.42 X PF 7.3 0.9 xPF 81.83%
SecNDP Enc+ver 30.85 X PF 8.2 1.01 XPF+1.72 92.09%

results, non-interactive verifiable computation [24], [44] and
probabilistically checkable proofs [11], [61] are proposed, but
their computation complexity is still too high to be practical
for secure outsourcing.

Hardware-based TEE is an alternative solution to protect
both confidentiality and integrity of workloads. Analyzing the
memory protection of Intel SGX, Vessels [36] showed that
deep learning workloads suffer from significant performance
degradation, and proposed data movement optimizations. To
improve the performance of TEE for data-intensive workloads,
untrusted accelerators can be leveraged [30], [71]. Slalom [71]
proposed using arithmetic secret sharing to offload secure
computations from a TEE to untrusted GPUs. However, the
TEE still needs to store its share of secret in memory and
pre-compute the results in an offline phase. Thus, Slalom
moves computation from online to offline, but does not reduce
computation or memory usage. DarKnight [30] proposed a
blinding scheme to offload batched deep learning workloads
to untrusted GPU. However, DarKnight cannot protect weights
in the accelerator. Another solution is to also trust the acceler-
ators and include the accelerators in the TEE. For memory,
[5], [8] proposed protocols to encrypt and obfuscate the
traffic on the memory bus. However, InvisiMem [5] still
incurs significant performance, energy and memory space
overhead. In addition, such solution not only requires trusting
multiple hardware vendors, but also requires coordination and
standardization among the vendors. SecNDP is the first work
to demonstrate how untrusted off-the-shelf NDP units can be
used for secure computation.

IX. CONCLUSION

The recent progress in near-data processing generates a lot
of interest in using NDP to alleviate the memory bandwidth
bottleneck for data-intensive applications. However, there is a
lack of feasible techniques that protect the confidentiality of
off-chip data while taking advantage of NDP. In this paper,
we present SecNDP, a lightweight encryption and verification
scheme that supports NDP over ciphertext and verifies the
correctness of NDP results. With sufficient AES engines,
our evaluation on two workloads shows that SecNDP can
match the speedup delivered by unprotected NDP. Our energy
evaluation shows SecNDP saves memory energy by reducing
the data transfer on the memory bus. The SecNDP scheme
enables a TEE in the presence of untrusted memory to leverage
the performance and energy benefits of NDP securely.

ACKNOWLEDGMENTS

The authors would like to thank Muhammad Umar, Henry
Wang, Shankaran Gnanashanmugam, Jihang Li, Yuchen Hao,

12

and Haixin Liu for their help in evaluating recommendation
system in Intel SGX, and thank Brian Knott, Hao Chen, Chuan
Guo for their suggestions. The authors would also like to thank
the anonymous reviewers for their insightful comments and
suggestions. Liu Ke and Xuan Zhang were partially supported
by NSF CCF-1942900.

REFERENCES

[1] “Amd secure encrypted virtualization (sev),” https://developer.amd.com/
sev/.

“Arm trustzone technology,”
security-ip/trustzone.
“Caffe2,” https://caffe2.ai/.
“Intel ~ software guard extensions(sgx),” https://www.intel.com/
content/www/us/en/architecture-and-technology/software-guard-
extensions.html.

S. Aga and S. Narayanasamy, “InvisiMem: Smart memory defenses
for memory bus side channel,” in Proceedings of the 44th Annual
International Symposium on Computer Architecture, ser. ISCA ’17.
New York, NY, USA: Association for Computing Machinery, 2017, p.
94-106.

J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” in Proceedings of
the 42nd Annual International Symposium on Computer Architecture,
ser. ISCA 15, 2015, p. 105-117.

Amin Farmahini-Farahani, Jung Ho Ahn, Katherine Morrow, and Nam
Sung Kim, “NDA: Near-DRAM Acceleration Architecture Leveraging
Commodity DRAM Devices and Standard Memory Modules,” in HPCA,
2015.

A. Awad, Y. Wang, D. Shands, and Y. Solihin, “ObfusMem: A low-
overhead access obfuscation for trusted memories,” in Proceedings of
the 44th Annual International Symposium on Computer Architecture, ser.
ISCA "17. New York, NY, USA: Association for Computing Machinery,
2017, p. 107-119.

Bahar Asgari, Ramyad Hadidi, Jiashen Cao, Da Eun Shim, Sung-Kyu
Lim, Hyesoon Kim, “FAFNIR: Accelerating Sparse Gathering by Using
Efficient Near-Memory Intelligent Reduction,” in HPCA, 2021.

S. Banerjee, P. Ramrakhyani, S. Wei, and M. Tiwari, “SESAME:
Software defined enclaves to secure inference accelerators with multi-
tenant execution,” arXiv preprint arXiv:2007.06751, 2020.

M. Bellare, S. Goldwasser, C. Lund, and A. Russell, “Efficient prob-
abilistically checkable proofs and applications to approximations,” in
Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing, 1993, pp. 294-304.

D. J. Bernstein, “Floating-point arithmetic and message authentication,”
2000. [Online]. Available: http://cr.yp.to/papers.html#hash127.

T. Bourgeat, I. Lebedev, A. Wright, S. Zhang, Arvind, and S. Devadas,
“MI6: Secure Enclaves in a Speculative Out-of-Order Processor,” in
Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO °52. New York, NY, USA: Association
for Computing Machinery, 2019, p. 42-56.

Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “Fully homomorphic
encryption without bootstrapping,” in ITCS 2012: Proceedings of the
3rd Innovations in Theoretical Computer Science, January 2012, Pages
309-325, 2012.

C. Bycroft, C. Freeman, D. Petkova, G. Band, L. T. Elliott, K. Sharp,
A. Motyer, D. Vukcevic, O. Delaneau, J. O’Connell et al., “The uk
biobank resource with deep phenotyping and genomic data,” Nature,
vol. 562, no. 7726, pp. 203-209, 2018.

R. Cammarota, I. Banerjee, and O. Rosenberg, “Machine Learning
IP Protection,” in Proceedings of the International Conference on
Computer-Aided Design, ser. ICCAD ’18. New York, NY, USA:
Association for Computing Machinery, 2018.

K. Chandrasekar, B. Akesson, and K. Goossens, “Improved power
modeling of ddr sdrams,” in 2011 14th Euromicro Conference on Digital
System Design, 2011, pp. 99-108.

J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Proceedings of ASIACRYPT,
2017.

[2] https://developer.arm.com/ip-products/

[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

I. Damgard, V. Pastro, N. Smart, and S. Zakarias, “Multiparty com-
putation from somewhat homomorphic encryption,” in Advances in
Cryptology — CRYPTO 2012, R. Safavi-Naini and R. Canetti, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 643-662.

Z. S. Deng, J. Park, P. T. P. Tang, H. Liu, J. Yang, H. Yuen, J. Huang,
D. S. Khudia, X. Wei, E. Wen, D. Choudhary, R. Krishnamoor-
thi, C.-J. Wu, N. Satish, C. Kim, M. Naumov, S. Naghshineh, and
M. Smelyanskiy, “Low-precision hardware architectures meet recom-
mendation model inference at scale,” IEEE Micro, pp. 1-1, 2021.
P-K. Dong, H. K. Nguyen, and X.-T. Tran, “A 45nm high-throughput
and low latency aes encryption for real-time applications,” in 2079
19th International Symposium on Communications and Information
Technologies (ISCIT), 2019, pp. 196-200.

Duckhwan Kim, Jacha Kung, Sek Chai, Sudhakar Yalamanchili, Saibal
Mukhopadhyay, “Neurocube: A Programmable Digital Neuromorphic
Architecture with High-Density 3D Memory,” in ISCA, 2016.

J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic
encryption.” JACR Cryptol. ePrint Arch., vol. 2012, p. 144, 2012.

R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable
computing: Outsourcing computation to untrusted workers,” in Annual
Cryptology Conference. Springer, 2010, pp. 465-482.

C. Guo, A. Hannun, B. Knott, L. van der Maaten, M. Tygert, and
R. Zhu, “Secure multiparty computations in floating-point arithmetic,”
arXiv preprint arXiv:2001.03192, 2020.

U. Gupta, C.-J. Wu, X. Wang, M. Naumov, B. Reagen, D. Brooks,
B. Cottel, K. Hazelwood, M. Hempstead, B. Jia, H.-H. S. Lee,
A. Malevich, D. Mudigere, M. Smelyanskiy, L. Xiong, and X. Zhang,
“The architectural implications of facebook’s dnn-based personalized
recommendation,” in 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA), 2020, pp. 488-501.

Hadi Asghari-Moghaddam, Young Hoon Son, Jung Ho Ahn, Nam Sung
Kim, “Chameleon: Versatile and Practical Near-DRAM Acceleration
Architecture for Large Memory Systems,” in MICRO, 2016.

J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.
Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten, “Lest We
Remember: Cold-Boot Attacks on Encryption Keys,” Commun. ACM,
vol. 52, no. 5, p. 91-98, May 2009.

S. Halevi and H. Krawczyk, “MMH: Software message authentication
in the gbit/second rates,” in Fast Software Encryption, E. Biham, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 172-189.

H. Hashemi, Y. Wang, and M. Annavaram, ‘“Darknight: A data privacy
scheme for training and inference of deep neural networks,” arXiv
preprint arXiv:2006.01300, 2020.

N. J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd ed.
Philadelphia, PA, USA: Society for Industrial and Applied Mathematics,
2002.

W. Hua, M. Umar, Z. Zhang, and G. E. Suh, “GuardNN: Secure
DNN Accelerator for Privacy-Preserving Deep Learning,” arXiv preprint
arXiv:2008.11632, 2020.

Junwhan Ahn, Sungjoo Yoo, Onur Mutlu, Kiyoung Choi, “PIM-Enabled
Instructions: A Low-Overhead, Locality-Aware Processing-in-Memory
Architecture,” in ISCA, 2015, pp. 336-348.

Y. Kang, Y.-s. Kee, E. L. Miller, and C. Park, “Enabling cost-effective
data processing with smart ssd,” in 2013 IEEE 29th Symposium on Mass
Storage Systems and Technologies (MSST), 2013, pp. 1-12.

L. Ke, U. Gupta, B. Y. Cho, D. Brooks, V. Chandra, U. Diril,
A. Firoozshahian, K. Hazelwood, B. Jia, H.-H. S. Lee, M. Li, B. Maher,
D. Mudigere, M. Naumov, M. Schatz, M. Smelyanskiy, X. Wang,
B. Reagen, C.-J. Wu, M. Hempstead, and X. Zhang, “RecNMP: Ac-
celerating personalized recommendation with near-memory processing,”
in 2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA), 2020, pp. 790-803.

K. Kim, C. H. Kim, J. J. Rhee, X. Yu, H. Chen, D. J. Tian, and
B. Lee, “Vessels: Efficient and scalable deep learning prediction on
trusted processors,” ser. SOCC 20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 462-476.

B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and
L. van der Maaten, “CrypTen: Secure multi-party computation meets
machine learning,” in Proceedings of the NeurIPS Workshop on Privacy-
Preserving Machine Learning, 2020.

T. Kohno, J. Viega, and D. Whiting, “CWC: A high-performance
conventional authenticated encryption mode,” in International Workshop
on Fast Software Encryption. Springer, 2004, pp. 408—426.

13

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

(51]
[52]

[53]

[54]

[55]

[56]

[57]

J. H. Lee, H. Zhang, V. Lagrange, P. Krishnamoorthy, X. Zhao, and
Y. S. Ki, “SmartSSD: Fpga accelerated near-storage data analytics on
ssd,” IEEE Computer Architecture Letters, vol. 19, no. 2, pp. 110-113,
2020.

S. Lee, S.-h. Kang, J. Lee, H. Kim, E. Lee, S. Seo, H. Yoon, S. Lee,
K. Lim, H. Shin, J. Kim, O. Seongil, A. Iyer, D. Wang, K. Sohn,
and N. S. Kim, “Hardware Architecture and Software Stack for PIM
Based on Commercial DRAM Technology : Industrial Product,” in
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), 2021, pp. 43-56.

V. T. Lee, A. Mazumdar, C. C. del Mundo, A. Alaghi, L. Ceze, and
M. Oskin, “Application codesign of near-data processing for similarity
search,” in 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), 2018, pp. 896-907.

T. S. Lehman, A. D. Hilton, and B. C. Lee, “Poisonlvy: Safe speculation
for secure memory,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). 1EEE, 2016, pp. 1-13.
H. Li, T. F. Wu, S. Mitra, and H.-S. P. Wong, “Resistive RAM-centric
computing: Design and modeling methodology,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 64, no. 9, pp. 2263-2273,
2017.

B. Libert, T. Peters, M. Joye, and M. Yung, “Linearly homomorphic
structure-preserving signatures and their applications,” Designs, Codes
and Cryptography, vol. 77, no. 2, pp. 441477, 2015.

Lifeng Nai, Ramyad Hadidi, Jaewoong Sim, Hyojong Kim, Pranith
Kumar, Hyesoon Kim, “GraphPIM: Enabling Instruction-Level PIM
Offloading in Graph Computing Frameworks,” in HPCA, 2017.

J. Liu, H. Zhao, M. A. Ogleari, D. Li, and J. Zhao, “Processing-in-
memory for energy-efficient neural network training: A heterogeneous
approach,” in 2018 51st Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2018, pp. 655-668.

Q. Liu, B. Gao, P. Yao, D. Wu, J. Chen, Y. Pang, W. Zhang, Y. Liao,
C.-X. Xue, W.-H. Chen, J. Tang, Y. Wang, M.-F. Chang, H. Qian,
and H. Wu, “33.2 a fully integrated analog reram based 78.4tops/w
compute-in-memory chip with fully parallel mac computing,” in 2020
IEEE International Solid- State Circuits Conference - (ISSCC), 2020,
pp. 500-502.

A. Lépez-Alt, E. Tromer, and V. Vaikuntanathan, “On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption,”
in STOC 2012: Proceedings of the forty-fourth annual ACM symposium
on Theory of computing, May 20, Pages 1219-1234, 2012.

Mark Wilkening, Udit Gupta, Samuel Hsia, Caroline Trippel, Carole-
Jean Wu, David Brooks, Gu-Yeon Wei, “RecSSD: Near Data Processing
for Solid State Drive Based Recommendation Inference,” in ASPLOS,
2021.

D. A. McGrew and J. Viega, “The security and performance of the
galois/counter mode (GCM) of operation,” in Progress in Cryptology
- INDOCRYPT 2004, A. Canteaut and K. Viswanathan, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2005, pp. 343-355.

Mel Gorman, “Understanding the Linux virtual memory manager,” 2004.
P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework for
machine learning,” in Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS *18. Association
for Computing Machinery, 2018, p. 35-52.

S. Na, S. Lee, Y. Kim, J. Park, and J. Huh, “Common counters:
Compressed encryption counters for secure gpu memory,” in 2021 IEEE
International Symposium on High-Performance Computer Architecture
(HPCA), 2021, pp. 1-13.

M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini et al., “Deep
learning recommendation model for personalization and recommenda-
tion systems,” arXiv preprint arXiv:1906.00091, 2019.

Norman P. Jouppi, Andrew B. Kahng, Naveen Muralimanohar, Vaishnav
Srinivas, “Cacti-io: Cacti with off-chip power-area-timing models,” in
VLSI, 2015, pp. 1254-1267.

P. Paillier, “Public-key cryptosystems based on composite degree residu-
osity classes,” in International conference on the theory and applications
of cryptographic techniques. Springer, 1999, pp. 223-238.

B. Reagen, W.-S. Choi, Y. Ko, V. T. Lee, H.-H. S. Lee, G.-Y. Wei,
and D. Brooks, “Cheetah: Optimizing and accelerating homomorphic
encryption for private inference,” in 2021 IEEE International Symposium
on High-Performance Computer Architecture (HPCA). 1EEE, 2021, pp.
26-39.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

P. Rogaway, “Authenticated-encryption with associated-data,” in Pro-
ceedings of the 9th ACM Conference on Computer and Communications
Security, ser. CCS ’02. New York, NY, USA: Association for
Computing Machinery, 2002, pp. 98-107.

B. Rogers, S. Chhabra, M. Prvulovic, and Y. Solihin, “Using address
independent seed encryption and bonsai merkle trees to make secure
processors os-and performance-friendly,” in 40th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO 2007). 1EEE,
2007, pp. 183-196.

G. Saileshwar, P. J. Nair, P. Ramrakhyani, W. Elsasser, and M. K.
Qureshi, “Synergy: Rethinking secure-memory design for error-
correcting memories,” in 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 1EEE, 2018, pp. 454—
465.

S. T. Setty, R. McPherson, A. J. Blumberg, and M. Walfish, “Making
argument systems for outsourced computation practical (sometimes).” in
NDSS, vol. 1, no. 9, 2012, p. 17.

Y. S. Shao, B. Reagen, G.-Y. Wei, and D. Brooks, “Aladdin: A
pre-rtl, power-performance accelerator simulator enabling large design
space exploration of customized architectures,” in 2014 ACM/IEEE 41st
International Symposium on Computer Architecture (ISCA), 2014, pp.
97-108.

W. Shi, H.-H. S. Lee, M. Ghosh, C. Lu, and A. Boldyreva, “High
efficiency counter mode security architecture via prediction and pre-
computation,” in Proceedings of the 32nd International Symposium on
Computer Architecture (ISCA’05), 2005, pp. 14-24.

R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
Inference Attacks Against Machine Learning Models,” in 2017 IEEE
Symposium on Security and Privacy (SP), 2017, pp. 3-18.

G. Singh, L. Chelini, S. Corda, A. J. Awan, S. Stuijk, R. Jordans,
H. Corporaal, and A.-J. Boonstra, “Near-memory computing: Past,
present, and future,” Microprocessors and Microsystems, vol. 71, p.
102868, 2019.

G. Singh, D. Diamantopoulos, C. Hagleitner, S. Stuijk, and H. Corporaal,
“NARMADA: Near-memory horizontal diffusion accelerator for scalable
stencil computations,” in 2019 29th International Conference on Field
Programmable Logic and Applications (FPL), 2019, pp. 263-269.
Student, “The probable error of a mean,” Biometrika, pp. 1-25, 1908.
Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor
Bunker, Arup De, Yangin Jin, Yang Liu, and Steven Swanson, “Willow:
A User- programmable SSD,” in OSDI, 2014.

G. E. Suh, D. Clarke, B. Gasend, M. Van Dijk, and S. Devadas, “Efficient
memory integrity verification and encryption for secure processors,”
in Proceedings. 36th Annual IEEE/ACM International Symposium on
Microarchitecture, 2003. MICRO-36. 1EEE, 2003, pp. 339-350.

G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “AEGIS:
Architecture for tamper-evident and tamper-resistant processing,” in
ACM International Conference on Supercomputing 25th Anniversary
Volume. New York, NY, USA: Association for Computing Machinery,
2003, p. 357-368.

F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware,” in International Conference on
Learning Representations (ICLR), 2019.

S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution
environments on gpus,” in /3th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 18). Carlsbad, CA: USENIX
Association, Oct. 2018, pp. 681-696.

Wm. A. Wulf and Sally A. McKee, “Hitting the memory wall: implica-
tions of the obvious,” in ACM SIGARCH Computer Architecture News,
vol. 23, no. 1. ACM, 1995, pp. 20-24.

C. Yan, D. Englender, M. Prvulovic, B. Rogers, and Y. Solihin,
“Improving cost, performance, and security of memory encryption
and authentication,” in Proceedings of the 33rd Annual International
Symposium on Computer Architecture, ser. ISCA 06. USA: IEEE
Computer Society, 2006, p. 179-190.

Yoongu Kim, Weikun Yang and Onur Mutlu, “Ramulator: A fast and
extensible DRAM simulator,” in IEEE Computer architecture letters,
vol. 15, no. 1. IEEE, 2015, pp. 45-49.

Young-Cheon Kwon, Suk Han Lee, Jachoon Lee, Sang-Hyuk Kwon,
Je Min Ryu, Jong-Pil Son, O Seongil, Hak-Soo Yu, Haesuk Lee, Soo
Young Kim, Youngmin Cho, Jin Guk Kim, Jongyoon Choi, Hyun-Sung
Shin, Jin Kim, BengSeng Phuah, HyoungMin Kim, Myeong Jun Song,
Ahn Choi, Daeho Kim, SooYoung Kim, Eun-Bong Kim, David Wang,
Shinhaeng Kang, Yuhwan Ro, Seungwoo Seo, JoonHo Song, Jaeyoun

14

(771

Youn, Kyomin Sohn, Nam Sung Kim, “25.4 A 20nm 6GB Function-In-
Memory DRAM, Based on HBM2 with a 1.2TFLOPS Programmable
Computing Unit Using Bank-Level Parallelism, for Machine Learning
Applications,” in ISSCC, 2021, pp. 350-352.

Youngeun Kwon, Yunjae Lee, Minsoo Rhu, “TensorDIMM: A Practi-
cal Near-Memory Processing Architecture for Embeddings and Tensor
Operations in Deep Learning,” in MICRO, 2019, pp. 740-753.

APPENDIX

A. Preliminaries and more Definitions

Definitions of the notations used in the paper are shown in
Table VI.

TABLE VI
NOTATIONS

Symbol Definition

P plaintext, is a 2-D array of n X m, i.e., n vectors
of dimension m.

Pladd; : add,] plaintext block between physical address add,
and add,, include add; and exclude add,

P; the ith vector in the plaintext.

P the jth element in vector P;.

We Bit width of element in P

wA Bit width of addresses

A address of corresponding plaintext

W Bit width of the secret key

K processor secret key, wg bit

We block cipher size, 128 for AES

E(K,X) A block cipher {0,1}*kK x {0,1}*e —
{0,1} e

paddr() the starting physical address of data in bytes

size() the size of data in bits

\ version number of the plaintext

Wy Bit width of version, it should be less than
we — 37, considering 38-bit address and 2-bit
for encrypting tag

C Ciphertext. Size is the same as plaintext

PF pooling factor for summation

wi Bit width of verification tag

q a prime number, Rz 2"t

T; checksum of vector P;

Cr, encrypted checksum of vector P;

z||ly concatenation of x and y

x ﬁ X uniformly sampling, i.e., selecting at random an
element from X and assigning it to x.

In Figure 3, we show the diagram of a vector and matrix
multiplication. Algorithms 4 and 5 are the algorithms that
compute weighted summation of rows in matrix P (i.e., vector
a times a subset of rows in P) and verify the result. In
the algorithm description that follows, it is assumed that only
a subset of elements from the input matrix P participate in
the multiplication, as indicated by index sets [ig, i1, ..., ipF—1]
and [jo, j1, .., jpr—1]. The steps performed on the processor
vs NDP are shown separately in different columns. The
communication between the two entities is denoted by long
arrows.

B. Proof of Correctness

Theorem A.1 On the correctness of the weighted summation:
Value res computed in step 15, Alg. 4, satisfies the equality
res = (kajo_l ax X P, ;) mod 2%e.

Proof. From the Encryption in Alg. 1, for any ¢ and j, we
have Ci,j = P@j — €45 mod 2%¢, and thus, Pi,j = Ci,j +e;,5

15

mod 2%e. Thus,

T€S = Cres + €res 1mod 2V (3)
PF-1 PF-1
=1 Z ar X Ciy i + Z ap X €, 5, mod 2¥¢ (4)
k=0 k=0
PF-1
= [Z ap X (Cik’jk + eik,jk)] mod 2" (&)
k=0
PF—-1
= (Z ar X P;, ;) mod 2% (6)
k=0
O

Theorem A.2 On the correctness of the weighted summation
verification: If all the parties in Alg. 5 follow the protocol,
and for all j € [0,m —1], kaj()*l ay % P;, ; does not exceed
2%e, then the equality T;.s = Cr,,, + E7.., mod ¢ holds.

Proof. From the encryption flow of Alg. 1, for any ¢ and j, we
have C; ; = P; ; — e;; mod 2"¢. From the OTP generation
flow of Alg. 3, Cr;, = T; — Er, mod q. All elements in P are
integrity protected using the same entity s, which is equal to
the first w, bits of E(K,01||paddr(P)/w.||version). Hence,
as shown in Alg. 5:

-1
LHS =Tyes = Z res}nij mod ¢ (7
§=0
m—1 PF—1
= Z(ar x P;, ; mod 2¥¢) x s™7 mod ¢ (8)
=0 k=0
Meanwhile,
RHS =Cr,,, + Er,,, modgq)
PF-1 PF-1
=[(D> @ xCr)+ (Y axxEBr)] modqg (10)
k=0 k=0
PF-1
= Z ar X (C, + E7,)] mod ¢
k=0
PF-1
=[Y axxTy] modg (11)
k=0
PF—-1 m—1
= Z ap X (Z P, ; xs™7)] mod ¢ (12)
k=0 §=0
PF—1 m—1
=] (Z ar, X Pi, j x s™)] mod ¢ (13)
k=0 j=0
m—1 PF—1
=] (Z ag X Py, j) % s™79] mod q (14)
7j=0 k=0

PF—-1

Let over flow, 2 | Z ap X Py, j)/2" . (15)
k=0
m—1 PF—1
RHS =[Y (Y arxP,; mod?2"
=0 k=0
+ over flow; x 2¢) x s™7I] mod ¢ (16)
m—1 PF—1

= |

j=

(Z ar, x P;, ; mod 2¥¢) x s™ 7] mod q
k=0

m—1

+ [Z(overflowj X 2%¢) x s™7J] mod ¢ (17)

<.

m—1
=Tres +[Y (overflow;) x s™ 7] x 2% mod q (18)
j=0
m—1
=LHS +[)Y (overflow;) x s™ 7] x 2*¢ mod ¢ (19)
j=0
If there is no overflow, then for all j, overflow; = 0.
Hence, LHS = RHS.
O

C. Security Proof

We begin our security analysis with the definition of the dis-
tinguishing advantage of a cryptographic system. We modify
the standard definition to include the number of issued queries
as a property of the advantage.

Definition A.l1 Distinguishing advantage for a randomized
system: Let S() : {0,1}*i» — {0, 1}"“°u* denote a randomized
system associated with inputs of length wj;, and outputs
of length wy,:, and R() a truncated output random oracle,
associated with the same input and output lengths. Let also
Ag() denote any randomized polynomial time algorithm which
issues queries from a set @) of cardinality |@Q| to any system
F() : {0,1}*i» — {0,1}"°=t, and outputs one of 0 or 1. The
distinguishing advantage for system S() and truncated output
random oracle R() associated with number of queries |Q)| is
defined as:

Adv}Y = max |Pr[A%0 = 1] — Pr[ARO = 1]
Q| AQ

(20)
Definition A.2 Distinguishing advantage for random-
ized encryption systems tweaked by a version field: Let
E(K,X) {0,1}%e x {0,1}*x — {0,1}" be a
block cipher associated with input X € {0,1}"e, key
K € {0,1}*x, and ciphertext ¥ € {0,1}"<. Let wa
and w, be address and version lengths. Let Ego (K, A,v),
Eo1(K,A,v) and Ejo(K,A,v), denote the randomized
encryption systems FE(K,00||A||v[|0ve~wa—ws=1) " (K,
01| AJo] 0 wA=w2=1) and E(K, 10]|] o|Jow—wA=v2~2),
where EOU()7 E()l()7 EIO() : {0, l}wA X {07 1}w” X {0, 1}w1< —
{0,1}". A € {0,1}“4 is the address input in these sys-
tems. K € {0,1}"* is the encryption key, which is drawn

16

from the uniform distribution, K i Ko, and secret to
any randomized polynomial time algorithm issuing queries to
Eoo(), Eo1(), E10(). Version v € {0,1}* is a cipher tweak,
which is also randomized, drawn from distribution V(), where
V() is not necessarily uniform. The version field is in the
control of systems Egg(), Eo1(), E1o() and not in the control
of the algorithms that issue queries to Eqg(), Eg1(), E10(). On
every distinct query received by Ego(), Eo1(), E10(), systems
Eoo(), Eo1(), E10() produce a different tweak v drawn from
distribution V(), and use this tweak to compute an output
for the received query. The only restriction imposed on V()
is that no two encryption operations performed by any of
Eoo(), Eo1(), E1p(), with the same input A, is tweaked by
the same v <+ V(). We use a Boolean parameter dis €
{true, false} to denote whether v is disclosed to the algorithms
querying Ego(), Eo1(), E1o() or not. When parameter is dis
is omitted, it is implied that dis = true. The distinguishing
advantage associated with each of the randomized encryption
systems Eqoo(), Ep1() and E1o() and number of queries |Q)] is
defined as:

ED(), dis _
Adv T =

max
A,Q,Y0,

same input queries are
on a different v<—V()

|Pr[ABP0 = 1, dis] — Pr[ARV = 1,dis|

(2D
where D is one of ‘00, ‘01°, or ‘10’, and A is any randomized
polynomial time algorithm as in Definition A.1.

The security of our proposed systems is established in the
standard adaptive chosen plaintext and MAC adversaries. The
games which these adversaries play are given in the definitions
below.

Definition A.3 Adaptive chosen plaintext adversary attack-
ing the encryption system Arith-E(): Let Arith-E(K, P, A) :
{0, 1}mxnxwe 5 {0,1}%4 x {0,1}¥5x — {0,1}m*"*%e be
the encryption system defined by Algorithm 1, where P is
the matrix input, m, n and w, are length parameters defined
in Section IV-A, A is an address value of length w, and
K € {0,1}"% is the encryption key. The version input is
omitted as this is not in the control of an adversary, but
instead drawn from distribution V() by Arith-E() on every
distinct encryption operation. An adaptive chosen plaintext
adversary Aégf’E()’Q is defined as a randomized polynomial
time algorithm which issues |Q)| adaptive chosen queries
to encryption system Arith-E() from a set Q = {QU «
(P AL i € [0,|Q| — 1]}, and observes the responses
Cll < Arith-E(K, P All). Furthermore, depending on the
value of a Boolean parameter dis, the algorithm may or may
not have access to the version values v returned from V() as
part of the game. The algorithm succeeds if, in the end of
the game, the algorithm can produce a value K, € {0,1}"%
which is equal to the encryption key K. The advantage of this
adversary is defined as:

Algorithm 4: Weighted Summation 2550—1 ap X P; mod 2%e

kyJk

Processor Bus NDP

Inputs: K, P, [io,%1,...,ipF—1]. [Jo, j1, ., ipF-1], [a0, a1, ...,apF—1]
Output: res
C « Arith-E(K, P, paddr(P)) // Initial Encryption using Algorithm 1

Processor sends encrypted matrix C' to NDP

[Z NI N

NDP receives C

NDP receives the request
PF-1
Chres Zk:o akXCik,]'k mod 2%e

. . NDPS
Processor requests for a weighted summation of elements of C' Rt ULN

/I Processor generates OTP for P;
for k=01t PF —1do

idxy, < (paddr(P;, j,) x 8 mod we)/we;

v <— version associated with the encryption of matrix P drawn by Algorithm 1;

E « E(K,00||paddr(P;,, ;,)||v)[ides x we : (idxy + 1) X we]
Processor receives Cres from NDP
Eres + (kajo_l ap X E;, ;) mod 2¥e // Computes OTP for result

mod 2%e

res < Cres + Eres
Return res

koJk

ikJk
Cres

PF—-1
k=0

Algorithm 5: Verification of Vector Weighted Summations res; = ax X P;, ; mod 2% for all j € [0, m — 1]

1 Processor Bus NDP
Inputs: K, paddr(P), [io, 1y eeey ipF_ﬂ, [ao, at, ..., apF_ﬂ

Output: pass or fail

Processor requests Cres;, Vj € [0,m — 1]

Cres;

J PF—1

k=0 ap X Cik,j) mod 2%e

Processor receives Clres j
res; < 255071 ap X P;, ; mod 2™ for all j € [0, m — 1]

/I res; values are computed from steps 8-12 and 14-16 of Alg.4

v <— version associated with the linear checksum of P, drawn by Algorithm 2;

s «first wy bits of E(K, 01||paddr(P)||v);

Tres <+ Z;n:_ol res; X sJ mod q;

v <— version associated with the enc. linear checksum of P, drawn by Algorithm 3;
for k=01t PF —1 do

| Ery, < first wy bits of E(K, 10||paddr(Py)]|v);

PF—1
k=0

Cres; + (22

Er,.., +(ar x E7,)) mod g;

PF—1

b—o @k X Cr,) mod q

Processor receives Cr,.,, // Cr, values have been computed using Alg. 2, 3
Return pass if Tres = Cr,.,, — ET,,, mod q else fail

Algorithm 6: Weighted Summation Sign Oracle, ws-MAC i (P, Addr, [ig, i1, ...,ipFr—1], [ag, 1, ..., apr_1])

Inputs: K, P, Addr, [io,%1,....,ipF—1], [a0,a1,...,app_1] //Addr is the address of P
OUtPUt: C’resoy sy bres,, 15 Y Thes

Execute steps 4, 5 of Algorithm 4 m times on inputs K, P, [ig,%1,....,¢pr—1], [J,---
Execute Algorithms 2 and 3 on inputs K and P to produce values Cr,

Execute steps 15 of Algorithm 5 on inputs [ig, i1, ...,ipF—1], and [ao, a1, ...,apF—_1];
Cresgs - -3 Cres,,_,+« values returned from step 5 of Algorithm 5;

Cr,,, < value returned from step 15 of Algorithm 5;

Return Cresg,s .- Cresy,_1s CTress

,7), and [ag, a1, ...,appr_1], Vj € [0,m — 1];

® N M B W N =

sequences are considered constant and our proof holds for any
such sequences.

Definition A.4 MAC Adversary attacking the weighted sum-
mation algorithm: Let ws-MACk (P, A) : {0, 1}n*m>we x
{0,1}w4 x{0,1}x — {0,1}™>wetwt be the sign oracle de-
fined by Algorithm 6 and ws-Verify (C, A): {0, 1}m>wetwe x
{0,1}*4 x {0,1}“% — {pass, fail} the verification oracle of
Algorithm 7 returning one of pass or fail. P is the matrix
row input, n, m, and w, are length parameters defined in

Adv(ALIE) QDS _ prig, AZTEOQ o~ | |
dis, Cl0 = Arith-E(K, PI), Al)), ..
ClIRI-1 = Arith-E(K, PIQI-1, AllQI-1]) |

(22)

In the definition and security analysis that follows we will

omit the sequences [ig, ...,ipr—_1] and [ag,...,apF—1] passed
as input to Algorithms 6 and 7 for the sake of simplicity. These

17

Section IV-A, A is an address value of length wa and K €
{0,1}*x is the key value used by the sign and verification

Algorithm 7: Weighted Summation Verification Oracle, ws-Verifyx (Cresy s -, Cr.,.., Addr, [ig, ...,ipF—1], [a0, ..., apF—1])
1 Inputs: K, Cresg, - - Cresm_1» CTyoy» Addr, [io, ... ipr—1], [a0,...,apF_1];

2 Output: pass_fail;

3 Execute Algorithm 5 on inputs K, Addr, [io,...,ipr—1], and [ag,...,app_1];

4 Use inputs Cresg, - - -, Cres,,_, and CTNS instead of the values returned from NDP in steps 4-5 and 15 of Algorithm 5;

s pass_fail + value returned from Algorithm 5 in step 16;

6 Return pass_fail;
oracles. The response coming from oracle ws-MACk() is a
bit string of length m x w,. + w; and consists of the responses (AAmh -E(),Q, d|s) < ul) + Adv F(ST/(),dis (24)
Cresyy- - - Cres,,_, and Cr, . returned from Algorithm 6. C 2
is a bit string of the same length m X w, + w; consisting where Q| mnwe Q).

We

and Cr

Cresm 1 res
as input to algorithm 7. A MAC adversary A,,
is defined as a randomized polynomial time algonthm which
has access to oracles ws-MAC() and ws-Verify(), but not to the
key value K, submits |(Q)s| adaptive chosen sign queries and
|Q.| adaptive chosen verification queries to oracles ws-MAC()
and ws-Verify() respectively in any order, and observes the
oracle responses. Queries come from sets Qs = {QS
(P, Al i € [0,]Qu] 1]} and @, = {QV) « (17, > i€
[0,|Q.| — 1]}. Sign oracle responses have the form C[l] —
ws-MAC g (PU, ALY for all i € [0,]Q4| — 1]. Verification
oracle responses have the form bl < ws-Verify. (Cl], al"l) for
all ¢ € [0, |Q,|—1]. The algorithm succeeds if, in the end of the
game, the algorithm can produce verification inputs (C[’“ T])
such that ws-Verify(C["],al")) = pass and the verification
input CI"] has not been returned from a sign query before.
Depending on the value of the Boolean parameter dis, the
adversary may or may not have access to version values. The
advantage of this adversary is defined as:

of the values Cl.s,, . . which are passed

ws- MAC 0,Q5,Qn,dis

(A'v\vAsAAéAC(,Qs,Qu,dis

)=

Pr[(C[T],a[r]) HA;\‘;?AIZAC()7QS7QU7diS,

1 €0,1Qs] — 1] : (ws-MACk (PV1, AUY) = ClrIA
all = ALY, ws-Verify . (C'), al"l) = pass |
ClO = ws-MAC (P, A1), .|
bl = ws-Verify . (C1, %), ..]
(23)

The security of the arithmetic encryption and weighted
summation verification algorithms is established by the next
two theorems. These theorems are the same as Theorems 1
and 2 of Sections IV-B and IV-F, respectively. In these
sections, parameter dis is omitted for the sake of simplicity.
In the presentation that follows dis is present:

Theorem A.3 On the security of arithmetic encryption: Let
Arith-E(K, P, A) be the arithmetic encryption system of Def-
inition A.3. Let also Appn ™% pbe the adaptive chosen
plaintext adversary of the same definition. Then, the advantage

of this adversary is bounded in the following way:

18

Proof. To establish that the bound holds we first convert the
conditions C1"! = Arith-E(K, P A1), i € [0,|Q| — 1] of
relation (22) into an equivalent form that introduces the output
of encryption system Eqq (). We refer to the version values used

in the queries issued by the adversary as vo, ..., v|Q-1:
Av (AL EDQ Ay — prK, « A FOds g [|
dis, C10 : w,] = P[0 : w,]
— Eoo(K, Al /1., 10)[0 - we] mod 2%, ...,
clRI=10 : w,] = PIRI-U[0 : w,]
— Eoo(K, AR /. g1 -1)[0 : we] mod 2ve,

-]
(25)

By definition A.2, all invocations to oracle Egg() in the bound
of relation (24), can be replaced by invocations to a truncated
output random oracle R () provided that the correcting additive
term AdVECSU,()’dIS is introduced in the bound. We note that
there are |@Q)|" invocations to Egg(). Invocations that occur as
part of the same adversary query use the same version value,
whereas invocations made as part of different queries use
different version values. This is consistent with definition A.2
where version values are considered drawn from an arbitrary
distribution V() not necessarily uniform, which satisfies the
stated constraint. Therefore, we establish that:

Adv (AArzth -E(),Q, dIS) < PT[KO - Azénth -E(),Q,dis K K |

R(ANH[0 : we] = PO : w,]
— Cl[0 : w.] mod 2%, ...,
R(AIRI-N[0 : w,] = PIRI-U[0 : w,]
— ClQI-I0 1] mod 29, | + Advig
(26)

Next, we observe that all random oracle responses are statis-
tically independent from each other and from any other event
including the selection of key K. Therefore, all conditions
that involve random oracle responses can be removed from
the bound of (26):

Av(AG ™) < PriKy « AT, Ko = K]
E()() dIS
+ Advig
@7)

We conclude the proof using the fact that the key K is drawn
from the uniform distribution:

Arith-E(),Q,dis
ACPA

Pr [KO < Swx

Theorem 1 directly follows from combining (27) and (28). [

Theorem A.4 On the security of weighted summation ver-
ification: Let ws-MACk (P, A) and ws-Verify,(C, A) be the
sign and verification oracles of Definition A.4. Let also

ARMAC),Qe.Qudis b the MAC adversary of the same defi-

nition. Then, the advantage of this adversary is bounded in
the following way:

(Av’\v/lsAl\éAC() ,Qs,Qu, dIS) < m (|]Qv| +
Eoo(),dis Eo1(),dis E1o(),dis
Qul - (Adv 5 ™" + Adv g "+ Adv 5)
(29)

where |Qoo < *5= - [Qs, |Qlor = Qs + [Qul. |Qf10
n-|Qs| + |Qul) and q is the prime found in the definition of
Algorithms 5 and 7.

Proof. A first step in the proof is to establish a bound for the
advantage of the MAC adversary F() if the responses from
all verification queries, but the final one (C [r], a”), are equal
to fail. This is essentially the probability that the adversary
succeeds the first time at query (CI"), al"l):

ws-MAC(),Qs,Q. ,dis
F(Amac

)=

Pr[(C[T]’ a[r]) — AWS'MAC()stvQU7diS

7

B3 € [0,1Qs| = 1] : (ws-MACyc(PY), ATy = clIn
all = AUy ws-Verify - (CI", al"l) = pass |
ClOl = ws-MACk (P, A0 ...
ws-Verify . (Cl%, al%) = fail, .. .]
(30)

In the conditions of relation (30), oracles ws-MAC() and
ws-Verify() invoke oracles Ego(), Ep1() and Ejg(). In fact,
there are [Qloo <+ (™) - |Qs| invocations to oracle
Eoo(), |Qor + |Qs| + Qo] invocations to oracle Eqy(),
and [Qli0 < n - (|Qs| + [Qy]) invocations to oracle Ejo()
occurring. Invocations to Egg() serve the purpose of per-
forming arithmetic encryption. This is done by Algorithm 1,
invoked by Algorithm 4 in step 4. Invocations to Egq() serve

the purpose of computing the entity s. There is only one

19

invocation performed by each sign and verification query. The
invocation happens in line 4 of the invoked Algorithm 2 for
sign queries, and line 9 of Algorithm 5 for verification queries.
Invocations to Ejg() serve the purpose of computing OTPs
for linear checksums. There are n invocations performed by
each sign and verification query. Invocations happen in line
4 of the invoked Algorithm 3 for sign queries, and line 13
of Algorithm 5 for verification queries. As in the proof of
Theorem A.3, the invocations to these oracles can be replaced
by invocations to truncated output random oracles Roo(),
Ro1() and Rq0(), prov1ded that a corrective additive term
(Advi) 4 Advy 0+ AdviaV) is introduced in
the bound of (30). Furthermore, as 1n the proof of Theorem
A3., random oracle responses are statistically independent
from each other and from the verification check. Therefore,
all conditions in the bound or relation (30) can be removed in
the presence of the corrective additive term:

(AWYMAC(,Qs,Qu,dis

MAC) <

Pr[(Cl, all) « AmﬂgAC(),Qs,Qv,dis’

37 €100,|Qs| — 1] : (ws-MACy (PU), AUl) = CIIA
all = A ws-Verify, (CI") al™l) = pass | +

Em(),dis
1Qlo1

Eio () ,diS

E(](]() dis
Adv Qo

ViQlon + Adv

+ Adv
(31

We proceed with the proof estimating a bound for the prob-
ability of the event ws-Verify, (CI", al"l) = pass, when CI"]
has not been returned by a sign query and no conditions are
present. Once again, we replace the singe invocation to Eg1 ()
and the n invocations to Ejo(), which happen as part of the
verification check ws-Verify - (Cl"], al"l) = pass, with the same
number of invocations to truncated output random oracles
Ro1() and Rio() as above. It is not difficult to see that, if in
the check ws-Verify (C"), al"!) = pass, Algorithm 7, and the
invoked Algorithm 5 query truncated output random oracles,
then the probability of the event ws-Verify (Cl'], al"l) = pass
is the probability that a random uniformly distributed entity
s is congruent mod ¢ to any of the roots of a polynomial of
degree m, also defined mod ¢. As there can by at most m
roots and s mod ¢ is uniformly distributed in the set [0, g — 1],
it holds that:

F(A;\VASAA({AC()’QS’Q”AIS) < m +
! (32)
Eog()7di5 EOI() dis Elo(),dis
Advig, T AdVIg L, AV g T

where Qoo + e
1Qlio + - 1Qu] +1G]) -

The bound of relation (32) depends only on the number
of queries in sets Qs and (), and not on the queries them-
selves. Furthermore, the bound is non-decreasing with the
number of queries in Q,, @Q,. We introduce the notation

1Qs]s 1Qlor + |Qs| + |Qu| and

F(ApACO-QeQudisilil (o refer to the advantage of relation

(30), when the game of the adversary includes only queries up
to verification query i, for some i < |Q,| — 1 and verification
query ¢ is the output of the adversary. Since the bound of
relation (32) is non-decreasing with the number of queries in
Qs, Q,, it holds that:

F(A\;;ISA/ZAC() Qs,Qu,dls>[1] < F(Aws l\éAC() QS,Qv,dB) 33)
for every i € [0, |Q,| — 1]. Furthermore:

MAC(),Qs, Qo di Rl MAC(),Qs,Qu,dis\[i
AdV(A;\v/IS-AC (0,Qs,Qu, IS)S Z F(A;\‘}/ISAC 0,Qs,Qu, '5)[1]

i=0

WYMAC v, di

< |Qu] - F(Apac V99
(34)

Theorem A.4 follows directly from relations (32) and (34).
This concludes the proof and the analysis that establishes
the security of the arithmetic encryption and encrypted linear
checksum mechanisms.

O

D. Another Construction of Linear Checksum

Here we present another construction for Linear checksum.
Instead of only using w; bits from the AES cipher output as
s in Alg. 2, we use all w, bits in the checksum s.

Algorithm 8: Linear Checksum with More Randomness

1 Inputs: K, P;, paddr(P)

2 Output: T;

3 v < V() //drawn once for the matrix P

4 e; = E(K,01||paddr(P)||v) /lv padded with zeros;
5 ents = we/wy

6 //we define every w;-bit substring of e

7 for kK =0 to cnt,. do

8 | sk=eslkxw: (k+1)xw;

9 end

0 T; < >0, "Pjx (s S[(m—j) mod cnts])t(m_j)/mtsJ
1 7T; < T; mod q

12 Return 7;;

Proposition: This construction will change Theorem A.4,
where the quantlty in the bound must be replaced replaced

by the quantity _*— ot , which is lower.

Proof. Following similar steps, as in the proof of Theorem
A.4, we see that the verification check ws-Verify - (CI" al'l) =
pass of relation (31) is now reduced to an equation of the form:

m—1
Cj x (s
=0

[(m—j) mod cnts])L(Tn_j)/cmtsJ mod q

J

20

for some entities C;, j € [0, m— 1], which are not all zero, and
substrings sy, k € [0, ents —1]. Substrings si, k € [0, ents —1]
are random uniformly distributed, and statistically independent
of each other. Relation (35) is a non-zero polynomial equation
of degree at most - for a single substring si. So, with the
values of all other substrings given, and by the fundamental
theorem of algebra, equation (35) has at mos CZ;

for this substring s;. Thus, out of the g possible sj values, at
most ﬁ satisfy (35) . Consequently, the bound of Theorem
A.4 must change and the the quantity % in the bound must

be replaced replaced by the lower quantity Cn;’l_q. O

