
This paper is included in the Proceedings of the

15th USENIX Symposium on Operating Systems

Design and Implementation.
July 14–16, 2021

978-1-939133-22-9

Open access to the Proceedings of the

15th USENIX Symposium on Operating

Systems Design and Implementation

is sponsored by USENIX.

NrOS: Effective Replication and Sharing
in an Operating System

Ankit Bhardwaj and Chinmay Kulkarni, University of Utah; Reto Achermann,

University of British Columbia; Irina Calciu, VMware Research;

Sanidhya Kashyap, EPFL; Ryan Stutsman, University of Utah;

Amy Tai and Gerd Zellweger, VMware Research

https://www.usenix.org/conference/osdi21/presentation/bhardwaj

NrOS: Effective Replication and Sharing in an Operating System

Ankit Bhardwaj1, Chinmay Kulkarni1, Reto Achermann2, Irina Calciu3,

Sanidhya Kashyap4, Ryan Stutsman1, Amy Tai3, and Gerd Zellweger3

1University of Utah, 2University of British Columbia, 3VMware Research, 4EPFL

Abstract

Writing a correct operating system kernel is notoriously

hard. Kernel code requires manual memory management and

type-unsafe code and must efficiently handle complex, asyn-

chronous events. In addition, increasing CPU core counts

further complicate kernel development. Typically, monolithic

kernels share state across cores and rely on one-off synchro-

nization patterns that are specialized for each kernel structure

or subsystem. Hence, kernel developers are constantly refin-

ing synchronization within OS kernels to improve scalability

at the risk of introducing subtle bugs.

We present NrOS, a new OS kernel with a safer approach

to synchronization that runs many POSIX programs. NrOS

is primarily constructed as a simple, sequential kernel with

no concurrency, making it easier to develop and reason about

its correctness. This kernel is scaled across NUMA nodes

using node replication, a scheme inspired by state machine

replication in distributed systems. NrOS replicates kernel

state on each NUMA node and uses operation logs to maintain

strong consistency between replicas. Cores can safely and

concurrently read from their local kernel replica, eliminating

remote NUMA accesses.

Our evaluation shows that NrOS scales to 96 cores with

performance that nearly always dominates Linux at scale, in

some cases by orders of magnitude, while retaining much of

the simplicity of a sequential kernel.

1 Introduction

Operating system kernels are notoriously hard to build.

Manual memory management, complex synchronization pat-

terns [36], and asynchronous events lead to subtle bugs [2–4],

even when code is written by experts. Increasing CPU core

counts and non-uniform memory access (NUMA) have only

made it harder. Beyond correctness bugs, kernel developers

must continuously chase down performance regressions that

only appear under specific workloads or as core counts scale.

Even so, prevailing wisdom dictates that kernels should use

custom-tailored concurrent data structures with fine-grained

locking or techniques like read-copy-update (RCU) to achieve

good performance. For monolithic kernels, this slows devel-

opment to the extent that even large companies like Google re-

sort to externalizing new subsystems to userspace [57] where

they can contain bugs and draw on a larger pool of developers.

Some have recognized that this complexity isn’t always

warranted. For example, wrapping a single-threaded, sequen-

tial microkernel in a single coarse lock is safe and can provide

good performance when cores share a cache [67]. This ap-

proach does not target NUMA systems, which have many

cores and do not all share a cache. Increased cross-NUMA-

node memory latency slows access to structures in shared

memory including the lock, causing collapse.

Multikernels like Barrelfish [17] take a different approach;

they scale by forgoing shared memory and divide resources

among per-core kernels that communicate via message pass-

ing. This scales well, but explicit message passing adds too

much complexity and overhead for hosts with shared mem-

ory. Within a NUMA node, hardware cache coherence makes

shared memory more efficient than message passing under

low contention.

We overcome this trade-off between scalability and simplic-

ity in NrOS, a new OS that relies primarily on single-threaded,

sequential implementations of its core data structures. NrOS

scales using node replication [28], an approach inspired by

state machine replication in distributed systems, which trans-

forms these structures into linearizable concurrent structures.

Node replication keeps a separate replica of the kernel struc-

tures per NUMA node, so operations that read kernel state can

concurrently access their local replica, avoiding cross-NUMA

memory accesses. When operations mutate kernel state, node

replication collects and batches them from cores within a

NUMA node using flat combining [44], and it appends them

to a shared log; each replica applies the operations serially

from the log to synchronize its state.

The NrOS approach to synchronization simplifies reason-

ing about its correctness, even while scaling to hundreds of

cores and reducing contention in several OS subsystems (§4.2,

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 295

operations require that all kernel nodes reach agreement. For

example, capability operations in Barrelfish require a blocking

two-phase protocol so complex that it is explicitly encoded as

a large state machine, and the full Barrelfish capability system

is about 8,000 lines of code not including the two domain-

specific languages used for RPCs and capability operations.

So, despite their scaling benefits, multikernels fail to exploit

the simplicity and performance of shared memory even when

it is efficient to do so.

Prior work has investigated approaches to combine the

monolithic and the multikernel models [16, 74] or to apply

replication for parts of the kernel [20,25,33,72]. Tornado [42]

and K42 [54] use clustered objects, which optimize shared

state through the use of partitioning and replication. More

recently, Mitosis [10] retrofitted the replication idea to page

table management in the Linux kernel, and showed benefits

for a wide variety of workloads. Implementing Mitosis re-

quired a major engineering effort to retrofit replication into a

conventional kernel design.

Our main observation is that shared memory can be used ju-

diciously with some replication to get the best of both worlds:

a simple, elegant and extensible model like the multikernel

that can run applications designed for a monolithic kernel.

Based on this observation, we propose the NRkernel, a new

multikernel model that replicates the kernel, but allows replica

sharing among cores, balancing performance and simplicity.

The NRkernel is inspired by NR (§2.1), and it has at its

core operation logs that provide linearizability. The logs act as

global broadcast message channels that eliminate the complex

state machine used by Barrelfish for consensus. What remains

are simple, single-threaded implementations of data structures

that apply updates from the shared log. Based on the NRkernel

model, we designed and implemented NrOS, a representative

system to evaluate its characteristics.

Hardware Trends. Two major hardware trends motivate the

NRkernel. First, shared memory is part of every system today,

and current hardware trends indicate that there will be some

form of memory sharing – not necessarily with global coher-

ence – available for many new heterogeneous components

and disaggregated architectures. The industry is working on

multiple specifications that will enable such sharing (e.g.,

CXL [71], CAPI [64], CCIX [1], Gen-Z [7]). While sharing

memory does not scale indefinitely as we add more cores, it

works more efficiently than passing messages among a lim-

ited number of cores [27]. In such a model, a shared log and

replication work well because the log can be accessed by all

independent entities connected over a memory bus.

Second, main memory capacities are growing [40] and are

expected to increase further with new 3D-stacked technolo-

gies [76] and the arrival of tiered memory systems comprising

various types of memory, such as DRAM and SCM. Amazon

already has offerings for servers with up to 24 TiB. Like other

systems [49, 68], the NRkernel leverages the abundance of

memory to improve performance with replication.

2.1 Node Replication (NR)

NR creates a linearizable NUMA-aware concurrent data struc-

ture from a sequential data structure [28]. NR replicates the

sequential data structure on each NUMA node, and it uses an

operation log to maintain consistency between the replicas.

Each replica benefits from read concurrency using a readers-

writer lock and from write concurrency using a technique

called flat combining. Flat combining batches operations from

multiple threads to be executed by a single thread (the com-

biner) per replica. This thread also appends the batched oper-

ations to the log using a single atomic operation for the entire

batch; other replicas read the log and update their local copy

of the structure with the logged operations.

NR relies on three main techniques to scale well:

(1) The operation log uses a circular buffer to represent the

abstract state of the concurrent data structure. Each entry in

the log represents a mutating operation, and the log ensures

a total order among them. The log tail gives the index to the

last operation added to the log. Each replica consumes the

log lazily and maintains a per-replica index into the log that

indicates which operations of the log have been executed on

its copy of the structure. The log is implemented as a circular

buffer of entries that are reused. NR cannot reuse entries that

have not been executed on all replicas. This means at least one

thread on each NUMA node must occasionally make progress

in executing operations on the data structure, otherwise the

log could fill up and block new mutating operations. Section 4

discusses how NrOS addresses this.

(2) Flat combining [44] in NR allows threads running on the

same NUMA node to share a replica, resulting in better cache

locality both from flat combining and from maintaining the

replica local to the node’s last-level cache. The combiner also

benefits from batching by allocating log space for all pending

operations at a replica with a single atomic instruction.

(3) The optimized readers-writer lock in NR is a writer-

preference variant of the distributed readers-writer lock [75]

that ensures correct synchronization between the combiner

and reader threads when accessing the sequential replica. This

lock lets readers access a local replica while the combiner is

adding a batch of operations to the log, increasing parallelism.

NR executes updates and reads differently:

A concurrent mutating operation (update) needs to ac-

quire the combiner lock on the local NUMA node to add

the operation to the log and to execute the operation against

the local replica. If the thread T executing this operation fails

to acquire it, another thread is the combiner for the replica

already, so T spin-waits to receive its operation’s result from

the existing combiner. If T acquires the lock, it becomes the

combiner. The combiner first flat combines all operations

from all threads that are concurrently waiting for their update

operations to be appended to the log with a single compare-

and-swap. Then, the combiner acquires the writer lock on

the local replica’s structure, and it sequentially executes all

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 297

unexecuted update operations in the log on the structure in

order. For each executed operation, the combiner returns its

results to the waiting thread.

A concurrent non-mutating operation (read) can execute

on its thread’s NUMA-node-local replica without creating

a log entry. To ensure that the replica is not stale, it takes

a snapshot of the log tail when the operation begins, and it

waits until a combiner updates the replica past the observed

tail. If there is no combiner for the replica, the reading thread

becomes the combiner to update the replica before executing

its read operation.

NR simplifies concurrent data structure design by hiding

the complexities of synchronization behind the log abstraction.

NR works well on current systems because the operation log

is optimized for NUMA. We adopt NR’s NUMA-optimized

log design, but we use it to replicate kernel state.

Linearizable operation logs are ubiquitous in distributed

systems. For example, many protocols such as Raft [63],

Corfu [35], and Delos [15] use a log to simplify reaching

consensus and fault tolerance, as well as to scale out a single-

node implementation to multiple machines. Recently, the

same abstraction has been used to achieve good scalability

on large machines both in file systems [19] and general data

structures [24, 44, 52, 58, 69]. Concurrent work has developed

NUMA-aware data structures from persistent indexes [77].

2.2 NR Example

Listing 1 shows an example where a Rust standard hashmap is

replicated using NR. NRHashMap wraps an existing sequential

hashmap (line 2-4). Programs specify the read (line 7) and up-

date (line 10) operations for the structure and how each should

be executed at each replica (lines 20-31) by implementing the

Dispatch trait.

Listing 2 shows a program that creates a single NRHashMap

with two NR replicas that use a shared log to synchronize up-

date operations between them. The code creates a log (line 3)

which is used to create two replicas (lines 6-7). Finally, the

threads can register themselves with any replica and issue op-

erations against it (lines 14-15). NR supports any number of

replicas and threads; programs must specify a configuration

that is efficient for their structure and operations. For example,

NrOS allocates one replica per NUMA node, and each core

in a node registers with its NUMA-local replica in order to

benefit from locality.

3 Concurrent Node Replication (CNR)

For some OS subsystems with frequent mutating operations

(e.g., the file system) NR’s log and sequential replicas can

limit scalability. Multiple combiners from different replicas

can make progress in parallel, but write scalability can be

limited by appends to the single shared log and the per-replica

1 // Standard Rust hashmap node replicated to each NUMA node.

2 pub struct NRHashMap {

3 storage: HashMap<usize, usize>,

4 }

5

6 // NRHashMap has a Get(k) op that does not modify state.

7 pub enum HMReadOp { Get(usize) }

8

9 // NRHashMap has a Put(k,v) op that modifies replica state.

10 pub enum HMUpdateOp { Put(usize, usize) }

11

12 // The trait implementation describes how to execute each

13 // operation on the sequential structure at each replica.

14 impl Dispatch for NRHashMap {

15 type ReadOp = HMReadOp;

16 type UpdateOp = HMUpdateOp;

17 type Resp = Option<usize>;

18

19 // Execute non-mutating operations (Get).

20 fn dispatch(&self, op: Self::ReadOp) -> Self::Resp {

21 match op {

22 HMReadOp::Get(k) => self.storage.get(&k).map(|v| *v),

23 }

24 }

25

26 // Execute mutating operations (Put).

27 fn dispatch_mut(&mut self, op: Self::UpdateOp) ->

Self::Resp {

28 match op {

29 HMUpdateOp::Put(k, v) => self.storage.insert(k, v),

30 }

31 }

32 }

Listing 1: Single-threaded hashmap transformed using NR.

1 // Allocate an operation log to synchronize replicas.

2 let logsize = 2 * 1024 * 1024;

3 let log = Log::<<NRHashMap as

Dispatch>::UpdateOp>::new(logsize);

4

5 // Create two replicas of the hashmap (one per NUMA node).

6 let replica1 = Replica::<NRHashMap>::new(log);

7 let replica2 = Replica::<NRHashMap>::new(log);

8

9 // Register threads on one NUMA node with replica1.

10 let tid1 = replica1.register();

11 // Threads on other node register similarly with replica2.

12

13 // Issue Get and Put operations and await results.

14 let r = replica1.execute(HMReadOp::Get(1), tid1);

15 let r = replica1.execute_mut(HMUpdateOp::Put(1, 1), tid1);

Listing 2: Creating replicas and using NR.

readers-writer lock, which only allows one combiner to exe-

cute operations at a time within each replica.

To solve this, we extend NR to exploit operation commuta-

tivity present in many data structures [30,45]. Two operations

are commutative if executing them in either order leaves the

structure in the same abstract state. Otherwise, the opera-

tions are conflicting. Like NR, CNR replicates a data struc-

ture across NUMA nodes and maintains consistency between

replicas. However, CNR scales the single shared NR log to

multiple logs by assigning commutative operations to differ-

ent logs. Conflicting operations are assigned to the same log,

298 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

which ensures they are ordered with respect to each other.

Also, CNR can use concurrent or partitioned data structures

for replicas, which allows multiple concurrent combiners on

each replica – one per shared log. This eliminates the per-

replica readers-writer lock and scales access to the structure.

CNR transforms an already concurrent data structure to

a NUMA-aware concurrent data structure. The original data

structure can be a concurrent (or partitioned) data structure

that works well for a small number of threads (4-8 threads)

within a single NUMA node. This data structure can be lock-

free or lock-based and may exhibit poor performance under

contention. CNR transforms such a concurrent data structure

to one that works well for a large number of threads (e.g., 100s

of threads) across NUMA nodes and is resilient to contention.

Similar to transactional boosting [45], CNR only considers

the abstract data type for establishing commutativity, not the

concrete data structure implementation. For example, con-

sider a concurrent hashmap with an insert(k, v) operation.

One might think that insert(k, v) and insert(k+1, v′) are not

commutative because they may conflict on shared memory

locations. However, the original data structure is concurrent

and already safely orders accesses to shared memory loca-

tions; hence, these operations commute for CNR and can be

safely executed concurrently.

CNR’s interface is nearly identical to NR’s interface, but

it introduces operation classes to express commutativity. Im-

plementers of a structure provide functions that CNR uses

to map each operation to an operation class. These functions

map conflicting operations to the same class, and each class

is mapped to a log. Hence, if two conflicting operations exe-

cute on the same NUMA node they are executed by the same

combiner, which ensures they are executed in order. In con-

trast, commutative operations can be executed by different

combiners and can use different shared logs, allowing them

to be executed concurrently.

Overall, CNR increases parallelism within each NUMA

node by using a concurrent replica with multiple combiners,

and it increases parallelism across NUMA nodes by using

multiple (mostly) independent shared logs. However, ulti-

mately every update operation must be executed at all replicas;

hence, it comes at a cost, and it cannot scale update throughput

beyond that of a single NUMA node. We refer to the general

mechanism of replicating a data structure using operation logs

as NR; when we need to explicitly distinguish cases that rely

on a concurrent data structure with multiple logs (rather than

a sequential one with a single log) we use the term CNR.

3.1 CNR Example

The code to use CNR to scale Put throughput for a repli-

cated hashmap is almost identical to the example given in

Section 2.2; it only changes in two ways. First, the structure

embedded in each replica must be thread-safe, since (commu-

tative) operations are executed on it concurrently, i.e., it must

1 impl LogMapper for HMUpdateOp {

2 fn hash(&self, nlogs: usize, logs: Vec<usize>) {

3 logs.clear();

4 match self {

5 HMUpdateOp::Put(key, _v) => logs.push(*key % nlogs),

6 }

7 }

8 }

Listing 3: LogMapper implementation for update operations.

implement Rust’s Sync trait. This creates a subtle, mostly

inconsequential, distinction in CNR’s Dispatch trait because

a mutable reference is not required to execute an operation

on the structure; hence, Listing 1 line 27 would read &self

rather than &mut self.

Second, CNR uses multiple logs to scale update operations;

programs must indicate which operations commute so CNR

can distribute commuting operations among logs. To do this,

programs implement the LogMapper trait for their update

operations (Listing 3). The program must implement this

trait for read operations as well. Get and Put operations on

a hashmap commute unless they affect the same key, so this

example maps all operations with a common key hash to the

same class and log. CNR also allows passing multiple logs to

the replicas; otherwise, its use is similar to Listing 2. Some

operations may conflict with operations in multiple classes,

which we discuss in the next section, so a LogMapper may

map a single operation to more than one class/log.

3.2 Multi-log Scan Operations

In addition to read and update operation types, CNR adds

a scan operation type, instances of which belong to more

than one operation class. These are operations that conflict

with many other operations. Often these are operations that

involve the shape of the structure or that need a stable view of

many elements of it. Examples include returning the count of

elements in a structure, hashmap bucket array resizing, range

queries, or, in our case, path resolution and directory traversal

for file system open, close, and rename operations. If these

operations were assigned to a single class, all other operations

would need to be in the same class, eliminating any benefit

from commutativity.

Scan operations conflict with multiple operation classes,

so they must execute over a consistent state of the replica

with respect to all of the classes and logs involved in the scan

obtained after its invocation. To obtain this consistent state,

the thread performing the scan creates an atomic snapshot

at the tails of the logs involved in the operation. Then, the

replica used by the scan needs to be updated exactly up to

the snapshot without exceeding it (unlike NR read operations,

which can update past the read thread’s observed log tail).

Hence, there are two challenges that CNR needs to solve

for a correct scan operation: (1) obtaining the atomic snapshot

of the log tails while other threads might be updating the logs;

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 299

pared with a lightweight hypervisor which runs processes as

containerized/isolated applications using the libOS.

NRkernel Principles. Overall NrOS represents a new point

in the multikernel design space we call the NRkernel model,

which is encapsulated by three key principles.

(1) Combining replicated and shared state. Multikernels

like Barrelfish rely on per-core replicas which are pro-

hibitively expensive; NRkernels strike a balance by maintain-

ing a kernel replica per NUMA node; within a NUMA node

cores share access to their NUMA-local replica. This maxi-

mizes the benefit of shared last-level caches while eliminating

slow cross-NUMA node memory accesses. With per-NUMA-

node replicas, memory consumption grows with the number

of NUMA nodes rather than the number of cores.

(2) Replica consistency via an operation log. Unlike multi-

kernels’ expensive use of message passing between all pairs

of cores, in NRkernels kernel replicas efficiently synchronize

with shared operation logs; logging scales within a NUMA

node using flat combining to batch operations across cores.

The logs encode all state-changing operations for each subsys-

tem, and ensure replica consistency while hiding the details

of architecture-specific performance optimizations.

(3) Compiler-enforced memory and concurrency safety.

Rust’s compile-time memory-safety and thread-safety guar-

antees are easy to extend to a kernel’s NR implementation.

Its segregation of mutating and non-mutating references en-

sures correct, efficient code is generated where each kernel

operation safely accesses the local replica when possible or is

logged to synchronize replicas. Rust’s Send and Sync anno-

tations for types are a helpful mechanism to prevent putting

data structures on the log that have meaning only on a local

core (e.g., a userspace pointer) and prevents them from ever

being accessed by another core due to flat combining.

Encapsulating concurrency concerns in a single library

with compiler-checked guarantees ensures most operations

scale without concerns about subtle concurrency bugs. Having

NR isolated in a single logical library also makes it easier to

reason about concurrency correctness. For instance, in future

work we plan to formally verify the NR mechanism, which

would guarantee correct translation for any data structure that

leverages NR for concurrency. Contrast this with a traditional

kernel such as Linux, where bugs can be introduced not only

in the lock library implementation (such as RCU) but espe-

cially in the way the rest of the kernel uses the library; only in

2019 did kernel developers consolidate the Linux RCU library

to prevent users from mismatching locking calls [8, 59].

In the remainder of this section, we describe NrOS’s sub-

systems, which demonstrate these principles and resolve the

challenges of putting them into practice.

4.1 Physical Memory Management

Physical memory allocation and dynamic memory allocation

for kernel data structures are the two basic subsystems that

do not use NR. Replicated subsystems often require physi-

cal frames, but that allocation operation itself should not be

replicated. For example, when installing a mapping in a page

table, each page table entry should refer to the same physical

page frame on all replicas (though, each replica should have

its own page tables). If allocator state were replicated, each

allocation operation would be repeated on each replica, break-

ing this. As a result, some syscalls in NrOS must be handled

in two steps. For example, when installing a page, the page is

allocated up front, outside of NR, and a pointer to it is passed

as an argument to the NR operation. This also helps with per-

formance; zeroing a page is slow, and it can be done before

the replicated NR operation is enqueued. Operations from a

log are applied serially at each replica, so this optimization

eliminates head-of-line-blocking on zeroing.

At boot time, the affinity for memory regions is identi-

fied, and memory is divided into per-NUMA node caches

(NCache). The NCache statically partitions memory further

into two classes of 4 KiB and 2 MiB frames. Every core has a

local cache TCache of 4 KiB and 2 MiB frames for fast, no-

contention allocation when it contains the requested frame

size. If it is empty, it refills from its local NCache. Similar to

slab allocators [21], NrOS TCache and NCache implement a

cache frontend and backend that controls the flow between

TCaches and NCaches.

Unlike Barrelfish or seL4 [53] where all dynamic memory

management is externalized to userspace, NrOS makes use of

dynamic memory allocation in the kernel. For arbitrary-sized

allocations, NrOS implements a simple, scalable allocator

with per-core, segregated free lists of 2 MiB or 4 KiB frames.

Each frame is divided into smaller, equal-sized objects. A bit

field tracks per-object allocations within a frame.

Since NrOS is implemented in Rust, memory management

is greatly simplified by relying on the compiler to track the

lifetime of allocated objects. This eliminates a large class

of bugs (use-after-free, uninitialized memory, etc.), but the

kernel still has to explicitly handle running out of memory.

NrOS uses fallible allocations to handle out-of-memory errors

gracefully by returning an error to applications.

However, handling out-of-memory errors in presence of

replicated data structures becomes challenging: Allocations

that happen to store replicated state must be deterministic

(e.g., they should either succeed on all replicas or none). Oth-

erwise, the replicas would end up in an inconsistent state if

after executing an operation, some replicas had successful

and some had unsuccessful allocations. Making sure that all

replicas always have equal amounts of memory available is

infeasible because every replica replicates at different times,

and allocations can happen on other cores for outside of NR.

We solve this problem in NrOS by requiring that all memory

allocations for state within node replication or CNR must go

through a deterministic allocator. In the deterministic alloca-

tor, the first replica that reaches an allocation request allocates

memory on behalf of all other replicas too. The deterministic

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 301

allocator remembers the results temporarily, until they are

picked up by the other replicas which are running behind. If

an allocation for any of the replica fails, the leading replica

will enqueue the error for all replicas to ensure that all replicas

always see the same result. Allocators in NrOS are chainable,

and it is sufficient for the deterministic allocator to be any-

where in the chain so it doesn’t necessarily have to be invoked

for every fine-grained allocation request. Our implementation

leverages the custom allocator feature in Rust, which lets us

override the default heap allocator with specialized allocators

for individual data structures.

4.2 Virtual Memory Management

NrOS relies on the MMU for isolation. Like most conven-

tional virtual memory implementations, NrOS uses a per-

process mapping database (as a B-Tree) to store frame map-

pings which is used to construct the process’s hardware page

tables. NrOS currently does not support demand paging. Due

to increased memory capacities, we did not deem demand

paging an important feature for demonstrating our prototype.

Both the B-Tree and the hardware page tables are simple,

sequential data structures that are wrapped behind the node

replication interface for concurrency and replication. There-

fore, the mapping database and page tables are replicated

on every NUMA node, forming the NR-vMem subsystem.

NR-vMem exposes the following mutating operations for

a process to modify its address space: MapFrame (to insert

a mapping); Unmap (to remove mappings); and Adjust (to

change permissions of a mapping). NR-vMem also supports

a non-mutating Resolve operation (that advances the local

replica and queries the address space state).

There are several aspects of NR-vMem’s design that are

influenced by its integration with node replication.

For example, NR-vMem has to consider out-of-band read

accesses by cores’ page table walkers. Normally a read op-

eration would go through the node replication interface, en-

suring replay of all outstanding operations from the log first.

However, a hardware page table walker does not have this

capability. A race arises if a process maps a page on core X

of replica A and core Y of replica B accesses that mapping

in userspace before replica B has applied the update. Luckily,

this can be handled since it generates a page fault. In order to

resolve this race, the page fault handler advances the replica

by issuing a Resolve operation on the address space to find

the corresponding mapping of the virtual address generating

the fault. If a mapping is found, the process can be resumed

since the Resolve operation will apply outstanding opera-

tions. If no mapping is found, the access was an invalid read

or write by the process.

Unmap or Adjust (e.g., removing or modifying page table

entries) requires the OS to flush TLB entries on cores where

the process is active to ensure TLB coherence. This is typi-

cally done in software by the OS (and commonly referred to

as performing a TLB “shootdown”). The initiator core starts

by enqueuing the operation for the local replica. After node

replication returns it knows that the unmap (or adjust) opera-

tion has been performed at least against the local page table

replica and that it is enqueued as a future operation on the

log for other replicas. Next, it sends inter-processor interrupts

(IPIs) to trigger TLB flushes on all cores running the corre-

sponding process. As part of the IPI handler the cores first

acknowledge the IPI to the initiator. Next, they advance their

local replica to execute outstanding log operations (which

forces the unmap/adjust if it was not already applied). Then,

they poll a per-core message queue to get information about

the regions that need to be flushed. Finally, they perform the

TLB invalidation. Meanwhile the initiator invalidates its own

TLB entries, and then it waits for all acknowledgments from

the other cores before it returns to userspace. This shootdown

protocol incorporates some of the optimizations described in

Amit et al. [12]; it uses the cluster mode of the x86 interrupt

controller to broadcast IPIs up to 16 CPUs simultaneously,

and acknowledgments are sent to the initiator as soon as pos-

sible when the IPI is received (this is safe since flushing is

done in a non-interruptible way).

4.3 File System

File systems are essential for serving configuration files and

data to processes. NR-FS adds an in-memory file system

to NrOS that supports some standard POSIX file operations

(open, pread, pwrite, close, etc.). NR-FS tracks files and

directories by mapping each path to an inode number and

then mapping each inode number to an in-memory inode.

Each inode holds either directory or file metadata and a list

of file pages. The entire data structure is wrapped by node

replication for concurrent access and replication.

There are three challenges for implementing a file system

with node replication. First, historically POSIX read opera-

tions mutate kernel state (e.g., file descriptor offsets). State

mutating operations in node replication must be performed at

each replica serially, which would eliminate all concurrency

for file system operations. Fortunately, file descriptor offsets

are implemented in the userspace libOS, and all NrOS file

system calls are implemented with positional reads and writes

(pread/pwrite), which do not update offsets. This lets NR-FS

apply read operations as concurrent, non-mutating operations.

Second, each file system operation can copy large amounts

of data with a single read or write operation. The size of the

log is limited, so we do not copy the contents into it. Instead

we allocate the kernel-side buffers for these operations and

places references to the buffers in the log. These buffers are

deallocated once all replicas have applied the operation.

Third, processes supply the buffer for writes, which can

be problematic for replication. If a process changes a buffer

during the execution of a write operation, it could result in

inconsistencies in file contents since replicas could copy data

302 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

into the file from the buffer at different times. In NR-FS the

write buffer is copied to kernel memory beforehand. This

also solves another problem with flat combining: cores are as-

signed to processes (§4.4) and any core within a replica could

apply an operation, but a particular core may not be in the

process’s address space. Copying the data to kernel memory

before enqueuing the operation ensures that the buffer used

in the operation is not modified during copies and is readable

by all cores without address space changes.

4.3.1 Scaling NR-FS Writes

NR-FS optimizes reads so that many operations avoid the

log, but other operations (write, link, unlink, etc.) must

always be logged. This is efficient when these operations

naturally contend with one another since they must serialize

anyway and can benefit from flat combining. However, some-

times applications work independently and concurrently on

different regions of the file system. For those workloads, node

replication would be a limiting bottleneck as it unnecessarily

serializes those operations.

To solve this, we developed CNR (§3). CNR uses the same

approach to replication as node replication, but it divides com-

mutative mutating operations among multiple logs with a

combiner per log to scale performance. Others have observed

the benefits of exploiting commutativity in syscalls and file

systems [19, 30, 60], and CNR lets NR-FS make similar op-

timizations. CNR naturally scales operations over multiple

combiners per NUMA node under low contention workloads

that mutate state, and it seamlessly transitions to use a single

combiner when operations contend.

Augmenting NR-FS to use CNR mainly requires imple-

menting the LogMapper trait that indicates which log(s) an

operation should serialize in (Listing 3). NR-FS hash parti-

tions files by inode number, so operations associated with

different files are appended to different logs and applied in

parallel.

Some operations like rename may affect inodes in multi-

ple partitions. Our current version of NR-FS handles this by

serializing these operations with operations on all logs as a

scan-update (§3.2). Using scans ensures that if the effect of

any cross-partition operation (like rename) could have been

observed by an application, then all operations that were ap-

pended subsequently to any log linearize after it (external

consistency). We plan to experiment in the future with more

sophisticated approaches that avoid serializing all operations

with every such cross-partition operation.

4.4 Process Management and Scheduling

Process management for userspace programs in NrOS is in-

spired by Barrelfish’s “dispatchers” and the “Hart” core ab-

straction in Lithe [65] with scheduler activations [13] as a

notification mechanism.

In NrOS, the kernel-level scheduler (NR-Scheduler) is a

coarse-grained scheduler that allocates CPUs to processes.

Processes make system calls to request for more cores and to

give them up. The kernel notifies processes of core allocations

and deallocations via upcalls. To run on a core, a process

allocates executor objects (i.e., the equivalent of a “kernel”

thread) that are used to dispatch a given process on a CPU.

An executor mainly consists of two userspace stacks (one

for the upcall handler and one for the initial stack) and a

region to save CPU registers and other metadata. Executors

are allocated lazily but a process keeps a per-NUMA-node

cache to reuse them over time.

In the process, a userspace scheduler reacts to upcalls in-

dicating the addition or removal of a core, and it makes fine-

grained scheduling decisions by dispatching threads accord-

ingly. This design means that the kernel is only responsible

for coarse-grained scheduling decisions, and it implements a

global policy of core allocation to processes.

NR-Scheduler uses a sequential hash table wrapped with

node replication to map each process id to a process structure

and to map process executors to cores. It has operations to cre-

ate or destroy a process, to allocate and deallocate executors

for a process, and to obtain an executor for a given core.

Process creation must create a new address space, parse

the program’s ELF headers, allocate memory for program

sections, and relocate symbols in memory. A naive imple-

mentation might apply those operations on all replicas using

node replication, but this would be incorrect. It is safe to in-

dependently create a separate read-only program section (like

.text) for the process by performing an operation at each

of the replicas. However, this would not work for writable

sections (like .data), since having independent allocations

per replica would break the semantics of shared memory in

the process. Furthermore, we need to agree on a common

virtual address for the start of the ELF binary, so position

independent code is loaded at the same offset in every replica.

As a result of this, process creation happens in two stages,

where operations that cannot be replicated are done in ad-

vance. The ELF program file must be parsed up front to find

the writable sections, to allocate memory for them, and to

relocate entries in them. After that, these pre-loaded physi-

cal frames and their address space offsets are passed to the

replicated NR-Scheduler create-process operation. Within

each replica, the ELF file is parsed again to load and relocate

the read-only program sections and to map the pre-allocated

physical frames for the writable sections.

Removing a process deletes and deallocates the process at

every replica, but it also must halt execution on every core cur-

rently allocated to the process. Similar to TLB shootdowns,

this is done with inter-processor interrupts and per-core mes-

sage queues to notify individual cores belonging to a replica.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 303

4.5 Log Garbage Collection

As described in Section 2.1, operation logs are circular buffers,

which fixes the memory footprint of node replication. How-

ever, entries can only be overwritten once they have been

applied at all replicas; progress in applying entries at a replica

can become slow if operations are rare at that replica (e.g., if

cores at one replica spend all of their time in userspace).

NrOS solves this in two ways. First, if a core at one replica

cannot append new operations because another replica is lag-

ging in applying operations, then it triggers an IPI to a core

associated with the lagging replica. When the core receives

the IPI, it immediately applies pending log operations to its

local replica, unblocking the stalled append operation at the

other replica. On initialization, NrOS provides a callback to

the node replication library that it can use to trigger an IPI;

the library passes in the id of the slow replica and the id of the

log that is low on space. Second, frequent IPIs are expensive,

so NrOS tries to avoid them by proactively replicating when

cores are idle. So long as some core at each replica sometimes

has no scheduled executor, IPIs are mostly avoided.

Finally, some operations hold references to data outside

of the log that may need to be deallocated after an operation

has been applied at all replicas (e.g., buffers that hold data

from file system writes). If deallocation of these resources

is deferred until a log entry is overwritten, then large pools

of allocated buffers can build up, hurting locality and putting

pressure on caches and TLBs. To more eagerly release such

resources, these references embed a reference count initialized

to the number of replicas, which is decremented each time

the operation is applied at a replica; when the count reaches

zero, the resource is released.

5 Implementation

We implemented NrOS from scratch in Rust; it currently

targets the x86-64 platform. It also has basic support for Unix

as a target platform, which allows kernel subsystems to be run

within a Linux process and helps support unit testing. The core

kernel consists of 11k lines of code with 16k additional lines

for kernel libraries (bootloader, drivers, memory management,

and platform specific code factored out from the core kernel

into libraries). In the entire kernel codebase, 3.6% of lines

are within Rust unsafe blocks (special blocks that forego

the compiler’s strong memory- and thread-safety guarantees).

Most of this unsafe code casts and manipulates raw memory

(e.g., in memory allocators or device drivers), a certain amount

of which is unavoidable in kernel code.

Node Replication. We implemented node replication in Rust

as a portable library totaling 3.4k lines of code (5% in unsafe

blocks). We made some notable changes to the state-of-the-

art node replication design [28] and built CNR on top of

it. Specifically, our implementation relies on Rust’s generic

types, making it easy to lift arbitrary, sequentially-safe Rust

Name Memory Nodes/Cores/Threads

2×14 Skylake 192 GiB 2x14x2 Xeon Gold 5120

4×24 Cascade 1470 GiB 4x24x2 Xeon Gold 6252

Table 1: Architectural details of our evaluation platforms.

structures into node-replicated, concurrent structures. This is

done by implementing the Dispatch interface in Listing 1.

Userspace Library. NrOS provides a userspace runtime sup-

port library (vibrio) for applications. It contains wrapper func-

tions for kernel system calls, a dynamic memory manager, and

a cooperative scheduler that supports green threads and stan-

dard synchronization primitives (condition variables, mutexes,

readers-writer locks, semaphores, etc.).

This library also implements hypercall interfaces for link-

ing against rumpkernels (a NetBSD-based library OS) [50].

This allows NrOS to run many POSIX programs. rumpkernel

provides libc and libpthread which, in turn, use vibrio for

scheduling and memory management through the hypercall

interface. The hypercall interface closely matches the refer-

ence implementation of the rumprun-unikernel project [9];

however, some significant changes were necessary to make

the implementation multi-core aware. The multi-core aware

implementation was inspired by LibrettOS [62].

The NrOS kernel itself does not do any I/O, but it abstracts

interrupt management (using I/O APIC, xAPIC and x2APIC

drivers) and offers MMIO PCI hardware passthrough to appli-

cations. Applications can rely on the rump/NetBSD network

or storage stack and its device drivers for networking and

disk access (supporting various NIC models and AHCI based

disks). The I/O architecture is similar to recent proposals for

building high performance userspace I/O stacks [18, 66].

6 Evaluation

This section answers the following questions experimentally:

• How does NrOS’s design compare against monolithic

and multikernel operating systems?

• What is the latency, memory and replication mechanism

trade-off in NrOS’ design compared to others?

• Does NrOS’s design matter for applications?

We perform our experiments on the two machines given

in Table 1. For the Linux results, we used Ubuntu version

19.10 with kernel version 5.3.0. If not otherwise indicated,

we did not observe significantly different results between the

two machines and omit the graphs for space reasons. We

pinned benchmark threads to physical cores and disabled

hyperthreads. Turbo boost was enabled for the experiments.

If not otherwise indicated we show bare-metal results.

304 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Figure 3: NR-FS read/write scalability for write ratios 0%, 10%,

60% and 100% with 1 or 24 files on 4×24 Cascade.

6.1 Baseline Node Replication Performance

We have extensively tested our Rust-based NR library in

userspace on Linux using a variety of structures to compare

its performance with the existing state-of-the-art NR imple-

mentation [28] and with other optimized concurrent structures.

We omit these results as they are orthogonal to NrOS’s contri-

butions, but we summarize a few key results when comparing

with RCU which is the most relevant comparison for NrOS.

We tested scaling a hash table on 4×24 Cascade, NR (just

wrapping the unmodified, sequential HashMap from the Rust

standard library as shown in Listing 1) outperforms other

concurrent hash maps written in Rust and the urcu library’s

read-modify-write-based hash table. With 0% updates, urcu

and node replication scale linearly, but urcu lags behind; NR

achieves perfect NUMA locality by replicating the hash table.

The NR hash table also stores elements in-place, whereas

urcu stores a pointer to each element, leading to an additional

de-reference. This is inherent in the urcu design since ele-

ments are deallocated by the last reader. In short, for read-only

workloads, NR performs about twice as well as urcu, which is

the next fastest approach we tested. Even with any fraction of

read operations it performs strictly better at scale. However,

we find that urcu can outperform NR when reads and writes

are split between threads rather than when reads and writes

are mixed on every thread. This is because RCU allows read-

ers to proceed without any synchronization overhead whereas

node replication must acquire the local reader lock.

6.2 NR-FS

We evaluate NR-FS performance by studying the impact of

issuing read and write operations to files using a low-level

microbenchmark and a LevelDB application benchmark.

6.2.1 Microbenchmark: NR-FS vs tmpfs

In this benchmark, we are interested in the file operation

throughput while varying cores, files and the read/write ra-

tio. We pre-allocate files of 256 MiB upfront. Each core then

accesses exactly one file, and each file is shared by an equal

number of cores when the number of cores exceeds the num-

ber of files. The cores either read or write a 1 KiB block in

the file uniformly at random. This general access pattern is

typical for many databases or storage systems [43, 46]. We

compare against the Linux’s (in-memory) tmpfs to minimize

persistence overhead [23].

Figure 3 shows the achieved throughput for write ratios 0%,

10%, 60%, and 100%, while increasing the number of cores

(x-axis). The left graphs measured the throughout if a single

file is read from/written to concurrently. With WR = 0%, NR-

FS achieves ∼40× better read performance at max. utilization.

This increase is due to replication of the file system and mak-

ing reads an immutable operation; largely the benefit comes

from higher available memory bandwidth (4×24 Cascade has

88 GiB/s local vs. 16 GiB/s remote read bandwidth). How-

ever, replication increases the memory consumption signifi-

cantly; for 24 files, each 256 MiB, tmpfs uses 6.1 GiB (6 GiB

data and 0.1 GiB metadata) as compared to 24.1 GiB (24 GiB

data and 0.1 GiB metadata) for NR-FS. For higher write ra-

tios, tmpfs starts higher as NR-FS performs an additional

copy from user to kernel memory to ensure replica consis-

tency (Section 4.3) and its write is likely not as optimized as

the Linux codebase. However, the tmpfs throughput drops

sharply at the first NUMA node boundary due to contention

and increased cache coherence traffic. For WR = 100%, NR-

FS performs ∼2× better than tmpfs at max. utilization.

Discussion: With the Intel architectures used in our setting,

single file access generally outperforms Linux as soon as the

file size exceeds the combined L3 size of all NUMA nodes

(128 MiB on 4×24 Cascade). A remote L3 access on the same

board is usually faster than a remote DRAM access; therefore,

replication plays a smaller role in this case. As long as the

file fits in L3 or the combined L3 capacity, NR-FS has on-par

or slightly worse performance than tmpfs. NR-FS gains its

advantage by trading memory for better performance.

The right side of the figure shows the less contended case

where the cores are assigned to 24 files in a round-robin

fashion (at 96 cores, each file is shared by four cores). For

WR = 0%, NR-FS performs around 4× better than tmpfs

due to node local accesses from the local replica. For higher

write ratios (60%, 100%), tmpfs performs better than NR-FS

on the first NUMA node. On top of the additional copy, the

major reason for the overhead here is that intermediate buffers

for writes in NR-FS remain in the log until all replicas have

applied the operation. This results in a larger working set and

cache footprint for writes than tmpfs, which can reuse the

same buffers after every operation. We empirically verified

that this is the case by making the block size smaller; with

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 305

Figure 4: LevelDB readrandom throughput on 2×14 Skylake.

this change the performance discrepancy between tmpfs and

NR-FS disappears.

After the first NUMA node, tmpfs throughput degrades

due to contention, and cross-node memory accesses. NR-FS

manages to keep the same performance as a single NUMA

node. At cores = 96 both systems have similar throughput,

but NR-FS actively replicates all writes on all 4 nodes. We

omit the results using 2 to 23 files because the trend is the

same: NR-FS performs much better for read-heavy workloads

and the same or better for write-heavy operations. On 4×24

Cascade with 24 logs and WR = 100%, NR-FS scalability

stops for this benchmark with more than 24 files because of

the additional CPU cycles required for active replication of

all writes, the observed throughput remains constant instead.

Impact of multiple logs: Figure 3 shows the advantages

of using CNR over node replication for less contended, write-

intensive workloads. As discussed in (§2.1), the write perfor-

mance for node replication data structures is often limited by

a single combiner per replica. While it is certainly possible to

build compound structures using multiple node replication in-

stances (e.g., one per file), this is typically too fine-grained, as

often we have much less compute cores than files. We resolve

this issue with our CNR (§3) scheme. A CNR based NR-FS

performs 8× better (for wr = 100) than a node replication

based NR-FS while preserving read performance.

6.2.2 LevelDB Application Benchmark

To evaluate the impact of the NR-FS design on real applica-

tions we use LevelDB, a widely used key-value store. Lev-

elDB relies on the file system to store and retrieve its data,

which makes it an ideal candidate for evaluating NR-FS. We

use a key size of 16 Bytes and a value size of 64 KiB. We

load 50K key-value pairs for a total database size of 3 GiB,

which LevelDB stores in 100 files.

NR-FS outperforms tmpfs when running LevelDB. Fig-

ure 4 shows LevelDB throughput when running its included

readrandom benchmark while varying core count. After

cores = 12, contention on a mutex within LevelDB begins to

affect the scalability of both systems. At cores = 28, LevelDB

on NrOS has 1.33x higher throughput than on Linux.

Figure 5: NrOS page insertion throughput on 4×24 Cascade in

comparison with other OSes.

6.3 NR-vMem

We evaluate the performance of NR-vMem with microbench-

marks that stress the address-space data structures under con-

tention, and exercise the respective TLB shootdown protocols

on different operating systems. Finally, we measure the im-

pact of page table replication with memcached.

6.3.1 Map Performance

For this benchmark we compare NrOS against Linux, sv6,

and Barrelfish. We allocate a backing memory object (e.g., a

physical memory region on NrOS, a shared memory object

on Linux, a physical frame referenced by a capability on

Barrelfish, and a memory-backed file on sv6) and repeatedly

map the same memory object into the virtual address space

of the process. The benchmark focuses on synchronization

overheads; it creates the mapping and updates bookkeeping

information without allocating new backing memory.

We evaluate a partitioned scenario where each thread cre-

ates new mappings in its own address space region (the only

comparison supported by all OSes). We ensure that page ta-

bles are created with the mapping request by supplying the

appropriate flags. sv6 does not support MAP_POPULATE, so

we force a page fault to construct the mapping. We show

throughput of the benchmark in Figure 5.

NR-vMem wraps the entire address space behind a single

instance of node replication, therefore it does not scale even

for disjoint regions. As this benchmark consists of 100%

mutating operations, it has constant throughput – similar to the

other benchmarks it remains stable under heavy contention.

Linux is very similar to NR-vMem in its design (apart from

missing replication). It uses a red-black tree to keep track of

mappings globally. For each iteration of the benchmark, a new

mapping has to be inserted into the tree and afterwards the

page fault handler is called by mmap to force the population

of the page table. The entire tree is protected by a global lock

and therefore performance decreases sharply under contention.

The single-threaded performance of Linux VMA is slightly

better than NR-vMem which has still room for improvement:

306 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

OS Time Throughput System Mem. PT Mem. PT Walks

NrOS 4-replicas 251 s 63 Mop/s 424 GiB 3.3GiB 1.20 kcyc/op

NrOS 1-replica 276 s 57 Mop/s 421 GiB 840MiB 1.54 kcyc/op

Linux 327 s 48 Mop/s 419 GiB 821MiB 1.63 kcyc/op

Table 2: memcached on NrOS (1 and 4 replicas) and Linux running on 4×24 Cascade, comparing runtime, throughput, total system memory

consumption, process page table memory and cycles spent by the page table walkers.

with broadcasting in NrOS and Linux due to sequential send-

ing and receiving of point-to-point messages. Using more

optimized message topologies could potentially help [48].

Linux should achieve better results than NrOS, especially

when we spawn across NUMA since it only has to update one

page table. However, the proposed changes to Linux from the

literature [12] which inspired our TLB shootdown protocol

have not yet been integrated to upstream Linux. We expect

Linux to be comparable once early acknowledgments and

concurrent shootdown optimizations become available.

6.3.3 Page Table Replication with Memcached

As a final benchmark, we measure the impact of replicated

page tables on memcached. When taking into account the

implicit reads of the MMU, page tables often end up being

read much more than modified. memcached serves as a repre-

sentative application for workloads with generally high TLB

miss ratios (i.e., applications with large, in-memory working

sets and random access patterns).

We measure the throughput of memcached with GET re-

quests (8 byte keys, 128 byte values, 1B elements) on 4×24

Cascade. Our benchmark directly spawns 64 client threads

inside of the application. For this experiment, we run Linux

and NrOS inside KVM because we want to have access to

the performance counters, which is currently not supported

on NrOS. To limit the effects of nested-paging, we configure

KVM to use 2 MiB-pages, and use 4 KiB pages in both the

Linux and NrOS guests.

Table 2 compares memcached running on NrOS in different

configurations and Linux. Overall, the achieved throughput

for NrOS (with per-NUMA replication) is 1.3× higher than

Linux. To quantify the impact of page table replication on the

throughput, we can configure NrOS to use a single replica

for the process (NrOS 1-replica). We find that the page table

replication accounts for a third of the overall improvement

compared to Linux. The systems have different physical mem-

ory allocation policies, locking implementation, scheduling,

and page tables etc., so it is difficult to attribute the other two

thirds to specific causes.

By instrumenting performance counters, we find that re-

mote page table walks – a key bottleneck for this workload –

decreased by 23% with replication. NrOS does use 4× more

memory for the replicated page tables structures. In total, this

still amounts to less than 1% of the total memory.

7 Conclusion and Future work

We designed and implemented NrOS, an OS that uses single-

threaded data structures that are automatically adapted for

concurrency via operation logging, replication, and flat com-

bining. Our results show that the NRkernel model can achieve

performance that is competitive with or better than well-

established OSes in many cases.

NrOS’ unique design makes it an interesting platform to

explore several future directions:

Relaxing consistency. We apply node replication on rela-

tively coarse-grained structures, which makes reasoning about

concurrency easy. CNR improves performance by exploit-

ing commutativity among mutating operations. However, we

could achieve better performance by relaxing strong consis-

tency between replicas for some operations.

Verifying correctness. NrOS might also serve as a useful ba-

sis for a verified multi-core operating system by using verifi-

cation in two steps: verify the node replication transformation

from a sequential data structure to a concurrent one, then ver-

ify the sequential data structures. Verifying node replication

is harder, but it only needs to be done once. Verifying new

sequential data structures is substantially easier.

Extending NrOS for disaggregated compute. NrOS’ log-

based approach with replication is most useful when systems

have high remote access latencies. Thus, NrOS could be ex-

tended to work over interconnects that offer shared memory in

compute clusters via Infiniband or other high-speed networks

by designing a new log optimized for the interconnect.

Acknowledgments

We thank our OSDI 2020 and 2021 reviewers and our shep-

herd Irene Zhang for their thoughtful feedback. Ankit Bhard-

waj and Chinmay Kulkarni contributed to this work as PhD

students at University of Utah and during internships at

VMware Research. This material is based upon work sup-

ported by the National Science Foundation under Grant No.

CNS-1750558. Any opinions, findings, and conclusions or

recommendations expressed in this material are those of the

authors and do not necessarily reflect the views of the Na-

tional Science Foundation. Chinmay Kulkarni is supported

by a Google PhD Fellowship.

308 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] CCIX. https://www.ccixconsortium.com.

[2] Concurrency bugs should fear the big bad data-race de-

tector. https://lwn.net/Articles/816850/.

[3] Fix a data race in ext4_i(inode)->i_disksize. https:

//lore.kernel.org/patchwork/patch/1190562/.

[4] Fix a data race in mempool_free(). https://

lore.kernel.org/patchwork/patch/1192684/.

[5] Fix locking in bdev_del_partition. https:

//patchwork.kernel.org/project/linux-block/

patch/20200901095941.2626957-1-hch@lst.de/.

[6] Fix two RCU related problems. https:

//lore.kernel.org/patchwork/patch/990695/.

[7] Gen-Z Consortium. https://genzconsortium.org/.

[8] The RCU API, 2019 Edition. https://lwn.net/

Articles/777036/.

[9] The Rumprun Unikernel. https://github.com/

rumpkernel/rumprun.

[10] Reto Achermann, Ashish Panwar, Abhishek Bhattachar-

jee, Timothy Roscoe, and Jayneel Gandhi. Mitosis:

Transparently self-replicating page-tables for large-

memory machines. In International Conference on Ar-

chitectural Support for Programming Languages and

Operating Systems (ASPLOS), page 283–300, 2020.

[11] Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni,

Michael Merritt, and Nir Shavit. Atomic snapshots of

shared memory. J. ACM, 40(4):873–890, September

1993.

[12] Nadav Amit, Amy Tai, and Michael Wei. Don’t shoot

down TLB shootdowns! In European Conference on

Computer Systems (EuroSys), 2020.

[13] Thomas E. Anderson, Brian N. Bershad, Edward D. La-

zowska, and Henry M. Levy. Scheduler activations: Ef-

fective kernel support for the user-level management of

parallelism. In ACM Symposium on Operating Systems

Principles (SOSP), pages 95–109, 1991.

[14] James Aspnes and Maurice Herlihy. Wait-free data

structures in the asynchronous PRAM model. In ACM

Symposium on Parallelism in Algorithms and Architec-

tures (SPAA), pages 340–349, 1990.

[15] Mahesh Balakrishnan, Jason Flinn, Chen Shen, Mi-

hir Dharamshi, Ahmed Jafri, Xiao Shi, Santosh Ghosh,

Hazem Hassan, Aaryaman Sagar, Rhed Shi, et al. Vir-

tual consensus in Delos. In Symposium on Operating

Systems Design and Implementation (OSDI), pages 617–

632, 2020.

[16] Antonio Barbalace, Binoy Ravindran, and David Katz.

Popcorn: a replicated-kernel OS based on Linux. In

Proceedings of Ottawa Linux Symposium (OLS), 2014.

[17] Andrew Baumann, Paul Barham, Pierre-Evariste Da-

gand, Tim Harris, Rebecca Isaacs, Simon Peter, Timo-

thy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.

The Multikernel: A New OS Architecture for Scalable

Multicore Systems. In ACM Symposium on Operating

Systems Principles (SOSP), pages 29–44, 2009.

[18] Adam Belay, George Prekas, Ana Klimovic, Samuel

Grossman, Christos Kozyrakis, and Edouard Bugnion.

IX: A protected dataplane operating system for high

throughput and low latency. In Symposium on Operating

Systems Design and Implementation (OSDI), pages 49–

65, 2014.

[19] Srivatsa S. Bhat, Rasha Eqbal, Austin T. Clements,

M. Frans Kaashoek, and Nickolai Zeldovich. Scal-

ing a file system to many cores using an operation log.

In ACM Symposium on Operating Systems Principles

(SOSP), pages 69–86, 2017.

[20] William J. Bolosky, Robert P. Fitzgerald, and Michael L.

Scott. Simple but effective techniques for NUMA mem-

ory management. In ACM Symposium on Operating

Systems Principles (SOSP), pages 19–31, 1989.

[21] Jeff Bonwick. The slab allocator: An object-caching

kernel memory allocator. In Proceedings of the USENIX

Summer 1994 Technical Conference (USTC), page 6,

1994.

[22] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong

Mao, Frans Kaashoek, Robert Morris, Aleksey Pesterev,

Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang, and

Zheng Zhang. Corey: An Operating System for Many

Cores. In Symposium on Operating Systems Design and

Implementation (OSDI), page 43–57, 2008.

[23] Silas Boyd-Wickizer, Austin T. Clements, Yandong

Mao, Aleksey Pesterev, M. Frans Kaashoek, Robert Mor-

ris, and Nickolai Zeldovich. An analysis of Linux scal-

ability to many cores. In Symposium on Operating

Systems Design and Implementation (OSDI), page 1–16,

2010.

[24] Silas Boyd-Wickizer, M Frans Kaashoek, Robert Morris,

and Nickolai Zeldovich. OpLog: a library for scaling

update-heavy data structures. Technical report, 2014.

[25] Edouard Bugnion, Scott Devine, Kinshuk Govil, and

Mendel Rosenblum. Disco: Running commodity oper-

ating systems on scalable multiprocessors. ACM Trans-

actions on Computer Systems (TOCS), 15(4):412–447,

November 1997.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 309

[26] Sebastian Burckhardt, Pravesh Kothari, Madanlal Musu-

vathi, and Santosh Nagarakatte. A randomized scheduler

with probabilistic guarantees of finding bugs. In Pro-

ceedings of the 15th ACM International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS), pages 167–178, 2010.

[27] Irina Calciu, Dave Dice, Tim Harris, Maurice Herlihy,

Alex Kogan, Virendra Marathe, and Mark Moir. Mes-

sage Passing or Shared Memory: Evaluating the delega-

tion abstraction for multicores. In International Confer-

ence on Principles of Distributed Systems (OPODIS),

pages 83–97, 2013.

[28] Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and

Marcos K. Aguilera. Black-box Concurrent Data Struc-

tures for NUMA Architectures. In International Con-

ference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS), pages 207–

221, 2017.

[29] Austin T. Clements, M. Frans Kaashoek, and Nickolai

Zeldovich. RadixVM: Scalable address spaces for mul-

tithreaded applications. In European Conference on

Computer Systems (EuroSys), page 211–224, 2013.

[30] Austin T. Clements, M. Frans Kaashoek, Nickolai Zel-

dovich, Robert T. Morris, and Eddie Kohler. The scal-

able commutativity rule: Designing scalable software

for multicore processors. ACM Transactions on Com-

puter Systems (TOCS), 32(4), January 2015.

[31] Jonathan Corbet. The big kernel lock strikes again, 2008.

https://lwn.net/Articles/281938/.

[32] Jonathan Corbet. Big reader locks, 2010. https://

lwn.net/Articles/378911/.

[33] Mohammad Dashti, Alexandra Fedorova, Justin Fun-

ston, Fabien Gaud, Renaud Lachaize, Baptiste Lepers,

Vivien Quema, and Mark Roth. Traffic management:

A holistic approach to memory placement on NUMA

systems. In International Conference on Architectural

Support for Programming Languages and Operating

Systems (ASPLOS), pages 381–394, 2013.

[34] Pantazis Deligiannis, Alastair F. Donaldson, and Zvon-

imir Rakamaric. Fast and precise symbolic analysis of

concurrency bugs in device drivers. In International

Conference on Automated Software Engineering (ASE),

pages 166–177, 2015.

[35] Medhavi Dhawan, Gurprit Johal, Jim Stabile, Vjekoslav

Brajkovic, James Chang, Kapil Goyal, Kevin James, Zee-

shan Lokhandwala, Anny Martinez Manzanilla, Roger

Michoud, Maithem Munshed, Srinivas Neginhal, Kon-

stantin Spirov, Michael Wei, Scott Fritchie, Chris Ross-

bach, Ittai Abraham, and Dahlia Malkhi. Consistent

clustered applications with Corfu. Operating Systems

Review, 51(1):78–82, 2017.

[36] Hugh Dickins. [PATCH] mm lock ordering summary,

2004. http://lkml.iu.edu/hypermail/linux/

kernel/0406.3/0564.html.

[37] Marco Elver. Add Kernel Concurrency Sanitizer (KC-

SAN). https://lwn.net/Articles/802402/, 2019.

[38] Dawson Engler and Ken Ashcraft. RacerX: Effective,

static detection of race conditions and deadlocks. In

Proceedings of the 19th ACM Symposium on Operating

Systems Principles (SOSP), 2003.

[39] John Erickson, Madanlal Musuvathi, Sebastian Burck-

hardt, and Kirk Olynyk. Effective data-race detection for

the kernel. In Symposium on Operating Systems Design

and Implementation (OSDI), page 151–162, 2010.

[40] Paolo Faraboschi, Kimberly Keeton, Tim Marsland, and

Dejan Milojicic. Beyond processor-centric operating

systems. In Workshop on Hot Topics in Operating Sys-

tems (HotOS), 2015.

[41] Pedro Fonseca, Rodrigo Rodrigues, and Björn B. Bran-

denburg. SKI: Exposing Kernel Concurrency Bugs

Through Systematic Schedule Exploration. In Proceed-

ings of the 11th USENIX Symposium on Operating Sys-

tems Design and Implementation (OSDI), 2014.

[42] Ben Gamsa, Orran Krieger, Jonathan Appavoo, and

Michael Stumm. Tornado: Maximizing locality and

concurrency in a shared memory multiprocessor operat-

ing system. In Symposium on Operating Systems Design

and Implementation (OSDI), pages 87–100, 1999.

[43] Sanjay Ghemawat and Jeff Dean. LevelDB, 2011.

[44] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir.

Flat Combining and the synchronization-parallelism

tradeoff. In ACM Symposium on Parallelism in Algo-

rithms and Architectures (SPAA), pages 355–364, 2010.

[45] Maurice Herlihy and Eric Koskinen. Transactional

boosting: A methodology for highly-concurrent trans-

actional objects. In ACM Symposium on Principles

and Practice of Parallel Programming (PPoPP), page

207–216, 2008.

[46] Richard D Hipp. SQLite, 2020.

[47] Dae R. Jeong, Kyungtae Kim, Basavesh Ammanaghatta

Shivakumar, Byoungyoung Lee, and Insik Shin. Razzer:

Finding kernel race bugs through fuzzing. In Proceed-

ings of the 40th IEEE Symposium on Security and Pri-

vacy (Oakland), 2019.

310 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[48] Stefan Kaestle, Reto Achermann, Roni Haecki, Moritz

Hoffmann, Sabela Ramos, and Timothy Roscoe.

Machine-aware atomic broadcast trees for multicores.

In Symposium on Operating Systems Design and

Implementation (OSDI), pages 33–48, 2016.

[49] Stefan Kaestle, Reto Achermann, Timothy Roscoe, and

Tim Harris. Shoal: Smart allocation and replication

of memory for parallel programs. In USENIX Annual

Technical Conference (ATC), pages 263–276, 2015.

[50] Antti Kantee. Flexible Operating System Internals: The

Design and Implementation of the Anykernel and Rump

Kernels. PhD thesis, Aalto University, 2012.

[51] Sanidhya Kashyap, Irina Calciu, Xiaohe Cheng, Chang-

woo Min, and Taesoo Kim. Scalable and practical lock-

ing with shuffling. In ACM Symposium on Operating

Systems Principles (SOSP), page 586–599, 2019.

[52] Jaeho Kim, Ajit Mathew, Sanidhya Kashyap, Mad-

hava Krishnan Ramanathan, and Changwoo Min. MV-

RLU: Scaling Read-Log-Update with multi-versioning.

In International Conference on Architectural Support

for Programming Languages and Operating Systems

(ASPLOS), page 779–792, 2019.

[53] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June

Andronick, David Cock, Philip Derrin, Dhammika Elka-

duwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish,

et al. seL4: Formal verification of an OS kernel. In ACM

Symposium on Operating Systems Principles (SOSP),

pages 207–220, 2009.

[54] Orran Krieger, Marc Auslander, Bryan Rosenburg,

Robert W. Wisniewski, Jimi Xenidis, Dilma Da Silva,

Michal Ostrowski, Jonathan Appavoo, Maria Butrico,

Mark Mergen, Amos Waterland, and Volkmar Uhlig.

K42: Building a complete operating system. In Euro-

pean Conference on Computer Systems (EuroSys), pages

133–145, 2006.

[55] Alexander Lochmann, Horst Schirmeier, Hendrik

Borghorst, and Olaf Spinczyk. LockDoc: Trace-Based

Analysis of Locking in the Linux Kernel. In Proceed-

ings of the 14th European Conference on Computer

Systems (EuroSys), pages 11:1–11:15, 2019.

[56] Nancy A. Lynch. Distributed Algorithms. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA,

1996.

[57] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christo-

pher Alfeld, Sean Bauer, Carlo Contavalli, Michael Dal-

ton, Nandita Dukkipati, William C. Evans, Steve Grib-

ble, Nicholas Kidd, Roman Kononov, Gautam Kumar,

Carl Mauer, Emily Musick, Lena Olson, Erik Rubow,

Michael Ryan, Kevin Springborn, Paul Turner, Valas

Valancius, Xi Wang, and Amin Vahdat. Snap: A micro-

kernel approach to host networking. In ACM Symposium

on Operating Systems Principles (SOSP), page 399–413,

2019.

[58] Alexander Matveev, Nir Shavit, Pascal Felber, and

Patrick Marlier. Read-Log-Update: A lightweight syn-

chronization mechanism for concurrent programming.

In ACM Symposium on Operating Systems Principles

(SOSP), pages 168–183, 2015.

[59] Paul E McKenney. A critical RCU safety property is...

ease of use! In Proceedings of the 12th ACM Interna-

tional Conference on Systems and Storage, pages 132–

143, 2019.

[60] Changwoo Min, Sanidhya Kashyap, Steffen Maass,

Woonhak Kang, and Taesoo Kim. Understanding many-

core scalability of file systems. In USENIX Annual

Technical Conference (ATC), 2016.

[61] Ingo Molnar and Davidlohr Bueso. Generic Mutex

Subsystem, 2017. https://www.kernel.org/doc/

Documentation/locking/mutex-design.txt.

[62] Ruslan Nikolaev, Mincheol Sung, and Binoy Ravindran.

LibrettOS: A dynamically adaptable multiserver-library

OS. In International Conference on Virtual Execution

Environments (VEE), page 114–128, 2020.

[63] Diego Ongaro and John Ousterhout. In search of an un-

derstandable consensus algorithm. In USENIX Annual

Technical Conference (ATC), pages 305–320, 2014.

[64] OpenCAPI consortium. http://opencapi.org.

[65] Heidi Pan, Benjamin Hindman, and Krste Asanovic.

Composing parallel software efficiently with Lithe. In

International Conference on Programming Language

Design and Implementation (PLDI), 2010.

[66] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports,

Doug Woos, Arvind Krishnamurthy, Thomas Anderson,

and Timothy Roscoe. Arrakis: The operating system is

the control plane. In Symposium on Operating Systems

Design and Implementation (OSDI), pages 1–16, 2014.

[67] Sean Peters, Adrian Danis, Kevin Elphinstone, and Ger-

not Heiser. For a Microkernel, a big lock is fine. In

Proceedings of the 6th Asia-Pacific Workshop on Sys-

tems (APSys), 2015.

[68] Iraklis Psaroudakis, Stefan Kaestle, Matthias Grimmer,

Daniel Goodman, Jean-Pierre Lozi, and Tim Harris.

Analytics with smart arrays: Adaptive and efficient

language-independent data. In European Conference on

Computer Systems (EuroSys), 2018.

USENIX Association 15th USENIX Symposium on Operating Systems Design and Implementation 311

[69] Ori Shalev and Nir Shavit. Predictive log-

synchronization. In European Conference on Computer

Systems (EuroSys), page 305–315, 2006.

[70] Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying

Zhang. LegoOS: A disseminated, distributed os for

hardware resource disaggregation. In Symposium on

Operating Systems Design and Implementation (OSDI),

pages 69–87, 2018.

[71] Navin Shenoy. A Milestone in Moving Data.

https://newsroom.intel.com/editorials/

milestone-moving-data.

[72] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel

Rosenblum. Operating system support for improving

data locality on CC-NUMA compute servers. In In-

ternational Conference on Architectural Support for

Programming Languages and Operating Systems (ASP-

LOS), pages 279–289, 1996.

[73] Al Viro. parallel lookups, 2016. https://lwn.net/

Articles/684089/.

[74] Michael von Tessin. The Clustered Multikernel: An

approach to formal verification of multiprocessor os

kernels. In Workshop on Systems for Future Multicore

Architectures (SFMA), 2012.

[75] Dmitry Vyukov. Distributed reader-writer mu-

tex. http://www.1024cores.net/home/lock-

free-algorithms/reader-writer-problem/

distributed-reader-writer-mutex, 2011.

[76] Daniel Waddington, Mark Kunitomi, Clem Dickey,

Samyukta Rao, Amir Abboud, and Jantz Tran. Eval-

uation of Intel 3D-Xpoint NVDIMM technology for

memory-intensive genomic workloads. In Proceedings

of the International Symposium on Memory Systems

(MEMSYS), page 277–287, 2019.

[77] Qing Wang, Youyou Lu, Junru Li, and Jiwu Shu. Nap: A

black-box approach to NUMA-aware persistent memory

indexes. In Symposium on Operating Systems Design

and Implementation (OSDI), 2021.

[78] David Wentzlaff and Anant Agarwal. Factored Oper-

ating Systems (Fos): The case for a scalable operat-

ing system for multicores. Operating Systems Review,

43(2):76–85, April 2009.

[79] Weiwei Xiong, Soyeon Park, Jiaqi Zhang, Yuanyuan

Zhou, and Zhiqiang Ma. Ad hoc synchronization consid-

ered harmful. In Symposium on Operating Systems De-

sign and Implementation (OSDI), page 163–176, 2010.

[80] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Tae-

soo Kim. Krace: Data race fuzzing for kernel file sys-

tems. In Proceedings of the 41st IEEE Symposium on

Security and Privacy, 2020.

A Artifact Appendix

Abstract

The evaluated artifact is provided as a git repository and con-

tains the source code of NrOS, build instructions and scripts

to run the OS and benchmarks used in this paper.

Scope

The artifact contains code and steps to reproduce results ob-

tained in Figure 3, Figure 4, Figure 5 and Figure 6.

Contents

The artifact consists of NrOS, including libraries, userspace

programs and benchmarks. The documentation to build

and run NrOS, along with the necessary commands

to run the benchmarks are written down in the doc

folder of the repository. The document which lists the

steps to execute the artifact evaluation is located at

doc/src/benchmarking/ArtifactEvaluation.md.

Hosting

The artifact source code for NrOS is published on

Github under https://github.com/vmware-labs/node-

replicated-kernel.

The code used in the artifact evaluation is tagged as

osdi21-ae-v2.

Requirements

Building NrOS requires an x86-64 system set-up with Ubuntu

20.04 LTS.

NrOS itself requires an Intel CPU (Skylake microarchitecture

or later) to run. The following CPUs are known to work: Xeon

Gold 5120, 6252 or 6142. For virtualized execution on these

platforms, a Linux host system with QEMU (version >=

5.0.0) and KVM is required. For bare-metal execution, DELL

PowerEdge R640 and R840 servers systems are known to

work.

312 15th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

