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Abstract— We perform a systematic exploration of the
principle of Space Utilization Optimization (SUO) as a heuristic
for planning better individual paths in a decoupled multi-robot
path planner, with applications to both one-shot and life-long
multi-robot path planning problems. We show that the heuristic
set, SU-I, preserves single path optimality and significantly
reduces congestion that naturally happens when many paths are
planned without coordination. Integration of SU-I into complete
planners brings dramatic reductions in computation time due
to the significantly reduced number of conflicts and leads to
sizable solution optimality gains in diverse evaluation scenarios
over medium and large maps, for both one-shot and life-long
problem settings.

I. INTRODUCTION

Recent years have witnessed a dramatic acceleration in
the deployment of multi-robot systems for general logistic
tasks [1], especially in the domain of shipping and ware-
housing [2]. Fast-paced expansion is predicted across the
board, with the warehouse domain alone expecting a 14%
year-over-year growth in the next five years [3]. This in turn
demands the push for enhancing the scalability of multi-
agent and multi-robot systems, which in the end boils down
to achieving the maximum possible output attainable. Holding
other variables constant, maximizing system throughput is
most readily achieved by increasing robot density and plan
optimality, which calls for faster and better computational
methods for Multi-Robot Path Planning (MRPP) and Life-long
Multi-Robot Path Planning (LMPP) problems.

Toward the development of more efficient and higher per-
formance multi-robot systems catering to the rapidly growing
need of automation, in this work, following the decoupled
planning paradigm [4], we perform a systematic study of
an intuitive principle for the design of better performing
heuristics for MRPP. The decoupled setting generally involves
two planning phases, where the first phase plans individual
robot paths ignoring other robots and the second one resolves
robot-robot conflicts within some spatio-temporal window.
Traditionally, this phase is executed by running single robot
path plannings ignoring other robots. The Space Utilization
Optimization (SUO) principle tackles the first planning phase,
seeking to make robots use the free space “evenly”.

Based on vertex, edge, and temporal usage information,
SU-I, as our implementation of the SUO principle, builds a
global heuristic that tracks how the free space is being used
among all participating robots. We then exploit applying SU-I
as both an estimated cost-to-go, for reducing congestion, and
as part of the cost-to-come, for reducing conflicts along the
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entire robot path. Theoretically, we prove that SU-I does not
compromise individual path optimality while simultaneously
achieves its design goal of providing better space utilization.
In practice, SU-I leads to significant improvement in initial
path quality, resulting in over 40% reduction of path conflicts.

The introduction of SU-I brings notable improvement to
a multitude of MRPP and LMPP benchmarks. SU-I, which
may be applied as an orthogonal heuristic to many MRPP
algorithms, leads to sizable gains in both computation time
and solution optimality when combined with efficient methods
for the second phase of a decouple planner for path scheduling,
like DDM [5] and ECBS [6]. For example, using SU-I with
the database-driven collision resolution from [5] leads to
15%+ reduction in computation time and improves solution
optimality by roughly 25%. For LMPP, SU-I, with additional
planning horizon management, could reduce the computation
time of a state-of-the-art methods [7] by more than 65%,
while keeping the same level of optimality.

Related Work. Multi-Robot Path Planning (MRPP), or
equivalently, Multi-Agent Path Finding (MAPF) [8], has been
actively studied for decades from many angles including
computational complexity and effective algorithm design [4],
[9], [10]. Until recently, studies on MRPP mainly focus
on one-shot or static problems, where n robots are to
reach n specific goals. Many algorithms for computing high-
quality or optimal solutions have been proposed. Decoupled
solutions [4] dominate the algorithmic attack, with methods
using techniques including independence detection [11],
sub-dimensional expansion [12], conflict-based search [13],
[14], among others. Methods have also been proposed
through the reduction to other problems including satisfiability
(SAT) [15], Answer Set Programming (ASP) [16], and
multi-commodity flow [17]. There also exists prioritized
methods [18]–[21], splitting heuristics [22], and divide-and-
conquer approaches [23], [24] which achieve good scalability
but at the cost of either completeness or optimality. In [25],
an any time algorithm is proposed to quickly find a feasible
solution, which is subsequently improved. A learning-assisted
approach [26] has been developed to automatically select the
algorithm for solving MRPP challenges.

With the rise of multi-robot applications in the logistics
domain [2], dynamic or life-long MRPP variants, or LMPP,
have attracted attention in the past few years. Recent work has
focused on dynamic warehouse setups, pursuing both better
planning algorithms [27] and robust execution schedules [28].
Prioritized planning method with a flexible priority sequence
has also been developed [29].

The general idea behind the SUO principle, i.e., better
usage of the shared free space, has been explored under
both single and multi-robot settings. For a single robot



exploring an obstacle-laden domain, a path ensemble can
increase the chance of succeeding in finding a longer
horizon plan [30], [31]. Path diversity is one relevant factor
in MRPP resolution [32]. A reservation table is used for
collision avoidance [33]. Coordination of moving directions
has been studied [34]–[36]. Survivability is examined under
a probabilistic framework for multi-robot systems [37]. A
heuristic based on path conflicts expedites the solution process
of an MRPP algorithm [6].

Despite the fact that the SUO principle is intuitive, to our
knowledge, our exploitation of the principle, building on our
initial work [5], makes novel contributions to the field. In
contrast to [5], this study (i) thoroughly exploits the SUO
principle with the introduction of the SU-I heuristics with a
number of variations; (ii) proves SU-I’s collision avoidance
properties: it finds the shortest paths while minimizes certain
collision-based metrics; (iii) integrates SUO to MRPP and
LMPP algorithms and empirically shows that using SU-I
benefits both computation time and solution optimality.

II. PRELIMINARIES

A. Problem Statement
Multi-Robot Path Planning (MRPP) seeks collision-free

paths that efficiently route robots. Consider an undirected
graph G(V,E) and n robots with start configuration
S = {s1, . . . , sn} ⊆ V and goal configuration G =
{g1, . . . , gn} ⊆ V . Each robot has start and goal vertices
si, gi. We define a path for robot i as a map Pi : N → V
where N is the set of non-negative integers. A feasible Pi

must be a sequence of vertices that connects si and gi: 1)
Pi(0) = si; 2) ∃Ti ∈ N, s.t. ∀t ≥ Ti, Pi(t) = gi; 3) ∀t > 0,
Pi(t) = Pi(t− 1) or (Pi(t), Pi(t− 1)) ∈ E.

Here, we first define the single robot version of the problem.

Problem 1. Single-Robot Path Planning (SPP). Given
graph G, start vertex s, goal vertex g; find a feasible path P .

Following the feasibility definition of Pi, we denote Ti as
the length of Pi. We call Pi the shortest path for robot i if and
only if it minimizes Ti. Given a set of paths {P1, . . . , Pn}
for all robots, we call them collision-free if and only if there
are no simultaneous occupancy of the same vertex or edge.
That is, ∀i, j : 1 ≤ i < j ≤ n, Pi, Pj must satisfy: 1)
∀t ≥ 0, Pi(t) ̸= Pj(t); 2) ∀t > 0, (Pi(t − 1), Pi(t)) ̸=
(Pj(t), Pj(t− 1)).

We say paths are independent if they are feasible single
robot paths but not necessarily collision-free.

The traditional one-shot MRPP problem is defined as

Problem 2. Multi-Robot Path Planning (MRPP). Given
graph G, start configuration S, goal configuration G; find a
collision-free path set {P1, . . . , Pn}.

An optimal solution for MRPP may minimize the makespan
max1≤i≤n |Ti| or sum-of-cost

∑︁
1≤i≤n Ti.

Apart from MRPP, we also study the life-long variation
LMPP where each robot has a list of goal vertices. We denote
the goal configuration as G = {g1, . . . ,gn} where gi =
(g1i , g

2
i , . . . ). Here, gki is the k-th goal in robot i’s goal list

gi. Note that for an actual LMPP instance, gi is often a list

that is constantly updated. In LMPP, the second condition
for a feasible path Pi becomes: 2) ∃T 1

i < T 2
i < · · · ∈ N, s.t.

Pi(T
k
i ) = gki .

With all other conditions inherited from MRPP, we have

Problem 3. Life-long Multi-Robot Path Planning (LMPP).
Given graph G, start configuration S, goal configuration (list)
G; find a collision-free path set {P1, . . . , Pn}.

LMPP algorithms often optimizes throughput, i.e., the
average number of goal reaches in a unit time step. Given
a large T ∈ N, the throughput can be expressed by
(
∑︁

1≤i≤n argmaxk(T
k
i |T k

i ≤ T ))/T .
For practicality and simplifying explanation, we assume G

is a 4-connected grid. All algorithms and heuristics proposed
in this paper apply to arbitrary graphs with unit edge cost.

B. Importance of SPP in Solving MRPP and LMPP

Solving SPP is a stepping stone toward MRPP and LMPP.
Many MRPP solvers incorporate SPP planners as sub-routines,
e.g., decoupled planners generally use a two-phase approach
to first plan independent paths and then resolve collisions.
Such methodologies are popular for two reasons. First, unlike
multi-robot planning which is hard to optimize [38], SPP has
been thoroughly studied and can be solved efficiently and
optimally using A* search with simple heuristics. Second, in
a practical setting with relatively low robot density, usually
only small sub-groups of robots have local interactions at
any given time, which can be quickly resolved.

However, such a two-phase approach
tends to overuse parts of the free space
while leaving other parts underutilized. To
demonstrate the effect, we plan shortest
paths from the top left corner to the
bottom right corner on a 7× 7 grid with
randomized node exploration and randomized tie-breaking.
The shades of cells in the figure visualizes the probability a
cell is to be used. The paths concentrate along the diagonal
connecting the two corners, leaving the top right and bottom
left corners underutilized. This effect gets more pronounced
when obstacles exist and the available path choices are limited.
LMPP, more general and practical than MRPP, is often

solved iteratively using existing MRPP algorithms. Thus,
unbalanced graph utilization issue also negatively impacts
LMPP solvers.

III. SUO: PRINCIPLES AND IMPLEMENTATION

A. Optimizing Space Utilization: Principles
From the discussion in Section II-B, robots’ individual

paths should be spread “evenly” across the free space to
reduce congestion. We call this idea the Space Utilization
Optimization (SUO) principle. In this work, we develop a
first SUO implementation, SU-I (SU-First), which serves
as a global heuristic to help generate independent paths for
MRPP/LMPP algorithms to better utilize graph resources. The
example in Fig. 1 demonstrates that SU-I could potentially
enhance both computational efficiency and optimality.

In SU-I, each path uses vertex, edge, and temporal
information from other paths to avoid more congested areas



(a) Without SU-I (b) With SU-I
Fig. 1: Two sets of individual paths in a 5 × 3 grid. The robots’
start configuration is shown as colored disks. The planned individual
paths are drawn as colored lines. (a) Randomly generated paths may
result in congestion. (b) When using SU-I, which “spreads out” the
robots’ paths, the number of conflicts is reduced.

or to reduce the sum of conflicts along the path. SU-I
improves upon its predecessor [5] which only considered
vertex information. In Appendix [39], we use several examples
to highlight the essence of vertex, edge, and temporal
information when applying SUO.

B. Path Planning with SU-I: High Level Procedure

We now describe the implementation of SU-I, including
theoretical guarantees and evaluation results to show that SU-
I with the proposed path planning procedure indeed optimizes
space utilization. Since LMPP algorithms are often based on
MRPP solvers, we only describe SU-I in the context of MRPP;
SU-I is directly applicable to LMPP.

Algorithm 1: Generate independent paths with SU-I
Input: Graph G, n robots with starts S and goals G

1 π ← GETORDERBYDISTANCETOGOAL(G, S,G)
2 S ← π(S), G← π(G)
3 for 1 ≤ i ≤ n do Pi ← None
4 for number of planning iterations r do
5 for 1 ≤ i ≤ n do
6 T ← BUILDSUO(P1, . . . , Pi−1, Pi+1, . . . , Pn)
7 Pi ← FINDPATH(G, si, gi, T )
8 return π−1(P1, . . . , Pn)

Alg. 1 shows the high level procedure that uses SU-I to
generate individual paths. In lines 1-2, robots are sorted in
descending distance-to-goal order. Then, paths for the robots
are planned sequentially (lines 5-7) while using SU-I to avoid
previously planned paths. The rationale for the descending
ordering is that planning longer paths first helps quickly
collect graph utilization information. As indicated in line 4,
the path planning procedure is repeated for r iterations as
more iterations capture the space utilization more accurately,
improving the collision avoidance. Both robot ordering and
number of iterations are tested in Section V.

C. SU-I Heuristic Construction and Computation

At line 6, before each time we call SPP planner, BUILD-
SUO first builds an SU-I lookup table T to memorize
the space usage of existing paths. Denoting T (v, t) (resp.
T (v1, v2, t)) as the expected usage of vertex v (resp. directed
edge v1, v2) at time step t, T aggregates vertex, edge, and
temporal information over all BUILDSUO input paths:

T (v, t) =
∑︁

P [(v) ⪯ Pi],

T (v1, v2, t) =
∑︁

P [(v1, v2) ⪯ Pi].

Here, [·] on the right hand side of the equations is an indicator
variable: it is 1 if the expression inside is true, otherwise it
takes 0. We use ⪯ to denote a sub-sequence relationship.

SU-I is mainly used to generate initial paths for MRPP
algorithms. Since the initial paths can be modified (e.g.
delayed or diverted for collision avoidance) in a full MRPP
algorithm, we add integer parameters αL ≥ 0 and αH ≥ 0 to
reason about graph usage in adjacent time steps and handle
robot movement uncertainty:

T (v, t) =
∑︁

P [(v) ⪯ P (t− αH : t+ αL)],

T (v1, v2, t) =
∑︁

P [(v1, v2) ⪯ P (t− αH : t+ αL)].

For each path, the occupancy of graph utility at time t can
now expand its influence to time steps in (t− αL, t+ αH).
The values of αL, αH are empirically determined based on
the MRPP algorithm itself; in Section V, we observe that
such an temporal reasoning feature delivers better collision
avoidance results when the movement of robots is uncertain.

We use T to calculate SU-I heuristic and then use it during
SPP path planning (line 7). Given (v1, v2, t) which means a
robot moves from vertex v1 to vertex v2 at time t, with n as
number of robots, the SU-I heuristic value is

HSU-I(v1, v2, t) = βv
T (v2, t)

n
+ βe

T (v2, v1, t)

n
.

Here, the first term indicates the amount of vertex conflicts
the robot encounters for the inferred state transition; the
second term is associated with head-to-head edge collisions.
Parameters βv, βe > 0 balances between vertex and edge
information; βv + βe = 1. When each vertex/edge is visited
for at most once by each single robot path, we have
Lemma III.1. When βv + βe = 1, 0 ≤ HSU-I(·) < 1.

The condition HSU-I(·) < 1 is essential for SU-I to behave
as a tie-breaker, which facilitates a good balance between
single path optimality and congestion avoidance.
Remark 1. A special case for constructing T is to ignore tem-
poral information, i.e., instead of using (v, t) and (v1, v2, t)
as lookup table keys, we use (v) and (v1, v2). Thus, T (v)
(resp., T (v1, v2)) simply records the total number of times
the vertex v (resp., the edge (v1, v2)) is used by the existing
paths. This leads to smaller lookup tables but potentially
worse collision avoidance as a result.
Remark 2. Note that for the actual implementation, in Alg. 1,
line 6, T is not re-constructed but updated based on the
previous iteration which makes the computational complexity
for the construction step O(|P |(αL + αH)).

Line 7 uses standard A* to find a path from si to gi. In
the next two subsections, we discuss two ways to integrate
SU-I into A*. For simplicity, we now assume SU-I only uses
vertex information (i.e., βv = 1, βe = 0) without temporal
information (see Remark 1), unless otherwise specified.
D. SU-I as Part of Estimated Cost-To-Go

We use Hshort(v, gi) to denote the shortest path distance
between v and gi in G. Hshort(v, gi) is graph-dependent and
can be calculated before path planning. For a grid without
obstacles, Hshort(v, gi) is the Manhattan distance heuristic.
The heuristic we use in A* search is

H(v) = Hshort(v, gi) +HSU-I(v).

Lemma III.2. A path planned using A* search with H as
heuristic is a shortest path from si to gi.



Proof. See Appendix [39].
H not only ensures a shortest path is found; the path also

minimizes the maximum single step conflict. Given path Pi,
its maximum single step conflict can be represented as

Csingle(Pi) = max0<t<|Pi| T [Pi(t)].

Lemma III.3. A path Pi planned using A* search with H
heuristic is a shortest path minimizing Csingle(Pi).
Proof. See Appendix [39].

Now, given paths P1, . . . , Pn returned from Alg. 1, Im(f)
as the image of function f , we denote the maximum conflict
on a single vertex as

Csingle = maxv∈G
∑︁

1≤i≤n[v ∈ Im(Pi)],

we reach the following property.
Lemma III.4. Csingle cannot increase after the first SU-I
planning iteration.
Proof. See Appendix [39].

Lemma III.4 directly leads to the following theorem.
Theorem III.1. Csingle will converge as the number of
planning iterations increases.
E. SU-I as Part of Cost-To-Come

With the default transition cost as 1 for all states during
A* search, when aggregating SU-I it into cost-to-come, we
define the new transition cost leading to vertex v as

C(v) = 1 +HSU-I(v)/(max1≤i≤n Hshort(si, gi) + 1).

The collision avoidance property of using SU-I with cost-to-
come is different from that of using SU-I with cost-to-go.
We hereby define the number of vertex collisions on Pi as

Cpath(Pi) =
∑︁

1≤j≤n,j ̸=i |Im(Pi) ∩ Im(Pj)|.
Lemma III.5. A path Pi planned using A* search with C
as transition cost and an admissible heuristic is the shortest
path which minimizes Cpath(Pi).
Proof. See Appendix [39].

Given resulting paths as P1, . . . , Pn when using SU-I as
cost-to-come, we denote the total number of collisions as

Cpath =
∑︁

1≤i≤n Cpath(Pi),

we find the following property.
Lemma III.6. Cpath cannot increase after the first SU-I
iteration.
Proof. See Appendix [39].

Lemma III.6 directly leads to the following theorem.
Theorem III.2. Cpath will converge as the number of planning
iterations increases.
Remark 3. Regardless of whether SU-I is used as part
of the cost-to-come or the cost-to-go, even though the
properties mentioned above are only proved for SU-I without
temporal information, similar properties exist for SU-I with
temporal information when using state-time A*. Instead of
just considering vertex conflicts, all lemmas in this section
remain true when edge conflicts are considered (i.e. βe > 0),
except for Lemma III.4 and Lemma III.6. In evaluation, we
empirically observe that running multiple planning iterations
considering edge conflicts is still beneficial.

IV. SPACE UTILIZATION OPTIMIZATION APPLICATION

The paths generated by SU-I can be directly used as input
to some MRPP/LMPP algorithms. The more balanced graph
utilization and reduced conflicts facilitate collision resolution,
improving both computation time and solution optimality.

SU-I can also be combined with time-based divide-and-
conquer to provide better intermediate goals. With a baseline
structure adapted from [7], we first propose a horizon cut
technique to reduce unnecessary node explorations and then
use SU-I to further enhance its performance.

A. Baseline Bounded-Horizon Search for LMPP
It is well known that solving an entire LMPP instance in

one-shot is impractical, not only because the long lists of
goals makes the problem computationally demanding, but
also because the goal lists could be dynamically updated in
real world scenarios, which invalidates the current solution
and brings the need for online re-planning.

Given the above factors, LMPP is usually solved by a
bounded-horizon approach, The basic idea is to plan the paths
for the h time steps, execute the paths, and then iteratively re-
plan and execute. Here, h is called the planning horizon. The
pseudocode of such a baseline horizon-based structure [7] is
provided in Alg. 2; readers may ignore lines 7-14 for now as
we will discuss later. In the beginning, the goal list gi for each
robot i is shortened until there is at most one unreachable
goal for horizon h (lines 1-6); we use (−1) to index the
last element in a sequence, and + to indicate sequence
concatenation. Then, in line 15, the current state (denoted as
S) and the modified goal list are sent to a windowed MRPP
solver. The behavior of the windowed solver is to output an
h-step collision-free path set, where each robot i aims to
traverse the shortened goal list ĝi in order. The selection of
the windowed MRPP solver is flexible. In this work, we use
Bounded-Horizon Enhanced Collision Based Search [7] with
suboptimality factor w = 1.5 and treat it as a black box.

Algorithm 2: BOUNDEDHORIZONSEARCH

Input: Graph G, current state S, goal lists G, horizon h.
Output: A h-step solution

1 ∀1 ≤ i ≤ n, ĝi ← (si), di ← 0
2 for 1 ≤ i ≤ n do
3 for g ∈ gi do
4 di ← di + SHORTESTDISTANCE(ĝi(−1), g)
5 ĝi ← ĝi + (g)
6 if di ≥ h then break
7 if using horizon cut then
8 ∀1 ≤ i ≤ n, Pi ← ()
9 for 1 ≤ i ≤ n do

10 if using SU-I then
11 HSU-I ← BUILDSUO(P1, . . . , Pn)
12 Pi ← FINDPATH(G, ĝi(−2), ĝi(−1), HSU-I)
13 else Pi ← FINDPATH(G, ĝi(−2), ĝi(−1))
14 ĝi(−1)← Pi(−(|Pi| − di + h− 1))
15 return WINDOWEDSOLVER(S, ĝ1(1 :), . . . , ĝn(1 :), h)

B. Horizon Cut and SU-I Integration
Due to using SPP algorithm as subroutine, the baseline

bounded-horizon method wastes computation power due
to unnecessary reasoning about paths outside horizon h:



although these paths are not collision-checked, they are
planned by the windowed solver and are discarded afterwards.
To overcome this weakness, we propose horizon cut, which
reduces the number of search nodes generated outside of h
while still ensures that the robots move toward their future
goals. Horizon cut further truncate the goal list by changing
the last goal to a vertex that is in-between the second last goal
(i.e., ĝi(−2)) and the last goal (see Alg. 2, lines 13-14). In
our implementation, we find a shortest path between ĝi(−2)
and ĝi(−1) and select the vertex at t = h+ 1. The dashed
paths in in Fig. 2a and Fig. 2b demonstrate that we can avoid
planning redundant paths when using horizon cut.

1

1

2
2

(a) Baseline

1

1

2*2*2 2
(b) Horizon cut

1

12*

2*2 2
(c) Adding SU-I

Fig. 2: An example comparing bounded-horizon baseline, horizon
cut, and horizon cut with SU-I. The robots each has 2 goals to
reach, marked as colored numbers. The planned configuration after
the current horizon (h = 4) is visualized as transparent disks. (a)
The paths planned by the baseline bounded-horizon method. The
dashed part is planned but not executed. (b) Using horizon cut, we
avoid planning unnecessary steps by setting the last goals as 2∗. (c)
With SU-I, we have a better selection of 2∗ so that the conflicts in
the next planning horizon may be avoided beforehand.

We then integrate SU-I to help select better target vertices
(see Alg. 2, lines 11-12, which is a similar procedure as
Alg. 1). By selecting target vertices on paths which better
utilize graph resources, we can avoid conflicts in the future
planning iterations. We visualize the effect in Fig. 2c, where
we anticipate less conflicts between the two robots in the
next planning and execution iteration when using SU-I.

V. EVALUATION

We performed comprehensive evaluation of SU-I and asso-
ciated algorithms on randomly generated graphs, warehouse-
style graphs, and large DAO maps (Fig. 3 shows a subset of
graphs). All experiments are performed on an Intel® CoreTM

i7-6900k CPU. Data points are averaged over 30 to 100 runs
on randomly generated problem instances.

(a) 30×20 random graph (b) 37× 20 warehouse (c) den520d
Fig. 3: Example of graphs used for evaluation. The bright cells
visualize vertices. The black and green cells visualize obstacles.

Our evaluation focuses on testing SU-I with complete
MRPP algorithms. We also conducted analytical experiments,
showing that the graph utilization conflicts indeed converge to
some minimal value with SU-I, especially when considering
both vertex and edge information with a descending ordering
of robots. For details, see Appendix [39].

A. SU-I in a Full MRPP Algorithm

Combining SU-I with an existing collision resolution
method makes MRPP solver more efficient and optimal. For

this evaluation, we use the database-driven collision avoidance
routine from [5]. For test cases are in 30 × 20 grids with
10% obstacles (see an random example in Fig. 3a), we report
computation time and solution optimality (based on sum-of-
cost) with varied number of robots. For both metrics, lower is
better. All data points are normalized in terms of the baseline
algorithm’s performance where SU-I is not used.

Starting with βv = βe = 0.5, r = 1, and no temporal
information, we first compare using SU-I as a part of
estimated cost-to-go and cost-to-come. Shown in Fig. 4, using
SU-I as cost-to-go significantly reduces computation time
(by 15%+) when robots have interactions. As a comparison,
using SU-I as cost-to-come only makes the algorithm slightly
more efficient when the number of robots is large. Both SU-I
variations significantly improve the optimality, by up to 25%.
The efficiency difference was due to SU-I as cost-to-come
minimizes collisions along single paths and thus has a larger
search space (state-time). Hence forth, we use SU-I as part
of estimated cost-to-go by default.
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Fig. 4: Comparison between using SU-I as a part of estimated
cost-to-come and cost-to-go in a full MRPP algorithm.

We then try different βv , βe to demonstrate that using vertex
and edge information together is beneficial. Shown in Fig. 5,
the performance improvement of using vertex information
alone over the baseline is already significant. While using
edge information alone is weaker than vertex, combining the
two elements pushes both computation time and solution cost
even lower. From now on, we set βv = βe = 0.5.
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Fig. 5: SU-I MRPP solver evaluation with different βv , βe values.

In Fig. 6, we added temporal information with different
αL and αH . Due to the modifications to the initial paths in
the second planning phase, using “soft” temporal information
is beneficial: the green line (αL = αH = 0) under-performs
SU-I without temporal information, while the brown line
(αL = 2, αH = 15) improves solution quality. Computation
time wise, using temporal information adds overhead since
it takes a longer time to construct SU-I. So whether to use
temporal information is a choice to be made by practitioners.
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Fig. 6: Comparison between different αL, αH values.

Fig. 7 shows that using multiple planning iterations
generates better solutions when r ≤ 4.
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Fig. 7: Comparison between different planning iteration r.

B. LMPP Bounded-Horizon Search with SU-I

We evaluate LMPP algorithms discussed in Sec. IV-A in a
warehouse-style environment (see Fig. 3b). Each robot starts
from a random vertex and is given a random list of goal
vertices. The goal lists are continuously extended to make
sure each robot always has future goals. The horizon-based
planners with h = 5 and ECBS [6] suboptimality factor
w = 1.5 are called iteratively until a total of 10000 goals
are reached. The evaluated methods are the bounded-horizon
search [7] (the baseline), with horizon cut, and with SU-I.
We report the total computation time in Fig. 8, and the system
throughput in Table I. The throughput is calculated as the
average number of goals reached in a single time step; the
higher, the better. The data shows that using horizon cut can
effectively decrease the computation time by more than 50%.
At the same time, using SU-I makes the computation time
even lower (by about 65%), while keeps a same level of
throughput as the baseline.
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Fig. 8: Computation time of bounded-horizon methods.

TABLE I: Throughput of bounded-horizon methods
n Baseline Horizon cut SU-I w/o temporal SU-I w/ temporal
40 1.981 1.945 1.968 1.974
80 3.737 3.647 3.710 3.719
120 5.421 5.273 5.370 5.387
160 6.873 6.714 6.888 6.896

C. Bounded-Horizon Search with SU-I on MRPP
As in the last evaluation, we directly apply bounded-horizon

search to MRPP by considering MRPP as a special case for
LMPP where all goal lists have length 1. The tested graph is
DAO den520d (see Fig. 3c), a public MRPP benchmark [40].
The map size is 257 × 256 with 28178 vertices. We set
h = 50. Fig. 9 shows that SU-I remains effective in large
environments with a sparse robot setup. Note that when
not using horizon cut and SU-I, the baseline bounded-
horizon search is significantly slower due to its unnecessary
exploration. When we divide the solution quality metric over
under-estimated lower-bounds (see Table II), we find that our
method is able to generate solutions very close to the optimal.
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Fig. 9: Bounded-horizon search’s computation time on a den520d.

TABLE II: Optimality ratio of MRPP solutions in den520d
n 50 100 150 200 250 300 350

Makespan 1.0002 1.0011 1.0020 1.0031 1.0040 1.0052 1.0064
Sum-of-time 1.0019 1.0023 1.0034 1.0051 1.0057 1.0076 1.0090

Experiments in Section V-A and Section V-C were repeated
with different randomly generate graphs and more DAO maps
(e.g., brc200d, lak201d). The comparison between methods
show similar trends as demonstrated in this section.

VI. CONCLUSION

With SU-I, we performed an in-depth exploration optimiz-
ing the space utilization for planning better individual robot
paths in the first phase of a modern decoupled MRPP and
LMPP pipeline. In addition to proving that SU-I’s desirable
properties as a heuristic, we validated the effectiveness of
SU-I in reducing computation load and improving optimality
for one-shot and life-long multi-robot path planning.

Together with [5], this research opens up a new direc-
tion in multi-robot path planning. In a sense, SUO, and
its implementation, SU-I, are taking the decoupled multi-
robot path planning paradigm a step further by reducing
possible robot-robot interactions, making the process more
like planning single robot paths with loose interactions. In
future research, it would be interesting to exploit the SUO
principle further to observe how far we can further minimize
robot-robot interaction to boost the performance of the system.
One immediate direction is to add weights to SU-I so that
non-optimal single robot paths will be generated and gauge
the trade-off between optimality loss at the first phase and
the gain (in computation time and optimality) in the second
phase of a decouple multi-robot path planner. Apart from
handling uncertainty in time domain, we also plan to add
mechanisms to treat space uncertainty.
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