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Abstract— In this study, we explore the application of game
theory, in particular Stackelberg games, to address the issue
of effective coordination strategy generation for heterogeneous
robots with one-way communication. To that end, focusing on
the task of multi-object rearrangement, we develop a theoretical
and algorithmic framework that provides strategic guidance for
a pair of robot arms, a leader and a follower where the leader
has a model of the follower’s decision-making process, through
the computation of a feedback Stackelberg equilibrium. With
built-in tolerance of model uncertainty, the strategic guidance
generated by our planning algorithm not only improves the
overall efficiency in solving the rearrangement tasks, but is also
robust to common pitfalls in collaboration, e.g., chattering.

I. INTRODUCTION

With robotic technology research and development rapidly
accelerating, one can expect an explosion in the number
and type of robots to be deployed in the coming years.
With this trend, there is an increasing need to have robots
with different capabilities effectively collaborative to solve
tasks, e.g., packing products at factories or in autonomous
warehouses. For example, it can be that different batches
of robots have different specifications and, as a result,
have complementary capabilities, which can happen when
a company purchases the batches years apart. In this case,
having these robots work together can effectively extend
the service life of older robots, thus delivering more value
for the hardware investment. However, simply putting au-
tonomous robots together is not sufficient; algorithms must
be developed to ensure that collaboration drives more value
than having the robots make individual decisions. In the
same vein, with robots increasingly permeating our work
and lives, it can be predicted that robots will be working
and playing alongside humans. One would expect that the
robot would observe and understand human behavior and
assist accordingly with limited communication.

Motivated by the above-mentioned broadly applicable use
cases, in this study, we explore the application of game
theory, in particular Stackelberg games [1], for enabling
heterogeneous autonomous robots to collaboratively solve
manipulation tasks. Specifically, we develop a framework,
Stackelberg Guided Collaborative Manipulation (SGCM),
for coordinating two robot arms to jointly solve a multi-
object rearrangement task. The two robots have different
manipulation and computation capabilities, where one is a
leader and the other is a follower. The leader is assumed to
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Fig. 1: Overview of Stackelberg Guided Collaborative Manipulation frame-
work and multi-object rearrangement task settings. [left] Illustration of the
setup, where one robot (upper right) has more computing power and physical
capabilities would guide the other less capable robot (lower left). [right] The
simulation environment in PyBullet [2].

have knowledge of the follower’s decision-making model,
whereas the follower only makes decisions based on the
leader’s action. SGCM is shown to deliver more efficient
solutions as compared with a greedy baseline and avoids
potential pitfalls, e.g., chattering where the robots nullify
each other’s actions, with limited communication. In other
words, SGCM provides a more resilient architecture.

This work’s key contribution is a theoretical and algo-
rithmic framework that applies Stackelberg games to robot
collaboration. First, we propose a novel stochastic Stackel-
berg game framework (SGCM) to provide strategic guidance
for heterogeneous robots, or agents in general, to collab-
oratively solve physical tasks with only leader-to-follower
communication. Then, we developed a general algorithm,
through dynamic programming and mixed integer program-
ming, that computes the feedback Stackelberg equilibrium as
the equilibrium policy for a leader-follower setting where the
leader has a model of the follower’s decision-making logic.
Our algorithmic solution is instantiated and evaluated over a
product-packing-like rearrangement task, which shows that
the SGCM approach enables the involved robots to work
together more efficiently and is robust to uncertainties.

II. RELATED WORK

Stackelberg games are first proposed to study hierarchical
competitions in the market where some companies possess
dominant power [1]. In general, two players are involved in
a Stackelberg game, a leader (she) and a follower (he). The
leader first announces her strategy to maximize her utility
by considering all possible reactions from the follower and
sticks to that strategy. The follower best responds to the
leader’s strategy by maximizing his utility. Two strategies
then constitute a Stackelberg equilibrium. The static Stack-
elberg game has been extended to dynamic contexts. One
direct extension is Stochastic Stackelberg Game (SSG) [3],
[4]. SSG takes into consideration the feature of dynamic



interactions. Therefore, the equilibrium is designed for the
overall interaction process instead of a single stage. Many
works have focused on SSG and its applications, for ex-
ample, supply chain competitions [5], security and resource
allocation [6], [7], and cooperative advertising [8], [9].

Stackelberg games are also popular in robotics research.
Stanková et al. in [10] have proposed a Stackelberg game
based approach for heterogeneous robotic swarm coverage
problem, which outperforms the standard Lloyd’s algorithm.
Duan et al. have investigated the robot surveillance problem
over graphs in [11]. The optimal interception strategy is
studied by formulating the interaction between the intruder
and the robot as a Stackelberg game. Hebbar and Lang-
bort have discussed a collaborative human-robot search-and-
rescue problem as a rescuer-rescuee Stackelberg game [12].
The optimal rescue plans are provided with the Stackelberg
game framework. However, only a few works focus on the
dynamic Stackelberg game in robotics. For example, Koh
et al. in [13] have studied the bi-robot cooperative object
transportation by formulating the problem as an SSG and
applying Q-learning to solve the transportation strategy.

This work explores a new application of Stackelberg
games to robotics, namely collaborative manipulation, a prac-
tical, high-utility task that finds a great many of real-world
use cases. In robotics, much effort has been devoted to ren-
dering multi-arm planning more efficient. In terms of general
methods, Cohen et al. [14] adapts a heuristic search, e.g., A∗,
in an innovative manner for solving high dimensional plan-
ning problems, including dual-arm systems. Shome et al. [15]
proposed the dRRT∗ algorithm that computes asymptotically
optimal solutions that applies to multi-arm manipulation
tasks. From an application perspective, the task of generating
efficient plans for transporting objects using coordinated
multi-arm rearrangement is tackled in [16]. Xian et al. [17]
proposed new techniques for performing mode-switching in
solving dual-arm closed-chain manipulation tasks. A two-
arm rearrangement task, somewhat similar to the problem
examined in this work, is systematically studied in [18]. To
our knowledge, existing works on multi-object arrangement
by multiple arms generally assume central planning, which
limits their application; we do not in this study.

III. PROBLEM FORMULATION

We consider two robotic agents A (the leader, she) and
B (the follower, he) cooperatively rearranging different
types of objects in a 2D workspace Ω. The workspace
Ω is partitioned into sub-cells shown in Fig. 1. Due to
the heterogeneity of different robotic agents, we assume
that the two robotic agents differ in their manipulation and
computation capabilities. Apart from having more feasible
actions to manipulate the objects, the leader also possesses
more computational resources to deal with complex scenario
plannings. The follower, however, has fewer feasible actions
to move the objects. His computational power is also limited:
he can only sense and process the current situation instead of
planning for the future, or only execute the pre-programmed
policies. In addition to accomplishing the rearrangement task

cooperatively, the leader can also plan ahead and guide
the follower with her powerful computational resources, so
that the follower achieves better utility. The full cooperation
scheme ,including the guidance, can be formulated as a finite
horizon Stochastic Stackelberg Game (SSG). The SGCM
framework aims to provide the equilibrium policy of SSG,
which is adopted for cooperation and strategic guidance in
the rearrangement task.

We define s ∈ S as the environment state representing
the positions of all objects in different cells of Ω. S is the
set of all states. The action ai ∈ Ai represents a specific
action for robot i = {A,B} from its action set. Each action
corresponds to moving one object from one cell to another.
In particular, ai = ∅ represents no action. We denote T
as the interaction horizon of SSG (also leader’s prediction
horizon) and use subscripts t ≥ 0 to represent the stage. We
assume both robots have a perfect observation of the current
state. The game is played as follows.

• At stage t < T − 1, both robots observe st. The leader
first chooses her action aAt ∈ AA. With probability pAfail,
the leader fails to execute aAt , resulting in an empty
action. Then the follower reacts to aAt by taking the action
aBt ∈ AB . With probability pBfail, the follower fails to
execute aBt , leading to an empty action. Then both robots
receive the utility ui(st, a

A
t , a

B
t ) for i = {A,B}. The

environment transits to a new state st+1 with the the
transition probability p(st+1|st, aAt , aBt ).

• · · · · · ·
• At stage T −1, both robots observes sT−1. The leader and

the follower take actions aAT−1 and aBT−1 sequentially. Fail-
ure probabilities for action execution are defined similarly.
The environment transits to the new state sT based on the
transition probability p(sT |sT−1, a

A
T−1, a

B
T−1). Apart from

the utility ui
T−1(sT−1, a

A
T−1, a

B
T−1), an additional terminal

utility ui
T (sT ) is also incurred for robot i = {A,B}.

Remark. The interaction horizon T shows the leader’s plan-
ning consideration in the cooperative rearrangement task.
The leader can predict the next T stages, but the rearrange-
ment task does not necessarily terminate after T stages.
When T = 1, both robots only care about the current state,
and SGCM reduces to a repeated static Stackelberg game.
When T > 1, the leader will consider the impact from the
future and compute strategies to maximize the overall utility
over T stages.

Remark. In the rearrangement task, since we assume pifail for
execution, the transition probability p(st+1|s, aAt , aBt ) is not
necessarily binary given the action pair (aAt , a

B
t ). There are

four possibilities for the future state st+1, which corresponds
to the action pair (aAt , a

B
t ), (a

A
t ,∅), (∅, aBt ), and (∅,∅) in

the deterministic scenario. We assume pifail are independent
for i = {A,B}, so that the transition probabilities can be
computed via pifail.

A policy is a state-dependent probability distribution over
the action set for each robot. Given state s, we write



πA
t (a

A|s) and πB
t (aB |s, πA

t ) to represent the probability1

of choosing each action for robots A,B. For simplicity, we
denote πi

t as the vector form of the robot i’s policy at time t,
and write πi := {πi

t}T−1
t=0 for i = {A,B}. The accumulated

utility for robot i = {A,B} is given by

J i(πA, πB) = EπA,πB [γTui
T |s0] +

T−1∑︂
t=0

EπA
t ,πB

t

[︁
γtui

t|s0
]︁
,

where γ is the discount factor. By taking advantage of the
stage-wise additive utility and the perfect state observation,
we compute the feedback Stackelberg equilibrium (FSE) as
the solution for cooperation and guidance in the rearrange-
ment task. In the FSE {πA∗

t , πB∗
t }T−1

t=0 , at any stage of
the game, both robots maximize their current and future
accumulated utilities starting from the current stage.

A. Guidance in Rearrangement Tasks
The guidance aims to improve the follower’s utility by

taking advantage of the leader’s powerful computation ca-
pabilities. It is embodied in two aspects: the leader plans
the future for the follower and recommends the equilibrium
policy to the follower. The follower can only maximize
the current stage utility, but the game does not necessarily
terminate in one step. Solely focusing on one-stage utility
may not be optimal for the follower in the long run. However,
the leader can consider the future impact and generate better
strategies that are beneficial for the future. The leader can
also recommend a better strategy to the follower, which
cannot be computed with the follower’s limited computation
capability.

In SSG, one way to achieve successful guidance is to
set the leader’s utility the same as the follower’s. In this
way, as the leader maximizes her utility, she also helps
maximize the follower’s utility. So the equilibrium strategy
is beneficial for both leader and follower. Another approach
is to set the follower’s utility as the potential function and
construct the leader’s utility-based the potential function, for
example, affine transformation. In this way, the equilibrium
strategy computed by the leader is also most beneficial for
the follower.

IV. STACKELBERG GUIDED COLLABORATIVE
MANIPULATION FRAMEWORK

In this section, we use dynamic programming to solve the
FSE policies for both robots. In the equilibrium computation,
we reformulate the leader’s problem into a Mixed Integer
Linear Programming (MILP) to reduce the problem complex-
ity. Next, we propose the Stackelberg Guided Collaborative
Manipulation (SGCM) framework to compute cooperation
and guidance strategies for both robots with a rolling horizon
approach and summarize the algorithm.

A. Dynamic Programming for Computing FSE
The FSE generates an optimal cooperation strategy that

utilizes the leader’s computational advantage. The leader can
plan for T stages to envision the optimal action to reorganize

1The follower’s policy is paratermized by the leader’s policy in the
Stackelberg equilibrium. So we include πA

t into πB
t .

the objects and the optimal guidance strategy to benefit the
follower. The FSE can be solved by dynamic programming
retrospectively.

We define vit(s) as the value function for the robot i at
stage t, i ∈ {A,B}. The terminal value viT (s) is given by
the terminal utility ui

T (sT ). At each stage of the game, two
robots play a Stackelberg game with perfect state observa-
tion. At stage t ≤ T −1, after observing the state st, the t-th
component of the equilibrium is computed by
max
πA
t

∑︂
aA,aB

πB∗

t (aB |s, πA
t )π

A
t (a

A|s)[︄
uA
t (s, a

A, aB) +
∑︂
s′

p(s′|s, aA, aB)vAt+1(s
′)

]︄
s.t. 0 ≤ πA

t (a
A|s) ≤ 1, ∀aA ∈ AA,∑︂

aA

πA
t (a

A|s) = 1,

πB∗
t ∈ argmax

πB
t

QB
t (π

A
t ).

(QA
t )

where
max
πB
t

∑︂
aA,aB

πB
t (aB |s, πA)πA

t (a
A|s)[︄

uB
t (s, a

A, aB) +
∑︂
s′

p(s′|s, aA, aB)vBt+1(s
′)

]︄
s.t. 0 ≤ πB

t (aB |s, πA) ≤ 1, ∀aB ∈ AB ,∑︂
aB

πB
t (aB |s, πA) = 1.

(QB
t (π

A
t ))

For simplicity, we write
∑︁

aA∈AA as
∑︁

aA . The same applies
to

∑︁
aB . The summation over s′ contains four possibilities

as discussed in Sec. III. We assume the optimal solution set
of (QB

t (π
A
t )) is a singleton for all t = 0, . . . , T − 1. Then

πB∗
t (aB |s, πA

t ) is unique given the leader’s policy πA
t . After

solving for πA∗
t and πB∗

t , we update the value function vit(s),
i = {A,B}, by setting them as the optimal objective values
of (QA

t ) and (QB
t (π

A
t )). The FSE can be obtained by solving

(QA
t ) and (QB

t (π
A
t )) backward from stage T − 1 to stage 0.

B. MILP Reformulation

To find the t-th component of the FSE, we need to solve
a bilevel optimization problem (QA

t ), which is in general
hard. However, we notice that the problem (QB

t (π
A
t )) is

an LP and is linear in πB
t . By utilizing this structure, we

can use KKT conditions to equivalently represent (QB
t (π

A
t )).

Note that the constraint πB
t (aB |s, πA) ≤ 1 is in fact

redundant because it is guaranteed by πB
t (aB |s, πA) ≥ 0 and∑︁

aB πB
t (aB |s, πA) = 1. Therefore we omit this inequality

and simplify (QB
t (π

A
t )) as

max
x

(πA
t )

TUB
t πB

t

s.t. πB
t ≥ 0,

∑︂
aB

πB
t = 1,

( ˜︁QB
t (π

A
t ))

where the utility matrix UB
t ∈ R|A

A|×|AB| and UB
t,ij =

uB
t (s, a

A, aB) +
∑︁

s′ p(s
′|s, aA, aB)vBt+1(s

′).



Let λ ∈ R and µ ∈ R|A
B| be the dual variables associated

with the equality and the inequality constraints in ( ˜︁QB
t (π

A
t )),

respectively. We obtain the KKT conditions
λ1|AB | − (UB

t )TπA
t ≥ 0, πB

t ≥ 0,

(πB
t )T(λ1|AB | − (UB

t )TπA
t ) = 0,

∑︂
aB

πB
t = 1, (1)

where 1{·} is the all-ones vector with proper dimensions.
For a Stackelberg game, the pure strategy for the follower

always exists, which means that πB
t can only have one non-

zero element. If πB∗
t of ( ˜︁QB

t (π
A
t )) is not a singleton, we

can show that any pure strategy in the support of πB∗
t is

also optimal [19]. Therefore, we only focus on the pure
strategy for the follower, which can be represented by binary
variables. Furthermore, we can use the binary variable to
linearize the complementarity condition in (1) and obtain

0 ≤ λ1− (UB
t )TπA

t ≤ M(1− πB
t ), πB

t = {0, 1}|A
B|,

where M is a large number. We substitute the inner opti-
mization problem in (QA

t ) with KKT conditions and obtain

max
πA
t ,πB

t ,λt

(πA
t )

TUA
t πB

t

s.t. 0 ≤ πA
t ≤ 1,

∑︂
aA

πA
t = 1,

πB
t ∈ {0, 1}|A

B|,
∑︂
aB

πB
t = 1,

0 ≤ λt1|AB | − (UB
t )TπA

t ≤ M(1− πB
t ),

( ˜︁QA
t )

where the utility matrix UA
t ∈ R|A

A|×|AB| and UA
t,ij =

uA
t (s, a

A, aB) +
∑︁

s′ p(s
′|s, aA, aB)vAt+1(s

′).
We note that ( ˜︁QA

t ) is a mixed integer quadratic pro-
gramming (MIQP). To facilitate the computation, we follow
[19] to further cast ( ˜︁QA

t ) to an MILP by changing of
variables zt(a

A, aB) = πA
t (a

A|s)πB
t (aB |s, πA

t ). Then zt ∈
R|A

A|×|AB| and ( ˜︁QA
t ) becomes

max
zt,πB

t ,λt

UA
t ⊙ zt

s.t. πB
t ∈ {0, 1}|A

B|,
∑︂
aB

πB
t = 1,

0 ≤ zt ≤ 1,
∑︂

aA,aB

zt = 1, zt1|AB | ≤ 1|AA|,

πB
t ≤ zTt 1|AA| ≤ 1|AB |,

0 ≤ λt1|AB | − (UB
t )T

(︁
zt1|AB |

)︁
≤ M(1− πB

t ),

(Q̄A
t )

where ⊙ represents element-wise multiplication. Since zt is
a matrix variable, we use

∑︁
aA,aB zt to denote the sum of

all the element in zt.
Remark. The finite horizon game allows us to define T + 1
subsets of S given the initial state s0: {S0,S1, . . . ,ST } :=
{St}Tt=0 and S0 = {s0}. Each St contains all possible states
occurred at time t. The value function vit(s) (i = {A,B})
is only defined for the state s ∈ St instead of all the states
in S. In this way, we do not need to compute vit(s) for state
s ̸∈ St, i = {A,B}, which saves computation time. It is clear
that St ⊂ S for t = 0, . . . , T , but we do not necessarily have
Sm ∩ Sn = ∅ for m ̸= n. This means that the interactions
between two robots may lead to some old states.

C. Rolling Horizon Computation for Rearrangement Task
We mention that the cooperative rearrangement task does

not necessarily terminate after T stages. Therefore, we
propose the SGCM framework which adopts the rolling
horizon approach to compute FSE and execute the first-stage
FSE policy. Similar to Model Predictive Control (MPC),
the rolling horizon approach improves the robustness and
resiliency of the cooperation. The follower may not precisely
execute the leader’s recommended strategy if he is suscep-
tible to uncertainties. The leader can readjust her action
and guidance policy accordingly to minimize the impact of
uncertainties. The task eventually terminates when all objects
are reorganized to the goal position, which corresponds to
sgoal. We summarize the SGCM framework for cooperative
rearrangement with strategic guidance in Alg. 1.

Algorithm 1: SGCM framework
1 Initialize: s0, sgoal, T ;
2 for iter = 1, 2, . . . do

// Forward prediction
3 t← 0, S0 = {s0};
4 while t < T do
5 for s ∈ St do
6 for action pair (aA, aB) ∈ AA ×AB do
7 predict snew with s, (aA, aB) ;
8 add snew to St+1 ;
9 compute and store ui(s, aA, aB),

i = {A,B} ;
10 t← t+ 1 ;

// Dynamic programming
11 viT (s)← ui

T (s) ∀s ∈ ST , i = {A,B} ;
12 t← T − 1 ;
13 while t ≥ 0 do
14 for s ∈ St do
15 formulate utility matrices UA

t , UB
t ;

16 (πA∗, πB∗)← solve MLIP (Q̄A
t ) ;

17 vit(s)← (πA∗)TU i
tπ

B∗, i = {A,B} ;
18 t← t− 1 ;

// Game execution and observation
19 leader executes πA∗

0 and recommend πB∗
0 ;

20 observe new state sobs;
21 if sobs = sgoal then
22 break;
23 s0 ← sobs ;

Remark. In Alg. 1, for problems with small size, we can
always enumerate all possible states in the forward prediction
and perform value iterations to compute the FSE policy as
shown in the algorithm. We mention that other simulation-
based approaches can also be easily incorporated in Alg. 1 if
the problem size is large. For example, we can adopt Monte
Carlo Tree Search (MCTS) to explore part of St at different
stage t if the size of St is huge. Then we only perform value
iterations on the simulated states and compute approximate
FSE policy. The simulation-based approaches are not guar-
anteed to provide the global optimal equilibrium, although
they may be faster for online computation. However, for a
specific task such as the rearrangement task, we can always
pre-process states. Then we only need to perform a state
search in the forward prediction for online computation.



V. EXPERIMENTS AND EVALUATIONS

In this section, we evaluate our SGCM framework and
demonstrate the strategic guidance with a multi-object rear-
rangement task [20], where two heterogeneous robotic arms
(also called robots) cooperatively rearrange the objects to
the goal position. The basic settings are shown in Fig. 1.
Two robots are distinguished by their manipulation and
computation capabilities. The leader can move the object
along horizontal, vertical, and diagonal directions; she is
also capable of making complex planning and predictions
to accomplish the task by sensing the environment. The
follower, however, can only manipulate the objects along the
horizontal and vertical directions. His limited computation
capability only allows him to consider the current situation
rather than the future. We represent objects of different types
with different colors for visualization purposes. The goal is
to rearrange the red, green, and blue objects to bottom-left,
bottom-middle, and bottom-right cells, respectively. Every
action of the two robots is assigned a cost, and the cost
of manipulating the object from a specific cell may double,
depending on how many objects are in that cell. The state
is defined in Sec.III. At the beginning of each round of
interaction, a reward is assigned to the current state, which
is proportional to the distance of the current state to the goal
state. Each robot’s utility is the reward minus the cost.

The experiment is carried out by simulation (PyBullet [2]),
and the perception to the environment is vision-based. We
assume that the ground truth segmentation of objects is
accessible in the simulation, which is reasonable due to the
practicality in real-world object detection methods such as
Mask R-CNN [21]. The overall system works as follows.
The leader perceives the environment state (positions of all
objects) to compute high-level object manipulation com-
mand: what to grasp and where to place. After receiving
the command, a low-level controller executes the command.
The low-level controller adopts a Grasp Network [22], [23]
to propose the grasp position of the selected object. Then
the PyBullet’s internal inverse kinematics module is used for
manipulation motion planning. The position for placement
is obtained by pixel test, where all pixels in the destination
cells are iteratively tested until a pixel is found such that the
object can be placed at this pixel as the center and has no
collisions with other objects.

A. SGCM Framework and Greedy Approach

We set the interaction horizon T = 2 and assume the
failure probabilities pAfail = pBfail = 0.1. Then two robots
follow the SGCM framework to cooperatively work on the
rearrangement task. For comparison, we also implemented a
greedy rearrangement strategy. In the greedy approach, there
is in fact no cooperation between two robots. Each robot
observes the current environment and moves sequentially,
only maximizing his/her current-stage utility. The reason for
using the one-stage utility is because of no cooperation.
Each robot has no need to consider the impact of the other
robot. We select 10 different cases for testing. Each case
corresponds to a different initial object setting. In these cases,

the number of objects in the same type may differ, but the
goal positions do not change. The initial configurations of
10 cases are shown in Fig. 2.

Fig. 2: The initial configurations of 10 cases in the experiment.

We summarize the experiment results of using the SGCM
framework and greedy approaches in Tab. I.

Greedy SGCM
case # status rounds utility status rounds utility

1 No > 7 283.5 Yes 6 309
2 No > 7 288.5 Yes 6 313.5
3 No > 7 300.5 Yes 6 315
4 Yes 5 278 Yes 5 283
5 No > 8 306.5 Yes 7 344.5
6 Yes 6 289.5 Yes 5 306.5
7 Yes 5 297.5 Yes 5 298.5
8 Yes 3 219.5 Yes 3 219.5
9 Yes 7 249 Yes 5 275

10 Yes 7 277.5 Yes 6 301

TABLE I: Comparison between SGCM framework and greedy approach
for 10 cases. Status refers to the completion of the task. The utility is the
sum of single-stage utility over interaction rounds.

Note that robots do not care about cooperation in the
greedy approach. To measure the performance of the greedy
approach and to compare with the SGCM framework, we
define the stage-wise utility in the greedy approach as the
current state reward minus the total cost of two robots after
each round of manipulation. The utility in Tab. I is the sum
of all stage-wise utility and the values are comparable. Also,
note that the SGCM framework and the greedy approach may
have different interaction rounds. For comparison, the utility
in Tab. I is computed based on the rounds from the SGCM
framework because the SGCM framework always yields a
smaller one. It means that we only sum up the single-stage
utility in the greedy approach before the specified rounds,
regardless of the completion status.

An example of the evolution of the interactions in the
rearrangement task is visualized in Fig. 3.

(a) Rearrangement status at each stage with SGCM framework.

(b) Rearrangement status at each stage with greedy approach.

Fig. 3: Interaction evolution for Case 1 using SGCM framework and greedy
approach. SGCM framework completes the task after 6 steps, while the
greedy approach fails to rearranges objects and gets stuck in the last state.

From Tab. I, we can observe several advantages of our



SGCM framework over the greedy approach in the cooper-
ative rearrangement task:
• Two robots using the greedy approach can get stuck in

some states due to myopic strategies. In these states,
two robots repeat single actions, and the objects will
never be reorganized to the target position. The SGCM
framework can avoid such situations by taking advantage
of the leader’s computation capabilities. It also shows the
significance of the planning and strategic guidance to the
integrity of the cooperative rearrangement task. See Case
1, 2, 3, 5.

• When two robots are able to finish the rearrangement
task with the greedy approach, the SGCM framework can
either reduces the number of interactions and saves more
actions (Case 6,9,10), or achieves higher utility when the
number of interactions are the same (Case 4,7), showing
the outperformance of the SGCM framework.

Remark. For some simple cases where the objects are easy
to rearrange, for example, Case 8, the SGCM framework has
the same performance as the greedy approach. However, this
does not harm the effectiveness of the SGCM framework. In
practice, we do not always have simple cases to rearrange.
Then the advantage of the SGCM framework starts to appear,
as demonstrated in other cases.

In order to have a clear view of how the SGCM framework
outperforms the greedy approach, we plot the stage-wise
utility along with the interactions in Fig. 4. We observe that
at the beginning of the interaction, two approaches have the
same stage-wise utility. But as the interaction evolves, the
SGCM framework starts to yield a higher stage-wise utility
than the greedy approach, showing the power of the strategic
guidance in the rearrangement task.

(a) For test case 2. (b) For test case 9.

Fig. 4: Stage-wise utility for two different cases, which demonstrates that
the SGCM framework outperforms the greedy approach.

B. SGCM with Disturbance and Zero Trust
We demonstrate that our SGCM framework is robust and

resilient to uncertainties and disturbances. In practice, the fol-
lower may not precisely execute the leader’s recommended
strategy at every stage due to the following reasons. First, the
external disturbance may lead to hardware failure; second,
the follower may not trust the leader’s recommendation;
third, the robot may be infected or hijacked by malware
due to cybersecurity issues. In this situation, the follower
may seek the strategy by himself, or randomly select an
action, or even becomes adversarial to the leader. Therefore,
resiliency is indispensable for cooperation. We illustrate the

resiliency of our SGCM framework by injecting disturbances
during the interaction, i.e., the follower does not follow
the recommended strategy at certain steps. Our framework
allows the leader to sense the abnormality and to adjust her
strategy as well as the new recommended strategy in time,
so that the impact of the disturbance is minimized.

(a) For test case 4. (b) For test case 3.

Fig. 5: Two plots shows how the disturbance and zero trust affects the
stage-wise utility for two different cases. In both cases two robots are
able to complete the rearrangement, which demonstrates the resiliency and
robustness of the Stackelberg game approach.

In Fig. 5, the follower randomly selects a feasible action
instead of the leader’s recommended strategy to manipulate
the objects when a “disturbance” occurs. The “no trust”
in Fig. 5b means that the follower does not trust the
leader’s recommendation and selects the greedy strategy for
manipulation. It is not surprising to see the performance
degeneration after the disturbance or the zero trust. How-
ever, the deviation between the perfect and disturbed cases
is controlled by SGCM and does not explode. Although
suffering the disturbance and trust issues, we see that the
SGCM framework can still ensure two robots accomplish
the rearrangement task successfully. It shows that our SGCM
framework is resilient and robust to random failure and zero
trust during the two-robot cooperation in the rearrangement
task.

VI. CONCLUSION
In this paper, we have proposed a Stackelberg Guided

Collaborative Manipulation (SGCM) framework for hetero-
geneous robots collaboration. Focusing on the multi-object
rearrangement task, the SGCM framework enables the leader
robot to strategically guide the follower robot with her more
powerful manipulation and companion capabilities to achieve
better performance. The feedback Stackelberg equilibrium
is adopted as the guidance strategy in the SGCM frame-
work, which can be computed effectively by the developed
algorithm. The SGCM framework only requires one-way
communication to cooperatively work on the rearrangement
task. In addition, our SGCM framework is also robust and
resilient to uncertainties, disturbances, and trust issues during
cooperation. Besides the theoretical guarantees, the effective-
ness of the SGCM framework is thoroughly evaluated and
validated over many different test cases of rearrangement
tasks, where our approach displayed a number of advantages
over greedy approaches. For future, we intend to extend our
framework to a multi-follower setting, where the benefit of
the Stackelberg approach is expected to become more promi-
nent. More learning aspects such as learning the follower’s
behavior pattern will also be considered.
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