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Abstract

We propose a new approach, the calibrated nonparametric
scan statistic (CNSS), for more accurate detection of anoma-
lous patterns in large-scale, real-world graphs. Scan statis-
tics identify connected subgraphs that are interesting or un-
expected through maximization of a likelihood ratio statistic;
in particular, nonparametric scan statistics (NPSSs) identify
subgraphs with a higher than expected proportion of individ-
ually significant nodes. However, we show that recently pro-
posed NPSS methods are miscalibrated, failing to account for
the maximization of the statistic over the multiplicity of sub-
graphs. This results in both reduced detection power for sub-
tle signals, and low precision of the detected subgraph even
for stronger signals. Thus we develop a new statistical ap-
proach to recalibrate NPSSs, correctly adjusting for multiple
hypothesis testing and taking the underlying graph structure
into account. While the recalibration, based on randomization
testing, is computationally expensive, we propose both an ef-
ficient (approximate) algorithm and new, closed-form lower
bounds (on the expected maximum proportion of significant
nodes for subgraphs of a given size, under the null hypothesis
of no anomalous patterns). These advances, along with the in-
tegration of recent core-tree decomposition methods, enable
CNSS to scale to large real-world graphs, with substantial im-
provement in the accuracy of detected subgraphs. Extensive
experiments on both semi-synthetic and real-world datasets
are demonstrated to validate the effectiveness of our proposed
methods, in comparison with state-of-the-art counterparts.

1 Introduction
Detecting “hotspots” or anomalous patterns in graphs is an
important but challenging problem, with numerous critical
applications in areas such as epidemiology, law enforce-
ment, finance, and security. Among the powerful and widely
used methods, the paradigm of scan statistics is one of the
few that has a sound and general statistical basis (for re-
lated surveys see Glaz, Pozdnyakov, and Wallenstein (2009);
Akoglu, Tong, and Koutra (2015); and Cadena, Chen, and
Vullikanti (2018)). Graph-based scan statistics (Speakman,
McFowland III, and Neill 2015; Speakman, Zhang, and
Neill 2013; Chen and Neill 2014; Cadena, Chen, and Vul-
likanti 2019) identify connected subgraphs that are inter-
esting or unexpected through maximization of a likelihood

Copyright c© 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ratio statistic. The connectivity constraint is important be-
cause it ensures that subgraphs reflect changes due to lo-
calized anomalous processes (e.g., disease outbreaks, water
pollution events). In particular, nonparametric scan statistic
(NPSS) methods (Neill and Lingwall 2007; McFowland III,
Speakman, and Neill 2013; Chen and Neill 2014) are de-
signed without assuming any known background process on
the graph. These approaches use historical data (assuming
no anomalous patterns are present) to compute an empirical
p-value for each graph node, and then compare the observed
and expected number of significantly low p-values contained
in connected subgraphs. Those with the largest scores are
returned as the most anomalous subgraphs. However, as we
show, NPSSs fail to account for the multiple hypothesis test-
ing effects of searching over the huge space of connected
subgraphs, reducing detection performance. In this work, we
conduct a systematic study of this challenging problem and
make the following key contributions:
• We show that recently proposed NPSS methods are mis-

calibrated, failing to account for the maximization of the
statistic over the multiplicity of subgraphs. This results
in both reduced detection power for subtle signals, and
low precision of the detected subgraph.
• We develop a new statistical approach to recalibrate

NPSS, correctly adjusting for multiple hypothesis testing
and taking the underlying graph structure into account,
substantially improving detection performance.
• We propose an efficient (approximate) algorithm and

new, closed-form lower bounds on the expected maxi-
mum proportion of significant nodes for subgraphs of a
given size, under the null hypothesis of no anomalous
patterns. These advances, along with integration of recent
core-tree decomposition methods, enable the CNSS ap-
proach to scale to large real-world graphs, with substan-
tial improvement in the accuracy of detected subgraphs.
• Extensive experiments on semi-synthetic and real-world

datasets show that our methods can detect anomalous
subgraphs more accurately than state-of-the-art counter-
parts, while maintaining comparable time efficiency.

2 Related Work
As anomaly detection in graphs has a large literature, we re-
fer to Akoglu, Tong, and Koutra (2015) and Cadena, Chen,
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and Vullikanti (2018) for comprehensive surveys on this
topic. For brevity, we will discuss the methods based on scan
statistics for detecting anomalous connected subgraphs, in-
cluding those based on parametric scan statistics and NPSSs.

Parametric scan statistics are defined as the likelihood
ratio statistics of the hypothesis test, where under the null
hypothesis H0, the attribute data of nodes within a can-
didate connected subgraph S are generated by a parame-
terized background process. Under the alternative hypoth-
esis H1(S), the attribute data are generated by a different
parameterized distribution (a localized anomalous process).
Depending on the assumptions on these two distributions,
a variety of scan statistics are formulated, such as Posi-
tive Elevated Mean (Qian, Saligrama, and Chen 2014) and
Expectation-based Poisson and Gaussian (Neill 2009), in ad-
dition to the Kulldorff Scan Statistic (Kulldorff 1997). While
these methods have been shown to achieve high detection
power across a variety of spatio-temporal graph datasets,
they make strong parametric model assumptions, and per-
formance degrades when these models are incorrect.

In comparison, NPSSs use historical data with no anoma-
lous patterns to calibrate an empirical p-value for each node
and are defined as likelihood ratio statistics of the non-
parametric hypothesis test. Under the null hypothesis of no
anomalous patterns (H0), the empirical p-values of nodes
within a candidate connected subgraph (S) follow a uniform
distribution between 0 and 1. Under the alternative hypoth-
esis (H1), the empirical p-values follow a different distri-
bution. Depending on the specific form of the distribution
underH1, different NPSSs are formulated, such as the Berk-
Jones (Berk and Jones 1979), Higher Criticism (Donoho
and Jin 2004), Kolmogorov–Smirnov (Massey Jr 1951), and
Anderson-Darling scan statistics (Eicker 1979).

Optimizing scan statistics is challenging in the pres-
ence of connectivity constraints. A number of heuristic al-
gorithms have been proposed for parametric scan statis-
tics, such as additive GraphScan based on shortest paths
in graphs (Speakman, Zhang, and Neill 2013), Steiner tree
heuristics (Rozenshtein et al. 2014), and simulated anneal-
ing (Duczmal and Assuncao 2004). Qian, Saligrama, and
Chen (2014) used linear matrix inequalities as a way to char-
acterize the connectivity constraint and designed efficient it-
erative algorithms with convergence guarantees to optimize
scan statistics (e.g., Positive Elevated Mean) that are con-
vex after relaxation. Sharpnack, Rinaldo, and Singh (2015)
proposed a computationally tractable algorithm with consis-
tency guarantees. Several heuristics have been proposed for
NPSSs, such as greedy growth (Chen and Neill 2014) and
Steiner tree heuristics based on approximation of the un-
derlying graph with trees (Wu et al. 2016). A depth-first-
search based algorithm, named GraphScan, was proposed to
exactly identify the most anomalous connected subgraphs
for scan statistics (e.g., Kulldorff, Berk-Jones) that satisfy
the “linear time subset scanning” (LTSS) property (Neill
2012), but has an exponential time complexity in the worst
case (Speakman, McFowland III, and Neill 2015). An ap-
proximate algorithm built based on the color-coding tech-
nique (Alon, Yuster, and Zwick 1995) was designed for a
large class of scan statistics with rigorous guarantees (Ca-

dena, Chen, and Vullikanti 2019). Although it has the per-
formance bound of 1 − ε, its run time scales exponentially
with the size of the most anomalous connected subgraphs.

Recent work by Reyna et al. (2021) and Chitra et al.
(2021) demonstrates the miscalibration of the Gaussian scan
statistic and presents a Gaussian mixture modeling approach
to reduce this bias. As discussed in Appendix A.4, the non-
parametric scan statistics that we consider here differ funda-
mentally from the Gaussian scan, both in their assumptions
about the true signal (distribution of p-values underH1) and
in their maximization over a range of significance levels α.

3 Limitations of Nonparametric Scan
Given a graph G = (V, E), with V being a set of n ver-
tices and E being a set of m edges. Each node vi ∈ V is
associated with a feature vector xi ∈ RN and its historical
observations {x(1)

i , · · · ,x(T )
i }. We use the historical obser-

vations to convert the feature vector of each node (xi) to a
single empirical p-value (pi), using the two-stage empirical
calibration procedure introduced in Chen and Neill (2014).
Additional details on the computation of empirical p-values
are provided in Appendix A.2. Critically, under the null hy-
pothesis H0, the current observations are assumed to be ex-
changeable with the null distribution of interest, and thus
the p-values (computed by ranking the current observation
against the historical observations and then normalizing the
ranks) are asymptotically uniform on [0,1] under the null.

For instance, the graph could be a geospatial network, in
which each node represents a county, two nodes are con-
nected via an edge if they are spatially adjacent, and each
node has a single feature, xi ∈ R, that is the number of con-
firmed Covid-19 disease cases for the current week. The goal
is to detect the most anomalous cluster or connected sub-
graph (representing a potential Covid-19 outbreak). In this
case, the empirical p-value pi is simply the proportion of the
historical observations with case counts that are greater than
or equal to the current observation.

We denote by GS = (S, ES) the subgraph induced by the
subset S ⊆ V and M = {S | S ⊆ V,GS is connected in G}
the set of all possible connected subsets. The problem of
NPSS-based anomalous pattern detection is defined as the
connected subgraph optimization problem:

max
S∈M

F (S) = max
S∈M

max
α≤αmax

Φ (α,Nα(S), N(S))

= max
α≤αmax

max
S∈M

Φ (α,Nα(S), N(S))
(1)

where F (S) := maxα≤αmax
Φ (α,Nα(S), N(S)) refers to

the general form of NPSS defined by McFowland III, Speak-
man, and Neill (2013), S ⊆ V is a connected set of nodes,
Nα(S) =

∑
v∈S 1{p(v) ≤ α} refers to the number of

p-values in subset S that are significant at level α, and
N(S) =

∑
v∈S 1 refers to the total number of p-values in

subset S. The function Φ (α,Nα(S), N(S)) compares the
observed number of significant p-values Nα(S) at level α
to the expected number of significant p-values E [Nα(S)] =
αN(S) under the null hypothesisH0. Critically, NPSSs op-
timize the significance level α between 0 and some constant
αmax < 1. Maximization over a range of α values allows
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Figure 1: Simulation results (a) and (b) on Erdos-Renyi graphs and (c) and (d) on real world graphs under H0. Each curve
ends at the value of N such that all significant nodes in the graph are included. The starred point is the combination of N and
α for which N × KL(α′, α) is maximized. Descriptive statistics of the WikiVote and CondMat datasets can be viewed in
Appendix C.1.

accurate detection of signals with either a small number
of highly significant p-values or a larger number of mod-
erately significant p-values. In practice, rather than consid-
ering all α ≤ αmax, we consider a discrete set of α val-
ues, L = {0.001, · · · , 0.009, 0.01, · · · , 0.09}, and solve the
constrained optimization maxS∈M Φ (α,Nα(S), N(S)) for
each α in L to find the most anomalous subgraphs.

Here we focus on the Berk-Jones (BJ) nonparametric scan
statistic, without loss of generalization to other NPSSs (see
Appendix A.3). The BJ statistic is defined as

ΦBJ (α,Nα(S), N(S)) = N(S)×KL
(
Nα(S)

N(S)
, α

)
, (2)

where KL is the Kullback-Liebler divergence between the
observed and expected proportions of significant p-values:
KL(a, b) = a log (a/b) + (1 − a) log ((1− a)/(1− b)).
The BJ statistic is the log-likelihood ratio statistic for test-
ing whether the empirical p-values follow the Uniform[0,
1] distribution or a piecewise constant distribution where
Pr(p < α) > α. Please see Appendix A.1 for details.

Despite their effectiveness for anomalous pattern detec-
tion in graphs, NPSSs were originally designed without tak-
ing into consideration the multiple hypothesis testing effect
resulting from the multiplicity of subgraphs. In particular,
it follows from the assumption of uniform p-values under
H0 made by NPSSs that the expected proportion of individ-
ually significant nodes within a connected subset S under
H0 is E[Nα(S)/N(S)] = α. However, this is true for a
randomly selected connected subset, but not for connected
subsets S that are identified by maximizing the NPSS score.
Even when the null hypothesis H0 holds, and p-values are
uniform on [0,1], we find that the expected proportion of in-
dividually significant nodes within the highest-scoring con-
nected subsets, denoted as α′, is typically much larger than
α, which we refer to as miscalibration. More precisely, we
define α′ as the expected maximum proportion of signifi-
cant nodes for all connected subgraphs of a given size N :
α′(N,α) = E[maxS∈M,|S|=N Nα(S)/N ].

To illustrate the relationship between α′ and α, we
conduct simulations on both Erdos-Renyi (ER) random
graphs and two real world graphs: WikiVote (|V| =
7066, |E| = 100736, density = 0.004) and CondMat (|V| =
21363, |E| = 91286, density = 0.0004). First, we generate

100 random graphs with |V| = 1, 000 and edge probabilities
p ∈ {0.01, 0.02}, respectively. We simulate p-values under
H0 for each ER random graph, and calculate the average α′
for each N ∈ {1, 2, ..., |V|} and α ∈ {.01, .05, .09} among
all the 100 random graphs, as shown in Figure 1(a)-(b). We
simulate p-values under H0 on the graphs WikiVote and
CondMat for 100 times and calculate the average α′ for each
N and α, as shown in Figure 1(c)-(d). The results indicate
that the expected maximum proportion α′(N,α) for given
values of N and α is much higher than the expected propor-
tion E[Nα(S)/N ] = α. The implication is that, even when
the null hypothesisH0 holds and there are no true subgraphs
of interest, there exist subgraphs S with Nα(S)� αN(S),
and thus very high NPSS scores. The amount of difference
between α′(N,α) and α is a function ofN , α, and the graph
structure. We observe that α′(N,α) decreases with N but
remains much higher than α for the entire range of N .

The results of this discrepancy between α′ and α are
threefold. First, the maximum NPSS score under the null
hypothesisH0 will be large. To see this, we compute the ex-
pected score N × KL(α′, α) for each combination of α and
N for each of Figure 1(a)-(d), and show the highest-scoring
combination on each graph as a star icon. The correspond-
ing scores range from 131.7 for Figure 1(a) to 2677 for Fig-
ure 1(d). These large scores under the null result in reduced
detection power, since the NPSS score of the true anoma-
lous subgraph must exceed a larger threshold (i.e., the 95th
percentile of the maximum NPSS scores under H0) to be
considered significant. Second, NPSS will be biased toward
detecting clusters at larger α thresholds, even if the true sig-
nal is for a much smaller α. We observe that, for all four
graphs in Figure 1, the null score is maximized at the largest
of the three α values considered. Third, NPSS will identify
overly large clusters which include many nodes that have
significant p-values just by chance, resulting in reduced pre-
cision of the detected cluster. We observe that, for all four
graphs in Figure 1, the null score is maximized for a large
value of N , where almost all of the significant nodes in the
graph are included in the detected cluster. This observation
is also supported by low precision (and low F -scores) for
all uncalibrated scan methods in our evaluation results be-
low. An additional, concrete example of miscalibration for
the (uncalibrated) BJ statistic is provided in Appendix B.1.



4 Calibrated Nonparametric Scan Statistics
Thus we have shown that uncalibrated NPSS methods dis-
cover large, high-scoring anomalous connected subsets even
under the null hypothesis H0, resulting in reduced detec-
tion power and precision. This observation motivates us to
develop a new approach to recalibrating the non-parametric
scan statistic that accounts for multiple testing (and the re-
sulting, large differences between α′ and α), for improved
detection performance. Hence, we propose Calibrated
Nonparametric Scan Statistics (CNSS), where F (S) =
maxα≤αmax

Φ (α,Nα(S), N(S)) as above, but the expected
proportion of significant p-values (E[Nα(S)/N(S)] = α)
used in Φ(·) is replaced with the expected maximum pro-
portion of significant p-values α′(N,α) over all subgraphs
of size N under the null hypothesis H0. For example, our
proposed Calibrated Berk Jones (CBJ) statistic is defined as

ΦCBJ (α,Nα(S), N(S)) = N(S)× KL
(
Nα(S)
N(S) , α

′(N(S), α)
)

(3)
where

α′(N,α) =
E
[
maxS∈M,|S|=N Nα(S)

]
N

. (4)

Critically, this approach guarantees that, under the null hy-
pothesis H0 that current and historical observations are ex-
changeable, for any N and α, the expected ratio Nα(S)/N
for the highest-scoring subgraph S of size N is equal to α′,
thus adjusting for the multiplicity of subgraphs and correctly
calibrating across N and α. See Appendix B.1 for more ex-
planation on the correctness of the calibration approach.

As shown in Figure 1, the expected maximum propor-
tion of significant nodes α′ depends on the subgraph size
N , the significance level α, and the graph structure. To es-
timate α′(N,α) for a given graph, we use a randomization
test to estimate E[maxS∈M,|S|=N Nα(S)] for eachN and α.
In particular, we create a large number (K = 200) of replica
datasets under the null hypothesis H0, where each node of
the input graph G has its p-value redrawn uniformly at ran-
dom from [0, 1]. We then apply the efficient approximate
algorithm proposed in Section 4.1 to solve the constrained
set optimization problem maxS∈M,|S|=N Nα(S) for each
combination (N,α) ∈ {1, · · · , |V|} × L. Based on the
K replica datasets, for each combination of N and α, we
collect K samples of the maximum number of significant
nodes maxS∈M,|S|=N Nα(S) and use the samples to esti-
mate α′(N,α) under H0. The same algorithm is applied to
the original dataset to identify the most significant subgraph
maxS∈M,|S|=N Nα(S) for each (N,α) ∈ {1, · · · , |V|}×L,
and then the subgraph with the highest score F (S) =
maxα≤αmax

ΦCBJ(α,Nα(S), N(S)) is returned. More de-
tails are provided in Algorithm 1 in Appendix B.3.

4.1 An Efficient Approximate Algorithm
The fundamental computational challenge of CNSS is
to find the maximum number of significant nodes,
maxS∈M,|S|=N Nα(S), for connected subgraphs of every
size N ∈ {1, · · · , |V|}. One approach for doing so would
be, for each N and each α ∈ L, to separately run a

prize-collecting Steiner tree (PCST) algorithm to identify
the maximum Nα. The PCST is NP-hard but can be ap-
proximated inO(|V|2 log |V|) time; however, computing the
PCST for each N would then result in an insufficiently scal-
able O(|V|3 log |V|) algorithm. As an alternative, we pro-
pose a novel algorithm which approximates the maximum
Nα for each N ∈ {1, . . . , |V|}, for a given value of α, in a
single, efficient run. This process must then be repeated for
each value of α under consideration.

The pseudocode of estimating the maximum Nα for each
N under a given significance threshold α is described in Al-
gorithm 2 in Appendix B.4. The approach is based on re-
peated merging of nodes with the highest proportion of sig-
nificant p-values. Given a graph with node-level p-values,
we first merge all adjacent significant nodes, and main-
tain a list Z of merged nodes sorted by significance ratio
Nα(S)/N(S). We repeatedly choose the merged node with
highest significance ratio and perform one of the following
three merge steps: (1) add an adjacent node which contains
some or all significant p-values; (2) add an adjacent non-
significant node that is also adjacent to at least one other sig-
nificant node; or (3) add the highest-degree non-significant
neighbor. At each merge step, our method will try all three
options and utilize the one leading to a merged node with the
highest Nα(S)/N(S) ratio; this is repeated until the list Z
only contains a single merged node. The advantage of this
merging process is that we can keep track of the maximum
Nα(S) for each N(S) and iteratively update these values
throughout the entire merging process. In the end, we have
a list of estimated max Nα(S) for N(S) ∈ {1, · · · , |V|}.

The overall time complexity of this algorithm isO(k|V|+
|V| log |V|) where k is the largest degree of a node in the
graph. See Appendix B.6 for a more detailed analysis.

4.2 Lower Bounds for the Expected Maximum
Proportion of Significant Nodes, α′(N,α)

One limitation of our proposed calibration method is that
it requires randomization tests to calibrate α′(N,α) which
are time-consuming for large graphs. Here we explore
two strategies for obtaining closed-form lower bounds of
α′(N,α), thus avoiding the time-consuming randomization.

Lower Bound from Network Neighborhood Analysis
The first approach is based on neighborhood analysis, and
we denote the obtained lower bound of α′ as α′1. We lower
bound the maximum number of significant nodesNα for any
given subgraph size N under H0, by identifying a subgraph
of size N with expected number of significant nodes E[Nα].
Given any subgraph S, let the exterior (“ext”) degree of S
be the number of edges between vertices vi ∈ S and v′i 6∈ S.

Theorem 1. For each c ∈ {1, ..., |V|}, let kc be the largest
ext-degree of a connected subgraph of size c. Then for any
N ∈ {1, ..., |V|} such that c ≤ N ≤ c + kc, a lower bound
for E[maxS∈M,|S|=N Nα(S)] is: cα+ min(kcα,N − c).

Proof. See Appendix B.2.

Given that high ext-degree subgraphs are more likely to
connect more significant nodes, we first select the highest
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Figure 2: Lower Bounds of α′ Compared with Empirical Distribution by Randomization Tests.

ext-degree node for c = 1 and count the its neighbors as
kc, and continue the process by increasing c and adding the
highest ext-degree neighbor (i.e., with the highest number of
neighbors not in S) into S. This approximation potentially
underestimates kc but cannot overestimate it, thus remaining
a lower bound. For eachN , we obtain multiple lower bounds
α′1 due to all the values of c under consideration, and we
choose the largest (tightest) lower bound for each N .

Lower Bound from Percolation Theory The second
lower bound, α′2, is based on percolation theory on Erdos-
Renyi (ER) graphs (Erdős and Rényi 1960; Achlioptas,
D’Souza, and Spencer 2009). Given a large ER graph with
|V| nodes and edge probability p, the average node degree is
〈k〉 = (|V| − 1)p. Percolation theory states that if a suf-
ficiently large fraction of the graph nodes, ρ > 1

〈k〉 , are
“marked”, then with high probability, there exists a con-
nected subgraph S consisting of only marked nodes, with
|S| equal to a constant fraction P∞ of |V|. More precisely,
as shown by Erdős and Rényi (1960) and Bollobás and
Erdos (1976), P∞ is the solution to the equation, P∞ =
ρ(1 − exp(−〈k〉P∞). We apply this result by “marking”
both significant and (as needed) non-significant graph nodes
to reach the percolation threshold, allowing us to prove:
Theorem 2. For an Erdos-Renyi (|V|, p) graph with aver-
age degree 〈k〉 = (|V| − 1)p, with high probability,

α′ ≥ min

(
1,
α|V|
N

(
1− exp

(
−〈k〉 N

|V|

)))
.

Proof. See Appendix B.2.

We show averaged α′ lower bounds on 100 Erdos-Renyi
graphs with size 1000 and p = 0.05 in Figure 2 for α ∈
[0.01, 0.05, 0.09]. Compared to the true α′ obtained from
randomization testing, we observe empirically that the lower
bounds α′2 from percolation theory are tighter than the lower
bounds α′1 from neighbor analysis. However, we do not have
theoretical results on the tightness of these bounds. We also
note that the percolation bound is only guaranteed to be a
lower bound on α′ when the graph is Erdos-Renyi, while the
neighbor analysis guarantees a lower bound for all graphs.

4.3 Core-Tree Decomposition
Core-whiskers (or core-periphery) structure commonly ex-
ists in many real-world networks, such as social networks,

transportation networks, and the World Wide Web (Rom-
bach et al. 2014; Leskovec et al. 2009). That is, real-world
networks can be viewed as a set of low tree-width periphery
surrounding a core consisting of a small fraction of nodes.
The core tends to be an expander graph and has similar prop-
erties to random graphs (Leskovec et al. 2008). We first ap-
ply core-tree decomposition (Maehara et al. 2014) to decom-
pose the graph into a small, dense core and a low-treewidth
periphery. One benefit is that the small core keeps the gen-
eral skeleton and connectivity of the entire graph, enabling
adjacent, significant nodes from the whiskers to be incorpo-
rated into the detected subgraph. Thus we apply tree-node
compression which merges the significant nodes in each sin-
gle tree into an adjacent core node for follow-up optimiza-
tion in a smaller core. If multiple core nodes are adjacent to
a significant tree node, then we compress the significant tree
node into the most significant (lowest p-value) core node.
See Appendix B.5 for details of the compression procedure.

5 Experiments
In this section, we investigate four main research questions:

Q1. Subgraph Detection: Does our proposed CNSS have
a better performance than state-of-the-art baselines on the
task of anomalous subgraph detection?

Q2. Calibration: How does calibration affect detection
performance, as a function of signal strength and graph
structure?

Q3. Lower Bounds: How does the use of lower bounds
of α′, instead of α′ obtained via randomization tests, affect
detection performance?

Q4. Core Tree Decomposition: How does integrating
core-tree decomposition into CNSS affect the detection per-
formance and run time?

5.1 Experiment Setup
Datasets: We use five semi-synthetic datasets from the
Stanford Network Analysis Project (SNAP 1), including 1)
WikiVote; 2) CondMat; 3) Twitter; 4) Slashdot;
and 5) DBLP. We leverage the graph structure of these five
networks, and simulate the true subgraph S using a ran-
dom walk with size ≈ 0.01|V|. We generate the p-value of
each graph node assuming Gaussian signals, xi ∼ N(µi, 1)

1https://snap.stanford.edu/data/
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Figure 3: F -score of each method under different signal strengths and network structures (best viewed in color). Experiments
of AdditiveScan and DFGS on Twitter and SlashDot datasets took over 2 weeks of clock time to run on 250 CPUs,
therefore we do not report them. See Appendix C.4, Table 6, for the corresponding numerical results with significance tests.

and pi = 1 − CDF(xi), where µi = µ for vi ∈ S , and
µi = 0 (and thus pi ∼ Uniform[0, 1]) for vi ∈ V \S. Here
µ ∈ [1.5, 2, 3, 4, 5] is the signal strength and CDF(·) assumes
the standard normal distribution. We report the average per-
formance over 50 runs of simulations of true subgraphs and
p-values on each network structure. See Appendix C.1 for
more details of datasets, and Appendix C.5 for simulation re-
sults with piecewise constant p-values rather than Gaussian
signals (i.e., assuming the BJ model is correctly specified).
Baseline Methods: We compare CNSS with 6 baselines,
including 1) Linear Time Subset Scanning (LTSS) (Neill
2012); 2) EventTree (Rozenshtein et al. 2014); 3) Non-
parametric Heterogeneous Graph Scan (NPHGS) (Chen
and Neill 2014); 4) AdditiveScan (Speakman,
Zhang, and Neill 2013) 5) Depth First Graph Scan
(DFGS) (Speakman, McFowland III, and Neill 2015); and
6) ColorCoding (Cadena, Chen, and Vullikanti 2019).
We summarize the limitations and time complexity of each
competing method in Appendix C.2.
Ablation Study: We also validate the effectiveness of our
proposed components by comparing CNSSwith methods: 1)
CNSS+NoCalib, which removes calibration from CNSS,
performing the same search but using the original α in-
stead of α′ in the score function; 2) CNSS+LowerBound,
which replaces the randomization test with the tightest lower
bound, max(α′1, α

′
2), of α′; and 3) CNSS+CoreTree,

which integrates core-tree decomposition into CNSS.
Evaluation Metrics: We evaluate the detection performance
of the CNSS and competing methods on running time, detec-
tion power, precision, recall, and F -score (see definitions in
Appendix C.3). We report the results of F -score in the paper,
and the remaining metrics are shown in Appendix C.4.

5.2 Results
Subgraph Detection: As shown in Figure 3, CNSS out-
performs all baselines in terms of F -score when the event
signal is strong, and it consistently has good and sta-
ble performance for different strengths of event signal
and network structures. Competing methods have low pre-
cision, and thus low F -score, even when the signal is
strong. In addition, we average the F -score over all sig-
nal strengths and network structures under consideration for
each method, and we observe the following performance or-
der: CNSS > CNSS+CoreTree > CNSS+LowerBound
> DFGS > AdditiveScan > NPHGS > EventTree

> ColorCoding > CNSS+NoCalib > LTSS. The av-
erage F -score of CNSS is 0.603, while the best-performing
baseline method DFGS has average F -score 0.451. See Ap-
pendix C.4 for additional performance results. Appendix C.5
shows very similar results for piecewise constant signals.
Calibration: Calibration significantly improves detection
performance across different signal strengths and various
network structures. Specifically, the calibrated BJ scan
statistic helps to pinpoint the true cluster as the strength of
signal increases. On the contrary, all baselines, as well as the
uncalibrated version of CNSS, fail to achieve accurate de-
tection (as measured by F -score) for all network structures
under consideration. These results demonstrate that calibra-
tion, rather than the search procedure for detecting anoma-
lous subgraphs, is driving the difference in performance be-
tween methods. Our proposed search procedure simply en-
ables calibration by making it computationally feasible to
find maxS:|S|=N Nα(S) for each combination of N and α.
Lower Bounds: Based on the empirical results on real-
world networks, we find that our derived lower bounds pro-
vide substantial performance improvement on real-world
networks, as shown as CNSS+LowerBound in Figure 3.
Overall performance of the lower bound is lower than that
of the randomization testing-based CNSS approach, partic-
ularly for low signal strengths, but CNSS+LowerBound
substantially outperforms the baselines with respect to pre-
cision and F -score, particularly for stronger signals. Most
importantly, computing lower bounds of α′ is much faster
than computing α′ using randomization tests, resulting in a
400x to 2200x speedup for the various network structures
under consideration. See Table 4 in Appendix C.4.
Core Tree Decomposition: Core-tree decomposition sub-
stantially reduces run time for all datasets and does not
significantly change detection performance. We see that
CNSS+CoreTree is 2x faster on WikiVote dataset and 20x
faster on CondMat dataset than CNSS. With core-tree de-
composition, CNSS is more scalable than baseline methods
including ColorCoding, NPHGS, AdditiveScan, and
DFGS. While it is still more computationally expensive than
LTSS and EventTree, our proposed method has much
better detection performance. See Appendix C.4 for details.

5.3 Case Studies
We now compare the anomalous subgraphs detected by our
CNSS method to those identified by two of the compet-



Table 1: COVID-19 Case Study: Top-3 Detected Subgraphs for Each Method

# of weeks
detected

avg. # of counties
detected per week

avg. population of
detected counties

avg. confirmed
cases per week

avg. deaths per
week (2 weeks lag)

avg. confirmed
cases rate ×10−5

avg. death rate
(2 weeks lag) ×10−5

CNSS 1st 16 294.19 49369759.69 86596.81 4166.44 175 8.44
CNSS 2nd 15 60.67 10151920.33 14001.60 520.6 138 5.13
CNSS 3rd 13 7.69 4480384.39 10877.31 207 243 4.62
LTSS 1st 17 632.24 111861408.00 138212.47 5986 124 5.35
LTSS 2nd 14 5.14 802079.71 678.43 8.71 85 1.09
LTSS 3rd 4 9.25 2505224.25 1935.50 34.25 77 1.37

EventTree 1st 16 566.13 96492336.44 134612.50 5739.69 140 5.95
EventTree 2nd 7 2.14 762258.57 579.43 32.14 76 4.22
EventTree 3rd 1 2 299612.00 262 13 87 4.34

ing methods (LTSS and EventTree) on two real-world
datasets, COVID-19 infection rates and Twitter data re-
lated to the Black Lives Matter movement. We note that
the ColorCoding, NPHGS, AdditiveScan, and DFGS
approaches were not able to scale to these large real-world
datasets. We show the COVID-19 case study in the paper
and BlackLivesMatter case study in Appendix D.1.

COVID-19 Confirmed Cases Subgraph Discovery We
study our proposed method on COVID-19 data2 to dis-
cover significant infected regions over time. This dataset
contains the daily confirmed cases for 3,234 counties in
the USA across over 25 weeks from January 22-July 8,
2020. We build a spatial-temporal graph with 80,850 nodes
and 850,725 edges based on the weekly confirmed cases
and county adjacency (see Appendix D.2 for more details),
where each node represents a county in one week. In addi-
tion to the edges that represent adjacency between counties
(which are identical for each week t), we add an undirected
temporal edge from each node i in week t to node i in week
t + 1 as well as undirected edges from each node i in week
t to all neighboring nodes j in week t + 1. The p-value of
each node is generated based on the rank of the weekly con-
firmed cases to county population ratio divided by the total
number of nodes in the graph. Therefore, a higher ratio of
the number of weekly confirmed cases to the county popu-
lation indicates a higher rank and thus a smaller p-value.

We apply our proposed method on this spatial-temporal
graph and discover three subgraphs that are significant (as
identified using randomization tests on 100 runs under the
null hypothesis). The statistics of these three discovered sub-
graphs are shown in Table 11 in Appendix D.2.

As shown in Table 1, our CNSS method detects a signifi-
cant connected subgraph of counties that have a 42% higher
death rate two weeks later, as compared with the top-1 sub-
graphs detected by LTSS and EventTree. The use of the
two-week-lagged death rate as an evaluation metric better
identifies the anomaly in true COVID-19 cases than the
confirmed cases rate, which was highly affected in many ar-
eas by insufficient testing resources. (Note that death rate
data is not provided to the detection algorithms.) The visual-
ization of the highest-scoring subgraphs detected by differ-
ent methods is shown in Appendix D.2. We see that the base-

2https://usafacts.org/visualizations/coronavirus-covid-19-
spread-map/

line methods cannot discover a cohesive subgraph due to the
poorly calibrated objective function, instead showing a dis-
persed pattern across much of the country. In contrast, our
method is capable of detecting more impacted geographic
regions, for better targeting of needed health resources.

6 Limitations and Conclusions
While CNSS achieves state of the art performance for
anomalous pattern detection on graphs, it has two main
limitations. First, the randomization test-based calibration
approach is time-consuming, particularly for large-scale
graphs. Although our proposed closed-form lower bounds of
α′(N,α) avoid the need for randomization tests and hence
reduce the time cost of CNSS significantly, detection power
is reduced when the anomalous signal strength is low, as
shown in Figure 3. Second, our proposed efficient algorithm
is heuristic rather than exact, and thus is not guaranteed to
discover the maximum number of significant nodes Nα for
each subgraph size N . However, as discussed in Section 2,
subgraph detection is very challenging in the presence of
connectivity constraints and no methods exist that have rig-
orous guarantees and at the same time are scalable to large
graphs. For the calibrated scan, the computational problem
is even more difficult: we must identify the subgraph with
the largest number of significant p-values Nα for each sub-
graph size N and significance level α, which prevents us
from using previous methods that search for a single highest-
scoring subgraph. Finally, since the problem of pattern de-
tection in graphs is general, detection approaches could be
used for negative as well as beneficial social impacts, such
as monitoring of social media by an oppressive government.

In summary, we demonstrated that existing nonparamet-
ric scan statistic methods are miscalibrated for anomalous
pattern detection in graphs, and developed a new statisti-
cal approach to recalibrate NPSSs to account for the multi-
ple hypothesis testing effect of the graph structure. We pro-
posed a more efficient algorithm and new, closed-form lower
bounds, and integrated recent core-tree decomposition meth-
ods, to enable our proposed CNSS approach to scale to large,
real-world graphs. We observed outstanding performance of
our method compared with six state-of-the-art baselines on
five real-world datasets under various signal strengths and
network structures. Finally, we applied CNSS to two real-
world applications, and found more meaningful subgraphs
compared with competing methods.
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