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Abstract
𝓁1-penalized quantile regression (QR) is widely used
for analysing high-dimensional data with heterogene-
ity. It is now recognized that the 𝓁1-penalty introduces
non-negligible estimation bias, while a proper use of
concave regularization may lead to estimators with
refined convergence rates and oracle properties as the
signal strengthens. Although folded concave penalized
M-estimation with strongly convex loss functions have
been well studied, the extant literature on QR is rel-
atively silent. The main difficulty is that the quantile
loss is piecewise linear: it is non-smooth and has cur-
vature concentrated at a single point. To overcome the
lack of smoothness and strong convexity,we propose and
study a convolution-type smoothed QR with iteratively
reweighted 𝓁1-regularization. The resulting smoothed
empirical loss is twice continuously differentiable and
(provably) locally strongly convex with high probabil-
ity.We show that the iteratively reweighted 𝓁1-penalized
smoothed QR estimator, after a few iterations, achieves
the optimal rate of convergence, and moreover, the ora-
cle rate and the strong oracle property under an almost
necessary and sufficient minimum signal strength con-
dition. Extensive numerical studies corroborate our the-
oretical results.
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1 INTRODUCTION

Massive complex datasets bring challenges to data analysis due to the presence of outliers and
heterogeneity. Consider regression of a scalar response y on a p-dimensional predictor x ∈ Rp.
The least squares method focuses on the conditional mean of the outcome given the predictor.
Despite its popularity in the statistical and econometric literature, it is sensitive to outliers and
fails to capture heterogeneity in the set of important features.Moreover, inmany applications, the
scientific question of interest may not be fully addressed by inferring the conditional mean. Since
the seminal work of Koenker and Bassett (1978), quantile regression (QR) has gained increasing
attention by offering a set of complementary methods designed to explore data features invisible
to the inveiglements of least squares methods. Quantile regression is robust to data heterogeneity
and outliers, and also offers unique insights into the entire conditional distribution of the outcome
given the predictor. We refer to Koenker (2005) and Koenker et al. (2017) for an overview of QR
theory, methods and applications.

In the high-dimensional setting in which the number of features, p, exceeds the number of
observations, n, it is often the case that only a small subset of a large pool of features influences
the conditional distribution of the outcome. To perform estimation and variable selection simul-
taneously, the standard approach is to minimize the empirical loss plus a penalty on the model
complexity. The 𝓁1-penalty is arguably the most commonly used penalty function that induces
sparsity (Tibshirani, 1996). Least squares methods with 𝓁1-regularization have been extensively
studied in the past two decades. Because of the extremely long list of relevant literature, we
refer the reader to the monographs Bühlmann and van de Geer (2011), Hastie et al. (2015),
Wainwright (2019), Fan et al. (2020), and the references therein. In the context of QR, Belloni
and Chernozhukov (2011) provided a comprehensive analysis of the 𝓁1-penalized QR as well
as post-penalized QR estimator. Since then, the literature on high-dimensional QR has grown
rapidly, and we refer to Chapter 15 of Koenker et al. (2017) for an overview.

It is now a consensus that the 𝓁1-penalty induces non-negligible bias (Fan & Li, 2001; Zhang
& Zhang, 2012; Zou, 2006), due to which the selected model tends to include spurious variables
unless stringent conditions are imposed on the design matrix, such as the strong irrepresentable
condition (Meinshausen & Bühlmann, 2006; Zhao & Yu, 2006). To reduce the bias induced by
the 𝓁1-penalty when the signal is sufficiently strong, various concave penalty functions have been
designed (Fan & Li, 2001; Zhang, 2010a,b). For concave penalizedM-estimation with convex and
locally strongly convex losses, a large body of literature has shown that there exists a local solution
that possesses the oracle property, that is, a solution that is as efficient as the oracle estimator
obtained by assuming the true active set is known a priori, under certainminimumsignal strength
condition, also known as the beta-min condition. We refer the reader to Fan and Li (2001), Zou
and Li (2008), Kim et al. (2008), Zhang (2010b), Fan and Lv (2011), Zhang and Zhang (2012), Kim
and Kwon (2012), Loh and Wainwright (2015), and Loh (2017) for more details.

Comparably, QR with concave regularization is much less understood theoretically primar-
ily due to the challenges in analysing the piecewise linear quantile loss and the concave penalty
simultaneously. Let 𝜷∗ ∈ Rp be the s-sparse underlying parameter vector with support  =
{1 ≤ j ≤ p ∶ 𝛽∗j ≠ 0}, and define the minimum signal strength ||𝜷∗ ||min = minj∈ |𝛽∗j |. Under a
beta-min condition ||𝜷∗ ||min ≫ n−1∕2 max{s,

√
log(p)}, Wang et al. (2012) showed that the oracle

QR estimator belongs to the set of local minima of the non-convex penalized quantile objec-
tive function with probability approaching one. From a different angle, Fan et al. (2014) proved
that the oracle QR estimator can be obtained via the one-step local linear approximation (LLA)
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algorithm (Zou & Li, 2008) under a beta-min condition ||𝜷∗ ||min ≳√
s log(p)∕n, that is, the

minimal non-zero coefficient is of order
√
s log(p)∕n in magnitude. We refer to Chapter 16 of

Koenker et al. (2017) for an overview of the existing results on non-convex regularized QR. Exist-
ing work on folded concave penalized QR either impose stringent signal strength assumptions or
only establish theoretical guarantees for some local optimumwhich, due to non-convexity, is not
necessarily the solution obtained by any practical algorithm. In other words, there is no guaran-
tee that the solution obtained from a given algorithmwill satisfy the desired statistical properties,
leaving a gap between theory and practice.

A natural way to resolve the non-differentiability issue is to smooth the piecewise linear quan-
tile loss using a kernel. The idea of kernel smoothing was first considered by Horowitz (1998) in
the context of bootstrap inference formedian regression.Horowitz (1998) showed that the estima-
tor obtained from the smoothed quantile loss is asymptotically equivalent to that of the standard
QR estimator. This motivates a series of work on smoothed QR when the number of features is
fixed (Galvao &Kato, 2016;Whang, 2006;Wu et al., 2015). However, smoothing the piecewise lin-
ear loss directly yields a non-convex function for which global minimum is not guaranteed. This
poses even more challenges in the high-dimensional setting.

In this paper, we propose and study a new method for QR in high-dimensional sparse mod-
els, which is based on convolution smoothing and iteratively reweighted 𝓁1-penalization. To deal
with non-smoothness, we smooth the piecewise linear quantile loss via convolution. The idea is to
smooth the subgradient of the quantile loss, and then integrate it to obtain a smoothed loss func-
tion that is also convex. See Figure 1 for a visualization of Horowitz’s and convolution smoothing
methods. Fernandes et al. (2021) developed the traditional asymptotic theory for convolution
smoothing in the context of linearQRwhen the sample sizen tends to infinitywhile p is kept fixed.
For high-dimensional sparse models, we extend the one-step LLA algorithm proposed by Zou
and Li (2008), and propose amulti-step, iterative procedure which solves a weighted 𝓁1-penalized
smoothed quantile objective function at each iteration. This multi-step procedure consists of a
sequence of convex programs, which is similar to the multi-stage convex relaxation method for
sparse regularization (Fan et al., 2018; Zhang, 2010b). Computationally, for different smoothing
kernels, typified by the uniform and Gaussian kernels, we propose efficient algorithms to mini-
mize the weighted 𝓁1-penalized smoothed quantile objective function at each stage. Comparing
with existing methods for fitting high-dimensional QR, the proposed gradient-based algorithms
are more scalable to large-scale problems with either large sample size or high dimensionality.

Since the proposedmulti-step procedure delivers a sequence of solutions iteratively, to under-
stand how these estimators evolve statistically, we provide a delicate analysis of the estimator at
each stagewhose overall estimation error consists of three components: shrinkage bias, oracle rate
and smoothing bias. The theoretical analysis in Zhang (2010b) and Fan et al. (2018) is primarily
suited for the quadratic case, although the method applies to more general loss functions. In this
work, we aim at establishing theoretical underpinnings of why and how convolution smoothing
and iteratively reweighted 𝓁1-penalization help with achieving oracle properties for QR.

In particular, we show that the solution for the first iteration, that is, the 𝓁1-penalized
smoothed QR, is near minimax optimal, and coincide with those of existing results for
𝓁1-penalized QR estimator. Moreover, our analysis reveals that the multi-step, iterative algorithm
refines the statistical rate in a sequential manner: every relaxation step shrinks the estima-
tion error from the previous step by a 𝛿-fraction for some predetermined 𝛿 ∈ (0, 1). All the
results are non-asymptotic with explicit errors depending on (s, p, n), including the deter-
ministic smoothing bias and stochastic statistical errors. With a minimal requirement on the
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F IGURE 1 Plots of a standard quantile loss, Horowitz’s smoothed quantile loss (Horowitz, 1998), and a
convolution-type smoothed quantile loss

signal strength—||𝜷∗ ||min ≳√
log(p)∕n, we show that after as many as 𝓁 ≳ ⌈log(max{log(p), s})⌉

iterations, the multi-step algorithm will deliver an estimator that achieves the oracle rate of con-
vergence as well as the strong oracle property. The latter implies variable selection consistency as
a byproduct. To our knowledge, these are the first statistical characterizations of computationally
feasible concave regularized QR estimators.

The rest of the paper is organized as follows. In Section 2, we describe the convolution-type
smoothing approach for QR, followed by an iteratively reweighted 𝓁1-penalized procedure for
fitting high-dimensional sparse models. At each stage, the problem boils down to minimizing
a weighted 𝓁1-penalized smoothed quantile objective function, for which we propose efficient
and scalable algorithms in Section 3 with a particular focus on uniform and Gaussian kernels.
In Section 4, we provide theoretical guarantees for the sequence of estimators obtained by the
multi-step method, including estimation error bounds (in high probability) and strong oracle
property. A numerical demonstration of the proposed method on simulated data and a real data
application are provided in Sections 5 and 6, respectively. The proofs of all theoretical results
are given in the online supplementary material. The Python code that implements the proposed
iteratively reweighted regularized QR procedure is available at https://github.com/WenxinZhou/
conquer.

Notation: For every integer k ≥ 1, we use Rk to denote the k-dimensional Euclidean space, and
write [k] = {1,… ,k}. The inner product of any two vectors u = (u1, … ,uk)T, v = (v1, … , vk)T ∈
Rk is defined by uTv = ⟨u, v⟩ = ∑k

i=1 uivi. Moreover, let u◦v = (u1v1, … ,ukvk)T denote the
Hadamard product of u and v. For a subset  ⊆ [k] with cardinality ||, we write u ∈ R|| as
the subvector of u that consists of the entries of u indexed by  . We use || ⋅ ||p (1 ≤ q ≤ ∞) to
denote the 𝓁q-norm in Rk ∶ ||u||q = (

∑k
i=1|ui|q)1∕q and ||u||∞ = max1≤i≤k |ui|. For k ≥ 2, Sk−1 =

{u ∈ Rk ∶ ||u||2 = 1} denotes the unit sphere in Rk. For any function f ∶ R → R and vector
u = (u1, … ,uk)T ∈ Rk, we write f (u) = (f (u1), … , f (uk))T ∈ Rk.

Throughout this paper, we use bold uppercase letters to represent matrices. For k ≥ 2, Ik rep-
resents an k × k identity matrix. For any k × k symmetric, positive semidefinite matrixA ∈ Rk×k,
we use 𝛾(A) ∈ Rk to denote its vector of eigenvalues, ordered as 𝛾1(A) ≥ · · · ≥ 𝛾p(A) ≥ 0, and let

https://github.com/WenxinZhou/conquer
https://github.com/WenxinZhou/conquer
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||A||2 = 𝛾1(A) be the operator norm of A. Moreover, let || ⋅ ||A denote the vector norm induced by
A ∶ ||u||A = ||A1∕2u||2 for u ∈ Rk. For any two real numbers u and v, we write u ∨ v = max(u,v)
and u ∧ v = min(u, v). For two sequences of non-negative numbers {an}n≥1 and {bn}n≥1, an ≲ bn
indicates that there exists a constant C > 0 independent of n such that an ≥ Cbn; an ≳ bn is equiv-
alent to bn ≲ an; an ≍ bn is equivalent to an ≲ bn and bn ≲ an. For two numbers C1 and C2, we
write C2 = C2(C1) if C2 depends only on C1.

2 SPARSE QUANTILE REGRESSION: CONVOLUTION
SMOOTHING AND ITERATIVE REGULARIZATION

2.1 Penalized quantile regression

We consider a scalar response variable y ∈ R and a p-dimensional feature vector x =
(x1, … , xp)T ∈ Rp such that the 𝜏th conditional quantile of y given x is modelled as F−1

y|x(𝜏|x) =
xT𝜷∗ for some 0 < 𝜏 < 1, where 𝜷∗ = (𝛽∗1 , … , 𝛽∗p )T ∈ Rp. Let {(yi, xi)}ni=1 be a random sample
from (y, x). The preceding model assumption is equivalent to

yi = xTi 𝜷
∗ + 𝜀i and P(𝜀i ≤ 0|xi) = 𝜏. (1)

Throughout the paper, we set x1 ≡ 1 so that 𝛽∗1 denotes the intercept. To avoid notational clutter,
the dependence of 𝜷∗ and 𝜀i on 𝜏 will be assumed without displaying.

Given a random sample {(yi, xi)}ni=1, a penalized QR estimator is generally defined as either
the global optimum or one of the local optima to the optimization problem

minimize
𝜷=(𝛽1,… ,𝛽p)T∈Rp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
n

n∑
i=1

𝜌𝜏(yi − xTi 𝜷)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶Q̂(𝜷)

+
p∑
j=1
q𝜆(|𝛽j|)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
, (2)

where 𝜌𝜏(u) = u{𝜏 − 1(u < 0)} is the 𝜏-quantile function, also referred to as the check function,
and q𝜆(⋅) ∶ [0,∞) → [0,∞) is a sparsity-inducing penalty function parametrized by 𝜆 > 0.

Due to convexity, the𝓁1-penalizedmethod forwhich q𝜆(t) = 𝜆t (t ≥ 0) has dominated the liter-
ature on high-dimensional statistics. Work in the context of QR include that ofWang et al. (2007),
Belloni and Chernozhukov (2011), Bradic et al. (2011), Wang (2013), and Zheng et al. (2015),
Sivakumar and Banerjee (2017), among others. Various algorithms can be employed to solve the
resulting 𝓁1-penalized problem (Bach et al., 2012; Boyd et al., 2010; Gu et al., 2018; Koenker et al.,
2017). To alleviate the non-negligible bias induced by the 𝓁1 penalty, folded concave penalties
have been used in, for example, Wang et al. (2012) and Fan et al. (2014), leading to non-convex
optimization problems. Together, the non-differentiable quantile loss and the non-convex penalty
bring fundamental statistical and computational challenges.

Statistical theory of non-convex regularized QR is relatively underdeveloped. Most of the
existing results are developed either under stringent minimum signal strength conditions, or
for the hypothetical global optimum (or one of the local optima). Motivated from the algorith-
mic approaches developed by Zou and Li (2008) and Fan et al. (2018), we consider a multi-step
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iterative method that solves a sequence of convex problems, which bypasses the computational
issues from solving the non-convex problem (2) directly. Theoretically, a major difficulty is that
the quantile loss is piecewise linear, so that its ‘curvature energy’ is concentrated in a single point.
This is in contrast to many popular loss functions considered in the statistical literature, such as
the squared, logistic or Huber loss, which are at least locally strongly convex. Therefore, a proper
smoothing scheme that creates smoothness and local strong convexity is the key to the success of
the proposed framework.

2.2 Convolution-type smoothing approach

Let F𝜀|x(⋅) be the conditional distribution of ε given x. The population quantile loss can then be
written as

Q(𝜷) = Ex

{
∫

∞

−∞
𝜌𝜏(u − ⟨x,𝜷 − 𝜷∗⟩) dF𝜀|x(u)} ,

where Ex(⋅) is the expectation taken with respect to x. Provided that the conditional distribution
F𝜀|x(⋅) is sufficiently smooth,Q(𝜷) is twice differentiable and strongly convex in a neighbourhood
of 𝜷∗. For every 𝜷 ∈ Rp, let F̂(⋅; 𝜷) be the empirical cumulative distribution function (ECDF) of
the residuals {ri(𝜷) ∶= yi − xTi 𝜷}

n
i=1, that is, F̂(u; 𝜷) = (1∕n)

∑n
i=11{ri(𝜷) ≤ u} for any u ∈ R. Then,

the empirical quantile loss Q̂(⋅) in Equation (2) can be expressed as

Q̂(𝜷) = ∫
∞

−∞
𝜌𝜏(u) dF̂(u; 𝜷). (3)

Since the ECDF F̂(⋅; 𝜷) is discontinuous, the standard empirical quantile loss Q̂(⋅) has the same
degree of smoothness as 𝜌𝜏(⋅). This motivates Fernandes et al. (2021) to use a kernel CDF estima-
tor. Given the residuals ri(𝜷) = yi − xTi 𝜷 and a smoothing parameter/bandwidth h = hn > 0, let
F̂h(⋅; 𝜷) be the distribution function of the classical Rosenblatt–Parzen kernel density estimator:

F̂h(u; 𝜷) = ∫
u

−∞
f̂ h(t; 𝜷) dt with f̂ h(t; 𝜷) =

1
n

n∑
i=1
Kh(t − ri(𝜷)),

where K ∶ R → [0,∞) is a symmetric, non-negative kernel that integrates to one, and Kh(u) ∶=
(1∕h)K(u∕h) for u ∈ R. Replacing F̂(u; 𝜷) in Equation (3) with its kernel-smoothed counterpart
F̂h(u; 𝜷) yields the following smoothed empirical quantile loss

Q̂h(𝜷) ∶= ∫
∞

−∞
𝜌𝜏(u) dF̂h(u; 𝜷) =

1
nh

n∑
i=1

∫
∞

−∞
𝜌𝜏(u)K

(
u + xTi 𝜷 − yi

h

)
du. (4)

Define the integrated kernel function K ∶ R → [0, 1] as K(u) = ∫ u
−∞K(t) dt. As will be shown in

Section 4.1, the smoothed empirical quantile objective function Q̂h(𝜷) is twice continuously dif-
ferentiablewith gradient∇Q̂h(𝜷) = (1∕n)

∑n
i=1{K(−ri(𝜷)∕h) − 𝜏}xi andHessianmatrix∇2Q̂h(𝜷) =

(1∕n)
∑n

i=1 Kh(−ri(𝜷))xixTi . Moreover, we will show that the smoothed objective function Q̂h(⋅) is
strongly convex in a cone local neighbourhood of 𝜷∗ with high probability; see Proposition 2.
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Remark 1 For a given kernel function K(⋅) and bandwidth h > 0, the smoothed quantile loss
Q̂h(⋅) defined inEquation (4) can be equivalentlywritten as Q̂h(𝜷) = (1∕n)

∑n
i=1 𝓁h(yi − xTi 𝜷),

where

𝓁h(u) = (𝜌𝜏 ∗ Kh)(u) = ∫
∞

−∞
𝜌𝜏(v)Kh(v − u) dv, u ∈ R. (5)

Here * denotes the convolution operator. To better understand this smoothing mecha-
nism, we compute the smoothed loss 𝓁h = 𝜌𝜏 ∗ Kh explicitly for several widely used kernel
functions. Recall that 𝜌𝜏(u) = |u|∕2 + (𝜏 − 1∕2)u.

1. (Uniform kernel) For the uniform kernel K(u) = (1∕2)1(|u| ≤ 1), which is the den-
sity function of the uniform distribution on [−1, 1], the resulting smoothed loss
takes the form 𝓁h(u) = (h∕2)U(u∕h) + (𝜏 − 1∕2)u, where U(u) = (u2∕2 + 1∕2)1(|u| ≤
1) + |u|1(|u| > 1) is a Huber-type loss. Convolution plays a role of random smoothing
in the sense that 𝓁h(u) = (1∕2)E(|Zu|) + (𝜏 − 1∕2)u, where for every u ∈ R, Zu denotes a
random variable uniformly distributed between u − h and u + h.

2. (Gaussian kernel) For the Gaussian kernel K(u) = 𝜙(u), the density function of a
standard normal distribution, the resulting smoothed loss is 𝓁h(u) = (1∕2)E(|Gu|) +
(𝜏 − 1∕2)u, where Gu∼N(u, h2). Note that |Gu| follows a folded normal distribution
(Leone et al., 1961) with mean E|Gu| = (2∕𝜋)1∕2he−u2∕(2h2) + u{1 − 2Φ(−u∕h)}. Hence,
the smoothed loss can be written as 𝓁h(u) = (h∕2)G(u∕h) + (𝜏 − 1∕2)u, where G(u) =
(2∕𝜋)1∕2e−u2∕2 + u{1 − 2Φ(−u)}.

3. (Laplacian kernel) In the case of the Laplacian kernel K(u) = e−|u|∕2, we have 𝓁h(u) =
𝜌𝜏(u) + he−|u|∕h∕2.

4. (Logistic kernel) In the case of the logistic kernel K(u) = e−u∕(1 + e−u)2, the resulting
smoothed loss is 𝓁h(u) = 𝜏u + h log(1 + e−u∕h).

5. (Epanechnikov kernel) For the Epanechnikov kernel K(u) = (3∕4)(1 − u2)1(|u| ≤ 1),
the resulting smoothed loss is 𝓁h(u) = (h∕2)E(u∕h) + (𝜏 − 1∕2)u, whereE(u) = (3u2∕4 −
u4∕8 + 3∕8)1(|u| ≤ 1) + |u|1(|u| > 1).

2.3 Iteratively reweighted 𝓵1-penalized method

Let {(yi, xi)}ni=1 be independent data vectors from the conditional quantile model (1) with a sparse
target parameter 𝜷∗ ∈ Rp. Extending the one-step LLA algorithm proposed by Zou and Li (2008),
we consider a multi-step, iteratively regularized method as follows. Let q𝜆(⋅) be a prespecified
penalty function that is differentiable almost everywhere. Starting at iteration 0 with an initial
estimator 𝜷̂ (0), for 𝓁 = 1,2,… , we iteratively update the previous estimator 𝜷̂ (𝓁−1) by solving

𝜷̂ (𝓁) = (𝛽(𝓁)1 , … , 𝛽
(𝓁)
p )T ∈ argmin

𝜷=(𝛽1,… ,𝛽p)T

{
Q̂h(𝜷) +

p∑
j=1
q′𝜆(|𝛽(𝓁−1)j |)|𝛽j|} , (6)

where q′
𝜆
(⋅) is the first-order derivative of q𝜆(⋅), and Q̂h(⋅) is the convolution smoothed quan-

tile objective function defined in Equation (4). To avoid notational clutter, we suppress the
dependence of {𝜷̂ (𝓁) = 𝜷̂

(𝓁)
h (𝜏, 𝜆)}𝓁≥0 on the quantile index 𝜏, bandwidth h, and penalty level 𝜆.
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The penalty function q𝜆(⋅), or its derivative to be exact, plays the role of producing sparse
solutions. We consider a class of penalty functions that satisfies the following conditions.

(A1) The penalty function q𝜆 is of the form q𝜆(t) = 𝜆2q(t∕𝜆) for t ≥ 0, where q:[0,∞) → [0,∞)
satisfies: (i) q is non-decreasing on [0, ∞) with q(0) = 0; (ii) q(⋅) is differentiable almost
everywhere on (0,∞), 0 ≤ q′(t) ≤ 1 and limt↓0 q′(t) = 1; (iii) q′(t1) ≤ q′(t2) for all t1 ≥ t2 ≥ 0.

Examples of penalties that satisfy Condition (A1) include:

1. 𝓁1-penalty: q(t) = |t|. In this case, q′(t) = 1 for all t > 0. Therefore, 𝜷̂ (1) defined in Equation (6)
with 𝓁 = 1 is the 𝓁1-penalized SQR estimator, and the procedure stops after the first step.

2. Smoothly clipped absolute deviation (SCAD) penalty (Fan & Li, 2001): The function q(⋅) is
defined through its derivative q′(t) = 1(t ≤ 1) + (a−t)+

a−1
1(t > 1) for t ≥ 0 and some a > 2, and

q(0) = 0. Fan and Li (2001) suggested a = 3.7 by a Bayesian argument.
3. Minimax concave penalty (MCP) (Zhang, 2010a): The function q(⋅) is defined through its

derivative q′(t) = (1 − t∕a)+ for t ≥ 0 and some a ≥ 1, and q(0) = 0.
4. Capped-𝓁1 penalty (Zhang, 2010b): q(t) =min(a/2,t) and q′(t) = 1(t ≤ a∕2) for t ≥ 0 and some

a ≥ 1.

If we start the multi-step procedure using any penalty q𝜆 that satisfies Condition (A1) and
a trivial initialization 𝜷̂ (0) = 0, then q′

𝜆
(|𝛽(0)j |) = q′

𝜆
(0) = 𝜆 for j = 1, … , p, and hence the first

step is essentially computing an 𝓁1-penalized smoothed QR estimator. At each subsequent iter-
ation, the subproblem (6) can be expressed as a weighted 𝓁1-penalized smoothed quantile loss
minimization:

minimize
𝜷∈Rp

{Q̂h(𝜷) + ||𝝀◦𝜷||1}, (7)

where 𝝀 = (𝜆1, … , 𝜆p)T is a p-vector of regularization parameters with 𝜆j ≥ 0, and ◦ denotes
the Hadamard product. We summarize this iteratively reweighted 𝓁1-penalized method in
Algorithm 1.

Algorithm 1. Iteratively Reweighted 𝓁-Penalized Smoothed QR

In Section 4, we will establish non-asymptotic statistical theory for the sequence of esti-
mators {𝜷̂ (𝓁)}𝓁≥0 initialized with 𝜷̂ (0) = 0 when the penalty q𝜆(t) = 𝜆2q(t∕𝜆) obeys Condition
(A1). In order to reduce the (regularization) bias when the signal is sufficiently strong, we are
particularly interested in the concave penalty q(⋅), which not only satisfies Condition (A1) but
also has a redescending derivative, that is, q′(t) = 0 for all sufficiently large t.
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Another widely applicable idea for bias reduction is adaptive Lasso (Zou, 2006), which is a
one-step procedure that solves, in the context of QR,

𝜷̃ ∈ argmin
𝜷∈Rp

{
̂(𝜷) + 𝜆

p∑
j=1
w(|𝛽(0)j |)|𝛽j|

}
, (9)

where 𝜷̃
(0) = (𝛽(0)1 , … , 𝛽

(0)
p )T is an initial estimator of 𝜷∗, say the 𝓁1-QR (or QR-Lasso) esti-

mator (Belloni & Chernozhukov, 2011), and w(t) ∶= t−𝛾 for t > 0 and some 𝛾 > 0. Note
that the weight function 𝜆w(⋅) for adaptive Lasso is quite different from q′

𝜆
(⋅) = 𝜆q′(⋅∕𝜆) in

Equation (6). As discussed in Fan and Lv (2008), an advantage of the concave penalty, such
as SCAD and MCP, is that zero is not an absorbing state: once a coefficient is shrunk to
zero, it will remain zero throughout the remaining iterations. As a result, any true posi-
tive that is left out by the initial Lasso estimator will be missed in the second stage as
well. The aforementioned is an important phenomenon which was empirically verified by
Fan et al. (2018).

Remark 2 In practice, it is common to leave a subset of parameters, such as the intercept and
coefficients which correspond to features that are already viewed relevant, unpenalized
throughout the multi-step procedure (6). Given a predetermined index set ⊆ [p], we can
modify Algorithm 1 by taking 𝝀(𝓁) = (𝜆(𝓁)1 , … , 𝜆(𝓁)p )T (𝓁 ≥ 0) to be 𝜆(𝓁)j = 0 for j ∈  and

𝜆(𝓁)j = q′
𝜆
(|𝛽(𝓁)j |) for j ∉ . Theoretically, we will study the sequence of estimates {𝜷̂ (𝓁)}𝓁≥1

obtained from Algorithm 1 because a special treatment of leaving parameters indexed by
 unpenalized only makes things more convoluted and does not bring new insights from a
theoretical viewpoint.

3 ALGORITHM

As discussed in Section 2.3, the multi-step convex relaxation method leads to a sequence of
iteratively reweighted 𝓁1-penalized problems. Computationally, it suffices to develop efficient
algorithms for solving the convex problem (8). For several commonly used kernels, explicit forms
of the smoothed check loss functions are given in Remark 1. In the following sections, we
present specialized algorithms for two representative kernel functions: the uniform kernel and
the Gaussian kernel.

3.1 A coordinate descent algorithm for uniform kernel

First we describe a coordinate descent algorithm for solving Equation (8) with the uniform ker-
nel, that is, K(u) = 1/2 for |u| ≤ 1. The coordinate descent algorithm is an iterative method that
minimizes the objective function with respect to one variable at a time while fixing the other
variables. To implement the algorithm, we calculate the partial derivative of the loss function in
Equation (8) with respect to each variable, and derive the corresponding update for each variable
while keeping the others fixed.

The gradient of the loss function in Equation (8) involves K(⋅). For the uniform kernel,
we have
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K

(
xTi 𝜷 − yi

h

)
=

⎧⎪⎪⎨⎪⎪⎩
1 if xTi 𝜷 − yi ≥ h,
1
2

(
xTi 𝜷−yi

h
+ 1

)
if |xTi 𝜷 − yi| ≤ h,

0 if xTi 𝜷 − yi ≤ −h.

Let C1 = {i ∶ xTi 𝜷 − yi ≤ −h}, C2 = {i ∶ |xTi 𝜷 − yi| ≤ h}, and C3 = {i ∶ xTi 𝜷 − yi ≥ h}. Then, the
first-order optimality condition of minimizing 𝛽j → Q̂h(𝜷) + ||𝝀(𝓁−1)◦𝜷−||1 can be written
as

−𝜏
n∑
i=1
xij +

1
2
∑
i∈C2

xij +
∑
i∈C3

xij +
1
2h
∑
i∈C2

(xTi 𝜷 − yi)xij + n𝜆(𝓁−1)j ẑj = 0,

where ẑj ∈ 𝜕|𝛽 j| is the subgradient. This leads to the following closed-form solution
for 𝛽 j:

𝛽 j = S
⎧⎪⎨⎪⎩
2h𝜏

∑n
i=1xij − 2h

∑n
i∈C3

xij − h
∑n

i∈C2
xij +

∑
i∈C2

xij(yi − ⟨xi,−j, 𝜷−j⟩)∑
i∈C2

x2ij
,
2nh𝜆(𝓁−1)j∑

i∈C2
x2ij

⎫⎪⎬⎪⎭ ,

where S(a, b) = sign(a) max(|a| − b,0) denotes the soft-thresholding operator. Therefore, a solu-
tion of Equation (8) can be obtained by iteratively updating each 𝛽 j until convergence. The details
are summarized in Algorithm 2.

Algorithm 2. Coordinate Descent Algorithm for Solving (2.8) with Uniform Kernel.

Compared to the existing algorithms for solving 𝓁1-regularized QR, Algorithm 2 is computa-
tionally efficient especially for large-scale problems. The computational complexity is similar to
that of the coordinate descent algorithm for Lasso.
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3.2 An alternating direction method of multiplier algorithm
for Gaussian kernel

Next we consider the case of smoothing via the Gaussian kernel function. In this case, we have

K

(
xTi 𝜷 − yi

h

)
= Φ

(
xTi 𝜷 − yi

h

)
,

where Φ(⋅) is the cumulative distribution function of the standard normal distribution. The
coordinate descent approach in the previous section can no longer be employed, at least triv-
ially, to solve Equation (8) since there is no closed-form solution of minimizing 𝛽j → Q̂h(𝜷) +||𝝀(𝓁−1)◦𝜷−||1 with the Gaussian kernel. To address this issue, we introduce an alternating direc-
tion method of multiplier (ADMM) algorithm to solve Equation (8) by decoupling terms that are
difficult to optimize jointly. A similar approach has been considered in Gu et al. (2018) for solv-
ing standard QR with 𝓁1-regularization. Let r = (r1, … , rn)⊺ with ri = yi − ⟨xi, 𝜷⟩. Optimization
problem (8) can then be rewritten as

minimize
𝜷∈Rp,r∈Rn

{
Q̂h(r) + ||𝝀(𝓁−1)◦𝜷−||1} ,

subject to r = y − X𝜷. (10)

The augmented Lagrangian for Equation (10) is

𝜌(𝜷, r, 𝜼) = Q̂h(r) + ||𝝀(𝓁−1)◦𝜷−||1 + ⟨𝜼, r − y + X𝜷⟩ + 𝜌

2
||r − y + X𝜷||22, (11)

where 𝜼 is the Lagrangemultiplier and 𝜌 is a tuning parameter for the ADMMalgorithm. Updates
for the ADMM can be derived by minimizing each parameter while keeping the others fixed. We
summarize the details in Algorithm 3.

Algorithm 3. ADMMAlgorithm for Solving (2.8) with Gaussian Kernel.
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The updates for 𝜷 involve solving a Lasso regression problem for which efficient software is
available. Alternatively, one can also linearize the loss function as in Gu et al. (2018) to obtain a
closed-form solution. The updates for r can be obtained using coordinate descent algorithm by
updating each coordinate of r using standard numerical methods such as the bisection method.
See Algorithm 3 for details.

4 STATISTICAL THEORY

In this section, we provide a comprehensive analysis of the sequence of regularized QR estima-
tors {𝜷̂ (𝓁)}𝓁≥1 obtained by solving Equation (6) iteratively, initialized with 𝜷̂ (0) = 0. For simplicity,
we restrict our attention to a fixed quantile level 𝜏 ∈ (0,1) of interest. We first characterize the
(deterministic) bias induced by convolution smoothing described in Section 4.1. In Section 4.2,
we provide high probability bounds (under 𝓁1- and 𝓁2-errors) for the one-step estimator 𝜷̂ (1), that
is, the 𝓁1-penalized smoothed QR estimator (𝓁1-SQR) which is of independent interest. With a
flexible choice of the bandwidth h, these error bounds for 𝜷̂ (1) are near-minimax optimal (Wang
& He, 2021), and coincide with those of the 𝓁1-QR estimator Belloni and Chernozhukov (2011).
In Section 4.3, we analyse 𝜷̂ (𝓁) (𝓁 ≥ 2) whose overall estimation error consists of three parts:
shrinkage bias, oracle rate, and smoothing bias. Our analysis reveals that the multi-step itera-
tive algorithm refines the statistical rate in a sequential manner: every relaxation step shrinks
the estimation error from the previous step by a 𝛿-fraction for some 𝛿 ∈ (0,1). Under a necessary
beta-min condition, we show that the multi-step estimator 𝜷̂ (𝓁) with 𝓁 ≳ log{log(p)} achieves the
oracle rate of convergence, that is, it shares the convergence rate of the oracle estimator that has
access to the true active set. Under a sub-Gaussian condition on the feature vector and a stronger
sample size requirement, we further show in Section 4.4 that the multi-step estimator 𝜷̂(𝓁) with
𝓁 ≳ log(s) coincides with the oracle estimator with high probability, and hence achieves variable
selection consistency. Throughout, we use the notation ‘≲’ to indicate ‘ ≤ ’ up to constants that
are independent of (s, p, n).

4.1 Smoothing bias

To begin with, note that the smoothed quantile objective Q̂h(⋅) defined in Equation (4) can be
written as

Q̂h(𝜷) = (1 − 𝜏)∫
0

−∞
F̂h(u; 𝜷) du + 𝜏∫

∞

0
{1 − F̂h(u; 𝜷)} du.

Recall the integrated kernel function K(u) = ∫ u
−∞K(t) dt, which is non-decreasing and takes

values in [0, 1]. With ri(𝜷) = yi − xTi 𝜷, the gradient vector and Hessian matrix of Q̂h(𝜷) are,
respectively,

∇Q̂h(𝜷) =
1
n

n∑
i=1

{
K (−ri(𝜷)∕h) − 𝜏

}
xi and ∇2Q̂h(𝜷) =

1
n

n∑
i=1
Kh(−ri(𝜷))xixTi . (12)

To examine the bias induced by smoothing, define the expected smoothed loss function
Qh(𝜷) = E{Q̂h(𝜷)}, 𝜷 ∈ Rp, and the pseudo parameter
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𝜷∗
h = (𝛽∗h,1, … , 𝛽∗h,p)

T ∈ argmin
𝜷∈Rp

Qh(𝜷), (13)

which is the population minimizer of the smoothed quantile loss and varies with h. In gen-
eral, 𝜷∗

h differs from 𝜷∗—the unknown parameter vector in model (1). The latter is identified as
the unique minimizer of the population quantile objective Q(𝜷) ∶= E{Q̂(𝜷)}. However, as the
smoothed quantile loss 𝓁h(⋅) in Equation (5) approximates the quantile loss 𝜌𝜏(⋅) as h = hn → 0,
𝜷∗
h is expected to converge to 𝜷∗, and we refer to ||𝜷∗

h − 𝜷∗||2 as the approximation error or bias
due to smoothing.

The following result provides upper bounds of the smoothing bias under mild conditions
on the random covariates x ∈ Rp, the conditional density of ε given x, and the kernel func-
tion. Throughout Section 4, we assume that the second moment 𝚺 = (𝜎jk)1≤j,k≤p = E(xxT) of
x = (x1, … , xp)T (with x1 ≡ 1) exists and is positive definite. Moreover, let 𝛾1 = 𝛾1(𝚺) ≥ 1, 𝛾p =
𝛾p(𝚺) ∈ (0, 1], and 𝜎2x = max1≤j≤p 𝜎jj.

(B1) The conditional density of ε given x, denoted by f𝜀|x, satisfies fl ≤ f𝜀|x(0) ≤ fu almost surely
(over x) for some fu ≥ fl > 0. Moreover, there exists a constant l0 > 0 such that |f𝜀|x(u) −
f𝜀|x(v)| ≤ l0|u − v| for all u, v ∈ R almost surely (over x).

(B2) The kernel function K ∶ R → [0,∞) is symmetric around zero, and satisfies ∫ ∞
−∞K(u) du =

1 and ∫ ∞
−∞u

2K(u) du < ∞. For 𝓁 = 1,2,… , let 𝜅𝓁 = ∫ ∞
−∞|u|𝓁K(u) du be the 𝓁th absolute

moment of K(⋅).

Proposition 1 Assume thatConditions (B1)and (B2)hold, and𝜇3 ∶= supu∈Sp−1 E|zTu|3 < ∞with
z = 𝚺−1∕2x. Provided 0 < h < fl∕(c0l0), 𝜷∗

h is the unique minimizer of 𝜷 → Qh(𝜷) and satisfies||𝜷∗
h − 𝜷∗||𝚺 ≤ c0l0f −1l h2, (14)

where c0 = (𝜇3 + 𝜅2)∕2 + 𝜅1. In addition, assume 𝜅3 < ∞ and f𝜀|x has an l1-Lipschitz
continuous derivative almost everywhere for some l1 > 0. Then

||||||||𝚺−1J(𝜷∗
h − 𝜷∗) + 1

2
𝜅2h2 ⋅ 𝚺−1

E

{
f ′𝜀|x(0)x

}||||||||𝚺 ≤ Ch3, (15)

where J = E{f𝜀|x(0) ⋅ xxT}, and C > 0 depends only on (fl, l0, l1, 𝜇3) and the kernel K.

Proposition 1 is a non-asymptotic version of Theorem 1 in Fernandes et al. (2021), and explic-
itly captures the dependence of the bias on several model-based quantities. Note that the p×p
matrix J = E{f𝜀|x(0) ⋅ xxT} is the Hessian of the population quantile objective Q(⋅) evaluated
at 𝜷∗, that is, J = ∇2Q(𝜷∗). Under Condition (B1), fl𝛾p(𝚺) ≤ 𝛾p(J) ≤ 𝛾1(J) ≤ fu𝛾1(𝚺). An interest-
ing implication of Proposition 1 is that, when both f𝜀|x(0) and f ′𝜀|x(0) are independent of x (i.e.,
f𝜀|x(0) = f𝜀(0) and f ′𝜀|x(0) = f ′𝜀(0)), the bias decomposition bound (15) simplifies to‖‖‖‖‖‖f𝜀(0)(𝜷∗

h − 𝜷∗) + 0.5f ′𝜀(0)𝜅2h2
[

1
0p−1

]‖‖‖‖‖‖𝚺 ≤ Ch3.

In other words, the smoothing bias is concentrated primarily on the intercept. To some extent,
this observation further certifies the benefit of smoothing in variable selection of which the main
focus is on the slope coefficients rather than the intercept.
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4.2 𝓵1-penalized smoothed quantile regression

Given a bandwidth h > 0 and a regularization parameter 𝜆 > 0, let 𝜷̂h = 𝜷̂h(𝜏, 𝜆) be the
𝓁1-penalized SQR (𝓁1-SQR) estimator, defined as the solution to the following convex optimiza-
tion problem:

min
𝜷∈Rp

{
Q̂h(𝜷) + 𝜆||𝜷||1} . (16)

In this section, we characterize the estimation error of 𝜷̂h ∈ Rp under 𝓁2- and 𝓁1-norms. First we
impose amoment condition on the (random) covariate vector x = (x1, … , xp)T ∈ Rp with x1 ≡ 1.
Without loss of generality, assume 𝜇j = E(xj) = 0 for 2 ≤ j ≤ p; otherwise, consider a change of
variable (𝛽1, 𝛽2, … , 𝛽p)T → (𝛽1 +

∑p
j=2𝜇j𝛽j, 𝛽2, … , 𝛽p)T so that the obtained results apply tomodel

F−1
y|x(𝜏) = 𝛽♭0 +

∑p
j=2(xj − 𝜇j)𝛽∗j , where 𝛽

♭
0 = 𝛽∗0 +

∑p
j=2𝜇j𝛽

∗
j .

(B3) 𝚺 = E(xxT) is positive definite and z = 𝚺−1∕2x ∈ Rp is sub-exponential: there exist constants
𝜐0, c0 ≥ 1 such that P(|zTu| ≥ 𝜐0||u||2 ⋅ t) ≤ c0e−t for all u ∈ Rp and t ≥ 0. For convenience,
we assume c0 = 1, and write 𝜎2x = max1≤j≤p E(x2j ).

Moreover, for r, l > 0, define the (rescaled) 𝓁2-ball and 𝓁1-cone as

B𝚺(r) = {𝜹 ∈ R
p ∶ ||𝜹||𝚺 ≤ r} and C𝚺(l) =

{
𝜹 ∈ R

p ∶ ||𝜹||1 ≤ l||𝜹||𝚺} . (17)

Our theoretical analysis of the 𝓁1-SQR estimator depends crucially on the following ‘good’ event,
which is related to the local restricted strong convexity (RSC) of the empirical smoothed quan-
tile loss function. We refer the reader to Negahban et al. (2012) and Loh and Wainwright (2015)
for detailed discussions of the restricted strong convexity for regularized M-estimation in high
dimensions.

Definition 1 (Local restricted strong convexity). Given radius parameters r, l > 0 and a
curvature parameter 𝜅 > 0, define the event

rsc(r, l, 𝜅) =
{⟨∇Q̂h(𝜷) − ∇Q̂h(𝜷∗), 𝜷 − 𝜷∗⟩||𝜷 − 𝜷∗||2𝚺 ≥ 𝜅 for all 𝜷 ∈ 𝜷∗ + B𝚺(r) ∩ C𝚺(l)

}
. (18)

Our first result shows that, with suitably chosen (r,l,𝜅), the event rsc(r, l, 𝜅) occurs with high
probability. In order for the local RSC condition to hold, the radius parameter r has to be of the
same order as, or possibly smaller than the bandwidth h.

Proposition 2 Assume Conditions (B1)–(B3) hold, and 𝜅l = min|u|≤1 K(u) > 0. Moreover, let
(r, l, h) and n satisfy

20𝜐20r ≤ h ≤ fl∕(2l0) and n ≥ C𝜎2xfuf −2l (l∕r)2h log(2p) (19)

for a sufficiently large constant C. Then, the local RSC event rsc(r, l, 𝜅) with 𝜅 = (𝜅lfl)∕2
occurs with probability at least 1 − (2p)−1.
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Remark 3 We do not claim that the values of the constants appearing in Proposition 2 are optimal.
They result from non-asymptotic probabilistic bounds which reflect worst-case scenar-
ios. The condition min|u|≤1 K(u) > 0 is only for theoretical and notational convenience.
If the kernel K(⋅) is compactly supported on [−1, 1], we may rescale it to obtain Ka(u) =
(1∕a)K(u∕a) for some a> 1. Then, Ka(⋅) is supported on [−a, a] with min|u|≤1 K(u) > 0. For
example,

1. (Gaussian kernel) if K(u) = (2𝜋)−1∕2e−u2∕2 is the Gaussian kernel, we have 𝜅l =
(2𝜋e)−1∕2 ≈ 0.242 and 𝜅2 = 1;

2. (Uniform kernel) if K(u) = (1∕2)1(|u| ≤ 1) is the uniform kernel, we may consider its
rescaled version K3∕2(u) = (1∕3)1(|u| ≤ 3∕2). In this case, 𝜅l = 1∕3 and 𝜅2 = 3∕4.

Throughout, we view (𝜅l, 𝜅2) as absolute constants.

Theorem 1 Under the conditional quantile model (1) with 𝜷∗ ∈ Rp being s-sparse, assume Con-
ditions (B1)–(B3) hold with 𝜅l = min|u|≤1 K(u) > 0. Then, the 𝓁1-SQR estimator 𝜷̂ = 𝜷̂h with
𝜆 ≍ 𝜎x

√
𝜏(1 − 𝜏) log(p)∕n satisfies the bounds

||𝜷̂ − 𝜷∗||2 ≤ C1f −1l s1∕2𝜆 and ||𝜷̂ − 𝜷∗||1 ≤ C2f −1l s𝜆 (20)

with probability at least 1 − p−1, provided that the bandwidth satisfies

max

(
𝜎x
fl

√
s log p
n

,
𝜎2x fu
f 2l

s log p
n

)
≲ h ≤ min{fl∕(2l0), (s1∕2𝜆)1∕2},

where the constants C1, C2 > 0 depend only on (l0, 𝜐0, 𝛾p, 𝜅l, 𝜅2).

The above theorem shows that with a proper yet flexible choice of the bandwidth, the
𝓁1-penalized smoothed QR estimator achieves the same rate of convergence as the 𝓁1-QR esti-
mator under both 𝓁1- and 𝓁2-errors (Belloni & Chernozhukov, 2011). Technically, we assume the
random feature vector is sub-exponential, which is arguably the weakest moment condition in
high-dimensional regression analysis under randomdesign (Wainwright, 2019). This preliminary
result is of independent interest, and more importantly, it paves the way for further analysis of
smoothed QR with iteratively reweighted 𝓁1-regularization.

4.3 Concave regularization and oracle rate of convergence

In this section, we derive rates of convergence for the solution path {𝜷̂ (𝓁)}𝓁=1,2,… of themulti-step
iterative algorithm defined in Equation (6). Starting from 𝜷̂(0) = 0, we note that 𝜷̂ (1) is exactly
the 𝓁1-SQR estimator studied in the previous section; see Theorem 1. For subsequent 𝜷̂ (𝓁)’s, we
first state the result as a deterministic claim in Theorem 2, but conditioned on some ‘good’ event
regarding the local RSC property and the gradient of Q̂h(⋅) at 𝜷∗. Under Condition (B3) on the
random covariate vector, probabilistic claims enter in certifying that this ‘good’ event holds with
high probability with a suitable choice of 𝜆 and h; see Theorem 3.

Recall the event rsc(r, l, 𝜅) defined in Equation (18) on which a local RSC property of the
smoothed quantile objective Q̂h(⋅) holds, where 𝜅 is a curvature parameter. Moreover, define
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w∗
h = wh(𝜷∗) ∈ R

p and b∗h = ||𝚺−1∕2∇Qh(𝜷∗)||2, (21)

where wh(𝜷) = ∇Q̂h(𝜷) − ∇Qh(𝜷) is the centred score function, and b∗h ≥ 0 quantifies the bias
induced by smoothing. For the standard quantile loss, we have ∇Q(𝜷∗) = 0. Under Conditions
(B1) and (B2), examine the proof of Proposition 1 yields b∗h ≤ l0𝜅2h2∕2, that is, the smoothing
bias has magnitude of the order h2. To refine the statistical rate obtained in Theorem 1, which is
near-minimax optimal for estimating sparse targets, we need an additional beta-min condition on||𝜷∗ ||min = minj∈ |𝛽∗j |, where  = {1 ≤ j ≤ p ∶ 𝛽∗j ≠ 0} is the active set of 𝜷∗. For a deterministic
analysis, we first derive the contraction property of the solution path {𝜷̂ (𝓁)}𝓁≥1 conditioned on
some ‘good’ event.

Theorem 2 Given 𝜅 > 0 and a penalty function q(⋅) satisfying (A1), assume that there exists some
constant 𝛼0 > 0 such that

𝛼0√
1 + {q′(𝛼0)∕2}2

>
1
𝜅𝛾p

and q′(𝛼0) > 0. (22)

Let the penalty level 𝜆 and bandwidth h satisfy b∗h ≤ (s∕𝛾p)1∕2𝜆. Moreover, define ropt =
𝛾1∕2p 𝛼0cs1∕2𝜆 and l = {(2 + 2

q′(𝛼0)
)(c2 + 1)1∕2 + 2

q′(𝛼0)
}(s∕𝛾p)1∕2, where the constant c > 0 is

defined through the equation

0.5q′(𝛼0)(c2 + 1)1∕2 + 2 = 𝛼0𝜅𝛾p ⋅ c. (23)

Then, for any r ≥ ropt, conditioned on the event rsc(r, l, 𝜅) ∩ {||w∗
h||∞ ≤ 0.5q′(𝛼0)𝜆}, the

sequence of solutions {𝜷̂ (𝓁)}𝓁≥1 to programs (6) satisfies

||𝜷̂(𝓁) − 𝜷∗||𝚺 ≤ 𝛿 ⋅ ||𝜷̂(𝓁−1) − 𝜷∗||𝚺 + 𝜅−1𝛾−1∕2p

{||q′𝜆((|𝜷∗ | − 𝛼0𝜆)+)||2 + ||w∗
h, ||2}

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=∶rora

+ 𝜅−1b∗h,

(24)

where 𝛿 =
√
1 + {q′(𝛼0)∕2}2∕(𝛼0𝜅𝛾p) ∈ (0, 1) and u+ = max(u, 0). In addition,

||𝜷̂(𝓁) − 𝜷∗||𝚺 ≤ 𝛿𝓁−1ropt + (1 − 𝛿)−1(rora + 𝜅−1b∗h) for any 𝓁 ≥ 2. (25)

Theorem 2 reveals how iteratively reweighted 𝓁1-penalization refines the statistical rate
in a sequential manner: every relaxation step shrinks the estimation error from the previ-
ous step by a 𝛿-fraction. The error term that does not vary with reweighted penalization
consists of

||||q′𝜆((|𝜷∗ | − 𝛼0𝜆)+)||||2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

shrinkage bias

,
||||||w∗

h,
||||||2

⏟⏞⏟⏞⏟
oracle rate

, and b∗h
⏟⏟⏟

smoothing bias

.

The first term ||q′
𝜆
((|𝜷∗ | − 𝛼0𝜆)+)||2 is known as the shrinkage bias induced by the folded-concave

penalty function (Fan et al., 2018). For the 𝓁1-norm penalty, that is, q𝜆(t) = 𝜆|t| andq′
𝜆
(t) =
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𝜆 sign(t), the shrinkage bias can be as large as s1∕2𝜆. Without any prior knowledge on the signal
strength, we have ||q′

𝜆
((|𝜷∗ | − 𝛼0𝜆)+)||2 ≤ ||q′

𝜆
(0 )||2 = s1∕2𝜆 for any penalty q𝜆 satisfying Condi-

tion (A1). Assume q𝜆(t) = 𝜆2q(t∕𝜆) is a concave penalty defined on R+ with 𝛼∗ ∶= inf{𝛼 > 0 ∶
q′(𝛼) = 0} < ∞. Given a regularization parameter 𝜆> 0, consider the decomposition = 0 ∪ 1,
where

0 = {
j ∈  ∶ |𝛽j| < (𝛼0 + 𝛼∗)𝜆

}
and 1 = {

j ∈  ∶ |𝛽j| ≥ (𝛼0 + 𝛼∗)𝜆
}

have cardinalities s0 and s1 respectively. The shrinkage bias term can then be bounded by

||q′𝜆((|𝜷∗ | − 𝛼0𝜆)+)||2 ≤ ||q′𝜆(00)||2 = s1∕20 𝜆.

Under the beta-min condition ||𝜷∗ ||min ≥ (𝛼0 + 𝛼∗)𝜆, the shrinkage bias vanishes, and hence the
final rate of convergence is determined by ||w∗

h, ||2 and b∗h. As previously noted, the latter is the
smoothing bias term, and satisfies b∗h ≤ l0𝜅2h2∕2.

The terminology ‘oracle’ stems from the ‘oracle estimator’, defined as the QR estimator that
knows in advance the true subset of the important features. For a better comparison, we define
the oracle smoothed QR estimator as

𝜷̂ora = argmin
𝜷∈Rp∶𝜷c=0

Q̂h(𝜷) = argmin
𝜷∈Rp∶𝜷c=0

1
n

n∑
i=1

𝓁h(yi − xTi,𝜷 ), (26)

where 𝓁h(⋅) is the smoothed quantile loss given in Equation (5). As we will show in Section 4.4,
the oracle SQR estimator 𝜷̂ora satisfies the bound

||𝜷̂ora − 𝜷∗||2 ≲ ||w∗
h, ||2 + h2

with high probability, and ||w∗
h, ||2 is of order√s∕n.

Theorem 2 is a deterministic result. Probabilistic claims enter in certifying that the local RSC
condition holds with high probability (see Proposition 2), and in verifying that the ‘good’ event
{||w∗

h||∞ ≤ 0.5q′(𝛼0)𝜆} occurs with high probability with a specified choice of 𝜆. The following
theorem states, under a necessary beta-min condition, the iteratively reweighted 𝓁1-penalized
SQR (IRW-𝓁1-SQR) estimator 𝜷̂ (𝓁), after a few iterations, achieves the estimation error of the
oracle that knows the sparsity pattern of 𝜷∗.

Theorem 3 In addition to Conditions (A1), (B1)–(B3), assume there exist 𝛼1 > 𝛼0 > 0 such
that

q′(𝛼0) > 0, 𝛼0√
4 + {q′(𝛼0}2

> (𝜅lfl𝛾p)−1 and q′(𝛼1) = 0, (27)

where 𝜅l = min|u|≤1 K(u) > 0.Moreover, let the regularization parameter 𝜆 and bandwidth h
satisfy 𝜆 ≍ 𝜎x

√
𝜏(1 − 𝜏) log(p)∕n and

max

(
𝜎x
fl

√
s log p
n

,
𝜎2x fu
f 2l

s log p
n

)
≲ h ≲ (s1∕2𝜆)1∕2.
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For any t ≥ 0, under the beta-min condition ||𝜷∗ ||min ≥ (𝛼0 + 𝛼1)𝜆 and scaling n ≳

max{s log(p), s + t}, the IRW-𝓁1-SQR estimator 𝜷̂ (𝓁) with 𝓁 ≳ ⌈log{log(p)}∕ log(1∕𝛿)⌉ satis-
fies the bounds

||𝜷̂ (𝓁) − 𝜷∗||2 ≲ f −1l

(√
s + t
n

+ h2
)

and ||𝜷̂(𝓁) − 𝜷∗||1 ≲ f −1l s1∕2
(√

s + t
n

+ h2
)

(28)

with probability at least 1 − p−1 − e−t, where 𝛿 =
√
4 + {q′(𝛼0)}2∕(𝛼0𝜅lfl𝛾p) ∈ (0, 1).

Remark 4 (Oracle rate of convergence and high-dimensional scaling). The conclusion of
Theorem 3 is referred to as the weak oracle property: the IRW-𝓁1-SQR estimator achieves
the convergence rate of the oracle 𝜷̂ora when the support set were known a priori. Starting
from 𝜷̂ (0) = 0, the one-step estimator 𝜷̂(1) (𝓁1-SQR) has an estimation error (under 𝓁2-norm)
of order

√
s ⋅ log(p)∕n (see Theorem 1). Under an almost necessary and sufficient beta-min

condition—||𝜷∗ ||min ≳√
log(p)∕n, a refined near-oracle statistical rate

√
s∕n + h2 can be

attained by a multi-step iterative procedure, which solves a sequence of convex programs.
Here,

√
s∕n is referred to as the oracle rate, and the h2-term quantifies the smoothing

bias (Proposition 1). In order to certify the local RSC property of the smoothed objective
function, the bandwidth should have magnitude at least of the order

√
s log(p)∕n. If we

choose a bandwidth h ≍
√
s log(p)∕n, the 𝓁2-error of the multi-step estimator will be of

order
√
s∕n + s log(p)∕n under the high-dimensional scaling n ≳ s log(p). Intuitively, the

main reason for having an extra term s log(p)/n is that even if the underlying vector 𝜷∗ is
s-sparse, the population parameter 𝜷∗

h ∈ Rp corresponding to the smoothed objective func-
tion (see Equation (13)) may be denser. As a result, there is a statistical price to pay for
smoothing.

Remark 5 (Minimum signal strength and oracle rate). In a linear regression model y = xT𝜷∗ + 𝜀

with a Gaussian error 𝜀∼N(0, 𝜎2), consider the parameter space Ωs,a = {𝜷 ∈ Rp ∶ ||𝜷||0 ≤
s,minj∶𝛽j≠0 |𝛽j| ≥ a} for a > 0. Assuming that the design matrix X = (x1, … , xn)T ∈ Rn×p

satisfies a restricted isometry property and has normalized columns (each column has an
𝓁2-norm equal to

√
n), Ndaoud (2019) derived the following sharp lower bounds for the

minimax risk 𝜓(s, a) ∶= inf 𝜷̂ sup𝜷∗∈Ωs,a
E||𝜷̂ − 𝜷∗||22: for any 𝜀 ∈ (0,1),

𝜓(s, a) ≥ {1 + o(1)}
2𝜎2s log(ep∕s)

n
for any a ≤ (1 − 𝜀)𝜎

√
2 log(ep∕s)

n

and

𝜓(s, a) ≥ {1 + o(1)}𝜎
2s
n

for any a ≥ (1 + 𝜀)𝜎
√

2 log(ep∕s)
n

,

where the limit corresponds to s/p → 0 and s log(ep/s)/n → 0. The minimax rate
2𝜎2s log(ep∕s)∕n can be attained by both Lasso and Slope (Bellec et al., 2018), while the
oracle rate 𝜎2s∕n can only be achieved when the magnitude of the minimum signal is of
order 𝜎

√
log(p∕s)∕n. For estimating an s-sparse vector 𝜷∗ ∈ Rp in the conditional quantile

model (1), Wang and He (2021) proved the lower bound
√
s log(p∕s)∕n for the minimax

estimation error under 𝓁2-norm. In order to achieve the refined oracle rate, Fan et al. (2014)
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required a stronger beta-min condition, that is, ||𝜷∗ ||min ≳√
s log(p)∕n, and a stringent

independence assumption between ε and x in the conditional quantile model (1). The
beta-min condition imposed in Theorems 2 and 3 is almost necessary and sufficient, and is
the weakest possible up to constant factors.

4.4 Strong oracle property

In this section, we establish the strong oracle property for the multi-step estimator 𝜷̂ (𝓁) when 𝓁
is sufficiently large, that is, 𝜷̂ (𝓁) equals the oracle estimator 𝜷̂ora with high probability (Fan & Lv,
2011). To this end, we define a similar local RSC event to rsc(r, l, 𝜅) given in Equation (18). Recall
that  ⊆ [p] is the support of 𝜷∗. Given radius parameters r, l > 0 and a curvature parameter
𝜅 > 0, define

rsc(r, l, 𝜅) =
{⟨𝛻Q̂h(𝜷1) − 𝛻Q̂h(𝜷2), 𝜷1 − 𝜷2⟩||𝜷1 − 𝜷2||2𝚺 ≥ 𝜅 for all (𝜷1, 𝜷2) ∈ Λ(r, l)

}
, (29)

where Λ(r, l) ∶= {(𝜷1, 𝜷2) ∶ 𝜷1 ∈ 𝜷2 + B𝚺(r) ∩ C𝚺(l),𝜷2 ∈ 𝜷∗ + B𝚺(r∕2), supp(𝜷2) ⊆ }. Simi-
larly to Equation (21), we define the oracle score

wora
h = ∇Q̂h(𝜷̂ora) ∈ R

p, (30)

where 𝜷̂ora is defined in Equation (16). By the optimality of 𝜷̂ora, we have wora
h, =

(−1∕n)
∑n

i=1 𝓁
′
h(yi − xTi, 𝜷̂

ora
 )xi, = 0s. Like Theorem 2, the following result is also deterministic

given the stated conditioning.

Theorem 4 Assume Condition (A1) holds, and for some predetermined 𝛿 ∈ (0, 1) and 𝜅 > 0, there
exist constants 𝛼1 > 𝛼0 > 0 such that

q′(𝛼0) > 0, 𝛼0√
1 + {q′(𝛼0)∕2}2

>
1

𝛿𝜅𝛾p
and q′(𝛼1) = 0. (31)

Moreover, let r ≥ 𝛾1∕2p 𝛼0c1s1∕2𝜆 and l = {2 + 2
q′(𝛼0)

}(c21 + 1)1∕2(s∕𝛾p)1∕2, where c1 > 0 is a con-
stant determined by

0.5q′(𝛼0)(c21 + 1)1∕2 + 1 = 𝛼0𝜅𝛾pc1. (32)

Assume the beta-min condition ||𝜷∗ ||min ≥ (𝛼0 + 𝛼1)𝜆 holds. Then, conditioned on the
event{||wora

h ||∞ ≤ 0.5q′(𝛼0)𝜆
}
∩
{||𝜷̂ora − 𝜷∗||𝚺 ≤ r∕2

}
∩ rsc(r, l, 𝜅)

∩

{||𝜷̂ora − 𝜷∗||∞ ≤
[
𝛼0 −

√
1 + {q′(𝛼0)∕2}2

𝛿𝜅𝛾p

]
𝜆

}
, (33)

the strong oracle property holds: 𝜷̂(𝓁) = 𝜷̂ora provided 𝓁 ≥ ⌈log(s1∕2∕𝛿)∕ log(1∕𝛿)⌉.
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Our next goal is to control the probability of the events in Equation (33). To this end, we
need the following statistical properties of the oracle estimator 𝜷̂ora, including a deviation bound
and a non-asymptotic Kiefer–Bahadur representation that are of independent interest. The latter
requires a slightly stronger moment condition on the random feature.

(B1′) In addition to Condition (B1), assume supu∈R
|f𝜀|x(u)| ≤ fu < ∞ almost surely over x.

(B2′) In addition to Condition (B2), assume supu∈R
K(u) ≤ 𝜅u for some 𝜅u ∈ (0, 1].

(B3′) The (random) covariate vector x = 𝚺1∕2z ∈ Rp is sub-Gaussian: there exists some 𝜐1 ≥ 1
such that P(|zTu| ≥ 𝜐1||u||2 ⋅ t) ≤ 2e−t2∕2 for all u ∈ Rp and t ≥ 0.

Note that the oracle 𝜷̂ora ∈ Rp with 𝜷̂
ora
c = 0 is essentially an unpenalized smoothed QR

estimator in the low-dimensional regime ‘s≪ n’. We refer to Fernandes et al. (2021) for a compre-
hensive asymptotic analysis when s is fixed, and He et al. (2021) for a finite sample theory when s
is allowed to grow with n. This paper concerns the case where both s (intrinsic dimension) and p
(ambient dimension) can growwith sample size n.We therefore summarize the estimation bound
and Bahadur representation for 𝜷̂ora by He et al. (2021) in the following proposition. Let

S = E(xxT ) and D = E{f𝜀|x(0) ⋅ xxT} (34)

be, respectively, the s × s sub-matrices of 𝚺 and J indexed by the true support  ⊆ [p].

Proposition 3 Assume Conditions (B1′)–(B3′) hold. For any t ≥ 0, suppose the sample size n
and the bandwidth h = hn are such that n ≳ s + t and

√
(s + t)∕n ≲ h ≲ 1. Then, the oracle

estimator 𝜷̂ora defined in Equation (16) satisfies

||𝜷̂ora − 𝜷∗||𝚺 = ||(𝜷̂ora − 𝜷∗) ||S ≲ f −1l

(√
s + t
n

+ h2
)

(35)

with probability at least 1 − 2e−t. Moreover,

|||||
|||||D(𝜷̂ora − 𝜷∗) + 1

n

n∑
i=1

{
K(−𝜀i∕h) − 𝜏

}
xi,

|||||
|||||S−1 ≲ s + t

h1∕2n
+ h

√
s + t
n

+ h3 (36)

with probability at least 1 − 3e−t.

Finally, with the above preparations, we are able to establish the strong oracle property of 𝜷̂ (𝓁)

when 𝓁 is sufficiently large.

Theorem 5 Assume Conditions (B1′)–(B3′) and (A1) hold with 𝜅l = min|u|≤1 K(u) > 0 and

max
j∈c

||Jj (J )−1||1 ≤ A0. (37)

for some A0 ≥ 1. For a prespecified 𝛿 ∈ (0, 1), suppose there exist constants 𝛼1 > 𝛼0 sat-
isfying Equation (31) with 𝜅 = 𝜅lfl∕2, and the beta-min condition ||𝜷∗ ||min ≥ (𝛼0 + 𝛼1)𝜆.
Choose the bandwidth h and penalty level 𝜆 as h ≍ {log(p)∕n}1∕4 and 𝜆 ≍

√
log(p)∕n. Then,

with probability at least 1 − 2p−1 − 5n−1, 𝜷̂ (𝓁) = 𝜷̂ora for all 𝓁 ≥ ⌈log(s1∕2∕𝛿)∕ log(1∕𝛿)⌉,
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provided that the sparsity s and ambient dimension p obey the growth condition
max{s2 log(p), s8∕3∕(log p)} ≲ n.

As stated in Theorem 5, in addition to the beta-min condition ||𝜷∗ ||min ≳√
log(p)∕n, we need

an extra assumption (37) to establish the strong oracle property. Informally speaking, if we regress
every spurious (density-weighted) feature f𝜀|x(0) ⋅ xj (j ∈ c) on the important (density-weighted)
features f𝜀|x(0) ⋅ x , Equation (37) requires the 𝓁1-norm of the resulting regression coefficient
vector to be bounded by A0. It is worth noting that assumption (37) is much weaker than the
irrepresentable condition, which is sufficient and nearly necessary for model consistency of
the Lasso (Lahiri, 2021; Meinshausen & Bühlmann, 2006; Zhao & Yu, 2006) in the conditional
mean model. A population version of the irrepresentable condition is that, for some 𝛼 ∈ (0,1),
maxj∈c ||𝚺j (𝚺 )−1||1 ≤ 𝛼.

For conditional mean regression with heavy-tailed errors, Loh (2017) established the strong
oracle property for any local stationary point of the folded concave penalized optimization
problem (2) subject to an 𝓁1-ball constraint, when the loss function is twice differentiable.
The required growth condition on (s, p) is max{s log(p), s2} ≲ n; see Theorem 2 in Loh (2017).
For sparse QR, our result requires a slightly stronger scaling max{s2 log(p), s8∕3∕(log p)} ≲ n
due to the non-smoothness of the quantile loss. Intuitively, the strong oracle property is
related to the second-order accuracy and efficiency: the oracle estimator is asymptotically nor-
mal provided that the sparsity s does not grow too fast with the sample size. For Huber’s
M-estimator, He and Shao (2000) proved the asymptotic normality for its linear functionals
under the scaling s2 log(s) = o(n); while in the context of QR, the same asymptotic results
usually hold under stronger growth conditions due to both non-linearity and non-smoothness
of the problem, such as s3(log n)2 = o(n) (He & Shao, 2000; Welsh, 1989) and s8∕3 = o(n)
(He et al., 2021). To some extent, this explains why the high-dimensional scaling in our
Theorem 5 is slightly stronger than those needed for regularizedM-estimators with smooth loss
functions.

5 NUMERICAL STUDY

We perform numerical studies to assess the performance of the proposed regularized QRmethod
using 𝓁1 and SCAD penalties. The SCAD penalty (Fan & Li, 2001) is defined through its deriva-
tive that takes the form q′

𝜆
(t) = 𝜆1(t ≤ 𝜆) + (a − 1)−1(a𝜆 − t)+1(t > 𝜆) for t ≥ 0, where we pick

a = 3.7 as suggested in Fan and Li (2001), although it may not be the optimal value for QR. We
use uniform and Gaussian kernels to smooth the quantile loss, and then employ the multi-stage
convex relaxation method described in Algorithm 1 with 𝓁 = 3 iterations. We will show later in
this section that for moderately large p, 𝓁 = 3 iterations is often sufficient and that more iterations
will lead to little to no improvement in terms of estimation accuracy.

We compare our proposal—iteratively reweighted 𝓁1-penalized smoothed QR, with the stan-
dard Lasso implemented by the R packageg glmnet, and both 𝓁1- and folded concave penalized
QRs implemented by the R package FHDQR (Gu et al., 2018). As a benchmark, we also compute
the oracle estimator by fitting unpenalized QR using the important covariates. The regularization
parameter 𝜆 for Lasso and penalized QR is selected via fivefold cross-validation; for the latter, we
use the check loss to define the validation error. Specifically, we choose the 𝜆 value that yields
the minimum cross-validation error under the 𝓁2-loss and check loss for Lasso and penalized QR
respectively. The proposedmethod involves a smoothing parameter h, which can also be tuned via
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cross-validation in practice. Recall that convolution smoothing facilitates optimization through
a balanced trade-off between statistical accuracy and computational complexity. Our numerical
experiments show that the results are rather insensitive to the choice of the bandwidth provide
that it is in a reasonable range (neither too small nor too large). The default value of h is set to
be max{0.05,

√
𝜏(1 − 𝜏){log(p)∕n}1∕4}. We note that this particular choice of h is by no means

optimal numerically.
For all the numerical experiments, we generate synthetic data {(yi, xi)}ni=1 from a linear model

yi = xTi 𝜷
∗ + 𝜀iwith𝜷∗ = (1.8, 0, 1.6, 0, 1.4, 0, 1.2, 0, 1, 0,−1, 0,−1.2, 0,−1.4, 0,−1.6, 0,−1.8, 0p−19)T,

and xi∼Np(0,𝚺) with 𝚺 = (0.7|j−k|)1≤j,k≤p. The random error follows one of the following four
distributions: (i) standard normal distribution N(0,1); (ii) t-distribution with 1.5 degrees of free-
dom; (iii) standard Cauchy distribution; and (iv) a mixture of normal distributions—0.7N(0,
1)+0.3N(0, 25).

To evaluate the performance across different methods, we report the true and false positive
rates (TPR andFPR), defined as the proportion of correctly estimated nonzeros and the proportion
of falsely estimated nonzeros respectively. We also report the sum of squared errors (SSE), that is,||𝜷̂ − 𝜷∗||22. Results for four different noise distributions under moderate (n = 500, p = 400) and
high-dimensional settings (n = 500, p = 1000), averaged over 100 replications, are displayed in
Tables 1–4.

Under the Gaussian random noise, we see from Table 1 that all methods have similar TPR and
FPR. The Lasso has the lowest SSE compared to QR-Lasso and SQR-Lasso, which coincides with
the fact that QR does lose some efficiency in a normal model. For both standard and smoothed
QRs, iteratively reweighted regularization with the SCAD penalty considerably reduces the esti-
mation error, is proximate to the oracle procedure. Similar results hold when the MCP is used.
This supports our theoretical results on SQR that concave regularization improves the estima-
tion error from

√
s log(p)∕n to the near-oracle rate

√
{s + log(p)}∕n. Among all regularized QR

methods, the proposed procedure—iteratively reweighted 𝓁1-penalized SQR with either uniform
or Gaussian kernel smoothing—has the best overall performance.

TABLE 1 Numerical comparisons under Gaussian model

Moderate dimension
(n = 500, p = 400)

High dimension
(n = 500, p = 1000)

Methods TPR FPR Error TPR FPR Error

Lasso 1 (0) 0.067 (0.003) 0.147 (0.006) 1 (0) 0.033 (0.001) 0.167 (0.006)

SCAD 1 (0) 0.055 (0.003) 0.062 (0.012) 1 (0) 0.026 (0.001) 0.051 (0.003)

QR-Lasso 1 (0) 0.119 (0.006) 0.240 (0.009) 1 (0) 0.068 (0.003) 0.284 (0.009)

QR-SCAD 1 (0) 0.112 (0.006) 0.183 (0.014) 1 (0) 0.069 (0.004) 0.161 (0.010)

SQR-Lasso (uniform) 1 (0) 0.066 (0.003) 0.224 (0.013) 1 (0) 0.036 (0.002) 0.234 (0.007)

SQR-SCAD (uniform) 1 (0) 0.057 (0.004) 0.129 (0.011) 1 (0) 0.032 (0.002) 0.116 (0.008)

SQR-Lasso (Gaussian) 1 (0) 0.072 (0.004) 0.191 (0.007) 1 (0) 0.034 (0.002) 0.223 (0.007)

SQR-SCAD (Gaussian) 1 (0) 0.056 (0.003) 0.131 (0.010) 1 (0) 0.028 (0.002) 0.108 (0.007)

Oracle 1 (0) 0 (0) 0.049 (0.003) 1 (0) 0 (0) 0.053 (0.003)

Notes: The empirical average (and standard error) of the true and false positive rates (TPR and FPR) as well as the sum of
squared errors (SSE), over 100 simulations, are reported.
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TABLE 2 Numerical comparisons under t1.5 model

Moderate dimension
(n = 500, p = 400)

High dimension
(n = 500, p = 1000)

Methods TPR FPR Error TPR FPR Error

Lasso 0.908 (0.016) 0.052 (0.002) 4.615 (0.401) 0.854 (0.022) 0.023 (0.001) 5.668 (0.524)

SCAD 0.842 (0.020) 0.044 (0.002) 7.138 (0.739 0.790 (0.024) 0.019 (0.001) 8.253 (0.762)

QR-Lasso 1 (0) 0.112 (0.005) 0.417 (0.015) 1 (0) 0.065 (0.003) 0.541 (0.021)

QR-SCAD 1 (0) 0.103 (0.005) 0.346 (0.024) 1 (0) 0.062 (0.003) 0.362 (0.022)

SQR-Lasso (uniform) 0.999 (0.001) 0.067 (0.004) 0.387 (0.032) 1 (0) 0.032 (0.002) 0.433 (0.017)

SQR-SCAD (uniform) 0.999 (0.001) 0.055 (0.004) 0.266 (0.028) 1 (0) 0.028 (0.002) 0.230 (0.017)

SQR-Lasso (Gaussian) 1 (0) 0.066 (0.003) 0.332 (0.012) 1 (0) 0.030 (0.001) 0.420 (0.017)

SQR-SCAD (Gaussian) 1 (0) 0.048 (0.003) 0.238 (0.018) 1 (0) 0.024 (0.001) 0.220 (0.015)

Oracle 1 (0) 0 (0) 0.065 (0.004) 1 (0) 0 (0) 0.074 (0.004)

TABLE 3 Numerical comparisons under Cauchy model

Moderate dimension
(n = 500, p = 400)

High dimension
(n = 500, p = 1000)

Methods TPR FPR Error TPR FPR Error

Lasso 0.344 (0.032) 0.021 (0.003) 16.799 (0.522) 0.305 (0.033) 0.009 (0.001) 17.479 (0.953)

SCAD 0.297 (0.028) 0.020 (0.002) 20.382 (0.860) 0.272 (0.029) 0.009 (0.001) 19.526 (0.871)

QR-Lasso 1 (0) 0.118 (0.004) 0.546 (0.022) 1 (0) 0.060 (0.002) 0.709 (0.025)

QR-SCAD 1 (0) 0.112 (0.005) 0.585 (0.047) 1 (0) 0.058 (0.002) 0.473 (0.034)

SQR-Lasso (uniform) 0.990 (0.004) 0.054 (0.002) 0.628 (0.070) 0.999 (0.010) 0.030 (0.002) 0.588 (0.042)

SQR-SCAD (uniform) 0.992 (0.004) 0.045 (0.003) 0.391 (0.047) 0.998 (0.002) 0.026 (0.001) 0.308 (0.031)

SQR-Lasso (Gaussian) 1 (0) 0.058 (0.002) 0.434 (0.017) 1 (0) 0.028 (0.001) 0.533 (0.019)

SQR-SCAD (Gaussian) 1 (0) 0.042 (0.002) 0.298 (0.021) 1 (0) 0.022 (0.001) 0.276 (0.021)

Oracle 1 (0) 0 (0) 0.076 (0.004) 1 (0) 0 (0) 0.080 (0.004)

Next, we examine the performance of different methods when outliers are present. From
Table 2 we see that the Lasso has the highest SSE with TPR merely above 0.5 in both moderate-
and high-dimensional settings. In contrast, regularized QR methods have high TPR while main-
tain low FPR. The FPR and SSE for SQR are further reduced by a visible margin when the SCAD
penalty is used. This corroborates our mainmessage that high-dimensional QR significantly ben-
efits from smoothing and non-convex regularization. Similar results can be found in Tables 3 and
4 for Cauchy and a mixture normal error distributions.

Lastly, we assess more closely the effects of iteratively reweighted 𝓁1-regularization; see
Algorithm 1. We keep the above model settings and focus on three different noise distributions:
(i) t distribution with 1.5 degrees of freedom; (ii) standard Cauchy distribution; and (iii) a mix-
ture normal distribution. For simplicity, we set the tuning parameter 𝜆 = 0.5

√
log(p)∕n. We run

Algorithm 1with uniform kernel and stop after seven iterations. Starting with 𝜷̂(0) = 0, recall that
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TABLE 4 Numerical comparisons under mixture normal model

Moderate dimension
(n = 500, p = 400)

High dimension
(n = 500, p = 1000)

Methods TPR FPR Error TPR FPR Error

Lasso 0.999 (0.001) 0.062 (0.003) 1.253 (0.058) 1 (0) 0.030 (0.001) 1.346 (0.047)

SCAD 0.996 (0.002) 0.048 (0.002) 0.606 (0.063) 0.995 (0.002) 0.025 (0.001) 0.746 (0.070)

QR-Lasso 1 (0) 0.126 (0.005) 0.507 (0.019) 1 (0) 0.059 (0.002) 0.559 (0.017)

QR-SCAD 1 (0) 0.121 (0.006) 0.546 (0.041) 1 (0) 0.057 (0.002) 0.361 (0.020)

SQR-Lasso (uniform) 0.999 (0.001) 0.070 (0.004) 0.496 (0.040) 1 (0) 0.030 (0.002) 0.462 (0.013)

SQR-SCAD (uniform) 1 (0) 0.060 (0.004) 0.366 (0.029) 1 (0) 0.026 (0.002) 0.244 (0.016)

SQR-Lasso (Gaussian) 1 (0) 0.072 (0.003) 0.405 (0.015) 1 (0) 0.029 (0.001) 0.443 (0.013)

SQR-SCAD (Gaussian) 1 (0) 0.054 (0.003) 0.346 (0.024) 1 (0) 0.024 (0.001) 0.242 (0.015)

Oracle 1 (0) 0 (0) 0.087 (0.005) 1 (0) 0 (0) 0.086 (0.004)

𝜷̂ (1) is the SQR-Lasso estimator. To quantify the relative performance of the solution path, at 𝓁th
iteration, we define the relative improvement of 𝜷̂ (𝓁) with respect to𝜷̂ (𝓁−1) as

||𝜷̂(𝓁−1) − 𝜷∗||22 − ||𝜷̂(𝓁) − 𝜷∗||22||𝜷̂(1) − 𝜷∗||22 , 𝓁 ≥ 2. (38)

The relative improvement is a value between zero and one. A value close to zero indicates
that there is little improvement in estimation error and vice versa. The results for n = 500
and p ∈ {200, 400, 1000, 2000}, averaged over 100 replications, are summarized in Figure 2.
We see that running an additional iteration (𝓁 = 2) leads to the most significant improvement.
The estimator, after 𝓁 = 3 iterations, can still be improved under the t and Cauchy models.
In all the (n, p) settings considered, running 𝓁 ≥ 4 iterations only shows marginal improve-
ment, suggesting that the multi-step procedure with 𝓁 = 3 is sufficient for moderate-scale
datasets.

6 AN APPLICATION TO GENE EXPRESSION DATA

We apply the proposed method to an expression quantitative trait locus (eQTL) dataset previ-
ously analysed in Scheetz et al. (2006), Kim et al. (2008) and Wang et al. (2012). The dataset
was collected on a study that used eQTL mapping in laboratory rats to investigate and identify
genetic variation in the mammalian eye that is relevant to human eye disease (Scheetz et al.,
2006) Following Wang et al. (2012), we study the association between gene TRIM32, which was
found to be associated with human eye disease, and the other expressions at other probes. The
data consist of expression values of 31,042 probe sets on 120 rats. After some data pre-processing
steps as described in Wang et al. (2012), the number of probes are reduced to 18,958. We fur-
ther select the top 500 probes that have the highest absolute correlation with the expression of
the response. We apply the proposed method using the uniform kernel and SCAD penalty, with
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F IGURE 2 Plots of relative improvement defined in Equation (38) versus number of iterations when
n = 500 and p ∈ {200, 400, 1000, 2000}. The three panels correspond to models with different noise distributions:
(i) t distribution with 1.5 degrees of freedom; (ii) standard Cauchy distribution; and (iii) a mixture normal
distribution

TABLE 5 The average selected model size and prediction error (under quantile loss), with standard errors
in the parenthesis, over 50 random partitions

Methods Model size Prediction error

QR-Lasso (𝜏 = 0.3) 38.28 (3.192) 0.225 (0.005)

QR-SCAD (𝜏 = 0.3) 34.66 (3.291) 0.241 (0.006)

SQR-Lasso (𝜏 = 0.3) 45.28 (1.866) 0.118 (0.003)

SQR-SCAD (𝜏 = 0.3) 31.32 (1.827) 0.106 (0.003)

QR-Lasso (𝜏 = 0.5) 33.76 (1.985) 0.222 (0.003)

QR-SCAD (𝜏 = 0.5) 30.28 (2.114) 0.236 (0.004)

SQR-Lasso (𝜏 = 0.5) 36.76 (1.533) 0.142 (0.003)

SQR-SCAD (𝜏 = 0.5) 29.58 (2.006) 0.132 (0.003)

QR-Lasso (𝜏 = 0.7) 29.66 (1.669) 0.195 (0.003)

QR-SCAD (𝜏 = 0.7) 24.22 (1.942) 0.205 (0.003)

SQR-Lasso (𝜏 = 0.7) 41.44 (2.262) 0.124 (0.003)

SQR-SCAD (𝜏 = 0.7) 27.52 (2.269) 0.116 (0.004)

regularization parameter selected by tenfold cross-validation. For comparisons, we also imple-
ment the 𝓁1- and concave regularized QR methods, denoted by QR-Lasso and QR-SCAD, using
the R package FHDQR.

Similar toWang et al. (2012), we conduct 50 random partitions of the data by randomly select-
ing the expression values for 80 rats as the training data and the remaining 40 rats as the testing
data. The selected model size and prediction error (under quantile loss), averaged over 50 ran-
dom partitions, are reported in Table 5. We observe from Table 5 that the SQR has consistently
lower prediction errors than the standard QR across all three quantile levels considered. The pre-
diction error is also improved for SQR when the SCAD penalty is used. In contrary, QR-SCAD
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exhibits no improvement over QR-Lasso in prediction accuracy, which is in line with the
observation inWang et al. (2012). One explanationmay be that the lack of smoothness and strong
convexity of the quantile loss overshadows the bias-reducing property of the concave penalty.
These results suggest that high-dimensional QR considerably benefits from smoothing and con-
cave regularization in terms of model selection ability, prediction accuracy and computational
feasibility.

7 DISCUSSIONS

In this paper we introduced a class of penalized convolution smoothed methods for fitting
sparse QR models in high dimensions. Convolution smoothing turns the non-differentiable
check loss into a twice-differentiable and convex surrogate, and the resulting empirical loss is
proven to be locally strongly convex (with high probability). To reduce the 𝓁1-regularization
bias as the signal strengthens, we considered a multi-step, iterative procedure which solves
a weighted 𝓁1-penalized smoothed quantile objective function at each iteration. Statistically,
we established the oracle-like performance of the output of this procedure, such as the oracle
convergence rate and variable selection consistency, under an almost necessary and sufficient
minimum signal strength condition. From a computational perspective, together convolution
smoothing and convex relaxation enable the use of gradient-based algorithms that are much
more scalable to large-scale datasets. In summary, through convolution smoothingwith a suitably
chosen bandwidth, we aim to seek a better trade-off between statistical accuracy and compu-
tational precision for high-dimensional QR. The proposed procedures will be implemented in
the R package conquer, available at https://cran.r-project.org/web/packages/conquer/index.
html.

The Python code is also publicly accessible at https://github.com/WenxinZhou/conquer, with
an option to perform post-selection inference (via bootstrap).

There are several avenues for future work. When the parameter of interest arises in a matrix
form, the low-rankness is often used to capture its low intrinsic dimension. This falls into the
general category of ill-posed inverse problems, where the number of observations/measurements
is much smaller than the ambient dimension of the model. See Chandrasekaran et al. (2012) for
a general framework to convert notions of simplicity into convex penalty functions, resulting in
convex optimization solutions to linear, underdetermined inverse problems. The idea of concave
penalization can also be applied to low-rank matrix recovery problems. In essence, one can use a
concave function to penalize the vector of singular values of matrix𝚯 ∈ Rp1×p2 . We refer to Wang
et al. (2017) for a unified computational and statistical framework for non-convex low-rankmatrix
estimation when the Frobenius norm is used as the data-fitting measure. We conjecture that the
proposed multi-step reweighted convex penalization approach and convolution smoothing will
lead to oracle statistical guarantees and fast computationalmethods for quantilematrix regression
and quantile matrix completion problems (Belloni et al., 2019). We leave this as future work.
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