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Abstract. In this paper, we discuss a situation, which could lead to both wave turbulence and collective behavior
kinetic equations. The wave turbulence kinetic models appear in the kinetic limit when the wave equations have
local differential operators. Viewing wave equations on the lattice as chains of anharmonic oscillators and replacing
the local differential operators (short-range interactions) by non-local ones (long-range interactions), we arrive at
a new Vlasov-type kinetic model in the mean field limit under the molecular chaos assumption reminiscent of
models for collective behavior in which anharmonic oscillators replace individual particles.
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1. INTRODUCTION

Having the origin in the works of Peierls [71, 72], Hasselmann [50, 51], Benney-Saffman-
Newell [11, 12], and Zakharov [88], wave turbulence (WT) theory describes the dynamics of
weakly nonlinear and dispersive waves (classical or non-classical) out of thermal equilibrium.
Even though wave fields describing the processes of random wave interactions in nature are
enormously diverse, a common mathematical framework can be used to model the dynamics
of spectral energy transfer in both quantum or classical wave systems. In this mathematical
framework, the probability density functions associated with weakly nonlinear wave interac-
tions are solutions of wave kinetic (WK) equations. Over the years, WK equations have been
shown to play important roles in a vast range of physical applications, as discussed in the books
[67, 88]. We also mention closely related kinetic models developed when the interest focuses
in the interaction of particles and oscillators; see, e.g., [32].
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In addition, since the realization of Bose-Einstein condensation (BEC) in trapped atomic
vapors of [6, 17, 30], a period of intense theoretical and experimental research has been initi-
ated. A theoretical Quantum Kinetic (QK) theory, which takes into account the coupled non-
equilibrium dynamics of both the thermal cloud of the Bose gas and the BEC under investiga-
tion, is needed to support the experimental results. Although being used to described different
physical phenomena, QK kinetic equations are quite similar with WT ones [73, 84, 85]. During
the last few years, there has been a growing interests in rigorously understanding those kinetic
equations. Starting with the pioneering work of Lukkarinen and Spohn [63], there have been a
lot of recent works in in rigorously deriving WK equations (see, e.g., [5, 18, 19, 25, 26, 34, 35,
38, 39, 40, 41, 79] and the references therein). The analysis of WK and QK equations is also a
topic of current interest. We list here an incomplete list and refer to the references therein for
more detailed descriptions of the literature [2, 3, 7, 8, 9, 20, 31, 42, 43, 44, 45, 46, 47, 54, 60,
61, 62, 68, 69, 76, 77, 78, 82, 83].

Collective behavior of self-propelled particles such as swarming of bacteria, schooling of
fishes, flocking of birds and mobile agents, appears in many contexts [14, 27, 28, 29, 37, 53,
65, 70, 86, 89]. How and when clusters emerge, and what type of rules of engagement in
influences clusters are among the questions that have been attracted the attention of scientists for
decades. Over the last years, there have been growing interests in the mathematical community
in studying those models rigorously. We list here only a few of those works and refer the readers
to the references therein as the list is quite incomplete [1, 10, 15, 21, 22, 33, 36, 48, 49, 52, 55,
58, 64, 66, 75, 80, 81].

In this paper, we discuss a connection between wave turbulence and collective behavior ki-
netic models. Starting from the weakly nonlinear wave equation on the lattice, it has been
showed [63, 79] that the wave kinetic equations can be derived rigorously, under suitable as-
sumptions on the randomization of the initial condition and the wave equations. This procedure
is summarized in Section 2 for a wave equation with a quadratic nonlinearity and the kinetic
equation under consideration is the 3-wave kinetic equation (2.7). However, by using other
type of nonlinearities, we could arrive at different wave kinetic equations, with the same proce-
dure. It is well-known in the physical community that chains of anharmonic oscillators, such as
the Fermi-Pasta-Ulam-Tsingou (FPTU), also exhibit collective behaviors, if the interactions are
long-range (see for instance [23, 24]). As wave equations on the lattice could also be viewed as
chains of anharmonic oscillators, by replacing the local differential operators (for example, the
Laplace or Biharmonic operators) in the wave equations by operators that describe long-range
interactions (for example, the fractional Laplace operators), we could expect to obtain models
that exhibit collective behaviors. One of the key difference between our chains of anharmonic
oscillators and models for consensus, flocking and swarming [29, 28, 49] is that, in our case, the
system under consideration will need to “label” the location of the oscillator in the lattice. This
is done by adding a new kinetic variable in the density distribution of anharmonic oscillators
representing such location.

In Section 3, we derive formally three Vlasov-type kinetic equations (3.4), starting from a
wave equation whose differential operator is a fractional Laplacian. Here, the density g is not
only a function of the position r (of the oscillation), the velocity v (of the oscillation), the
time t variables but also of an additional continuous variable x, which “labels” the location
of the anharmonic oscillator in the lattice. This framework is reminiscent of polyatomic and
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multicomponent models that add a kinetic variable to differentiate species, see for example [16]
and references therein.

Let us mention, however, that the concept of “label” has been previously introduced in con-
sensus models in the work of Biccari, Ko and Zuazua [13], which considers “networked consen-
sus models” and has an inspiration from the previous work of Kawamura [56] on the nonlocal
Kuramoto-Sakaguchi equation, where the “label” is indeed as a location vector. A different
form of the Kuramoto-Sakaguchi equation is used in [4], where the distribution function f de-
pends on the state θ and the natural frequency Ω, which represents the “label”.

These type of Vlasov-type kinetic equations are recent and increasingly important in the
literature and their mathematical properties are open for investigation. Due to the scope of our
paper, in Section 3, we only focus on an example of a linear wave equation.

In considering collective behavior, we are reminded of the surprising recurrence result in
FPUT, that countered the expected thermalization. It is perhaps the nearest neighbor coupling
(i.e. local interaction as in classical random walk) combined with nonlinearity that triggers this
behavior. Alternatively, in the canonical model for global coupling, the Kuramoto model [59], at
sufficiently high coupling strength, collective synchronous behavior emerges, which overcomes
the expected deviations from the natural frequency of the ideally identical oscillators. The
question is, if these observations are representative in our newly obtained Vlasov-type kinetic
equations. A perhaps subtle but important difference between the Kuramoto model and wave-
like and corresponding Schödinger-like models, is that in the first one the state variable referred
to as an angle is real, whereas in particular in applications on electromagnetism and quantum
mechanics, in the second case the state variable is complex. In this second case recent research
in quantum mechanics and photonics suggests the importance of long range (global) coupling
of for example photonic resonators of fiber amplifiers, to enhance coherence. In fact, it is
coherence that one views as the order parameter than in the Kuramoto models measures the
degree of synchronization.

2. WAVE TURBULENCE KINETIC MODELS FOR DISCRETE NONLINEAR WAVE

EQUATIONS WITH SHORT-RANGE INTERACTIONS

Let us first start with a nonlinear wave equation, with a quadratic nonlinearity. However, our
discussion could be extended to cubic and higher order nonlinearities

∂ 2ψ

∂ t2 (x, t) + L ψ(x, t) +λψ
2(x, t) = 0,

ψ(x,0) = ψ0(x),
∂ψ

∂ t
(x,0) = ψ1(x),

for x being on the torus [0,1]d , t ∈ R+, and λ is a small constant describing the smallness
of the nonlinearity. We suppose that the interactions are short-range, which is, the operator
L is a standard local differential operator, for instance, when L = ∆, we obtain the Klein-
Gordon equation and when L = −∆2, we obtain the beam wave equation. Similar with [79],
we introduce the finite volume mesh, namely,

Λ = Λ(D) =

{
0,

1
2D+1

. . . ,
2D

2D+1

}d

,
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for some constant D ∈N. As we will work on the Fourier transform, we define the mesh size of
the frequency space to be h = 1

2D+1 . We follow [79] and introduce discretized equation

∂ttψ(x, t) = −∑
y∈Λ

O1(x− y)ψ(y, t) − λ (ψ(x, t))2,

ψ(x,0) = ψ0(x), ∂tψ(x,0) = ψ1(x), ∀(x, t) ∈ Λ×R+,
(2.1)

in which O1(x−y) is the finite difference operator obtained from the continum operator L . We
now introduce the discrete Fourier transform

ψ̂(k) = hd
∑
x∈Λ

ψ(x)e−2πik·x, k ∈ Λ
∗ = Λ

∗(D) = {−D, · · · ,0, · · · ,D}d.

At the end of this standard procedure, (2.1) can be rewritten in the Fourier space as a system of
ODEs

∂ttψ̂(k, t) = −
(
ω̄(k)

)2
ψ̂(k, t) −λ ∑

k=k1+k2;k1,k2∈Λ∗
ψ̂(k1, t)ψ̂(k2, t),

ψ̂(k,0) = ψ̂0(k), ∂tψ̂(k,0) = ψ̂1(k).
(2.2)

In the beam wave case, L = −∆2, and the dispersion relation takes the discretized form (see
[74])

ω̄(k) = sin2(2πhk1)+ · · ·+ sin2(2πhkd),

with k = (k1, · · · ,kd). Later, we will also need the rescaled dispersion relation

ω(k) = sin2(2πk1)+ · · ·+ sin2(2πkd).

We define the inverse Fourier transform f (x) = ∑k∈Λ∗ f̂ (k)e2πik·x, as well as the shorthand
notations∫

Λ

dx = hd
∑
x∈Λ

, 〈 f ,g〉 = hd
∑
x∈Λ

f (x)∗g(x), 〈x〉 =
√

1+ |x|2, ∀x ∈ Rd,

where if z ∈ C, then z∗ is the complex conjugate. We also denote ∑k∈Λ∗ =
∫

Λ∗ dk. In addition,
for any N ∈ N\{0}, similar with [79], we define the delta function δN on (Z/N)d as

δN(k) = |N|d1(k mod 1 = 0), ∀k ∈ (Z/N)d,

in which the sub-index N is commonly omitted and written as

δ (k) = |N|d1(k mod 1 = 0), ∀k ∈ (Z/N)d.

Equation (2.2) can now be expressed as a coupling system

∂tq(k, t) = p(k, t),

∂t p(k, t) = −
(
ω̄(k)

)2q(k, t)

−λ

∫
(Λ∗)2

dk1dk2δ (k− k1− k2)q(k1,T )q(k2, t),

q(k,0) = ψ̂0(k), p(k,0) = ψ̂1(k), ∀(k, t) ∈ Λ
∗×R+,

(2.3)

which, under the transformation (cf. [87])

a(k, t) = ω̄(k)q(k, t) +
i

ω̄(k)
p(k, t),
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with the inverse

q(k,T ) =
1

2ω̄(k)

[
a(k) + a∗(−k)

]
,

p(k,T ) = i
ω̄(k)

2

[
−a(k) + a∗(−k)

]
,

leads to the following system of ordinary differential equations

∂ta(k, t) = − iω̄(k)a(k, t) − iλ
∫
(Λ∗)2

dk1dk2δ (k− k1− k2)×

× [8ω̄(k)ω̄(k1)ω̄(k2)]
−1
[
a(k1, t) + a∗(−k1, t)

][
a(k2, t) + a∗(−k2, t)

]
,

a(k,0) = a0(k) =
1
2

[
ω̄(k)q(k,0) +

i
ω̄(k)

p(k,0)
]
,∀(k, t) ∈ Λ

∗×R+.

(2.4)

Let a,a∗ denote the vectors (ak)k∈Λ∗ , (a∗k)k∈Λ∗ , and let us set

H(a,a∗) = H1(a,a∗) + λH2(a,a∗), (2.5)

with

H1(a,a∗) = ∑
k∈Λ∗B

1
2

ω̄(k)|ak|2,

H2(a,a∗) = ∑
k,k1,k2∈Λ∗

W (k,k1,k2)δ (k− k1− k2)
[
a(k1, t) + a∗(−k1, t)

]
×
[
a(k2, t) + a∗(−k2, t)

]
a∗k ,

W (k,k1,k2) = [ω̄(k)ω̄(k1)ω̄(k2)]
−1, M (k,k1,k2) = [8ω̄(k)ω̄(k1)ω̄(k2)]

−1.

We then obtain the system

∂tak = i
∂H(a,a∗)

∂a∗k
. (2.6)

By defining â(k,1, t) = ak(t) and â(k,−1, t) = a∗k(t), we rewrite system (2.4) as

∂t â(k,σ , t) = −iσω̄(k)â(k,σ , t)dt − iσλ ∑
σ1,σ2∈{±1}

∑
k1,k2∈Λ∗

δ (σk−σ1k1−σ2k2)

×M (k,k1,k2)â(k1,σ1, t)â(k2,σ2, t),

â(k,1,0) = a0(k), ∀(k, t) ∈ Λ
∗×R+.

For sake of simplicity, we also denote â(k,σ , t) as ât(k,σ)

∂t ât(k,σ) = −iσω̄(k)ât(k,σ)dt − iσλ ∑
σ1,σ2∈{±1}

∑
k1,k2∈Λ∗

δ (σk−σ1k1−σ2k2)

×M (k,k1,k2)ât(k1,σ1)ât(k2,σ2),

â0(k,1) = a0(k), ∀(k, t) ∈ Λ
∗×R+.
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By setting fλ ,D(k, t) = 〈ât(k,−1), ât(h−1k,1)〉, and scaling k→ hk, in the kinetic limit of D→
∞, λ → 0 and t = λ−2τ = O(λ−2), under suitable randomization of the system, we obtain
([79]) limλ→0,D→∞ fλ ,D(k,λ−2τ) = f (k,τ), which solves the wave turbulence model

∂τ f (k, t) = C [ f ](k), f (k,0) = f0(k), ∀k ∈ Td,

C [ f ](k) =
∫
T6

K(ω,ω1,ω2)δ (k− k1− k2)δ (ω−ω1−ω2)[ f1 f2− f f1− f f2]dk1dk2

− 2
∫
T6

K(ω,ω1,ω2)δ (k1− k− k2)δ (ω1−ω−ω2)[ f2 f − f f1− f1 f2]dk1dk2,

(2.7)

where f = f (k), f1 = f (k1), f2 = f (k2), ω = ω(k), ω1 = ω(k1), ω2 = f (k2) and K(k,k1,k2) =
[8ω(k)ω(k1)ω(k2)]

−1.

3. COLLECTIVE BEHAVIOR KINETIC MODELS OF DISCRETE NON-LOCAL WAVE

EQUATIONS WITH LONG-RANGE INTERACTIONS

Model (2.6) is indeed a chain of anharmonic oscillators, in which the Hamiltonian H given
by (2.5). The collective behavior of chains of anharmonic oscillators is a subject of growing
interests in the physical community. For instance, in the case of the Fermi-Pasta-Ulam chains,
the collective behavior can be obtained via a long-range interaction generalisation, in which the
interactions are chosen to be non-local (see, e.g., [23, 24]). Inspired by this idea, we replace
the local operator L by a non-local one. As an illustration, we consider L = (−∆)α with
0 < α < 1 and obtain the following discrete wave equation with long-range lattice interactions
(see [57] for the same setting for the nonlinear Schödinger equation)

∂ttψ(x, t) = hd
∑

y∈Λ,y6=x

ψ(y, t)−ψ(x, t)
|y− x|d+2α

− λ (ψ(x, t))2,

ψ(x,0) = ψ0(x), ∂tψ(x,0) = ψ1(x), ∀(x, t) ∈ Λ×R+.

Note that hd
∑y∈Λ,y6=x

ψ(y,t)−ψ(x,t)
|y−x|d+2α is the discretized version of the fractional Laplacian

(−∆ψ)α =− Cd,α

∫
Td

dy
ψ(y, t)−ψ(x, t)
|y− x|d+2α

,

with Cd,α = 4α Γ(d/2+α)

π
d
2 |Γ(−α)|

.

In the scope of our paper, we restrict our considerations to the linear case λ = 0

∂ttψ(x, t) = hd
∑

y∈Λ,y6=x

ψ(y, t)−ψ(x, t)
|y− x|d+2α

,

ψ(x,0) = ψ0(x), ∂tψ(x,0) = ψ1(x), ∀(x, t) ∈ Λ×R+,

(3.1)

or equivalently, if we set rx(t) = ψ(x, t) and vx(t) = ∂tψ(x, t), the following system can be
obtained ((2.3))

∂trx = vx, ∂tvx = hd
∑

y∈Λ,y6=x

ry− rx

|y− x|d+2α
,

rx(0) = ψ0(x), vx(0) = ψ1(x), ∀(x, t) ∈ Λ×R+.

Under suitable randomization of the initial conditions ψ0(x) and ψ1(x), this system of equations
describes the long-range interactions of the lattice points Λ and (ψ(x, t),∂tψ(x, t)) represents
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the phase space position of the x-particle at time t. Due to the long-range interactions between
the N = (2D+ 1)d particles, a collective behavior dynamics is expected for (3.1), similar to
what happens for the Fermi-Pasta-Ulam chains with long-range interactions [23, 24].

Next, we will discuss “mean-field limit” of the above system by taking the limit h→ 0 or,
equivalently h−d = N = (2D+1)d → ∞. Formally, it is not a difficult task to derive the mean-
field limit equation for Hamiltonian dynamics; see, e.g., [49] for the case of the Cucker-Smale
model. Rigorously, such derivations are challenging, especially when the interaction poten-
tials are singular which is the current case. We assume that the initial data are chosen in a
way that the empirical measure N−1

∑x∈Λ δQxδPx weakly converges in the limit N → ∞ to the
to the absolutely continuous measure g0(r,v)drdv with some smooth density g0(r,v). Here, r
and v are numbers in R. We ask whether at some positive time t > 0 the empirical measure
N−1

∑x∈Λ δQx(t)δPx(t) weakly converges to g(r,v, t)drdv with a density g(r,v, t) satisfying some
limiting evolution equation. Physically, the equation follows from the Liouville theorem, as-
suming that the number of particles is large enough such that it becomes meaningful to observe
the distribution function gN = gN(t,(x,rx,vx)x∈Λ). Defining the one-particle marginal distribu-
tion

ρ
N (t,x,rx,vx) =

∫
R(d+2)(|Λ|−1) ∏

z∈Λ\{x}
dzdrz dvz gN(t,(z,rz,vz)z∈Λ),

where |Λ| denotes the number of grid points. We now follow the BBGKY hierarchy to derive
formally the kinetic description. To this end denote ∆h the discrete Laplacian in d-dimensions
with d ≥ 2. Set Φh

β
(x) = (∆h)−1|x|β for β 6=−2 and x∈Λ. Since ∆| · |β+2 = (β +2)(d+β )| · |β

we have that

Φ
h
β
(x)→ cβ ,d |x|β+2 as h→ 0 , cβ ,d =

1
(β +2)(d +β )

,

in which the boundary condition of the problem ∆Φβ = |x|β is chosen appropriately such that
the discretised sequence {Φh

β
(x)}h∈Λ has the desired limit. The Liouville equation reads, setting

in the sequel β =−d−2α ,

∂tgN + ∑
x∈Λ

vx∂rxg
N + hd

∑
x∈Λ

∂vx

(
∑

y∈Λ,y6=x
(ry− rx)(∆

h
Φ

h
β
)(y− x)gN

)
= 0 . (3.2)

We now integrate both sides of (3.2) with respect to drydvy, with y ∈ Λ\{x}, to study the
marginal distribution ρN(x,rx,vx). Under the assumption that gN is rapidly decaying at infinity,
the transport term in (3.2) amounts to∫

R(d+2)(|Λ|−1) ∏
y∈Λ\{x}

dydrydvy

(
∑
z∈Λ

vz∂rzg
N(t,(z,rz,vz)z∈Λ)

)
= vx∂rxρ

N(t,x,rx,vx).

We next study the forcing term, which by integration by parts reads

hd
∫
R(d+2)(|Λ|−1) ∏

y∈Λ\{x}
dydrydvy

[
∑
z∈Λ

∂vz

(
∑

s∈Λ,s 6=z
(rs− rz)(∆

h
Φ

h
β
)(s− z)gN

)]
= hd

∫
R(d+2)(|Λ|−1) ∏

y∈Λ\{x}
dydrydvy

[
∂vx

(
∑

s∈Λ,s6=x
(rs− rx)(∆

h
Φ

h
β
)(s− x)gN

)]
.
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We move ∂vx and the quantity ∑s∈Λ,s6=x Φh
β
(s− x) outside of the integral and obtain

hd
∫
R(d+2)(|Λ|−1) ∏

y∈Λ\{x}
dydrydvy

[
∑
z∈Λ

∂vz

(
∑

y∈Λ,y6=z
(ry− rz)(∆

h
Φ

h
β
)(y− z)gN

)]
= ∂vx

(
hd

∑
s∈Λ,s6=x

(∆h
Φ

h
β
)(s− x)

∫
R(d+2)(|Λ|−1) ∏

y∈Λ\{x}
dydrydvy(rs− rx)gN

)
.

We define the two-particle marginal function

ρ
N(t,x,rx,vx,y,ry,vy) =

∫
R(d+2)(|Λ|−1) ∏

z∈Λ\{x,y}
dzdrzdvz gN(t,(z,rz,vz)z∈Λ),

and find

hd
∫
R(d+2)(|Λ|−1) ∏

y∈Λ\{x}
dydrydvy ∑

z∈Λ

∂vz

(
∑

y∈Λ,y6=z
(ry− rz)(∆

h
Φ

h
β
)(y− z)gN

)
= ∂vx

(
hd

∑
s∈Λ,s6=x

(∆h
Φ

h
β
)(s− x)

∫
R2+d

dsdrs dvs (rs− rx)ρ
N
)
.

This leads to the following equation for the one-particle marginal function ρN

∂tρ
N + vx∂rxρ

N

+ ∂vx

(
hd

∑
s∈Λ,s 6=x

(∆h
Φ

h
β
)(s− x)

∫
R2+d

dsdrs dvs (rs− rx)ρ
N
)

= 0.

Recall that ∆h is a self-adjoint operator acting on the lattice location variable s∈Λ, consequently

hd
∑

s∈Λ,s 6=x
(∆h

Φ
h
β
)(s− x)

∫
R2+d

dsdrs dvs (rs− rx)ρ
N

= hd
∑

s∈Λ,s 6=x
(∆h

Φ
h
β
)(s− x)

∫
R2+d

dsdr̃ dṽ(r̃− rx)ρ
N

=
∫
R2+d

dsdr̃ dṽ(r̃− rx)〈Φh
β
(·− x),(∆h

ρ
N)(t,x,r,v, ·, r̃, ṽ)〉

Passing to the mean-field limit N → ∞, we obtain the one- and two-particle density functions
(dropping the sub-x notation)

lim
N→∞

ρ
N(t,x,rx,vx) = g(t,x,r,v),

lim
N→∞

ρ
N(t,x,rx,vx,s, r̃, ṽ) = g̃(t,x,r,v,s, r̃, ṽ),

and the formal limit (note that β +2 >−d)

〈Φh
β
(x−·),(∆h

ρ
N)(t,x, ·,r,v, r̃, ṽ)〉 → cβ ,d

∫
Rd
|s− x|β+2(∆sg̃)(t,x,r,v,s, r̃, ṽ)ds ,

which leads to the mean-field equation

∂tg(t,x,r,v) + v∂rg(t,x,r,v)

+ cβ ,d ∂v

(∫
R2

dr̃ dṽ(r̃− r)
∫
Td

ds
|s− x|d+2α−2 (∆sg̃)(t,x,s,r,v, r̃, ṽ)

)
= 0.

(3.3)
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If, in addition, we make the molecular chaos assumption g̃(t,x,s,r,v, r̃, ṽ)= g(t,x,r,v)g(t,s, r̃, ṽ),
then,

cβ ,d

∫
R2

dr̃ dṽ(r̃− r)
∫
Td

ds
|s− x|d+2α−2 (∆sg̃)(t,x,s,r,v, r̃, ṽ)

= cβ ,d g(t,x,r,v)
∫
R2

dr̃ dṽ(r̃− r)
∫
Td

ds
|s− x|d+2α−2 (∆sg)(t,s, r̃, ṽ)

=C−1
d,α g(t,x,r,v)

∫
R2

dr̃ dṽ(r− r̃)(−∆x)
αg(t,x, r̃, ṽ)

=: C−1
d,α Σg(t,x,r)g(t,x,r,v) ,

and deduce from (3.3) the Vlasov-type equation

∂tg(t,x,r,v) + v∂rg(t,x,r,v) + C1[g,g](t,x,r,v) = 0, (3.4)

with
C1[g,g] :=C−1

d,α Σg(t,x,r)∂vg(t,x,r,v)

and
Σg(t,x,r) = (−∆x)

α

∫
R2

dr̃ dṽ(r− r̃)g(t,x, r̃, ṽ).

where (−∆x)
α is the fractional Laplacian in the torus. When the wave equation is set in the

whole space, we obtain, by an identical formal argument, the fractional Laplacian in Rd .
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