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Abstract
The application of cutting-edge technologies such as AI, smart sensors, and IoT in factories is revolutionizing the manu-
facturing industry. This emerging trend, so called smart manufacturing, is a collection of various technologies that support
decision-making in real-time in the presence of changing conditions in manufacturing activities; this may advance manu-
facturing competitiveness and sustainability. As a factory becomes highly automated, physical asset management comes to
be a critical part of an operational life-cycle. Maintenance is one area where the collection of technologies may be applied
to enhance operational reliability using a machine condition monitoring system. Data-driven models have been extensively
applied to machine condition data to build a fault detection system. Most existing studies on fault detection were developed
under a fixed set of operating conditions and tested with data obtained from that set of conditions. Therefore, variability in
a model’s performance from data obtained from different operating settings is not well reported. There have been limited
studies considering changing operational conditions in a data-drivenmodel. For practical applications, a model must identify a
targeted fault under variable operational conditions. With this in mind, the goal of this paper is to study invariance of model to
changing speed via a deep learning method, which can detect a mechanical imbalance, i.e., targeted fault, under varying speed
settings. To study the speed invariance, experimental data obtained from a motor test-bed are processed, and time-series data
and time–frequency data are applied to long short-term memory and convolutional neural network, respectively, to evaluate
their performance.
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Introduction

Starting with the industrial revolution in the eighteenth
century, the manufacturing industry has experienced many
radical changes such as mass production and system automa-
tion. Manufacturing is poised to be changed again with
emerging technologies such as artificial intelligence (AI),
smart sensors, and Internet of Things (IoT) that seek to
establish an integrated and collaborative manufacturing sys-
tem that responds in real time to changing conditions in
the factory. This new trend, i.e., smart manufacturing, is
leading the next revolution in the manufacturing industry,
and it may enable sustainable growth in the manufacturing
sector through the improvement of various manufacturing
performancemeasures such as energy efficiency, quality, and
productivity (Kim 2019). As one example of a national effort
to capitalize on new technologies, the U.S. Department of
Energy’s Advanced Manufacturing Office (AMO) launched
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the Clean Energy Smart Manufacturing Innovation Institute
(CESMII) to advance the country’s manufacturing competi-
tiveness and reduce its environmental impact (CESMII). The
institute supports research and development of technologies
that can collect, share, and process the huge amount of data
obtainable from manufacturing activities in real-time.

One application of smart manufacturing is an intelli-
gent maintenance system (Lee et al. 2019a). A goal of
the maintenance is maximizing the availability of manu-
facturing systems to increase productivity while reducing
maintenance cost by (1) optimizing maintenance tasks and
(2) fixing potential defects before catastrophic equipment
failures occur, i.e., prevent unplanned downtime. To enable
this, the condition of equipment needs to be continuously
monitored without interruption (non-intrusive monitoring),
and future behaviormust be predicted (e.g., prognostic health
management) (Seevers et al. 2019).With the present prolifer-
ation of sensing and communication technologies available
in a production line, extensivemachine condition datamay be
collected in many factories. The condition data are normally
proxy measures (e.g., vibration, acoustic emission, and tem-
perature). Thus, a method is required to extract meaningful
information, e.g., health condition, from large-scale condi-
tion data available from operating equipment.

Condition monitoring methods are often classified into
three categories: (1) a physicalmodel, (2) a knowledge-based
model, and (3) a data-driven model (Peng et al. 2010). A
physical model-based methodology normally shows good
success at reflecting the condition of the monitored system
because the model is built based on accurate mathematical
relations tied to physical processes. However, establishing an
accurate physical model is challenging for complex manu-
facturing systems. Also, a physical model cannot generally
be updated with on-line measurement data, which limits the
model’s flexibility (Zhao et al. 2019). A knowledge-based
methodology, such as an expert system, solves a specific
domain problem using expert knowledge and heuristic rules.
In this methodology, an accurate physical model is not
required, but translating domain knowledge into rules (e.g.,
IF conditions) is difficult and the model may not cope well
with new situations. Lastly, a data-driven model estimates
model parameters to fit the model using input and output
data. This method is based on statistical learning theory,
and the model automatically learns a relationship between
input and output data (supervised learning) during the train-
ing phase.However, themethod often requires a large amount
of machine condition data for model training and testing.

Among the methods, data-driven models [e.g., artifi-
cial neural networks (Jia et al. 2018) and random forest
(Pimenov et al. 2018), kernel principal component analy-
sis (Lee et al. 2019b)] have received a great deal of attention
by researchers due to increasing availability of open source
data and advances in computing infrastructure (e.g., GPUs).

Recently, deep learning (DL) methods, which originated
from artificial neural networks (ANN), have been applied
extensively to machine condition datasets for health condi-
tion monitoring research. Janssens et al. (2016) proposed
an automatic bearing fault detection method using convolu-
tional neural networks (CNN). In the study, different types
of bearing faults (e.g., outer-raceway fault and rotor imbal-
ance) were detected using acceleration signals obtained for a
25 Hz rotational speed. Jing et al. (2017) also used a CNN for
condition monitoring of gearboxes. They compared model
prediction accuracies using both automatically learned fea-
tures and manually extracted features. A number of CNN
network configurations (e.g., various filter sizes, numbers
of filters, and numbers of convolutional layers) were tested.
Cacciola et al. (2016) studied a neural network-based moni-
toring system to identify different root causes of mechanical
imbalance problems in a rotor. Jia et al. (2016) showed an
improved performance of deep neural networks compared to
shallow neural networks for the diagnosis of the bearing and
planetary gearboxes using an auto-encoder for data prepro-
cessing. The DL-based monitoring approach was reported to
be superior to classical machine learning techniques (e.g.,
Support Vector Machine (SVM) and random forest) (Jing
et al. 2017). Khan and Yairi (2018) summarized various DL
methods and their applications to system health monitoring.
They concluded that there is a growing interest in applying
DLmethods in the engineering community, but many limita-
tions still exist such as design, selection, and implementation
of DL methods.

As is evident from the literature review, DL is an evolving
and growing area formachine conditionmonitoring research,
and its ability to predict conditions offers substantial promise
(some people may argue that DL applications to mechanical
diagnosis and prognosis are still lacking when compared to
other fields such as speech recognition and image classifica-
tion). One may think that, because training a DL model is
computationally expensive, it may not be suitable for man-
ufacturing applications. However, recently, there have been
significant advancements in the DL research field to over-
come shortcomings by reducing connectivity in networks
(e.g., CNN) and developing an efficient trainingmethod (e.g.,
Adam optimizer). One attractive advantage of DL is reduc-
ing the amount of effort for feature engineering by learning
non-linear representations in a large dataset using multiple
hierarchical layered structures. This may enable the model
to predict a targeted fault, in which an indicator relating to
a target fault is non-linearly correlated to a machine health
condition. Such amodel may possess the ability to detect and
locate a fault in sophisticated manufacturing equipment.

Several types of popular network architectures (e.g., CNN
and recurrent neural network) and their variant were widely
applied on the machine condition data, and their perfor-
mances on the machine fault diagnosis were evaluated and
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reported in the cited paper. However, work related to a
model’s response to data obtained from operating conditions
that differ from the training data has not been extensively
examined, i.e., a trained model may work well only for data
obtained from a certain operating setting. Therefore, there
is a lack of studies focusing on a performance variation of
a deep learning model, which has already been tuned with
the data obtained from a certain operational condition, to
the data collected from the different operational conditions.
Although DL is known to be a powerful tool to automatically
learn and discover representations needed for classification
from large-scale datasets (called representation learning), it
may be difficult for aDLmodel to detect a targeted faultwhen
analyzing data collected under previously unseen operating
settings. Becausemachine operating settings can change dur-
ing themanufacturingprocess, amodel’s performance should
be invariant to a variable operating environment (e.g., vari-
able rotational speed) while monitoring a system. Park et al.
(2019) argued that previous works on condition monitoring
mainly focused on detecting a fault under constant rotational
speed although many real-world applications run under vari-
able speed. Accordingly, DL applications need to be further
studied and tested with data obtained from different oper-
ating conditions (e.g., different rotational speeds (RPM)) as
well as using various types of machine condition data (e.g.,
acceleration and acoustic emission). Ultimately, a method
that is invariant to changes in rotational speed (RPM) must
be considered for practical applications. The main contribu-
tions of this paper are: (1) the idea/property of invariance
to speed change is discussed, (2) a DL based mechanical
imbalance monitoring system is proposed, (3) an improved
long short-term memory (LSTM) model is developed using
an attention mechanism, (4) performance variations of deep
learning models (CNN and LSTM) to the data obtained from
the different operational conditions are examined and com-
pared using experimental data, and (5) the effectiveness of
the proposed method (Scaled and Smoothed TS-LSTM with
Attention) is demonstrated.

The paper is organized as follow. First, the property of
RPM invariance is mathematically explained, which defines
detection accuracy invariance to varying RPM. Then, data
preprocessing methods, which will be combined with deep
learning models, are proposed. For DL architectures, LSTM
and CNN are employed to detect a targeted fault, and their
basic theories and the customized architectures are explained.
To experimentally study the RPM invariance in a deep learn-
ingmodel, sets of experiments were conducted using amotor
testbed. During the experiment, machine condition data were
collected using a triaxial accelerometer under various RPMs
at certain mechanical imbalance levels. Then, raw signals are
processed to extract features and the features are applied to
evaluateDLmodels’ performances under both constant RPM
and varying RPM conditions. Performance variations in DL

models are reported using the data obtained from previously
unseen RPM settings during the training phase (i.e., test a
model with the data obtained at different rotational speeds).
All data collected from the experiments reported on herein
will be available via the Purdue Laboratory for Sustainable
Manufacturing (LSM).

Invariance to changing rotational speed
in fault detection

The goal is to establish a fault detection model whose accu-
racy is invariant to changes in theRPM(wewill refer to this as
‘RPM invariance’). This will be accomplished by predicting
a targeted fault condition using a proxy measure, e.g., vibra-
tion, in a motor system that runs at previously unseen RPMs.
Given motor vibration data points (either raw or processed)
x ∈ Ω , the function of interest is f : Ω → {1, 2, . . . , N}
which maps the data points to the corresponding fault condi-
tion y � f (x) when N conditions are defined. The shape of
the sample space, Ω , varies depending on the format of the
data. The function, f , is approximated using a data driven
model (e.g., neural network model), f̂θ , parameterized by θ

to make a prediction of y, ŷ � f̂θ (x). The rotational speed of
a motor can be described as a function of the data collected
from that motor, defined as r : Ω → R

+ such that r (x) is the
RPM of data points x ∈ Ω . Then, the notion of RPM invari-
ance can be defined as follows. Given x ∈ Ω and α ∈ R

+, let
s : Ω×R

+ → Ω such that s(x, α)�x ′, where f (x′) � f (x),
r (x′) � αr (x), and α is the ratio of desired (testing) RPM to
current (training) RPM. Here, x′ is an RPM transformation
of x by α. Then, the property of RPM invariance for f̂θ is

f̂θ (s(x, α)) � f̂θ (x) (1)

for all x and α. This property means that changing the RPM
of the data should not affect the prediction of the model. To
achieve this, this paper focuses on the details of r and f , and
finding a procedure for determining them.

Data preprocessing and deep learning
models

Once the data acquisition plan (e.g., sensor type, sampling
rate, and data acquisition interval) is decided, a sensor can
be mounted on manufacturing equipment, and raw sensor
signals may be collected for a certain machine health con-
dition. Then, the collected signals, i.e., machine condition
data, can be processed to generate features, which may better
represent the machine health condition. In case of vibration
signals, features from the time, frequency, and time–fre-
quency domain data are often used for deep learning (DL)
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applications (Zhang et al. 2013). Also, in order to analyze
a non-stationary vibration signal, order analysis or order-
tracking method were often used to extract vibration data
related to the rotational speeds. However, during the exper-
iment in this study, a range of rotational speed was not
very wide, and a speed was not increased continuously (i.e.,
increased from 300 to 380 in 20 RPM increments). Thus, fea-
tures from order analysis may not be useful. Instead, other
data preprocessing methods, which will be described in this
section, are employed in this paper.

In this section, two data preprocessing methods and two
DL architectures are introduced to study the RPM invariance
in a DL model. In “Scaling and smoothing of time-series
data obtained fromdifferent RPMsettings” section, amethod
which may have the properties of RPM invariance in a
LSTM model is proposed first. A second data preprocessing
method, i.e., continuous wavelet transform (CWT), which
will be combined with CNN, is explained in “Extracting
time–frequency features using continuous wavelet trans-
form” section. CWT is a technique to extract time–frequency
features from vibration signals, and CWT has been often
combined with CNN models (Yoo and Baek 2018). There-
fore, this method may be a good candidate to compare with
the first approach.

In “Deep learningmodels using LSTMandCNN” section,
the basic theory and proposed architecture of two deep learn-
ing methods, LSTM and CNN, are explained. The selection
of a model is dependent on the type of data being analyzed.
For data collected over time (e.g., time series data), a recur-
rent neural network architecture is often used, specifically a
long short-term memory (LSTM) model (Zhang et al. 2018).
For data arranged in a matrix such as time–frequency data
(e.g., short time Fourier transform and wavelet transform),
a convolutional neural network (CNN) model is normally
used (Verstraete et al. 2017). Therefore, in this paper, time-
series data and time–frequency data are used to evaluate the
LSTM-basedmodel and the CNN-basedmodel, respectively.

Data preprocessing for vibration signal

Scaling and smoothing of time-series data obtained
from different RPM settings

A change in the speed of equipment with rotational elements
almost always leads to changes in the frequency content of
vibration sensor signals. For example, increasing the RPM
may shift the dominant frequencies in the frequency domain
to larger values. By the time scaling property of the Fourier
transform, a scale in the frequency domain corresponds to an
inverse scale in the time domain. Hence, if the test data RPM
is different from the RPMs for the training data, then one
may expect that a transformation of the test data would better
match the vibration frequencies observed in the training data.

However, in practice, not all vibrations captured in the sen-
sors are related to the RPM of the motor. Other factors like
fluid flow, electrical components, and non-rotating elements
all affect vibrations. Furthermore, high frequency noise tends
to obscure the structural content in the data. To remedy this,
a noise-reducing data transformation is implemented for raw
data that may mimic data collected from other RPM settings.
This procedure, visualized in Fig. 1, involves: (1) scaling
the time-domain data by the ratio α using a spline interpola-
tion, (2) converting the data to the frequency domain using
the discrete Fourier transform (DFT), (3) filtering out high
frequency components using a low pass filter and removing
less significant amplitudes, and (4) converting back to the
time domain using the inverse DFT. The frequency removal
acts as a smoothing procedure, removing some of the abrupt
changes in the data, and is applied to all data used in the
models regardless of whether the RPM needs to be changed.

Extracting time–frequency features using continuous
wavelet transform

Time–frequency analysis transforms a signal in the time
domain, x(t), to the time–frequency domain, in which vari-
ous frequency components are present over time (e.g., short
time Fourier transform). Unlike the short time Fourier trans-
form which generates time–frequency representations in the
fixed frequency resolution, a wavelet transform creates a
frequency-dependent frequency resolution using a scalable
window function called the mother wavelet (ψ) (Verstraete
et al. 2017). Given a wavelet function, ψ(t) ∈ L2(R), which
has nonzero values only in certain range, the continuous
wavelet transform is written as

Wx (τ , s;ψ) � 1√|s|

∞∫

−∞
x(t)ψ∗

(
t − τ

s

)
dt (2)

where τ , s, and ψ∗(·) are the translation parameter, scale
parameter, and the complex conjugate of ψ(·), respectively.
Here, the signal is convolved with a scaled wavelet, thus
Wx (τ , s) represents the degree of correlation between the
signal and the wavelet given τ and s (Park et al. 2019).
Because the wavelet transform enables multi-scale analysis
of a signal using the two variables, τ and s, it can effectively
extract time–frequency features from nonstationary and tran-
sient signals (Peng and Chu 2004). In this paper, the Morlet
wavelet is employed, which is mathematically expressed as

ψ(t) � e−t2/2 cos(5t). (3)

Wavelet transforms have been extensively used to extract
time–frequency features and combinedwith variousmachine
learning techniques in condition monitoring research (Peng
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Fig. 1 Raw data transformation procedure visualized in both the time and frequency domains

and Chu 2004; Zhang et al. 2013). However, the previ-
ous studies mainly focus on detecting a targeted fault for
a constant speed condition. In the present work, however, as
explained before, DL models will be trained with features
extracted from CWT, and then evaluated using experimen-
tal data obtained from varying RPM settings and compared
with the method explained in “Scaling and smoothing of
time-series data obtained from different RPM settings”.

Deep learningmodels using LSTM and CNN

Long short-termmemory (LSTM)

An LSTM follows a recurrent architecture, that is, outputs
fromone layer can serve as inputs for the same layer, allowing
information to persist across entire sequences of inputs. A
typical LSTM architecture is shown in Fig. 2 (Colah).

The LSTM can be distinguished from other recurrent neu-
ral networks by its use of gates. Specifically, with each pass
through the recurrent layer of the LSTM, depicted as “G” in
Fig. 2, the following may be computed:

dt � σ (W f × (ht−1 ⊕ xt ) + b f ), (4)

it � σ (Wi × (ht−1 ⊕ xt ) + bi ), (5)

ct � dt · ct−1 + it · tanh(Wc × (ht−1 ⊕ xt ) + bc), (6)

ot � σ (Wo × (ht−1 ⊕ xt ) + bo), (7)

ht � ot · tanh(ct ), (8)

σ (x) � 1

1 + e−x
. (9)

Here, the operation symbols, ×, ⊕, and ·, represent the
matrix multiplication, the concatenation, and the element-
wise multiplication, respectively. σ and tanh represent the
sigmoid function and the hyperbolic tangent, which has
output values between 0 and 1 and between -1 and 1, respec-
tively. W and b are learnable weights and biases.

A qualitative explanation can be provided for each of these
gates. d is the forget gate, with values between 0 and 1 that
determines how much of the previous state to retain. i is the
input gate, with values between 0 and 1 that determines how
much of the input to accept. c is the cell state, which can be
described as the memory of the layer. It uses the forget and
input gates to determine how much information to retain and
change between iterations. o is the output gate, which has
values between 0 and 1 that determines how much of the cell
state to pass to the output. Finally, h is the hidden state, which
is passed as the output to the next layer and is also passed
back into the same layer for the next iteration. It is simply
the cell state filtered by the output gate.

The architecture used in this paper combines one of these
LSTM layers with the attention mechanism (Vaswani et al.
2017) and a fully connected layer. After passing the data
through the LSTM layer, the vector of hidden states, h, is
passed through an attention mechanism described by the fol-
lowing equations.

q � tanh(Wh × h + bh) (10)

β � softmax(Wq × q + bq ) (11)
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Fig. 2 A typical LSTM architecture

hatt �
m∑
i�1

βi hi (12)

Once again W and b are learnable weights and biases.
The softmax activation function is a function that normal-
izes a vector so that all its values are all positive and
sum to 1. Qualitatively speaking, q represents a learned
embedding for each of the hidden states, β is a nor-
malized weight vector that assigns an importance value
to each of the hidden states, and hatt is an average
of the m hidden states weighted by β. Finally, hatt is
passed through a fully connected layer for the final predic-
tion.

The attention mechanism in the LSTMmodel can be used
to overcome limitations of long sequential data by deter-
mining how much “attention” should be paid to each time
step in the hidden state. A typical LSTM model uses only
the hidden state information from the final time step, often
causing information from earlier iterations to be forgotten.
However, attention uses information from all time steps of
the hidden state, prioritizing the ones that are most important
for classification, so important information in the past is not
lost.

For time series data, the input is three stacked time
series—vibration data from the X, Y, and Z directions, i.e.,
processed data from a triaxial accelerometer, each with 400
time-steps as shown in Fig. 3 (this architecture is called TS-
LSTM in this paper). The model (1) passes each of the 400
time-steps through the LSTM layer, (2) takes the hidden
states (from h1 to h400) from the entire pass, (3) multiply
with the outputs from the attention mechanism, and (4) feeds
them through a 128-length fully-connected layer for classifi-
cation. The fully-connected layer outputs a value between
0 and 1, which is rounded to produce the predicted tar-
geted fault. The number in gray rectangular (e.g., 128×
128) means there are 128×128 connection between lay-
ers.

Convolutional neural network (CNN)

ACNN consists of alternating convolutional layers and pool-
ing layers, followed by a fully connected layer. Convolutional
layers use several filters, each mapping the input matrix to
an output matrix. Filters take small regions of the input, mul-
tiply them by learned weights, and pass the result to the
output. Formally, a convolutional layer convolves input Xin

as described in Eq. (14), where Wk and bk are the weights
and bias of the k th filter, and g is the activation function,
often the rectified linear unit (ReLU).

g(x) � max(0, x), (13)

Xout,k � g(Xin ∗ Wk + bk). (14)

In the equation, * represents the convolution operator,
where an output matrix is produced by applying the kth filter
across all regions of the input. All outputs from all filters are
stacked to produce the input for the next layer. This final out-
put is often called a feature map since the values represent
features of the original input.

Pooling layers reduce the dimensionality and spatial pre-
cision of the input by sub-sampling the input. Pooling locally
combines each window of the input into a single value in the
output. In this paper, max pooling (i.e., max filter) is used,
so each value in the output of the pooling layer corresponds
to the maximum value of a small region in the input.

Finally, after multiple convolutional and pooling layers,
the resulting output is passed through a fully connected layer.
Mathematically, this can be written as:

Xout � g(Wj Xin + b j ). (15)

Equation (15) describes the effect of the fully connected
layer on the input Xin , where Wj and b j are the weights and
bias respectively for the j th output. Here, g is an activation
function, and ReLU is used as the activation function for all
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Fig. 3 A proposed LSTM architecture for time-series data (TS-LSTM)

layers except for final layer, for which the sigmoid function
is used.

In this paper, time–frequency data are applied to a CNN
model; the proposed CNN architecture is shown in Fig. 4
(called CWT-CNN). The figure is generated using NN-SVG
(NN- SVG). The input is three matrices, representing the
amplitudes in the X, Y, and Z directions across 400 time-
steps and 311 frequencies. The output is a value between 0
and 1, which is rounded to produce the predicted targeted
fault.

Mechanical imbalance experiment
and condition data acquisition

A mechanical imbalance can be defined as an uneven distri-
bution of mass/force about a rotating centerline. In a motor
system, where power is transmitted from a motor to driven
equipment, some level of mechanical imbalance is always
present owing numerous factors, e.g., rotor wear/damage,
debris buildup, manufacturing and assembly variation, and
poor design (Cacciola et al. 2016). When this imbalance
becomes large, it may affect the performance of the motor
system.Amechanically unbalancedmotor systemmay expe-
rience rapidwear onmechanical components (e.g., bearings),
and consequently lead to a shorter life span of manufacturing
equipment. Failure of mechanical components can often be
traced to system imbalance (and, in turn, the imbalance is
often attributable to other causes), so it is generally prudent
to detect an imbalance and take corrective actions as early as
possible.

To collect acceleration signals for different imbalance con-
ditions in amotor system, experiments were conducted using

amotor testbed. Overall configuration of the testbed is shown
in Fig. 5a. The testbed is equipped with a ¼ horsepower
motor with pulse width modulation variable speed DC drive.
To induce different levels of mechanical imbalance in the
testbed, two planar balancing disks with 24 equally spaced
holes are mounted on a shaft between two bearing supports.
To create an imbalance condition during some of the tests,
twomasses weremounted to the disk as shown in Fig. 5b (the
masses of➀ and➁ in Fig. 5b are 27.06 g and 29.08 g, respec-
tively). The photo tachometer (Extech, 461895) was used to
measure motor speed during the experiment (Fig. 5c). A tri-
axial accelerometer (PCB PIEZOTRONICS, J356A45) was
attached using adhesive as shown in Fig. 5d.

In the experiment, two levels of the mechanical imbalance
were introduced. The two levels are a “balance” or default
condition (nomasses on thedisks) and imbalanced conditions
(with the two masses added to the disks). During the experi-
ment, the motor speed (RPM) was increased from 300 to 380
in 20 RPM increments, and triaxial acceleration signals were
collected using a National Instruments (NI) Compact Data
Acquisition System that included chassis (NI, cDAQ-9178)
and Sound and Vibration Input Module (NI, NI-9234). The
data were collected under steady-state operating conditions
for a total of ten data sets (two levels of imbalance and five
rotational speeds, 300, 320, 340, 360, and 380 RPM). Lab-
VIEW software was used to store the sensor signals in a PC,
and the sampling rate for the X, Y, and Z channels was set
to 3.2 kHz. The digital data were sampled 50 times at 10-s
intervals (i.e., 3200×3×50 � 480,000 data for one set).

Figure 6 shows examples of the typical triaxial accelera-
tion signals obtained from different imbalance and operating
conditions and their corresponding spectra using FFT. Also,
in order to numerically compare the differences in the tri-
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Fig. 4 A proposed CNN architecture for time–frequency data (CWT-CNN)

axial acceleration signals, two features, root mean square
(RMS) and Kurtosis, which were extracted from the time
domain and frequency domain, are computed in Table 1.
As expected, the longitudinal direction (Y axis) displays a
smaller vibration than other directions in terms of RMS value
during the operation because there was no significant move-
ment in the longitudinal direction in the testbed. While the
highest RMS values were observed in X axis, Z axis shows
the greatest Kurtosis values in most cases which means that
a heavier tail exists over the frequency distribution. As seen
in the table, a distinguishable pattern can be found in each
axis as rotational speed and load-setting change.

Despite noticeable differences among the acceleration sig-
nals shown in Fig. 6, it may be hard to manually distinguish
a mechanical imbalance condition by looking at the differ-
ences. With this in mind, the proposed methods are applied
to the experimentally collected condition data to diagnose
the imbalance condition in a motor system.

Application of machine condition data
to deep learningmodels

In this section, the deep learning models described in “Deep
learning models using LSTM and CNN” section are trained
and tested using the acceleration signals obtained from the
experiment. As mentioned, the goal of paper is to develop a
fault detection model whose accuracy is invariant to changes
in the RPM. However, the models’ performance at a con-
stant RPM setting is evaluated first to show whether trained
DL models are able to detect a targeted fault properly at the
constant operating condition (“Constant RPM setting” sec-
tion). Subsequently, a model’s performance to data obtained
from operating conditions different from the training data is
studied (“Varying RPM setting” section).

Constant RPM setting

Before training themodels, raw acceleration signals obtained
from the experiment are divided into training (70%) and
testing dataset (30%), and processed as described in “Data
preprocessing for vibration signal” section. Because a con-
stant RPM setting is considered here, the noise-reducing data
transformation, i.e., scaling and smoothing, which described
in “Scaling and smoothing of time-series data obtained from
different RPM settings”, is not included in this section.
Instead, raw time-series data are used to train and test the
TS-LSTM model. Time–frequency data are extracted using
CWT, and frequencies between 0 and 400 Hz are used
because the motor ran at low speeds during the experiment.

Once time-series and time-frequency data are prepared,
training and testing are conducted in a PCplatform (Precision
5820 Tower). To implement the proposed method, for hard-
ware, any standard PCwith a decentNvidiaGPU (preferable)
will be enough because the deep learning models used in this
study are relatively shallow, i.e., there are not many learn-
able parameters compared to a model often used for image
recognition. For software, Python 3 along with some pack-
ages (e.g., numpy, PyTorch, and torchvision) are used. The
PC platform used for this study is equipped with Intel Xeon
with 32 GB RAM and GeForce GTX 1080 TI with 11 GB
GDDR5X. The proposed deep learning architectures (TS-
LSTM and CWT-CNN) are implemented through Pytorch
deep learning framework.

Each model is trained with the Adam optimizer (Kingma
and Ba 2015) over 500 epochs with a learning rate of 0.001
and a batch size of 16. The parameters were selected by a trial
and error experiment using a technique called GridSearch, in
which (1) sets of possible hyper-parameter valueswere taken,
e.g., learning rates of 0.0001, 0.001, and 0.01 and batch size
of 8, 16, 32, and 64, (2) every combination was tried once,
and (3) the one that performed the best was chosen. To avoid
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Fig. 5 Motor testbed for mechanical imbalance experiment; a overall configuration, b balancing disk with mounted masses, c tachometer, and
d schematic diagram

an overfitting problem in the models, L2 regularization with
lambda� 0.0002 is used, andmodels are trained tominimize
the cross-entropy loss function (L),

L(y, f̂θ (x)) � −(y log( f̂θ (x)) + (1 − y) log(1 − f̂θ (x)) + λ‖θ‖2,
(16)

where f̂θ (x) is the model output for input data, x, parame-
terized by weights θ , y is the true label of x, and λ is the L2
regularization weight. Each experiment include 25 trials and
accuracies are reported with 95% confidence intervals.

Here, for constant RPM, a model is trained and tested
using data collected from same RPM. Thus, both TS-LSTM
and CWT-CNN architectures are used to develop models for
each RPM settings, i.e., a model trained with data obtained
at the rotational speed of 300, 320, 340, 360, or 380 RPM
is tested with the data obtained at the rotational speed of
300, 320, 340, 360, or 380 RPM, respectively. Figure 7
shows prediction accuracies with 95% confidential inter-
vals for TS-LSTM and CWT-CNN models (each model
was trained and tested 25 times). As shown in the fig-
ure, CWT-CNN models outperform TS-LSTM models for
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Fig. 6 Typical triaxial acceleration signals and their spectra for different
imbalance levels (top is the default setting andbottom is themass-loaded
setting) and RPMs: a X axis and RPM � 300, b X axis and RPM �

380, c Y axis and RPM � 380, d Y axis and RPM � 380, e Z axis and
RPM � 300, f Z axis and RPM � 380

all RPM cases. This is expected because raw signals were
used in TS-LSTM models. Normally, acceleration signals
are acquired with redundant information, which may not
relevant to a machine condition. Due to the high accuracy
of the CWT-CNN models, one may assume a possibil-
ity of overfitting. However, there is not much overfitting
because all accuracies displayed in Fig. 7 are “test accu-
racies” (i.e., the test dataset was not used for training
the models). Also, a poor test performance is normally
observed in the case of overfitting. One possible reason
for the high accuracy is because, on same-RPM training

and testing, the differences between the machine condition
data of the two states are so vast that it is fairly simple
for the models to find a comfortable decision boundary.

In next section, the noise-reducing data transformation is
implemented for the time-series data. Amodel is trainedwith
data obtained from one RPM setting, and the trained model
is evaluated using data obtained at previously unseen RPM
settings to reflect varying RPM condition.
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Table 1 Comparison of tri-axial acceleration signals using RMS (time-domain) and Kurtosis (frequency-domain) features

Axis Feature 300 RPM 300 RPM 380 RPM 380 RPM
Default setting Mass-loaded setting Default setting Mass-loaded setting

X RMS 0.0609 0.0662 0.0621 0.0716

Kurtosis 114.0695 68.8551 33.0453 25.7101

Y RMS 0.0286 0.0258 0.0289 0.0304

Kurtosis 59.7082 78.0904 41.52 91.8306

Z RMS 0.0517 0.0518 0.0351 0.0352

Kurtosis 400.8934 427.1034 64.1671 71.3961

Fig. 7 Prediction accuracies with 95% confidential intervals for con-
stant RPM settings

Varying RPM setting

For the study of RPM invariance in a deep learning model,
the LSTM and the CNN are trained with one dataset (i.e.,
data collected from one RPM setting), and tested with the
other dataset (i.e., data collected at the other RPM setting).
In this way, a model’s performance variation with data from
previously unseen RPM can be evaluated. Also, in order to
demonstrate the effectiveness of the attentionmechanism and
the noise-reducing data transformation in the LSTM model,
the performance of the LSTM model (1) without attention
mechanism and (2) without noise-reducing data transforma-
tion are reported together.

Before training themodels, the time series data go through
the noise-reducing data transformation to extract features,
which may have the property of RPM invariance in a LSTM
model. To implement this, first, time-series data are scaled
usingα as described in “Scaling and smoothing of time-series
data obtained from different RPM settings”. Second, high
frequency components are removed through a low pass filter
because the motor ran at low RPMs. Less significant ampli-
tudes, i.e., lower amplitudes, in the frequency domain are
subsequently removed. Lastly, the filtered data in the fre-
quency domain are converted back to the time domain using
inverseDFT (per the procedure visualized in Fig. 1), and they
are used to train and test the LSTM architecture described
in “Long short-term memory (LSTM)” section (we call
this as “Scaled and Smoothed TS-LSTM”). Time–frequency

data are obtained through CWT as described in “Extracting
time–frequency features using continuous wavelet trans-
form” and “Constant RPM setting” sections, and the data
are applied to CNN architecture explained in “Convolutional
neural network (CNN)” section.

Trainings of the models were conducted on the same PC
platform using the same parameters as described in “Con-
stant RPM setting” section. A model was trained using
dataset from one RPM setting (training RPM) and evalu-
ated by the dataset (testing RPM), which were obtained from
different RPM settings with the training dataset (i.e., train-
ing dataset and testing dataset were collected in different
rotational speed settings). Here, five models, (1) TS-LSTM
without Attention (2) Scaled and Smoothed TS-LSTMwith-
out Attention, (3) TS-LSTM with Attention, (4) Scaled and
Smoothed TS-LSTMwith Attention (proposedmethod), and
(5) CWT-CNN were examined. Results of TS-LSTM and
Scaled and Smoothed TS-LSTM can be used to demonstrate
the effectiveness of the noise-reducing data transformation
in the LSTM model. Similarly, result of the models with
attention and without attention can be used to evaluate the
effectiveness attention mechanism in the LSTM model.

To examine the performance variation of the five models,
the models trained with data obtained from rotational speeds
of (a) 320 RPM and (b) 340 RPM are selected, and predic-
tion accuracies are displayed in Fig. 8 with 95% confidence
intervals. In the figure, the performances of multiple models
are plotted together to (1) graphically display the accuracy
drift away as the new speed deviates from what has been
tuned, and (2) compare the proposed method, i.e., Scaled
and Smoothed TS-LSTM with Attention, with other typical
methods. As described in “Invariance to changing rotational
speed in fault detection” section, the goal of this study is
to develop a method, which will be likely to have the prop-
erty of RPM invariance using RPM transformation and deep
learning model.

For CWT-CNN, in all experiments, the model’s perfor-
mance tends to drop significantly as the test data RPM
differs from the training data RPM despite performing well
for constant-RPM cases. This is expected as there was no
RPM-invariant method implemented in the CNN model.
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Fig. 8 Models’ performance
variation when considering data
obtained from previously unseen
RPM settings; a model was
trained with data from a 320
RPM and b 340 RPM settings

Similarly, the LSTM models without attention mechanism
also show this significant drop, but the model incorporating
noise-reducing data transformation (i.e., Scaled and Smooth
TS-LSTM) displays better performance than themodel using
raw data (i.e., TS-LSTM) in the most cases. The LSTM
models, which have attention mechanism, do not show the
significant drop in performance, especially in the Scaled and
Smoothed TS-LSTMwith Attention. The models with atten-
tionmechanismalso can still oftenmaintain accuracies above
90% from test data with significantly different RPMs. So,
the effectiveness of the Attention mechanism in the LSTM
model and the effectiveness of the scaling and smoothing
of time-series method for the property of RPM invariance
are demonstrated by comparing with other methods (or other
combination).

In Table 2, the performances of the five models for the
experiments, which are not included in Fig. 8, are summa-
rized. In the table, the values in the boxes with italics present
the performance for constant RPM setting. While the TS-
LSTM with scaled and smoothed data does not outperform
the TS-LSTM with raw data in every case, it performs better

on average, especially in cases where the RPM difference
is greater. This shows that the scaling and smoothing proce-
dure on LSTMs does indeed provide significant benefits in
varying RPM situations. Also, the prediction accuracies of
the LSTM model are significantly improved by adding the
attention mechanism in the model.

Conclusion

This paper has proposed a DL-based method for condition
monitoring of rotating machinery that is invariant to changes
to rotational speed. To experimentally validate the RPM
invariance in a deep learning model, sets of experiments
were conducted to collect machine condition data (i.e., triax-
ial acceleration) at various RPMs. The condition data were
processed to extract features, which may better represent the
RPM invariance in a model, and were applied to train and
test the proposed LSTM and CNN architectures. The RPM
invariance for the models was examined by using the data
obtained from previously unseen RPM settings.
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Table 2 Performances of the models when considering data obtained from previously seen (italics shading) and unseen RPM settings

Training RPM Model Testing RPM

300 320 340 360 380

300 TS-LSTM without attention 98.66±0.32% 91.20±2.15% 74.55±5.74% 76.47±5.48% 67.33±5.71%

Scaled and smoothed TS-LSTM without
attention

97.88±0.47% 79.38±3.04% 82.60±3.38% 83.95±2.73% 59.06±3.18%

TS-LSTM with attention 91.33±1.76% 77.66±4.57% 64.75±5.63% 65.87±5.87% 58.67±6.40%

Scaled and smoothed TS-LSTM with
attention

98.50±0.43% 72.50±3.51% 83.90±3.85% 83.38±3.92% 72.76±4.65%

CWT-CNN 100±0.00% 65.17±5.23% 58.17±5.59% 51.50±1.85% 50.63±0.50%

360 TS-LSTM without Attention 77.18±4.24% 85.25±4.01% 86.37±4.93% 81.93±6.12% 81.12±5.25%

Scaled and smoothed TS-LSTM without
attention

76.30±4.17% 90.20±3.02% 87.28±3.77% 95.09±2.06% 80.44±4.71%

TS-LSTM with attention 84.25±4.44% 91.06±2.56% 97.93±0.63% 98.88±0.21% 89.37±0.99%

Scaled and smoothed TS-LSTM with
Attention

84.24±4.83% 94.39±1.39% 88.59±4.99% 98.62±0.35% 85.12±6.04%

CWT-CNN 96.6±1.94% 99.27±0.51% 97.33±2.14% 99.67±0.26% 84.43±4.23%

380 TS-LSTM without Attention 52.91±4.70% 55.38±6.37% 72.15±6.61% 64.29±5.72% 68.26±7.26%

Scaled and smoothed TS-LSTM without
Attention

70.14±3.01% 83.87±3.17% 76.50±4.50% 73.54±5.92% 96.21±2.06%

TS-LSTM with Attention 75.66±5.07% 83.32±5.14% 85.84±6.05% 90.37±5.72% 96.21±4.27%

Scaled and smoothed TS-LSTM with
Attention

77.00±3.58% 91.37±4.87% 93.43±2.59% 83.40±4.55% 98.15±2.70%

CWT-CNN 61.05±6.23% 87.75±5.55% 96.93±1.66% 99.83±0.08% 99.97±0.03%

Through the results of the DL experiment, a condition
was well classified when tested on data with the same RPM
as its training set. However, for all models, the prediction
accuracies tended to degrade as the test data RPM began to
differ. Overall, LSTM model showed smaller performance
degradation to previously unseen RPMs than did the CNN
model. Also, LSTM classifies the condition more effectively
in terms of average accuracies. The Scaled and Smoothed
TS-LSTM, in which raw signals are processed through the
noise-reducing data transformation, is proven to be a better
method than the TS-LSTM. From this, it is shown that the
signal processing method can enhance the model’s perfor-
mance in the LSTM model. Also, the effectiveness of the
attention mechanism in the LSTMmodel is demonstrated by
comparing the performance of the models with and without
attention mechanism.

In conclusion, this paper introduced RPM invariance,
and it was tested through the proposed methods. Also, the
models’ uncertainties to varying speeds were quantified and
compared. For a real world application, a condition moni-
toring system must identify a targeted fault under variable
operational conditions. Thus, a model’s invariance to vary-
ing operating condition must be considered in the diagnosis
and prognosis of machine health. As a future work, a method
which can detect a targeted fault under any speeds (i.e., when
test RPM is unknown) will be studied.
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