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Abstract
This work considers the general task of estimating the sum of a bounded function over
the edges of a graph, given neighborhood query access and where access to the entire
network is prohibitively expensive. To estimate this sum, prior work proposes Markov
chain Monte Carlo (MCMC) methods that use random walks started at some seed
vertex and whose equilibrium distribution is the uniform distribution over all edges,
eliminating the need to iterate over all edges. Unfortunately, these existing estimators
are not scalable to massive real-world graphs. In this paper, we introduce Ripple,
an MCMC-based estimator that achieves unprecedented scalability by stratifying the
Markov chain state space into ordered strata with a new technique that we denote
sequential stratified regenerations. We show that the Ripple estimator is consistent,
highly parallelizable, and scales well.We empirically evaluate ourmethod by applying
Ripple to the task of estimating connected, induced subgraph counts given some input
graph. Therein, we demonstrate that Ripple is accurate and can estimate counts of up
to 12-node subgraphs, which is a task at a scale that has been considered unreachable,
not only by prior MCMC-based methods but also by other sampling approaches. For
instance, in this target application, we present results in which the Markov chain state
space is as large as 1043, for which Ripple computes estimates in less than 4h, on
average.
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1 Introduction

This work considers the following general task: Let G = (V , E ) be a simple graph,
where V is the set of vertices, E is the set of edges, and E contains at most a single
edge between any pair of vertices and no self-loops. Our goal is to efficiently estimate
the sum of a bounded function over all the edges of G ,

μ(E ) =
∑

(u,v)∈E
f (u, v) (1)

where f : E → R, f (·) < B is a bounded function for some constant B ∈ R under
the following query model from Avrachenkov et al. (2016).

Assumption 1 (Query Model) Assume we are given arbitrary seed vertices and can
query the neighborhood N(u) � {v ∈ V : (u, v) ∈ E } for any vertex u ∈ V such that
accessing the entire graph G is prohibitively expensive.

This setting arises in the subgraph counting problem (Sect. 4), where |V | �
1010 (Table 1) and we assume O(1) seeds. Simple Monte Carlo procedures are not
useful because random vertex and edge queries are not directly available, and reservoir
sampling would require iteration over all edges. Standard Markov chain Monte Carlo
(MCMC) methods cannot estimate the quantity in Eq. (1) and are limited to estimate
μ(E )/|E |, because |E | in our task is unknown (Ribeiro and Towsley 2012). Generally,
under Assumption 1, Eq. (1) is estimated using specializedMCMC estimators that use
a random-walk-like Markov chain that has a uniform distribution over the edges E as
its equilibrium distribution. However, these estimators (Avrachenkov et al. 2016) are
impractical in large graphs because their running time is O(|E |).

Traditional MCMC methods are limited by their reliance on the Markov chain on
G reaching equilibrium or burning in. Because the rate of convergence to equilibrium
depends on the spectral gap (Aldous and Fill 2002), a significant number of Markov
chain steps is needed to burn in in order to produce accurate estimates of Eq. (1),
particularly in large graphs. Parallel approaches that divide the state space into disjoint
“chunks”, which are to be processed in parallel (Wilkinson 2006; Neiswanger et al.
2014), offer no respite because we cannot access the entire graph. In fact, G may not
even have disconnected components (i.e., disjoint chunks) that can be parallelized.
Therefore, traditionalMCMC on G offers no meaningful parallelization opportunities
and running times may be arbitrarily long.

Contributions. This work introduces sequential stratified regeneration (Ripple), a
novel parallel MCMC technique that expands the application frontier of MCMC to
large state-space graphs G . Ripple stratifies the underlying Markov chain state space
into ordered strata that need not be disjoint chunks, rather, they need to be connected.
Markov chain regeneration (Nummelin 1978) is then used to compute estimates in
each stratum sequentially, using a recursive method, which improves regeneration
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416 C. H. C. Teixeira et al.

frequencies and reduces variance. Ripple offers an unprecedented level of efficiency
and parallelism for MCMC sampling on large state-space graphs while retaining the
benefits ofMCMC-based algorithms, such as low memory demand (polynomial w.r.t.
output).

Surprisingly, the parallelism of Ripple comes from the regeneration rather than the
stratification: the strata’s job is to keep regeneration times short. We demonstrate that
the estimates obtained by Ripple are consistent, among other theoretical guarantees. In
addition, we empirically show the power of Ripple in a real-world application by spe-
cializing Eq. (1) to subgraph counting in multi-million-node attributed graphs–to the
best of our knowledge, a task at a scale that has been thought unreachable by any other
MCMCmethod. Our specific contributions to the subgraph counting problem include
streaming-based optimizations coupled with a parallel reservoir sampling algorithm,
novel efficiency improvements to the random walk on the −HON (Wang et al. 2014)
and a theoretical analysis of scalability in terms of running time and memory w.r.t. the
subgraph size, verified empirically on large datasets.

2 Background and prior work

The MCMC random-walk-like Markov chain over the graph G is defined as:

Definition 1 (RandomWalk on G ) Given a simple graph G = (V , E ), a simple random
walk is a time-homogenous Markov chain Φ with state space V and transition prob-
ability pΦ (u, v) = 1/d(u), when (u, v) ∈ E and 0 otherwise, where d(u) = |N(u)| is
the degree of u in G and N(u) = {v : (u, v) ∈ E } is the neighborhood of u.

It is easy to check that the above randomwalk can be sampled under Assumption 1 and
that on a connected graph, this walk samples edges uniformly at random in a steady
state (check “Appendix B.1” for details). Our notation is summarized in “AppendixA”.

2.1 Regenerations in discrete Markov Chains

The rate of convergence to stationarity of the randomwalkΦ fromDefinition 1depends
on the spectral gap1 (Aldous and Fill 2002). As such, practitioners are encouraged to
run a single, long sample path, which prevents them from splitting the task among
multiple cores. Usually, because the spectral gap is unknown or loosely bounded,
practitioners use various diagnostics to eyeball if the chain has mixed (Rosenthal
1995). The variance of an estimate computed from a stationary chain (Ribeiro and
Towsley 2012) also depends on the spectral gap.

A solution to the above problems is to split (Nummelin 1978) the Markov chain
using regenerations. Discrete Markov chains regenerate every time they enter a fixed
state, which is referred to as a regeneration point. This naturally yields the definition
of a random walk tour (RWT).

1 The spectral gap is defined as δ = 1 − max{|λ2|, |λ|V ||}, where λi denotes the i-th eigenvalue of the
transition probability matrix of Φ .
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Definition 2 (RWTover Φ ) Given a time-homogenous Markov chain Φ over finite
state space V and a fixed point x0 ∈ V , an RWT X = (Xi )

ξ
i=1 is a sequence of states

visited by Φ between two consecutive visits to x0, that is, X1 = x0 and ξ = min{i >

1 : Xi+1 = x0} is the first return time to x0.

Because of the strong Markov property (Bremaud 2001, Chap-2,Thm-7.1), RWTs
started at x0 are i.i.d. and can be used to estimate μ(E ) from Eq. (1) when |E | is
unknown (Avrachenkov et al. 2016, 2018; Teixeira et al. 2018; Savarese et al. 2018;
Cooper et al. 2016; Massoulié et al. 2006).

Lemma 1 (RWT Estimate) Given the graph G = (V , E ) and the random walk Φ from
Definition 1, consider f : E → R bounded by B, and T , a set of m RWTs started at
x0 ∈ V (Definition 2) sampled in a parallel z core environment assuming each core
samples an equal number of tours. Then,

μ̂∗(T ; f ,G) = d(x0)

2m

∑

X∈T

|X|∑

j=1

f (X j , X j+1) , (2)

is an unbiased and consistent estimator ofμ(E ) = ∑
(u,v)∈E f (u, v) ifG is connected,

where each X j refers to the j th state in the RWT X ∈ T .

The expected running time for sampling m tours is O
(
m/z 2|E |

d(x0)

)
, and when G is

non-bipartite, the variance of the estimate is bounded as

Var
(
μ̂∗(T )

) ≤ 3B2

m

|E |2
δ(Φ )

, (3)

where δ(Φ ) is the spectral gap as defined in the beginning of this section.

The RWT Estimate can be considered a Las Vegas transformation of MCMC, which
takes random time but yields unbiased estimates of objectives, such as Eq. (1). The
parallelism in the expected running time inLemma1 is directly due to the independence
of RWTs. Moreover, confidence intervals for the RWT Estimate can be computed,
because

√
m μ̂∗(T )−μ(E )

σ̂ (T )
approaches the standard normal distribution for sufficiently

largem, where σ̂ (T )2 is the empirical variance of μ̂∗(X), the RWT Estimate computed
using an individual tour X ∈ T .

2.2 Improving the regeneration frequency

From Lemma 1, it is clear that increasing the degree of the regeneration point d(x0)
and spectral gap δ(Φ ) and decreasing |E | reduces the variance as well as the running
time of the RWT Estimate. Avrachenkov et al. (2016) showed that using the supernode
in a contracted graph as a regeneration point achieves the above reductions.

Definition 3 (Contracted Graph Avrachenkov et al. 2016) Given a graph G = (V , E )

from Definition 1 and a set of vertices I ⊂ V , a contracted graph is a multigraph G I

formed by collapsing I into a single node ζI . The vertex set of G I is then given by
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V\I ∪{ζI }, and its edge multiset is obtained by conditionally replacing each endpoint
of each edge with ζI if it is a member of I and removing self-loops on ζI . We refer to
the set I and the vertex ζ as the supernode.

Contractions benefit RWTs because the supernode degree dG I (ζI ) in G I and the spec-
tral gap δ(Φ I ) of the random walk on the contracted graph increase monotonically
with |I | (Avrachenkov et al. 2016). Moreover, RWTs can be sampled on G I without
explicit construction, as we see next.

Remark 1 Let themulti-setN(ζI ) � 
u∈ING (u)\I be the neighborhoodof the supern-
ode in G I from Definition 3. Let Φ I be the simple random walk on G I . An RWT
(Xi )

ξ
i=1 on Φ I from ζI is sampled by setting X1 = ζI , sampling X2 u.a.r. from

N(ζI ) and subsequently sampling transitions from Φ until the chain enters I , i.e.,
ξ = min{i > 1 : Xξ+1 ∈ I }.

This construction naturally stratifies E and decomposesμ(E ) asμ(E ∗)+μ(E\E ∗),
where we can exactly compute the μ(E ∗) and compute an RWT Estimate of μ(E\E ∗)
on the contracted graph. However, to compute the supernode degree, dG I (ζI ); further-
more, to sample from N(ζI ), we need to enumerate the set of the edges incident on I
in G given by E ∗ ⊂ E . As such, a massive supernode I (which is crucial when |E | is
large) makes enumerating E ∗ prohibitively expensive. We overcome these issues and
gain additional control over regenerations by further stratifying |E |.

3 Sequential stratified regenerations

Ripple controls regeneration times through a sequential stratification of the vertices
and edges of G into ordered strata as illustrated in Fig. 1, which allows us to control
the regeneration frequency and the RWT Estimate variance. For each stratum, we then
construct a graph in which the supernode is created by collapsing all prior strata, from
which RWTs can be sampled. We use the RWTs from the previous strata to estimate
the degree of and sample transitions from the supernode. The core idea is described in
two steps: Sect. 3.1 details the stratification and conditions that it needs to satisfy and
Sect. 3.2 describes the recursion. Finally, we show that the estimator bias converges
to zero asymptotically in the number of tours. Particularly for subgraph counting, we
show that Ripple’s time complexity is independent of the (higher-order) graph size
(|E |) and only depends polynomially on the diameter and maximum degree of the
input graph and the subgraph size (Sect. 4).

3.1 Sequential stratification

Consider the following vertex and edge stratification procedure.

Definition 4 (Sequential Stratification) Given G = (V , E ) from Definition 1, a func-
tion ρ : V → {1, . . . , R} induces the stratification (I r ,J r )

R
r=1 if s ∈ Iρ(s), for each

s ∈ V , and (u, v) ∈ J min(ρ(u),ρ(v)), for each (u, v) ∈ E .
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(a) (b) (c) (d)

Fig. 1 a A simple graph G that is stratified into four strata {I 1,I 2,I 3,I 4}. b–d The second, third and
fourth graph strata constructed by Definition 5. In the multi-graph G2 (Fig. 1b), vertices in I 1 are collapsed
into ζ2 and only edges incident on I 2 are preserved. The edge set therefore contains J 2 and the edges
between ζ2 and I 2. Consequently, self-loops on ζ2 and edges between I 3:4 are absent. c, d follow suit.
In each stratum G r , RWTs from ζr are started by sampling u.a.r. from the dotted edges and estimates are
computed over the solid edges

Note that these strata are pairwise disjoint and their union is the set of vertices and
edges of the graph. Next, we describe the contracted graph over which RWTs are to
be sampled in each stratum.

Definition 5 (r-th Graph Stratum) Let Ai : j � ∪ j
x=iAx be defined for any ordered

tuple of sets. Let (I r ,J r )
R
r=1 be the stratification induced by ρ from Definition 4 on

G = (V , E ). The r -th graph stratum G r = (V r , E r ), r > 1, is obtained by removing
all edges not incident on I r and vertices that do not neighbor vertices in I r and
subsequently contracting I 1:r−1 into ζr according to Definition 3. Further, let Φ r

denote the simple random walk on G r .

It can be shown that the vertex set V r contains the r -th stratum I r , the r -th supernode
ζr , obtained by collapsing I 1:r−1, and vertices from subsequent strata neighboring I r ,
∪u∈I rN(u)∩I r+1:R . The edge multiset E r is the union of J r and edges that connect
ζr to vertices in I r resulting from the graph contraction. A detailed example is shown
in Fig. 1. Note that when R = 2, Ripple reduces to the estimator from Avrachenkov
et al. (2016).
Ergodicity-Preserving Stratification. Because the RWT Estimate is consistent only
if the underlying graph is connected according to Lemma 1, we have the following
definition:

Definition 6 (Ergodicity-Preserving Stratification (EPS)) The stratification due to ρ

fromDefinition 4 is an Ergodicity-Preserving Stratification if each graph stratum from
Definition 5 is connected, i.e., Φ r , r > 1, is irreducible.

We propose necessary and sufficient conditions on ρ that yield an EPS.

Proposition 1 ρ yields an EPS if the following three conditions are satisfied:

(a) for at least one vertex in each connected component of G , ρ evaluates to 1;
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(b) for each u : ρ(u) = r , there exists v ∈ N(u) such that ρ(v) ≤ r; and
(c) there exists (u0, v0) ∈ E such that ρ(u0) = r and ρ(v0) < r .

Although the optimal stratification would depend on G and the quantity being esti-
mated, an ideal stratification would yield graph strata wherein the supernode degree
and connectivity are maximized (Lemma 1) while minimizing the number of strata
(because of the bias propagation described in Theorem 2). ρ needs to be efficient as
well because we will see that it is evaluated at each step of the random walk and the
Ripple estimators from Definitions 8 and 9 heavily depend on it. In Proposition 10 we
show that return times to the supernode are inversely proportional to the fraction of
vertices in I r connected to I 1:r−1.

3.2 Recursive regenerations

Assume for the moment that in each stratum, r = 2, . . . , R, we know the degree of the
supernode d(ζr ) and can sample directly from pΦ r (ζr , ·), which is the transition prob-
ability out of ζr in the graph stratum G r . We could then sample RWTs Tr and compute
stratumwiseRWTEstimates, whichwhen combined asμ(J 1)+∑R

r=2 μ̂r (Tr ) provide
an unbiased estimate of μ(E ) as a direct consequence of Lemma 1 and the linearity
of expectations. Unfortunately, the impracticality of this assumption, especially under
Assumption 1 (when R > 2), necessitates the following relaxation.

Definition 7 (Supernode Estimates, d̂(ζr ) and p̂Φ r (ζr , ·))Given an EPS of G (Defini-
tion 6), the supernode estimates in the r -th graph stratum G r consist of the estimate of
the degree d̂(ζr ) and a sample from some approximate transition probability out of the
supernode p̂Φ r (ζr , ·). Let Φ̂ r be the randomwalk onG r , where transitions are sampled
according to Φ r everywhere except ζr , where they are sampled from p̂Φ r (ζr , ·).
Although Φ̂ r may not be reversible, RWTs on Φ̂ r retain pairwise independence and
the benefits stated after Lemma 1. We leverage this fact in the following recursive
solution that computes supernode estimates in the current stratum using supernode
estimates and tours sampled in the previous strata.

Definition 8 (Ripple’s Recurrence Relation) Given a graph G stratified according to ρ

(Definition 6) and some stratum r , 1 < r ≤ R, assume access to the result of previous
recursive steps, i.e., the set of mq RWTs (T †

q ), supernode degree estimates d̂(ζq) and
estimated transition probabilities out of the supernode p̂Φ q (ζq , ·) (Definition 7) for all
2 ≤ q < r . The estimate of the number of edges between I q and I r is given by

β̂q,r = d̂(ζq)

|T †
q |

∑

X∈T †
q

|X|∑

j=2

1
{
ρ(X j ) = r

}
, (4)

where X j is the j-th state visited in tour X, and by convention, β̂1,r = |E ∩ I 1 × I r |
is exactly computed. The r -th supernode degree is then estimated as
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d̂(ζr ) =
r−1∑

q=1

β̂q,r . (5)

Transitions from p̂Φ r (ζr , ·) are sampled by sampling q ∈ {1, . . . , r − 1} with proba-
bility β̂q,r and then sampling u.a.r. from Ûq,r , which is defined as

Ûq,r = 
X∈T †
q


|X|
j=2

{
X j : ρ(X j ) = r

}
, when q > 1 , (6)

and as 
u∈I 1N(u) ∩ I r by convention when q = 1, where 
 is the multi-set union.
Ûq,r , q > 1, is thus the multi-set of all states in I r visited by RWTs on Φ̂ q . An RWT
so started stops when it reaches some state X ′, where ρ(X ′) = r .

Proposition 7 (“Appendix C”) contains additional details for sampling RWTs on Φ r .
The above recursion therefore allows us to estimate supernode degrees and sample
RWTs to compute an estimate of μ(E ) from Eq. (1) as follows:

Definition 9 (Ripple’s μ Estimator) Given the supernode degree estimates d̂(ζr ) and
RWTs T †

r sampled in each graph stratum from Definition 8 and the edge strata J r ,
2 ≤ r ≤ R based on an EPS of G from Definition 6, the Ripple estimate is defined as

μ̂Ripple =μ (J 1) +
R∑

r=2

μ̂
(
T †
2:r ; f

)
, (7)

where, μ̂
(
T †
2:r ; f

)
= d̂(ζr )

2|T †
r |

∑

X∈T †
r

|X|−1∑

j=2

f (X j , X j+1) , (8)

and X j is the j th state visited by the RWT X ∈ T †
r . The dependence of T †

r and d̂(ζr )

on T †
2:r−1 is suppressed for brevity.

This estimate of μ(E ) is unbiased when the number of tours is infinite.

Theorem 1 The Ripple estimate from Definition 9 is a consistent estimator of μ(E )

(asymptotically unbiased in the number of tours), that is,

lim
|T †

2 |→∞
. . . lim

|T †
R |→∞

μ (J 1) +
R∑

r=2

μ̂
(
T †
2:r ; f

)
a.s= μ(E ) .

In the finite regime, however, there exists a bias in each stratum that depends on the
estimation bias in the previous strata, which we quantify as follows:

Theorem 2 Given the random walk Φ r on the EPS-stratum G r from Definitions 5
and 6, the estimates of the degree and transition probability at the supernode d̂(ζr )

and p̂Φ r (ζr , ·) from Definition 7, and assuming aperiodic Φ r , the bias of the Ripple
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estimate in the rth stratum from Eq. (8) is given by

∣∣∣E
[
μ̂
(
T †
2:r ; f

) ∣∣T †
2:r−1

]
− μ(J r )

∣∣∣ ≤ (λrνr + |1 − λr |)
√
3B|E r |√

δr
,

where δr is the spectral gap of Φ r , B is the upper bound of f , νr = ‖ p̂Φ r (ζr , ·) −
pΦ r (ζr , ·)‖2 is the L2 distance between transition probabilities out of ζr (Aldous and
Fill 2002) (Definition 13) and λr = d̂(ζr )/d(ζr ).

Therefore, the bias in each stratum affects the bias in subsequent strata. Consequently,
we control the empirical variance in each stratum by increasing the number of tours
sampled (we detail this for subgraph counting in Sect. 4).

4 Applying Ripple to count subgraphs

We now focus on a concrete implementation of Ripple to count subgraphs on a given
simple input graph G = (V , E, L) with vertices V , edges E , and attribute function
L , which is assumed to be finite and undirected. In general, a subgraph induced by
any V ′ ⊂ V on G is given by G

(
V ′) = (V ′, E ∩ (V ′ × V ′), L). However, in this

work, we are interested in subgraphs G
(
V ′) that are connected and where |V ′| = k,

referred to as a connected, induced subgraph (−CIS) of size k or k−CIS. As such, the
task is defined as

Definition 10 (Subgraph Count) Let Vk be the set of all k−CISs of graph G, let
∼ denote the graph isomorphism equivalence relation (or any equivalence relation),
and let H be an arbitrary set of pairwise nonequivalent k−CISs. The subgraph
count is defined as the |H|-dimensional vector Ck = (Ck H )H∈H, where Ck H =∑

s∈Vk 1{s ∼ H}, and 1{·} is the indicator function.
Therefore, Ck contains the count of subgraphs in Vk equivalent to each subgraph in
H. We suppress the dependence of Ck on H for simplicity.

Subgraph counting is challenging when k > 3 in real-world input graphs because
Vk is not tractably enumerable and naively sampling k vertices to obtain −CISs is
challenging because |Vk |/|V |k → 0 (as evidenced by Table 1). Next, we address this
issue by reducing the subgraph counting problem to an edge sum (Eq. (1)) over a
higher-order graph that only provides neighborhood query access for large-real-world
input graphs. We also propose a stratification strategy compatible with the access
model and introduce novel solutions to improve speed and memory requirements. We
defer the straightforward aspects to “Appendix E”, wherein we summarize the entire
algorithm (Algorithm 2).

4.1 MCMC on the subgraph space

Wang et al. (2014) proposed a network over subgraphs called the −HON, which
exposes neighborhood query access from Assumption 1 and is therefore amenable to
MCMC solutions (which we optimize in Algorithm 1).
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Definition 11 ( it Higher-Order Network k−HONWang et al. 2014) The higher-order
network or −HON Gk = (Vk, Ek) is a graph whose vertices are the set of all k−CIS
contained in the input graph G, and (u, v) form an edge in Ek if they share all but
k − 1 vertices, that is, |V (u) ∩ V (v)| = k − 1.

In the k − 1−HON, the subgraph induced by an edge (u, v) ∈ Ek−1, i.e.,
G (V (u) ∪ V (v)), is a k−CIS. Thus, the subgraph counts from Definition 10 can
then be expressed as an edge sum over G ≡ Gk−1 as

Ck = μ(Ek−1) =
∑

(u,v)∈Ek−1

(
1{G (V (u) ∪ V (v)) ∼ H}

γ (u, v)

)

H∈H
, (9)

where γ (u, v) = |{(ü, v̈) ∈ E : V (u)∪V (v) ≡ V (ü)∪V (v̈)}| is the number of edges
that represent the same subgraph as (u, v). The set of edges sampled by a random
walk on Gk−1 is called the pairwise subgraph random walk (PSRW). Having reduced
the subgraph counting task to Eq. (1), we proceed with implementing Ripple.

4.2 Ergodicity-Preserving Stratification for subgraph counting

Toward using Ripple, we propose an Ergodicity-Preserving Stratification of G via the
stratification function ρ.

Proposition 2 (EPSfor subgraphs) Consider the set of n1 seed subgraphs I 1 whose
vertex sets in G are pairwise non-intersecting. Let V (I 1) � ∪s̈∈I 1V (s̈) be the set of
all vertices in G forming subgraphs in I 1. Let dist(u) be the shortest path distance
from u ∈ V to any vertex in V (I 1). Define ρ as

ρ(s) = 1 +
∑

u∈V (s)

(
dist(u) + 1

{
u ∈ V (I 1)\V ∗)

})
,

where V ∗ is the largest connected subset of V (s) such that V ∗ ⊆ V (s̈) for some
seed vertex s̈ ∈ I 1 with ties broken arbitrarily. If I 1 contains a subgraph from each
connected component of G, the stratification from Definition 4 generated using ρ is
an Ergodicity-Preserving Stratification (Definition 6).

dist can be precomputed for all u ∈ V using a single BFS in O(|V | + |E |), and ρ

can be computed in O(k). Although R is unknown a priori, it is upper bounded as
(k − 1) · DG , where DG is the diameter of G and the Ripple estimator simply ignores
empty strata, i.e., strata in which the estimated degree of the supernode d(ζr ) = 0. To
control bias, we aim to reduce maxu∈V dist(u) by recruiting seed subgraphs in I 1,
which are far apart in G.

4.3 Miscellaneous optimizations

Controlling Memory through Streaming. In each pair of strata r < t , Definition 8 uses
tours T †

r to compute μ̂(T †
2:r ; f ), β̂r ,t and Ûr ,t , which are, respectively, the estimates
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of μ(J r ) and the size of and sample from the set of vertices in I t connected to
I r . Although μ̂(T †

2:r ; f ) and β̂r ,t can be computed as running sums, storing Ûr ,t

requires memory on the order of the sum of all tour lengths, which is random. Our
solution is to use Algorithm R (Vitter 1985), to sample a fixed-size (m) sample without
replacement from all the tours in T †

r (See “Appendix E.1”). We note that although the
hyperparameter m controls memory, it may introduce bias when the number of tours
|T †

r | > m due to (possible) oversampling (Teixeira et al. 2021, Appendix F).

Speeding up SubgraphRandomWalks.To sample a randomwalk in the−HON, naively
sampling u.a.r. from the neighborhood of a k − 1−CIS requires O(k4ΔG) operations,
where ΔG is the maximum degree in the input graph (see Appendix E.2). In Algo-
rithm 1, we propose a rejection sampling algorithm that does so efficiently using
articulation points (Hopcroft and Tarjan 1973).

Algorithm 1: Efficient Neighborhood Sampling in G(k−1)

Input: k − 1−CIS s, Graph G
Output: x ∼ unif(NGk−1 (s))

1 Let degs = ∑
u∈V (s) d(u) and As be the articulating points of s

2 while True do
3 Sample u from V (s) w.p. ∝ degs −d(u) ; // u is the vertex to remove
4 Sample a from V (s)\{u} w.p. ∝ d(a)

5 Sample v ∼ unif(N(a)) ; // v is the vertex to add
6 bias = |N (v) ∩ V (s)\{u}|; // v’s sampling bias
7 if unif(0, 1) ≤ 1/bias then
8 x = G (V (s) ∪ {v}\{u})
9 if u �= v and (u /∈ As or x is connected) then

10 return x ; // Connectivity Check

Proposition 3 Given a subgraph s ∈ Vk−1, Algorithm 1 samples u.a.r. from NGk−1(s)

inO(k2 Δs+k|As |
k−|As | ) expected time,whereΔs � maxu∈V (s) dG(u) is themaximumdegree

of vertices in s, and As contains articulation points of s.

Therefore, the running time of Algorithm 1 is ∈ O(kΔs +k2)when s is dense (|As | ≈
0) and increases to O(k2Δs + k4) for sparse subgraphs, which is faster than the naive
algorithm.
From Error Bounds to Tour Counts.Ripple auto-decides the number of RWTs required
in each stratum based on an approximate error bound ε provided as input such that
the number of tours → ∞ as ε → 0, and the Ripple estimate converges to the ground
truth (Theorem 1). Specifically, RWTs are sampled until we satisfy

σ̂
(
T †
r ; f1

)
/
√

|T †
r | ≤ ε μ̂

(
T †
r ; f1

)
, (10)

where μ̂(T †
r ; f1) is the Ripple estimate from Eq. (8) of the number of edges in the

r -th graph stratum G r (i.e., f1 (·) = 1), and σ̂ 2(T †
r ; f1) = V̂arX∼T †

r
(μ̂(X; f1)) is the

former’s empirical variance over tours.
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Performance Guarantees. Ignoring the complexity of loading the input graph into
memory, we show that for subgraph counting, the memory and time requirements of
Ripple are a polynomial in k. In “Appendix E”, we state and prove a detailed version
in which the complexity also depends polynomially on the diameter and maximum
degree of G and is invariant to |V | and |E |.
Proposition 4 Assuming a constant m RWTs sampled per stratum and ignoring graph
loading, the Ripple estimator for k−CIS counts detailed in Appendix “E”–Algorithm 2
has total memory and time complexity in Ô(k3 + |H|) and Ô(k7 + |H|), respectively,
when all factors other than k and |H| are ignored.
More details for subgraph counting with Ripple are provided in Appendix E.

5 Experiments and results

We now evaluate the Ripple estimator for k-node subgraph (k−CIS) counts on large-
real-world networks. We show that Ripple outperforms the state-of-the-art method in
terms of time and space and that Ripple converges to the ground truth for various
pattern sizes as hyperparameters are varied. Additional experiments can be found
in (Teixeira et al. 2021, Appendix F). Our code is available at https://github.com/
dccspeed/ripple.

– Execution environment. Our experiments were performed on a dual Intel Xeon
Gold 6254 CPU with 72 virtual cores (total) at 3.10 GHz and 392 GB of RAM. In
addition, this machine is equipped with a fast SSD NVMe PCIex4 with 800 GB
of free space available.

– Baselines. We use Motivo (Bressan et al. 2019), a fast and parallel C++ system
for subgraph counting, as the baseline because it is the only method capable of
counting large patterns (k > 6), to the best of our knowledge. Additionally, notice
that existing MCMC methods for subgraph counting, such as IMPRG (Chen and
Lui 2018) andRGPM (Teixeira et al. 2018), cannot count beyond k = 5 in practice.

– Datasets. We use large networks from SNAP (Leskovec and Krevl 2014), rep-
resenting diverse domains, which have been used to evaluate many subgraph
counting algorithms (Bressan et al. 2018, 2019). Table 1 presents the basic features
of these datasets, including the order of magnitude of the Ripple estimates of the
subgraph counts |Vk |, k = 6, 8, 10, 12.

– Hyper-parametersI 1,m and ε. Finally,we evaluate the trade-off between accuracy
and resource consumption by varying I 1, m and ε, detailed in Sects. 4.2 and 4.3
and (Teixeira et al. 2021, Appendix F) (m).

5.1 Scalability assessment

We start by assessing the scalability of the methods when estimating k−CIS counts
for k ≥ 6. To the best of our knowledge, Motivo is the only existing method capable of
estimating these patterns. Motivo has two phases: a build-up phase, which constructs
an index table in the disk, and a sampling phase that queries this table. We only
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Table 1 The graphs that we used along with their diameter DG , maximum degree ΔG and the estimated
orders of magnitude of k−CIS counts, |Vk |
Graph |V | |E | DG ΔG Magnitude of Est. # of −CISs

|V6| |V8| |V10| |V12|

Amazon 334,863 925,872 44 549 1011 1015 1019 1022

DBLP 317,080 1,049,866 21 343 1012 1016 1019 1023

Cit-Pat. 3,774,768 16,518,948 22 793 1014 1018 1022 1026

Pokec 1,632,803 30,622,564 11 14,854 1018 1025 1032 1038

LiveJ. 3,997,962 34,681,189 17 14,815 1019 1025 1032 1038

Orkut 3,072,441 117,185,083 9 33,313 1021 1028 1035 1043

measure the time taken by the build-up phase and the out-of-core (disk) usage because
this is a bottleneck for Motivo. As such, we report the best-case scenario for Motivo,
and the reported values are lower bounds for the actual time and space requirement.
For Ripple, we report the total time and the RAM usage as the space cost because
our method works purely in memory. Both methods were executed using all threads
available. In Tables 2 and 3, we compare the running time and space usage of Ripple
and Motivo. We also report their rate of increase in terms of the subgraph size k
in columns Time(k)/Time(k−2) and Space(k)/Space(k−2). We fix ε = 0.003, |I 1| = 104 and
m = 107 based on the analysis in Sect. 5.2. In (Teixeira et al. 2021, Appendix F),
we also report max−min

mean of the Ripple estimates to ensure that the results are not
arbitrary.

For Motivo, we follow the authors’ suggestions.

Running time Scalability (Table 2). AlthoughMotivo outperforms Ripple for k = 6, 8,
it does not scale well for k = 10, 12, where the execution terminates because of
insufficient storage space. Particularly, for DBLP, Motivo required approximately 10
minutes to process 10−CIS but almost 9h for 12−CIS, a growth rate of 58×. On
the other hand, Ripple not only succeeded in all configurations in less than 4 hours
on average but also exhibited a smoother growth in running time, with the largest
increase ratio being 2.7×, observed for DBLP and LiveJournal when k went from
8 to 10. Furthermore, Time(k)/Time(k−2) < (k/(k-2))7 in all cases according to Proposi-
tion 10.

Space Scalability (Table 3).The trends in space usagemirror those of the running time,
where we see an almost exponential increase w.r.t. k for Motivo compared to a near
constant increase for Ripple despite its polynomial complexity (Proposition 10). For
example, in Amazon, Motivo’s space demand increases by 7.5× when k goes from
6 to 8 and increases to 12× from 10 to 12. Ripple’s largest rate of increase is 1.4×
when k goes from 6 to 8 for DBLP, and it saves up to 600 GB of space when Motivo
does not crash.
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Table 2 Running time comparison between Ripple and Motivo

Dataset k Motivo Build-up only Ripple (ε = 0.003) Ripple gain (h)

Time (h) T ime(k)

Time(k−2) Time (h) Time(k)

Time(k−2)

Amazon 6 0.002 ± 0.000 − 0.020 ± 0.000 − −0.018

8 0.006 ± 0.000 3× 0.029 ± 0.000 1.4× −0.023

10 0.082 ± 0.000 13.7× 0.056 ± 0.000 1.9× +0.026

12 3.630 ± 0.002 44.3× 0.095 ± 0.002 1.7× +3.535

DBLP 6 0.002 ± 0.000 − 0.013 ± 0.000 − −0.011

8 0.007 ± 0.000 3.5× 0.030 ± 0.000 2.3× −0.023

10 0.156 ± 0.000 22.3× 0.082 ± 0.000 2.7× +0.074

12 9.099 ± 0.002 58.3× 0.105 ± 0.002 1.3× +8.994

Patents 6 0.022 ± 0.000 − 0.033 ± 0.000 − −0.011

8 0.098 ± 0.000 4.5× 0.051 ± 0.000 1.5× +0.047

10 > 1.1h, crashed − 0.090 ± 0.001 1.8× −
12 > 0.5h, crashed − 0.117 ± 0.003 1.3× −

Pokec 6 0.012 ± 0.000 − 0.459 ± 0.142 − −0.447

8 0.128 ± 0.000 10.7× 0.759 ± 0.282 1.7× −0.631

10 5.965 ± 0.000 46.6× 1.400 ± 0.592 1.8× +4.565

12 > 1.5h, crashed − 1.469 ± 0.334 1× −
LiveJ. 6 0.024 ± 0.000 − 0.351 ± 0.009 − −0.327

8 0.205 ± 0.000 8.5× 0.642 ± 0.074 1.8× −0.437

10 > 2.3h, crashed − 1.76 ± 1.550 2.7× −
12 > 0.7h, crashed − 2.189 ± 1.350 1.2× −

Orkut 6 0.032 ± 0.000 − 0.669 ± 0.026 − −0.637

8 0.585 ± 0.006 18.3× 1.744 ± 0.983 2.6× −1.159

10 > 8.9h, crashed − 2.633 ± 1.065 1.5× −
12 > 1.8h, crashed − 3.967 ± 3.162 1.5× −

The last column shows that for large k, Ripple provides gains of up to 9hwhenMotivo can run to completion.
Motivo crashes for large k on large graphs (Bold values indicate superior performance)

5.2 Accuracy and convergence assessment

Next, we evaluate the accuracy and convergence of Ripple on small and large subgraph
patterns, where the former refers to subgraph sizes in which the number of isomorphic
subgraphs can be exactly computed using ESCAPE (Pinar et al. 2017), i.e., k ≤ 5.

Accuracy on Small k. For k ∈ {3, 5}, we evaluate the L2-norm between the Ripple
estimate and the exact value of the count vector Ck (Eq. 9) of all non-isomorphic
subgraph patterns. Figure 2 shows results for k = 5 (where the number of patterns of
interest |H| = 21) for different settings of the parameters ε and |I 1|. In all datasets,
we note that the L2-norm decreases as ε decreases from 0.3 to 0.003 and as |I 1|
increases from 100 to 104. Between the worst setting, (ε, |I 1|) = (0.3, 100), and the
best (ε, |I 1|) = (0.003, 104), we see an error reduction close to an order ofmagnitude.
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Table 3 Space usage comparison between Ripple and Motivo

Dataset k Motivo Build-up only Ripple (ε = 0.003) Ripple gain (GB)

Space (GB) Space(k)

Space(k−2) Space (GB) Space(k)

Space(k−2)

Amazon 6 0.53 ± 0.00 − 4.69 ± 0.06 − −4.16

8 4.00 ± 0.00 7.5× 5.73 ± 0.12 1.2× −1.73

10 48.00 ± 0.00 12× 7.38 ± 0.36 1.3× +40.62

12 559 ± 0.00 11.6× 9.09 ± 1.02 1.2× +549.91

DBLP 6 0.50 ± 0.00 − 4.58 ± 0.02 − −4.08

8 4.00 ± 0.00 8× 6.31 ± 0.00 1.4× −2.31

10 50.00 ± 0.00 12.5× 7.99 ± 0.01 1.3× +42.01

12 611.00 ± 0.00 12.2× 10.45 ± 0.02 1.3× +600.55

Patents 6 7.00 ± 0.00 − 11.50 ± 0.05 − -4.5

8 66.00 ± 0.00 9.4× 13.80 ± 0.03 1.2× +52.2

10 > 800, crashed − 15.85 ± 0.08 1.1× > 800

12 > 800, crashed − 18.12 ± 0.10 1.1× > 800

Pokec 6 3.7 ± 0.00 − 13.69 ± 0.06 − −9.99

8 36.00 ± 0.00 9.7× 17.17 ± 0.03 1.3× 18.83

10 407.00 ± 0.00 11.3× 20.31 ± 0.01 1.2× +386.69

12 > 800, crashed − 22.82 ± 0.03 1.1× > 800

LiveJ. 6 7.70 ± 0.00 − 18.26 ± 0.02 − −10.56

8 73.00 ± 0.00 9.5× 21.26 ± 0.00 1.2× +51.74

10 > 800, crashed − 24.43 ± 0.72 1.1× > 800

12 > 800, crashed − 27.75 ± 0.00 1.1× > 800

Orkut 6 7.90 ± 0.00 − 40.38 ± 0.00 − −32.48

8 78.00 ± 0.000 9.9× 43.49 ± 0.00 1.1× +34.51

10 > 800, crashed − 46.63 ± 0.00 1.1× > 800

12 > 800, crashed − 49.73 ± 0.00 1.1× > 800

Motivo runs out of disk space for larger datasets in which k ≥ 10, while Ripple scales almost linearly.
Ripple saves up to 600 GB of space when Motivo can run (Bold values indicate superior performance)

This is due to Theorem 2 and Lemma 1 because reducing ε increases the number of
tours, lowers the error and therefore leads to reduced error propagation. Increasing I 1
also reduces the number of strata and therefore error propagation. Results for k = 5
using the L-∞ norm can be found in (Teixeira et al. 2021, Appendix F).

Convergence for Large k. When k > 5, subgraph counts for real-world graphs are
computationally intractable. Therefore, we show that Ripple converges in these cases
as we increase the computing effort. Consider the hypothesis that sparse patterns are
frequent in power-law networks as k increases. To glean empirical evidence for this,
we choose an appropriate pattern setH and equivalence relationship in Definition 10,
and we use Ripple to compute the total number of k−CIS s and the number of sparse
subgraphs and stars. A subgraph is defined as sparse if its density lies between 0 and
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(a) (b) (c)

(d) (e) (f)

Fig. 2 Accuracy and convergence analysis for 5−CIS s. We plot the L2-norm between the Ripple estimate
and the exact value of the count vector C5 (Eq.9) of all non-isomorphic subgraph patterns against various
configurations of the parameters ε and |I 1|. As expected, the accuracy improves as the error bound ε

decreases and the number of seed subgraphs |I 1| increases. Each box and whisker represents 10 runs

0.25, according to Liu and Wong (2008). In Fig. 3, we show that Ripple converges for
all datasets, and as expected, most patterns are sparse, with close to half of the patterns
in many of the studied networks being stars. This proportion is attenuated in DBLP
and Patents, where dense substructures naturally emerge from collaboration/citation
among the authors that these graphs represent.

6 Related work

For better presentation, we split this section into two parts: (1) parallel MCMC tech-
niques and (2) methods for subgraph counting.

Parallel MCMCthrough Splitting. Since Nummelin (1978); Athreya and Ney (1978),
multiple techniques have been proposed to circumvent the burn-in period by split-
ting the chain into i.i.d. sample paths. This approach allows practitioners to compute
unbiased estimates in parallel and determine confidence intervals. Perfect sampling
methods based on coupling (Propp and Wilson 1996) require the transitions to be
monotonic w.r.t. some ordering over the state space, and annealing/tempering (Neal
2001) methods require some notion of temperature, which are absent in general graph
random walks. Methods such as (Mykland et al. 1995; Jacob et al. 2020; Glynn and
Rhee 2014) require a minorization condition to hold, albeit implicitly.
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Convergence of Ripple estimates of 12−CIS pattern counts. We estimate the total number of sub-
graphs |V12| and the number of sparse patterns and stars. Estimates over 10 runs are presented as box and
whiskers plots, which exhibit a reduction in variance as ε increases. Indeed, almost all patterns are sparse,
and the most frequent substructure is a star

Regeneration point-based methods on finite state chains (Cooper et al. 2016; Mas-
soulié et al. 2006; Avrachenkov et al. 2016, 2018; Savarese et al. 2018; Teixeira
et al. 2018) are more general because they only rely on standard ergodicity condi-
tions. Although Cooper et al. (2016); Massoulié et al. (2006) used tours to estimate
graph properties, Avrachenkov et al. (2016, 2018) proposed supernodes to reduce
running times. The studies in Savarese et al. (2018); Teixeira et al. (2018) further used
supernode-based tours to estimate gradients in RBMs and to count subgraphs. To the
best of our knowledge, no existing regeneration point method controls running times
through stratification.

Subgraph Counting through SamplingMany random walk algorithms have been pro-
posed to sample subgraphs, with some methods only capable of estimating subgraph
pattern distributions, which is much easier than estimating counts. The studies of
GUISE (Bhuiyan et al. 2012) and RSS (Matsuno and Gionis 2020) use a Metropolis-
Hastings (Hastings 1970) walk, and the latter improves the mixing time of the
underlying Markov chain using canonical paths (Sinclair 1992). Waddling (Han
and Sethu 2016) and IMPRG Chen and Lui (2018) perform a simple random walk
over the input graph and use specialized estimators to sample 5-node patterns.
Although PSRW (Wang et al. 2014) first proposed the −HON-based random walk
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and RGPM (Teixeira et al. 2018) used tours on it to estimate subgraph counts, both
are limited to k ≤ 5 due to the size of the −HON.

Multiple attempts to Monte Carlo sample subgraphs have been proposed whose
scaling is limited because of the complexity of computing either the importance
weights, rejection rate or variance (Kashtan et al. 2004; Wernicke 2006; Iyer
et al. 2018; Yang et al. 2018; Wang et al. 2018). Efficient methods that sample
dense regions/subgraphs are unfortunately not extensible to sparse patterns Jain
and Seshadhri (2017, 2020). Motivo (Bressan et al. 2018, 2019) is an example of
color-coding methods in which an index table is built using a deterministic dynamic
programming algorithm, which is then exploited to sample subgraphs uniformly and
independently. However, CC methods suffer from the exponential time and space
complexities associated with building and accessing the index table. Motivo pro-
posed succinct index tables and efficient out-of-core I/O mechanisms to ameliorate
this issue and extended the applicability of CC methods to larger subgraphs. Please,
check Ribeiro et al. (2019) for an extensive survey on subgraph counting meth-
ods.

7 Conclusions

In this paper, we propose the Ripple estimator that uses sequentially stratified
regenerations to control the running time of a random walk tour-based MCMC.
We prove that the estimator is consistent (w.r.t. the number of random walk
tours) and that the time and memory complexity of our implementation for
the subgraph counting problem is linear in the number of patterns of inter-
est and polynomial in the subgraph size. We empirically verify our claims on
multiple graph datasets and show that Ripple can accurately estimate subgraph
counts with a smaller memory footprint compared to that of the state-of-the-
art Motivo (Bressan et al. 2019). Ripple is currently the only subgraph pattern
count estimator that can estimate k = 10, 12 node patterns in million-node
graphs. Beyond our specific application, Ripple provides a promising way to
expand the sphere of influence of regenerative simulation in discrete reversible
MCMC.

Acknowledgements This work was funded in part by Brazilian agencies CNPq, CAPES and FAPEMIG,
by projects Atmosphere, INCTCyber, MASWeb, and CIIA-Saude, and by the National Science Foundation
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A Notation

The most important notations from the paper are summarized in Table 4.
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B Proofs for Section 2

B.1 MCMC Estimates

Given a graph G , when the |E | is unknown, the MCMC estimate of μ(E )/|E | is given
by:

Proposition 5 (MCMC Estimate (Geyer 1992; Geman and Geman 1984; Hastings
1970)) When G from Definition 1 is connected, the random walk Φ is reversible and
positive recurrent with stationary distribution πΦ (u) = d(u)/2|E |. Then, the MCMC
estimate μ̂0

(
(Xi )

t
i=1

) = 1
t−1

∑t−1
i=1 f (Xi , Xi+1) , computed using an arbitrarily

started sample path (Xi )
t
i=1 fromΦ is an asymptotically unbiased estimate of μ(E )/|E |.

When G is non-bipartite, i.e., Φ is aperiodic, and t is large, μ̂0 converges to μ(E )/|E |
as

∣∣∣E[μ̂0
(
(Xi )

t
i=1

)] − μ(E )/|E |
∣∣∣ ≤ B C

tδ(Φ )
, where δ(Φ ) is the spectral gap of Φ and

C �
√

1−πΦ (X1)
πΦ (X1)

such that f (·) ≤ B.

Proof (Asymptotic unbiasedness) BecauseG is undirected, finite and connected,Φ is a
finite state space, irreducible, time-homogeneous Markov chain and is therefore posi-
tive recurrent (Bremaud 2001, 3-Thm.3.3). The reversibility and stationary distribution
holds from the detailed balance test (Bremaud 2001, 2-Cor.6.1): πΦ (u) pΦ (u, v) =
πΦ (v) pΦ (v, u) = 1{(u,v)∈E }

2|E | . The ergodic theorem (Bremaud 2001, 3-Cor.4.1) then

applies because f is bounded and limt→∞ 1
t−1

∑t−1
i=1 f (Xi , Xi+1) = ∑

(u,v)∈V×V
πΦ (u) pΦ (u, v) f (u, v) = μ(E )

|E | . ��
Proof (Bias) Let the i-step transition probability of Φ be given by piΦ (u, v). The bias
at the i-th step is given by

biasi =
∣∣∣E

[
f (Xi , Xi+1)

] −
∑

(u,v)∈V×V
πΦ (u) pΦ (u, v) f (u, v)

∣∣∣

=
∣∣∣

∑

(u,v)∈V×V
piΦ (X1, u) pΦ (u, v) f (u, v) −

∑

(u,v)∈V×V
πΦ (u) pΦ (u, v) f (u, v)

∣∣∣

≤ B
∣∣∣
∑

u∈V
piΦ (X1, u)

∑

v∈V
pΦ (u, v) −

∑

u∈V
πΦ (u)

∑

v∈V
pΦ (u, v)

∣∣∣

≤ B
∣∣∣
∑

u∈V
piΦ (X1, u) −

∑

u∈V
πΦ (u)

∣∣∣ ≤ B
∑

u∈V

∣∣∣piΦ (X1, u) − πΦ (u)

∣∣∣ ,

where f (·) ≤ B, and the final inequality is due to Jensen’s inequality. From (Diaconis

and Stroock 1991, Prop-3), biasi ≤ B
√

1−πΦ (X1)
πΦ (X1)

β i∗ , where β∗ = 1 − δ(Φ ) is the

SLEMofΦ . Because of Jensen’s inequality and by summing aGP,
∣∣∣E[μ̂0

(
(Xi )

t
i=1

)]−
μ(E )
|E |

∣∣∣ ≤ 1
t−1

∑t−1
i=1 biasi ≤ B

t−1

√
1−πΦ (X1)
πΦ (X1)

1−β t∗
1−β∗ .

Assuming that β t∗ ≈ 0 and t − 1 ≈ t when t is sufficiently large completes the
proof. ��
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Lemma 2 (Avrachenkov et al. 2016) Let Φ be a finite state space, irreducible, time-
homogeneous Markov chain, and let ξ denote the return time of RWT started from
some x0 ∈ S as defined in Definition 2. If Φ is reversible, then E

[
ξ2

] ≤ 3
πΦ (x0)2δ(Φ )

,

where πΦ (x0) is the stationary distribution of x0, and δ(Φ ) is the spectral gap of Φ .
When Φ is not reversible, the second moment of return times is given by Eq. (11).

Proof Using (Aldous and Fill 2002, Eq 2.21), we have

E

[
ξ2

]
= 1 + 2EπΦ (Tx0)

πΦ (x0)
, (11)

where EπΦ (Tx0) is the expected hitting time of x0 from the steady state. Combining
(Aldous and Fill 2002, Lemma 2.11 & Eq 3.41) and accounting for continuization

yields EπΦ (Tx0) ≤ 1
πΦ (x0)δ(Φ )

and therefore, E
[
ξ2

] ≤ 1+ 2
πΦ (x0)δ(Φ )

πΦ (x0)
< 3

πΦ (x0)2δ(Φ )

because πΦ (x0) and δ(Φ ) lie in the interval (0, 1). ��
Proposition 6 Given a positive recurrent Markov chain Φ over state space S and a
set of m RWTs T and assuming an arbitrary ordering over T , where X(i) is the i th
RWT in T , X(i) and |X(i)| are i.i.d. processes such that E[|X(i)|] < ∞, and when
the tours are stitched together as defined next, the sample path is governed by Φ . For
t ≥ 1, define Φt = XNt

t−RNt
, where Ri = ∑i−1

i ′=1 |Xi | when i > 1 and R1 = 0 and
Nt = max{i : Ri < t}.
Proof Ri is a sequence of stopping times. Therefore, the strongMarkov property (Bre-
maud 2001, 2-Thm.7.1) states that sample paths before and after Ri are independent
and are governed by Φ . Because Φ is positive recurrent and x0 is visited i.o., the
regenerative cycle theorem (Bremaud 2001, 2-Thm.7.4) states that these trajectories
are identically distributed and are equivalent to the tours T sampled according to
Definition 2. E[|X(i)|] < ∞ due to positive recurrence. ��

B.2 Proof of Lemma 1

Proof (Unbiasedness andConsistency)BecauseG is connected,Φ is positive recurrent
with steady state πΦ (u) ∝ d(u) due to Proposition 5. Consider the reward process

F (i) = ∑|X(i)|
j=1 f (X (i)

j , X (i)
j+1), i ≥ 1. From Proposition 6, F (i) and |X(i)| are i.i.d.

sequences with finite first moments, because F (i) ≤ B|X(i)|. Let Nt and Ri be as
defined in Proposition 6.

Therefore, from the renewal reward theorem (Bremaud 2001, 3-Thm.4.2), we have

E
[
F (i)

]

E
[|X(i)|] = lim

t→∞

∑Nt
i=1 F

(i)

t
= lim

t→∞

∑Nt
i=1 F

(i)

RNt

· RNt

t
=

∑Nt
i=1 F

(i)

RNt

,

where the final equality holds because limt→∞
RNt
t = 1 − limt→∞

t−RNt
t , and

limt→∞
t−RNt

t converges to 0 as t → ∞ because |X(·)| < ∞ w.p. 1 because Φ

is positive recurrent.
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From Proposition 6 and the definition of F (i),
∑Nt

i=1 F
(i) = ∑RNt

j=1 f (Φ j , Φ j+1), and
because f and πΦ are bounded, we have from the ergodic theorem (Bremaud 2001,
3-Cor.4.1),

E
[
F (i)

]

E
[|X(i)|] = lim

t→∞

∑RNt
j=1 f

(
Φ j , Φ j+1

)

RNt

a.s=
∑

(u,v)∈V×V
πΦ (u)pΦ (u, v)g(u, v) = 2μ(E )

2|E | .

From Kac’s formula (Aldous and Fill 2002, Cor.2.24), 1/E[|X(i)|] = πΦ (x0) = d(x0)
2|E | ,

and

E

[
d(x0)

2
F (i)

]
a.s= μ(E ) .

μ̂∗(T ; f ,G) is unbiased by linearity of expectations on the summation over T , and
consistency is a consequence of Kolmogorov’s SLLN (Bremaud 2001, 1-Thm.8.3).

��

Proof (Running Time) From Kac’s formula (Aldous and Fill 2002, Cor.2.24),
E[|X(i)|] = 2|E |

d(x0)
. From Proposition 6, tours can be sampled independently and thus

parallelly. All cores will sample an equal number of tours in expectation, yielding the
running time bound. ��

Proof (Variance) Because f (·) < B, and tours are i.i.d., the variance is

Var
(
μ̂∗(T )

) = Var

⎛

⎝d(x0)

2m

∑

X∈T

|X|∑

j=1

f (X j , X j+1)

⎞

⎠ ≤ d(x0)2B2

4m
Var (|X|) .

From Lemma 2 and Kac’s formula (Aldous and Fill 2002, Cor.2.24), Var (|X|) is given
by

Var (|X|) ≤ 3

πΦ (x0)2δ(Φ )
− 1

πΦ (x0)2
≤ 3

πΦ (x0)2δ(Φ )
= 12|E |2

d(x0)2δ(Φ )
.

��

C Proofs for Section Crefsec.estimator

Assumption 2 For each G r , 1 < r ≤ R from Definition 5, assume d(ζr ) is known and
that pΦ r (ζr , ·) can be sampled from.

Proposition 7 (RWTs in Φ r ) Under Assumption 2, given access only to the original
chain Φ and stratifying function ρ, let Φ r be the random walk in the graph stratum
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G r from Definition 5. To sample an RWT (Xi )
ξ
i=1 over Φ r from the supernode ζr , we

set X1 = ζr , sample X2 ∼ pΦ r (ζr , ·), and then, until ρ(Xξ+1) < r , we sample

Xi+1 ∼ unif
(
NGr (Xi )

) ≡
{
unif

(
NG (Xi )

)
if ρ (Xi ) = r

unif
(
NG (Xi ) ∩ I r

)
if ρ (Xi ) > r

.

Proof The proof is a direct consequence of Definitions 5 and 1. ��
Proposition 8 (Perfectly StratifiedEstimate)UnderAssumption 2, given theEPS (Def-
inition 6) stratum G r (Definition 5), bounded f : E → R and a set of m RWTs Tr
over Φ r from ζr from Proposition 7, the per stratum estimate is given by

μ̂ (Tr ; f ,G r ) = d (ζr )

2m

∑

X∈Tr

|X|−1∑

j=2

f
(
X j , X j+1

)
, (12)

where X j is the j th state visited in the RWT X ∈ Tr . For all r > 1, μ̂(Tr ; f ,G r ) is
an unbiased and consistent estimator of μ(J r ) = ∑

(u,v)∈J r
f (u, v), where J r is

the r-th edge stratum defined in Definition 4.

Proof Define f ′ : E r → R as f ′(u, v) � 1{u, v �= ζr } f (u, v). ByDefinition2, in each
RWT X ∈ Tr , f ′(X1, X2) = f ′(X |X|, X |X|+1) = 0, and therefore, μ̂(Tr ; f ,G r ) =
μ̂∗(T ; f ′,G r ), where μ̂∗ is the RWT Estimate from Lemma 1. As G r is connected,
E
[
μ̂(Tr ; f ,G r )

] = E
[
μ̂∗(T ; f ′,G r )

] = ∑
(u,v)∈E r

f ′(u, v) = ∑
(u,v)∈J r

f (u, v) ,

where the final equality holds because E r is the union of J r and edges incident on
the supernode. Consistency is also due to Lemma 1. ��

C.1 Proof of Proposition 1

Proof Proposition 1 (a) is necessary because when Proposition 1 (a) does not hold,
there exists a component such that the minimum value of ρ in that component is r̈ > 0
such that in G r̈ (Definition 5), and the supernode ζr̈ will be disconnected from all
vertices. If Proposition 1 (b) is violated, a vertex ü exists that is disconnected in Gρ(ü),
and if Proposition 1 (c) is violated, the supernode is disconnected. Finally, it is easily
seen that these conditions sufficiently guarantee that each stratum is connected, and
the stratification is an EPS. ��

C.2 Proof of Theorem 1

We begin by defining the multi-set containing the end points of edges between vertex
strata.

Definition 12 Given G stratified into R strata, ∀1 ≤ q < t ≤ R define border multi-
sets as Bq,t � {v ∀(u, v) ∈ E : u ∈ I q and v ∈ I t } . The degree of the supernode
in G r (Definition 5) is then given by d(ζr ) = ∑r−1

q=1 |Bq,r |, and transitions out of ζr
can be sampled by sampling q ∈ {1, . . . , r − 1} w.p. ∝ |Bq,r | and then by uniformly
sampling from Bq,r .
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Proposition 9 Given the setting in Definitions 8 and 9, for all 1 ≤ r < t ≤ R,

lim
|T †

2 |→∞
. . . lim

|T †
r |→∞

β̂r ,t
a.s= |Br ,t | , (13)

lim
|T †

2 |→∞
. . . lim

|T †
r |→∞

Ûr ,t ∼ unif(Br ,t ) , (14)

lim
|T †

2 |→∞
. . . lim

|T †
r |→∞

pΦ̂ r
(X) = pΦ r (X) , ∀X ∈ T †

r . (15)

i.e., each tour in T †
r is perfectly sampled from Φ r .

Proof (By Strong Induction) The base case for r = 1 holds by the base case in Defi-
nition 8. Now assume that Proposition 9 holds for all strata up to and including r − 1.
Becauseof the inductive claimandbyDefinition12, lim|T †

2 |→∞ . . . lim|T †
r−1|→∞, d̂(ζr )

= ∑r−1
q=1 β̂q,r

a.s= ∑r−1
q=1 |Bq,r | = d(ζr ) , and similarly, lim|T †

2 |→∞ . . . lim|T †
r−1|→∞,

p̂Φ r (ζr , ·) ≡ pΦ r (ζr , ·) because the inductive claim makes the procedure of
sampling transitions out of ζr in Definition 8 equivalent to Definition 12. Equa-
tion (15) holds because transition probabilities at all states other than ζr are
equivalent in Φ r and Φ̂ r according to Definition 7. Now recall that β̂r ,t =
d̂(ζr )

|T †
r |

∑
X∈T †

r

∑|X|
j=2 1

{
ρ(X j ) = t

}
. Because d̂(ζr ) = d(ζr ) and the tours are sam-

pled perfectly, lim|T †
2 |→∞ . . . lim|T †

r−1|→∞ β̂r ,t = μ̂∗
(
T †
r ; f ′

)
, where f ′(u, v) =

1{ρ(v) = t} and μ̂∗ is from Lemma 1, from which we also use the consistency guar-
antee to show that under an EPS, Eq. (13) holds as lim|T †

2 |→∞ . . . lim|T †
r |→∞ β̂r ,t

a.s=
∑

(u,v)∈E r
f ′(u, v) = |Br ,t | . Because of Proposition 6, concatenating tours X ∈ T †

q
yields a sample path from Φ r , and these samples are distributed according to
πΦ r as |T †

r ′ | → ∞, r ′ ≤ r . Therefore, lim|T †
2 |→∞ . . . lim|T †

r |→∞ 
X∈T †
q


|X|
j=2{

X j : ρ(X j ) = t
} ∼ π ′

Φ r
, where π ′

Φ r
(u) ∝ 1{ρ(u) = t}dG r (u), which is equiva-

lent to unif(Br ,t ) by Definitions 5 and 12, thus proving Eq. (14). ��
Proof (Main Theorem) Combining Propositions 9 and 8 proves Theorem 1. ��

C.3 Proof of Theorem 2

Definition 13 (L2 Distance between π̂ and π Aldous and Fill 2002) The L2 distance
between discrete probability distribution π̂ and reference distribution π with sample

space Ω is given by ‖π̂ − π‖2 = ∑
i∈Ω

(π̂(i)−π(i))2

π(i) .

Definition 14 (Distorted chain)Given a Markov chainΦ over finite state space S and
an arbitrary x0 ∈ S , let Φ̂ be the distorted chain such that ∀ u �= x0, pΦ̂ (u, ·) =
pΦ (u, ·), and pΦ̂ (x0, ·) is an arbitrary distribution with support supp(pΦ̂ (x0, ·)) ⊆
supp(pΦ (x0, ·)). The distortion is given by ‖pΦ̂ (x0, ·) − pΦ (x0, ·)‖ as defined in
Definition 13.
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Lemma 3 Given a finite state, positive recurrent Markov chain Φ over state space S ,
let Φ̂ be the chain distorted at some x0 ∈ S from Definition 14.

LetX =
{
(X1, . . . , Xξ ) : X1 = x0 , ξ = min{t > 0 : Xt+1 = x0} , pΦ (X1, . . . , Xξ )

> 0

}
, denote the set of all possible arbitrary lengths RWTs that begin and end at

x0 from Definition 2. Given a tour Y ∈ X sampled from Φ and a bounded function
F : X → R,

EΦ

[
pΦ̂ (Y1,Y2)

pΦ (Y1,Y2)
F(Y)

]
= EΦ̂ [F(Y)] , (16)

where EΦ and EΦ̂ are expectations under the distribution of tours sampled from Φ

and Φ̂ .

Proof All tours in X are of finite length because of the positive recurrence of Φ . The
ratio of the probability of sampling the tour Y = (Y1, . . . ,Yξ ′) from the chain Φ̂ to
Φ is given by

pΦ̂ (Y)

pΦ (Y)
=

∏ξ ′
j=1 pΦ̂

(
Y j ,Y j+1

)

∏ξ ′
j=1 pΦ

(
Y j ,Y j+1

) = pΦ̂ (Y1,Y2)

pΦ (Y1,Y2)
, (17)

because pΦ (Y j , ·) = pΦ̂ (Y j , ·), ∀1 < j ≤ ξ ′ because Y j �= x0 by the definitions ofX
and Φ̂ . Because supp(pΦ̂ (x0, ·)) ⊆ supp(pΦ (x0, ·)), supp(pΦ̂ (Y)) ⊆ supp(pΦ (Y)).
The theorem statement therefore directly draws from the definition of importance
sampling (Robert and Casella 2013, Def 3.9) with the importance weights derived in
Eq. (17).

��

Lemma 4 Given a simple random walk Φ on the connected non-bipartite graph G
from Definition 1, let Φ̂ be the chain distorted at some x0 ∈ S from with distortion
ν Definition 14. Let λ = d̂(x0)/d(x0). Let f : E → R bounded by B, and F(X) =∑|X|

j=1 f (X j , X j+1), where X is an RWT as defined in “Appendix B.2”. The bias of

an RWT Estimate(Eq. 2) computed using tours sampled over Φ̂ and using d̂(x0) as

the degree is given by bias =
∣∣∣EΦ̂

[
d̂(x0)
2 F(X)

]
− μ(E )

∣∣∣ ≤ (λν + |1 − λ|)
√
3B|E |√

δ
,

where δ is the spectral gap of Φ , and B is the upper bound of f .

Proof From Lemmas 3 and 1 we have

EΦ̂

[
d̂(x0)

2
F(X)

]
= EΦ

[
d̂(x0)

2

pΦ̂ (X1, X2)

pΦ (X1, X2)
F(X)

]
,

μ(E ) = EΦ

[
d(x0)

2
F(X)

]
.
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Subtracting the two, squaring both sides and using the Cauchy–Schwarz inequality
decomposes the squared bias into

bias =
∣∣∣∣EΦ

[(
d̂(x0)

d(x0)

pΦ̂ (X1, X2)

pΦ (X1, X2)
− 1

)
d(x0)

2
F(X)

]∣∣∣∣ .

bias2 ≤ E

[(
d̂(x0)

d(x0)

pΦ̂ (x0, X2)

pΦ̂ (x0, X2)
− 1

)2]

︸ ︷︷ ︸
biasdist

E

[(
d(x0)

2
F(X)

)2
]

︸ ︷︷ ︸
biasspectral

,

where the expectation is under Φ . Using definitions from the theorem statement,

biasdist = d̂(x0)2

d(x0)2
E

[(
pΦ̂ (x0, X2)

pΦ (x0, X2)

)2
]

+ 1 − 2
d̃(x0)

d(x0)
E

[
pΦ̂ (x0, X2)

pΦ (x0, X2)

]

= λ2(1 + ν2) + 1 − 2λ = λ2 + λ2ν2 + 1 − 2λ

= λ2ν2 + (1 − λ)2 ≤ (λν + |1 − λ|)2 .

Because F(X) ≤ Bξ , the tour length, from Lemma 2, we see that

biasspectral ≤ d(x0)2B2

4

3

πΦ (x0)2δ
= 3B2|E |2

δ
,

and combining both biases completes the proof for bias. ��
Proof (Main Theorem) Note that by linearity of expectations

E

[
μ̂
(
T †
2:r ; f

) ∣∣T †
2:r−1

]
=E

⎡

⎣ d̂(ζr )

2|T †
r |

∑

X∈T †
r

|X|−1∑

j=2

f (X j , X j+1)

⎤

⎦ ,

=EX∼Φ̂ r

⎡

⎣ d̂(ζr )

2

|X|∑

j=1

f ′(X j , X j+1)

⎤

⎦ ,

whereX is anRWT on Φ̂ r that depends on T †
2:r−1 and f ′(u, v) � 1{u, v �= ζr } f (u, v).

Applying Lemma 4 completes the proof because Φ̂ r is a distorted chain by Defini-
tion 14. ��

D Proofs for Section 4

D.1 Proof of Proposition 2

Proof FromWang et al. (2014, Thm-3.1), we know that each disconnected component
ofG leads to a disconnected component in Gk−1, and if I 1 contains a subgraph in each
connected component, Proposition 1 (a) is satisfied. We now prove that ∀ s ∈ Vk−1,
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if ρ(s) = r > 1, ∃ s′ ∈ N(s) : ρ(s′) < r which simultaneously satisfies Proposition
1 (b) and Proposition 1 (c) .

W.l.o.g. let the vertex with the smallest distance from the seed vertices be denoted
by û = argminu∈V (s) dist(u). When dist(û) > 0, there exists v ∈ NG(û) such
that dist(v) < dist(û) by the definition of dist. More concretely, v would be the
penultimate vertex in the shortest path from the seed vertices to û. Let v′ �= û be
a nonarticulating vertex of s, which is possible because any connected graph has at
least 2 nonarticulating vertices. Let s1 = G

(
V (s)\{v′} ∪ {v}) ∈ Vk−1. Now, ρ(s1) <

ρ(s) because v′ has been replaced with a vertex at necessarily a smaller distance and
because the indicator in the definition of rho will always be 0 in this case. Moreover,
�s1s = G (V (s) ∪ {v}) ∈ Vk , and hence an edge exists between the two.

When dist(û) = 0, there exists v ∈ NG(û) such that dist(v) = 0. There exists a
nonarticulating v′ ∈ V (s)\V ∗ because otherwise V ∗ would have been disconnected.
Observing that dist(v′)+1

{
v′ ∈ V (I 1)\V ∗)

}
> 0 completes the proof of ergodicity.

��

D.2 Proof of Proposition 3

Proof (Sampling Probability) Consider the lines Lines 3 to 5. The probability of sam-
pling the pair (u, v) from V (s) × NG (V (s)) is given by

P(u, v) =
∑

a∈V (s)\{u}
P(v|a, u)P(a|u)P(u)

=
∑

a∈V (s)\{u}

1{v ∈ N(a)}
d(a)

d(a)

degs −d(u)

degs −d(u)

(k − 1 − 1) degs

∝
∑

a∈V (s)\{u}
1{v ∈ N(a)} = |N (v) ∩ V (s)\{u}| = bias ,

where bias is defined in Line 6 and corrected for in Line 7. After the rejection,
therefore, (u, v) ∼ unif(V (s) × NG (V (s))).

Line 9 constitutes an importance sampling with unit weight for pairs (u, v), where
removing u from and adding v to V (s) produces a k − 1−CIS and zero otherwise.
In Line 9, because removing a nonarticulating vertex and adding another vertex to
s cannot lead to a disconnected subgraph, we can avoid a DFS when u /∈ As . This
completes the proof. ��
Proof (Time Complexity) Assuming access to a precomputed vector of degrees, the
part up to Line 1 is O(k−12). In each proposal, Lines 3 and 4 areO(k−1), and Line 5 is
O(Δs). Line 6 is O(k−1), and the expected complexity of Line 9 is O(k−12 |As |/k−1)

because in expectation only |As |/k−1 graph traversals will be required. The acceptance
probability is ≥ 1/k−1 is Line 7 and ≥ k−1−|As |

k−1 . The expected number of proposals

is therefore ≤ k−12
k−1−|As | . As such, the expected time complexity is O(k − 12(1 +

Δs+k−1|As |
k−1−|As | )). ��
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(a) (b)

Fig. 4 Parallel RWTs and reservoirs: a The set of m RWTs sampled on G2 in parallel, where the supernode
ζ2 is colored black. The gray, blue, red and green colors represent states in stratum 2–5, respectively. b The
upper triangular reservoir matrix in which the cell in the r -th row and t-th column contains samples from
Ûr ,t

E Additional implementation details

E.1 Parallel sampling with a reservoir matrix

Given a reasonably large m and the number of strata R, we initialize an upper tri-
angular matrix of empty reservoirs [Ûr ,t ]2≤r<t≤R and a matrix of atomic counters
[m̂q,r ]2≤r<t≤R initialized to 0. In each stratum r , while being sampled in parallel
whenever a tour enters the t-th stratum, m̂r ,t is incremented, and with a probabil-
ity min(1, m/m̂r ,t), the state is inserted into a random position in the reservoir Ûr ,t and
rejected otherwise. The only contention between threads in this scheme is at the atomic
counter and in the rare case where two threads choose the same location to overwrite,
wherein ties are broken based on the value of the atomic counter at the insertion time,
guaranteeing thread safety. The space complexity of a reservoir matrix is therefore
O(R2m).

A toy example of this matrix is presented in Fig. 4, where R = 5, and the RWTs
are being sampled on the graph stratum G2. Whenever (non-gray) states in I 3:5 are
visited, they are inserted into the corresponding reservoirs–Û2,5 is depicted in detail.

E.2 PSRW neighborhood

The neighborhood of a k−CIS s in Gk is the set of all vertices u, v ∈ V such that
replacing u with v in s yields a k−CIS. Formally,

NGk (s) ≡
{
(u, v) ∈ V (s) × NG (V (s)) : G (V (s) ∪ {v}\{u}) ∈ Vk

}
, (18)

where NG(V (s)) = ∪x∈V (s)NG(x) is the union of the neighborhood of each ver-
tex in s. The size of the neighborhood is then O(k NG(V (s))) ∈ O(k2ΔG) because
NG(V (s)) ∈ O(kΔG), where ΔG is the maximum degree in G. Each potential neigh-
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bor further requires a connectivity check in the form of a BFS or DFS, which implies
that the naive neighborhood sampling algorithm requires O(k4ΔG) time.

E.2.1 Articulation points

Apart from the rejection sampling algorithm from Algorithm 1, we use articulation
points to efficiently compute the subgraph bias γ from Eq. (9). Specifically, given the
k − 1−CIS, s, γ (s) = (

κ−As
2

)
, As is the set of articulation points of s. This draws

directly from (Wang et al. 2014, Sec-3.3) and the definition of articulation points.
Hopcroft and Tarjan (1973) showed that for any simple graph s the set of articulation
points can be computed in O(|V (s)| + |E(s)|) time.

Algorithm 2: Ripple for Subgraph Counting
Input: Input graph G, Order k, Set of subgraph patterns H of interest
Input: Initial vertex stratum I 1, Reservoir Size m and Error Bound ε

Output: μ̂, an asymptotically unbiased estimate of Ck
1 μ̂ = 0, β̂q,t = 0, Ûq,t = ∅, ∀1 ≤ q < t ≤ R;

2 Run BFS for stratification ρ : Vk−1 → {1, . . . , R}, with I 1 (Proposition 2)

/* Exact computation in the first stratum */
3 foreach u ∈ I 1, v ∈ NGk−1 (u) do
4 Update β̂1,ρ(v)+ = 1 , Û1,ρ(v)∪ = v

5 Update μ̂+ =
(
1{�uv∼H}

γ (�uv)

)

H∈H ; // Equation (9)

6 for r ∈ 2, . . . , R do
7 Initialize μ̂r = 0, mr = 0
8 parallel while Equation (10) is not satisfied do
9 Sample q from {1, . . . , r − 1} w.p. β̂q,r

10 Sample u from Ûq,r ; // Equation (6)
11 Sample v ∼ unif(NGk−1 (u)) ; // Algorithm 1

12 while ρ(v) ≥ r do

13 Update μ̂r+ =
(
1{�uv∼H}

γ (�uv)

)

H∈H ; // Equation (8)

14 if ρ(v) > r then
15 Update β̂r ,ρ(v)+ = 1 ; // Equation (4)

16 Update Ûr ,ρ(v)∪ = v ; // Equation (6)

17 u := v

18 if ρ(u) = r then
19 Sample v ∼ unif(NGk−1 (u))

20 else
21 while ρ(v) �= r do
22 Sample v ∼ unif(NGk−1 (u))

23 mr+ = 1

24 Compute d̂egr = ∑r−1
q=1 β̂q,r ; // Equation (5)

25 μ̂+ = d̂egr
2mr

μ̂r ; // Equation (8) and (7)

26 Update β̂r ,t∗ = d̂egr
mr

, ∀t > r ; // Equation (4)

27 return μ̂
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E.3 Proof of Proposition 4

Proposition 10 (Extended Version of Proposition 4)We assume a constant number of
tours m in each stratum and ignore graph loading. The Ripple estimator of k−CIS
counts described in Algorithm 2 has space complexity in

O
(
k3D2

Gm + |H|
)

≡ Ô
(
k3 + |H|

)
,

where Ô ignores all factors other than k and |H|, m is the size of the reservoir from
Sect. 4.3, DG is the diameter of G, and |H| is the number of patterns of interest.

The total number of random walk steps is given byO(k3mDGΔGCrej), where Crej
is the number of rejections in Line 21 of Algorithm 2, ΔG is the largest degree in G,
and the total time complexity is Ô(k7 + |H|).
Remark 2 In practice, we adapt the proposals in Algorithm 1 to minimize Crej using
heuristics over the values of dist (·) from Proposition 2.

Lemma 5 Given a graph stratum G r from Definition 5, for some r > 1, define αr =
|{u∈I r : N(u)∩I 1:r−1 �=∅}|/|I r | as the fraction of vertices in the r-th vertex stratum that
share an edge with a previous stratum. The return time ξr of the chain Φ r to the

supernode ζr ∈ V r follows EΦ r [ξr ] ≤ 2d̄r
αr

, where d̄r is the average degree in G of all
vertices in I r .

Proof Because αrI r vertices have at least one edge incident on ζr , dG r (ζr ) ≥ αrI r .
From Definition 5, because all edges not incident on I r are removed from G r ,
Vol(G r ) ≤ 2

∑
u∈I r

dG (u). Therefore, from Lemma 1,

EΦ r [ξr ] = Vol (G r )

d (ζr )
≤ 2

∑
u∈I r

dG (u)

αrI r
= 2d̄r

αr
.

��
Proposition 11 The Ergodicity-Preserving Stratification from Proposition 2 is such
that αr = 1 for all r > 1 as defined in Lemma 5, and consequently, the diameter of
each graph stratum is ≤ 4. The total number of strata R ∈ O(k DG), where DG is the
diameter of G.

Proof We show in “Appendix D.1” that for each vertex s ∈ Vk−1, if ρ(s) = r > 1,
there exists s′ ∈ N(s) such that ρ(s′) < r . This implies that αr = 1. In G r , therefore,
from ζr , all vertices in I r are at unit distance from ζr , and vertices in N(I r )\I r are
at a distance of 2 from ζr . Because no other vertices are present in G r , this completes
the proof of the first part. Trivially, R ≤ (k − 1) · maxu∈V dist(u) ∈ O(k · DG). ��
Proof (Memory Complexity) From Algorithm 2, we compute a single count estimate
per stratum and maintain reservoirs and inter-partition edge count estimates for each
2 ≤ q < t ≤ R. Because a reservoir Ûq,t needs O(km) space (“Appendix E.1”),
the total memory requirement is O(R2 km), where R is the number of strata. From
Proposition 11, plugging R ∈ O(kDG), and because storing the output μ̂ requires
O(|H|) memory the proof is completed. ��
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Proof (Time Complexity) The stratification requires a single BFS ∈ O(|V |+|E |) from
Sect. 4.2. In Line 3, the estimation phase starts by iterating over the entire higher-order
neighborhood of each subgraphs in I 1. Based on “Appendix E.2.1”, Line 5 is in O(k2).
Because the size of the higher-order neighborhood of each subgraph is O(k2ΔG) from
“Appendix E.2”, the initial estimation phase will require O(|I 1| k4ΔG) time.

In all other strata r = 2, . . . , R, we assume that m tours are sampled in Line 8.
Starting each tour (Lines 9 to 11) requires order of magnitude R time, leading to a
total time of O(m R2) ∈ O(mk2D2

G) because R ∈ O(kDG) from Proposition 11. The
total time for these ancilliary procedures is O(mk2D2

G + |I 1| k4ΔG)

Therefore, the time complexity of bookkeeping and setup is O(mk2D2
G +

|I 1| k4ΔG + |V | + |E |) ∈ Ô(k4). The time complexity at each random walk step
is O(k − 12ΔG + k − 14) ∈ Ô(k4) from “Appendix D.2” D.2 and “Appendix E.2.1”.
We assume that the expected number of rejections in Line 21 is given byCrej. The total
number of random walk steps is given by O(R m Crej) times the expected tour length.
By Lemma 5 and Proposition 11, the expected tour length is O(ΔGk−1) ≡ O(k2ΔG).
Therefore, the total number of random walk steps is O(k3mDGΔGCrej).

O(|H|) time is to print the output μ̂. We assume that updating μ̂ is amortized
in constant order if we use a hashmap to store elements of the vector, and because
updating a single key in said hashmap is by Eq. (9) increments, the proof is completed.

��
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