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Abstract. Bayesian methods have been widely used to estimate mod-
els with complex structures. To assess model fit and compare different
models, researchers typically use model selection criteria such as De-
viance Information Criteria (DIC), Watanabe-Akaike Information Crite-
ria (WAIC) and leave-one-out cross validation (LOO-CV), the calcula-
tion of which is based on the likelihoods of the models. When models
contain latent variables, the likelihood is often specified as conditional
on the latent variables in popular Bayesian software (e.g., BUGS, JAGS,
and Stan). Although this practice reduces computation work and does
not affect model estimation, the previous literature has shown that model
comparisons based on the conditional likelihood could be misleading. In
contrast, marginal likelihoods can be obtained by integrating out the la-
tent variables and be used to calculate model selection criteria. In this
study, we evaluate the effect of using conditional likelihoods and marginal
likelihoods in model selection for growth mixture models. Simulation re-
sults suggest that marginal likelihoods are much more reliable and should
be generally used for growth mixture modeling.

Keywords: Marginal likelihood - conditional likelihood - DIC - WAIC
- LOO-CV.

1 Introduction

Growth mixture modeling (GMM) is a method for identifying multiple unob-
served subgroups in a population, describing longitudinal change within each
subgroup, and examining differences in change among those subgroups (Ram
& Grimm, 2009). GMM has been increasingly used in social and behavioral sci-
ences (e.g., Frankfurt et al., 2016; McDermott et al., 2018; Smith & Ehlers, 2020;
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Ren et al., 2021) to flexibly model growth trajectories with substantial individ-
ual variations. Despite the popularity of GMM, several issues are involved in its
model estimation (Bauer & Curran, 2003; Hipp & Bauer, 2006), including vio-
lation of distributional assumptions, obtaining local solutions, nonconvergence,
etc. Researchers have made efforts in addressing these issues, many of which are
in the Bayesian framework (e.g., Depaoli, 2013; Kim et al., 2021a; Lu et al.,
2011). Bayesian approaches are relatively flexible in accounting for the nonnor-
mality in data and enable incorporating prior information into model estimation
to help yield converged results when there are not enough samples or latent
classes are not well separated (Depaoli, 2014; Kim et al., 2021b). In addition,
data augmentation and Markov chain Monte Carlo (MCMC) techniques can be
naturally applied in the Bayesian framework to reduce the mathematical de-
mands for complex model estimation.

Deciding the appropriate number of latent classes (i.e., unobserved sub-
groups) is critical in GMM and is typically achieved by comparing models with
different number of latent classes and selecting the best fitting model. In Bayesian
statistics, model comparison and selection can be performed using the Bayes fac-
tor which is the ratio of the posterior odds to the prior odds of two competing
models. Since the calculation of the Bayes factor is often difficult and greatly
influenced by the priors, model comparison in GMM is typically conducted using
information criteria and cross validation which estimate out-of-sample predictive
accuracy using within-sample fits. The calculation of the model selection criteria
is based on the likelihoods of the models.

In popular Bayesian software (e.g., BUGS, JAGS, and Stan), the likelihood
of GMM is often specified as conditional on the latent variables. However, recent
studies (e.g., Kim et al., 2021a; Merkle et al., 2019) reported that model selection
and comparison based on the conditional likelihood in latent variable modeling
can be misleading. Instead, marginal likelihoods were used where latent vari-
ables were integrated out in the likelihood functions. Although conditional and
marginal likelihoods do not make differences in terms of model estimation after
all Markov chains converge, the distinction between them in model selection is
substantial but is often overlooked. As far as we are aware, only Merkle et al.
(2019) has particularly studied the difference between conditional and marginal
likelihoods and recommended use of marginal likelihood based information cri-
teria in Bayesian latent variable analysis.

Due to the complexity of GMM and unique challenges associated with it, in
this study, we will evaluate the performance of conditional and marginal likeli-
hood in GMM class enumeration. We focus on two information criteria: Deviance
Information Criterion (DIC; Spiegelhalter et al., 2002) and Widely Applicable
Information Criterion (Watanabe-Akaike Information Criterion, WAIC; Watan-
abe, 2010), and one cross validation approach: leave-one-out cross validation
(LOO-CV; Gelman et al., 2013; Vehtari et al., 2017). Their performance based
on different likelihoods in GMM class enumeration will be investigated. The
paper is organized as follows. We first briefly review growth mixture models, in-
troduce the associated conditional and marginal likelihoods, and different model
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selection criteria. Then we use a simulation study to assess the impact of con-
ditional and marginal likelihoods on GMM model selection. Recommendations
are provided at the end of the article.

2 Bayesian GMM Model Selection

2.1 A brief review of growth mixture models

Growth mixture models extend growth curve models by assuming that a popula-
tion consists of a number of latent classes (i.e., unobserved subgroups) and each
latent class is characterized by a unique growth trajectory. Suppose that a pop-
ulation consisted of G latent classes that have distinct patterns of change. Let

Y; = (Y1, - - - ,ym)/ denote a vector of T; repeated observations for individual 4
(i € {1,...,N}). A general form of growth mixture models can be expressed as
Yil(zi = g9) = Aibig + €, (1)

where the subscript g indicates that a corresponding parameter or variable is
class-specific. In this model, z; represents a class indicator for individual i with
mixing proportion for class g being P(z; = g) = 1y, A; is a T; X ¢ matrix of factor
loadings that determines the shape of the growth trajectories, b;, is a g x 1 vector
of latent factors for class g (g € {1,...,G}), and € = (€i1,...,€7,) isa Ty x 1
vector of intraindividual measurement errors. The latent factors are often as-
sumed to follow multivariate normal distributions such that b;, ~ MN(8,,¥,),
where 3, is the mean of b;; and ¥, is the covariance matrix of b;;. The mea-
surement errors are also assumed to be normally distributed, €, ~ M N (0, X ),
leading the conditional mean of y; given b;, to be E(y;|b;q) = A;b;,. In practice,
it is common to further assume that the intraindividual measurement errors have
equal variances and are independent across time, so that X'y = agI , where 03 is
a scale parameter for class g. We assumed this measurement error structure for
the rest of this study.

2.2 Conditional and marginal likelihoods of growth mixture models

With the normality assumption, the likelihood function of the model in Equation
(1) can be specified. As stated previous, popular Bayesian software often specify
the likelihood as conditional on the latent variables. That is,

Lc(bi972i70§|Y) :p(y|b7g7zl :9703)5 (2)
where p(y;|big,zi = g,ag) is the density function of the multivariate normal
distribution M N (A;bsg,021).

To obtain the marginal likelihood of Model (1), the latent variables b;, and z;
have to be integrated out of the conditional likelihood. The marginal likelihood
for the normal-distribution-based GMM has a closed form:

N @&
LBy @y, g, 02ly) = p(y1By, g, g, 02) = [[ D 7ap(vil By, ¥y, 02),  (3)

i=1g=1
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where p(yi|3,, ¥y, UZ) is the density function of the multivariate normal distri-
bution MN(A;B,, A;®,A; + o2I).
Given the likelihood functions, model selection criteria can be computed.

Based on the model selection criteria, we can compare GMMs with different
number of latent classes and select the best fitting model.

2.3 Model comparison criteria

In this paper, we use DIC, WAIC, and LOO-CV to select the optimal number
of latent classes for GMM. We briefly introduce the three model comparison
criteria below.

DIC was proposed by Spiegelhalter et al. (2002). Although it has received
much criticism (e.g., Celeux et al., 2006), it is widely used in Bayesian model
selection. DIC is defined as the sum of the expected deviance over the parameter
space and the effective number of model parameters,

The expected deviance is
D = Eg[—2log p(y|®)|y] + C,

where @ is a set of model parameters, and C' is a constant that can be canceled
out when comparing models. D is calculated as the posterior mean of the de-
viance. The effective number of parameters, pp, measures the complexity of the
model and is defined as

PD = E - D7
where D is the deviance calculated at the posterior mean of @. Models with
smaller DICs are preferred.

WAIC was proposed more recently and have been shown to have advantages
over DIC (Vehtari et al., 2017). WAIC uses the entire posterior distribution, is
asymptotically equal to Bayesian cross validation, is invariant to parameteriza-
tion, and works for singular models. We used the following definition of WAIC
(Gelman et al., 2013).

N

s N
1 S S
WAIC = -2 E log (S E p(yi|@(‘))> +2 E Vars_ log p(y;:|©)),
s=1

i=1 i=1

where S is the number of MCMC iterations, O is a draw from the posterior

distribution at the sth iteration, and Var?_, represents the sample variance,
1

Var?_ja, = 1 Zsszl(as — @)%, Models with smaller WAICs are preferred.

LOO-CV evaluates the model fit based on an estimate of the log predictive
density of the hold-out data. Each data point is taken out at a time to cross
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validate the model that is fitted based on the remaining data. LOO-CV is defined
as

N
L0O = -2 log [ p(u:|E)p(©ly-i)de.

i=1

and in practice, it can be approximately calculated as

1

N
LOO = -2 log :

R I TICI
S p(yil 0y

Vehtari et al. (2017) showed that although WAIC is asymptotically equal to
LOO-CV, LOO-CV is more robust in the finite case with weak priors or influ-
ential observations.

3 A Simulation Study

We now present a simulation study to evaluate the impact of conditional and
marginal likelihoods based model selection criteria on GMM class enumeration.

We generated data from a two-class linear growth mixture model with 4
equally spaced measurement occasions. Namely, in Equation (1), G = 2, T; = 4,
A; = ((1,1,1,1),(0,1,2,3)"), the latent intercept and slope for class 1, b;; ~
MN(B,,%;) and the latent intercept and slope for class 2, b;s ~ MN(8,,P2).
The covariance matrix of the latent intercepts and slopes were set to be ¥, =
U = (03 > 0'% 4> for ¢ = 1 and 2, and the intraindividual measurement er-
ror variance was set at o2 = 0.2. These variance and covariance parameters
were assumed to be the same across the two latent classes. We manipulated
three factors that could potentially influence the performance of GMM in the
simulation study: sample size, class separation, and class proportions. Two dif-
ferent sample sizes were considered (N = 300 or 500). Class separation was
characterized using Mahalanobis distance, which can be calculated as M D =

\/(,61 —B,)w (B, — B,), where 3, represented the means of latent intercepts
and latent slopes for the first latent class, and B, represented the means of la-
tent intercepts and latent slopes for the second latent class. We evaluated the
influence of a high class separation and a relatively low class separation. For
the high separation, the first class had an average latent intercept of 2 and an
average slope of 0.5, 3, = (2, 0.5)/, so in general, the scores were increasing over
time. The second class had an average latent intercept of 1 and an average slope
of 0, B, = (1,0)/, indicating that the overall trajectory was a flat line. This
setting yielded a Mahalanobis distance M D = 3.2. For the low class separation,
B, = (1.5,0.5) and B, = (1,0)’, which had MD = 2.7. The class proportions
were set to be either unbalanced (25% from the first class and 75% from the
second class) or balanced (50% from both latent classes).
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For each simulation condition, 200 datasets were generated. For each dataset,
we fit growth mixture models with one class (G = 1), two classes (G = 2), and
three classes (G = 3). Bayesian estimation of GMM was conducted using JAGS
with the rjags R package (Plummer, 2017). JAGS is a Bayesian data analysis
program that uses MCMC algorithms (e.g., Gibbs sampler) for generating sam-
ples from the posterior distribution of model parameters. In JAGS, we obtained
posterior samples of the model parameters by augmenting the latent variables
(big and z;). With the sampled parameters and the likelihood of the model, DIC,
WAIC, and LOO-CV can be calculated. Since the likelihood can be calculated
in Equation (2) or Equation (3) when a model contains latent variables, DIC,
WAIC, and LOO-CV were calculated based on the conditional likelihood and the
marginal likelihood, separately. We then assessed the performance of the model
comparison criteria based on different likelihoods in class enumeration.

The following priors were used for model inferences as these priors had
little information about the parameters: p(8,) = MN(0,10° x I) for g =
1,....,G, p(¥) = InoWishart(2,I), p(c?) = InvGamma(.01,.01), and p(m) ~
Dirichlet(107 ), where G is the total number of latent classes, and j isa G x 1
vector that has 1 for all components for G > 1. The number of MCMC iterations
was set to 10,000, and the first half of the iterations were discarded for burn-in.
Although our pilot study showed that the 10,000 iterations were enough for the
chains to converge, to guarantee convergence, we also allowed up to 10 different
starting values for each model estimation to obtain converged results.

3.1 Results

Figures 1(a)-(b) summarize the model selection results based on DIC, WAIC,
and LOO-CV when class proportions are 25% and 75%. For balanced classes,
the relative performance of the model comparison criteria based on conditional
and marginal likelihoods has the same pattern and thus is not repeated in this
section. Figures 1(a) and 1(b) report the results for N = 300 and N = 500,
respectively. For each figure, the vertical axis (i.e., height of the bars) repre-
sents the probability of the correct model (2-class growth mixture model) being
selected.

From Figure 1, it can be seen that, in general, model selection based on DIC,
WAIC, and LOO-CV is more likely to be correct when sample size is larger and
the class separation is higher. When the class separation is relatively low (e.g.,
MD = 2.7), increasing sample size raises the chance to select the correct number
of latent classes in GMM. For example, the marginal likelihood based DIC has
39% of the chances to select the correct model when N = 300. This percentage
increases to 87% when the sample size is 500.

In addition, model selection criteria based on the marginal likelihood are more
reliable as the bars on the right panel of Figures 1(a)-(b) (marginal likelihood
based criteria) are generally taller than the bars on the left panel of the figures
(conditional likelihood based criteria). Although conditional likelihood based
model selection criteria may perform well under some conditions (e.g., when
N = 500, DIC calculated with the conditional likelihood has 87% of the chance to
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Fig. 1. Model selection results based on DIC, WAIC, and LOO-CV when class pro-
portions are 25% and 75%.
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select the correct model), they are unstable in general. In practice, it is difficult to
tell whether the conditional likelihood based model selection criteria are reliable
or not for the study setting. Therefore, the conditional likelihood should not
be used to calculate model selection criteria for model comparison. We have
further investigated the probability of each model being selected for different
data conditions. As demonstrated in Figure 2, even when the class separation
is relatively low, DIC, WAIC, and LOO-CV calculated based on the marginal
likelihood almost always select the correct 2-class model. In contrast, the model
selection criteria calculated based on the conditional likelihood tend to prefer
simpler models (i.e., 1-class model) under this condition.
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Fig. 2. The comparison between the conditional likelihood and marginal likelihood in
selecting different growth mixture models when N = 500 and M D = 2.7. The height
of the bar represents the percentage that the corresponding model is selected.

Moreover, when the marginal likelihood is used, DIC, WAIC, and LOO-
CV provide similar values. WAIC and LOO-CV, in particular, provide almost
identical values. However, when the conditional likelihood is used, DIC, WAIC,
and LOO-CV are not as similar as those we get from the marginal likelihood.
In addition, WAIC and LOO-CV seem to perform slightly worse than DIC,
especially when the class separation is relatively low.

4 Discussion

Bayesian methods have been increasingly used for GMM model estimation be-
cause of their flexibility and capability to handle model with complex structures.
An important task of GMM is to determine the number of latent classes, and
is typically conducted by model comparisons. Commonly used Bayesian model



Title Suppressed Due to Excessive Length 9

comparison criteria are calculated based on the likelihood of the model. In this
paper, we evaluated the impact of the conditional likelihood and the marginal
likelihood on the performance of different model comparison criteria using a
simulation study. We would like to note that the simulation results showed a
very salient pattern and were robust against the simulation settings. Our study
echoed the previous literature and emphasized the use of marginal likelihood for
the calculation of Bayesian model selection criteria when models contain latent
variables.

We want to point out that when data are normally distributed, the marginal
likelihood is recommended to use and DIC, WAIC, and LOO-CV calculated
based on the marginal likelihood can almost guarantee the correct class enumer-
ation. However, the performance of the model selection criteria based on differ-
ent likelihoods were not systematically evaluated when data are contaminated
by outliers. Previous research (e.g., Kim et al., 2021a) suggested the applica-
tion of robust methods for dealing with the nonnormality in class enumeration
in GMM. We expect that combining robust methods with marginal likelihood
based model selection criteria may improve the model selection accuracy. Future
research needs to be conducted towards this direction.

We also would like to note that in our study, the normality assumption is
applied to the growth mixture model, with which a close form of the marginal
likelihood is available. When a close form of the marginal likelihood cannot be
obtained (e.g., a robust model using Student’s ¢ distributions), we need to nu-
merically integrate the conditional likelihood with respect to the latent variables.
Since numerical integration takes time, the entire class enumeration procedure
may be slowed down. It is worth investigating ways to solve numerical integra-
tions faster.
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