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Abstract— Graph neural network (GNN) is a variant of deep
neural networks (DNNs) operating on graphs. However, GNNs
are more complex compared with DNNs as they simultaneously
exhibit attributes of both DNN and graph computations. In this
work, we propose a ReRAM-based 3-D manycore processing-
in-memory architecture called ReMaGN, tailored for on-chip
training of GNNs. ReMaGN implements GNN training using
reduced-precision representation to make the computation faster
and reduce the load on the communication backbone. However,
reduced precision can potentially compromise the accuracy of
training. Hence, we undertake a study of performance and
accuracy tradeoffs in such architectures. We demonstrate that
ReMaGN outperforms conventional GPUs by up to 9.5× (on aver-
age 7.1×) in terms of execution time, while being up to 42× (on
average 33.5×) more energy efficient without sacrificing accuracy.

Index Terms— 3-D architectures, graph neural networks
(GNNs), network-on-chip (NoC), reduced precision, ReRAM.

I. INTRODUCTION

GRAPH neural networks (GNNs) enable comprehensive
predictive analytics over graph structured data. As a

result, they have become popular in diverse real-world applica-
tions such as social networks [1], recommendation systems [2],
quantum chemistry [3], and many other applications [4].
A key challenge in facilitating such analytics is to learn
good representations over nodes, edges, and graphs. Recent
advances in GNNs have successfully addressed this challenge.
Unlike traditional deep neural networks (DNNs), which work
over regular structures (images or sequences), GNNs operate
on graphs. This is achieved by performing a neighborhood
aggregation operation, where each node aggregates the fea-
tures of its k-hop neighbors to learn node representations
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with high predictive ability [5]. This in turn gives rise to
repeated message-passing operations that can become very
communication intensive. Moreover, the computations asso-
ciated with GNN can be divided into two parts: 1) vertex-
centric computations involving trainable weights, similar to
conventional DNNs and 2) edge-centric computations, which
involve accumulating information from neighboring vertices
along the edges of the graphs [5], [6]. Hence, GNN train-
ing exhibits characteristics of both DNN training, which is
compute-intensive, and graph computation that exhibits heavy
data exchange. Conventional CPU- or GPU-based systems are
not tailor-made for applications that exhibit such trait. This
necessitates the development of new and efficient hardware
architectures tailored for GNN training/inference.1

Both the vertex- and edge-centric computations in GNNs
can be represented as multiply-and-accumulate (MAC) opera-
tions, which can be efficiently implemented using resistive ran-
dom access memory or ReRAM-based architectures [6]–[9].
In addition, ReRAMs allow for processing in-memory, which
helps reduce the amount of communication (data transfers)
between computing cores and the main memory. This is partic-
ularly useful for GNN training as it involves repeated feature
aggregation along the graph edges [6]. Feature aggregation
(a.k.a. message passing) is a communication intensive task
that generates significant data traffic [10]. The in-memory
nature of ReRAM computation significantly reduces the on-
chip traffic leading to better performance [11]. However,
existing ReRAM-based architectures are designed to accelerate
specifically either DNNs (see [12], [13]) or graph compu-
tations (see [14]). As GNN training exhibits characteristics
of both DNNs and graph computations, these tailor-made
architectures are not well suited for efficient GNN training.
Hence, we design a novel ReRAM-based architecture that
caters to the specific characteristics exhibited by GNN training
and this is one of the main focuses of this work.

ReRAM-based accelerators for DNN training utilize rel-
atively larger sized ReRAM crossbars (e.g., 128 × 128)
[12], [13]. However, larger ReRAM crossbar sizes are not effi-
cient for storing sparse matrices. On the other hand, traditional
ReRAM-based architectures for accelerating graph computa-
tions use relatively smaller sized crossbars to avoid/reduce
zero storage [14]–[16] as real-world graph data are often
extremely sparse. These disparate design choices present a
challenge as GNNs involve both DNN and graph computa-
tions. In this work, we show that even though larger ReRAM
tiles are inefficient for storing sparse matrices, they have
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better storage density per unit silicon area. As a result, larger
ReRAM crossbars tend to be more efficient in terms of overall
full-system area and energy consumption for storing sparse
graphs.

Next, it is also important to ensure efficient communi-
cation between ReRAM-based processing elements (PEs) to
achieve high performance. Traffic associated with GNN train-
ing exhibits many-to-one-to-many, multicast, and long-range
characteristics. This data exchange pattern occurs due to the
message-passing operations required to accumulate neighbor
information in a recursive approach [10]. Traditional planar
(2-D) architectures are not suitable for supporting high degree
of long-range communication due to limited floor-planning
choices [17] while also not being inefficient at handling mul-
ticast traffic [18]. Three-dimensional (3-D) manycore archi-
tectures are capable of addressing the performance limitations
arising due to heavy long-range data exchange in addition to
supporting efficient multicast [19], [20]. Prior work has shown
that, by stacking one layer on top of another, it is possible
to reduce overall communication latency in a system. This
helps to design low latency and high-throughput communica-
tion architecture via a multicast enabled 3-D network-on-chip
(NoC) [19], [20]. In addition, ReRAM-based accelerators rely
on 16-bit fixed-point computation [12]. Employing a reduced-
precision representation can help accelerate the computation
and alleviate the heavy data exchange associated with GNN
training. However, reduced precision can adversely affect
the achievable accuracy. Hence, we explore performance and
accuracy tradeoffs to fully realize the benefits of reduced-
precision training on ReRAM-based architectures for GNN
training. Hence, our hypothesis is that a multicast enabled 3-D
architecture consisting of ReRAM-based PEs, using reduced-
precision variable representation, will be suitable for GNN
training.

In this article, we propose a ReRAM-based manycore
architecture for training GNNs referred to as ReMaGN (pro-
nounced as “reimagine”). The proposed ReMaGN architecture
consists of: 1) ReRAM-based PEs; here, multiple ReRAM
crossbars make up a tile and each PE consists of multi-
ple tiles; these PEs are used to accelerate the large num-
ber of MAC operations for training GNNs; 2) stochastic
rounding enabled reduced-precision operations to acceler-
ate GNN training without sacrificing accuracy; and 3) a
high-throughput 3-D NoC architecture as the communication
backbone. The main contributions of this work include the
following.

1) We demonstrate superior storage efficiency (bit/area) by
using uniform ReRAM crossbar configuration for both
graph and DNN computations without introducing any
additional power overhead.

2) We design an energy-efficient and high-performance
3-D manycore architecture for accelerating GNN train-
ing. We map neural layers to PEs considering the
on-chip traffic pattern, which enables high-throughput
GNN training.

3) We propose a design methodology to train GNNs on
ReMaGN architecture using reduced-precision represen-
tation, with minimal accuracy loss.

4) We demonstrate that ReMaGN outperforms traditional
GPU-based designs for training GNNs on diverse
real-world graphs with millions of nodes.

To the best of our knowledge, this is the first work that
proposes a ReRAM-based manycore architecture with
reduced-precision representation and enabled by a 3-D NoC
for high-performance and energy-efficient training of GNNs.
The rest of this article is organized as follows. Section II
describes relevant prior work. In Section III, we discuss
the salient features of GNNs, especially the traffic patterns
that must be considered for NoC design. In Section IV,
we introduce the proposed ReMaGN architecture, highlight
the role of the 3-D NoC, and describe the GNN layer mapping
strategy. Section V presents the experimental results and our
analysis based on these results. The conclusion is provided in
Section VI.

II. RELATED PRIOR WORK

This work focuses on accelerating GNN training on
ReRAM-based manycore architectures. In this section,
we review related prior work on ReRAM-based architectures
and different hardware platforms for accelerating GNN train-
ing/inference.

A. ReRAM-Based Architectures

ReRAMs can be used as memory and also to perform in
situ MAC (IMA) operations [9], [11]. Both DNN and graph
computation rely heavily on such MAC operations. This makes
ReRAM-based architectures excellent candidates for DNN
training/inference [12], [13], [21]. These architectures employ
pipelined DNN training on ReRAM and have been shown to
significantly outperform tradition CPU-/GPU-based system in
terms of both execution time and energy efficiency. However,
all of the ReRAM-based architectures mentioned above over-
look the need for an appropriate communication backbone
necessary in a manycore architecture. GPU-ReRAM-based
heterogeneous architectures were proposed in [22] and [23] to
improve the accuracy of trained models while also addressing
the communication-related issues with an appropriate NoC
design [20], [24]. ReRAM-based architectures have been used
to accelerate recurrent neural network (RNN) training with
similar success as well [25].

However, the sparsity of graph structured data poses a sig-
nificant challenge in efficient computation and storage arising
from the presence of redundant zeros due to sparse adjacency
matrix for graphs. Note that these zeros are redundant as
multiplication/addition with zero results in a zero and have
no effect on the overall computation. Hence, storing these
redundant zeros on ReRAM cells gives rise to unnecessary
computation while requiring additional storage. There exists
a significant body of work, which addresses this unnecessary
zero storage issue. This in turn has made ReRAM-based graph
accelerators faster and more energy efficient than traditional
CPU-/GPU-based implementations [14]–[16].

All these ReRAM-based architectures are fine-tuned for
either DNN training/inference or graph analytics. GNN train-
ing not only exhibits characteristics of both DNN computation
and graph analytics but also involves heavy communica-
tion resulting from the neighborhood aggregation operation
essential for GNN training. As a result, both computation
and communication can become a performance bottleneck
without suitable hardware support. Hence, an effective archi-
tecture for GNN training should address the requirements for
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Fig. 1. Illustration of the computational components of a GNN. (a) Input graph represented as node features (Xi ) and adjacency matrix (A), (b) vertex-centric
computation layer (V ), (c) edge-centric computation layer (E); both V- and E-layers together constitute a neural layer of GNN, and (d) overall GNN structure
with three neural layers as an example. The arrows indicate the data communication pattern in a GNN. Note that each V-layer has its unique set of weights
(like traditional DNNs) which need to be mapped to different PEs. However, the E-layer depends on A only which is fixed for a given input graph. This
results in a many-to-one communication where all the PEs responsible for V-layer computations communicate with the same PEs storing the A matrix.

both DNN and graph computation while enabling efficient
communication.

Moreover, ReRAM-based architectures cannot support
32-bit floating-point-based operations like GPUs. ReRAM-
based architectures typically use 16-bit fixed-point represen-
tation [12], [26]. However, this can lead to unstable training
or poor accuracy due to precision loss. Stochastic rounding
can be used to preserve the accuracy of training CNNs on
ReRAMs using 16-bit fixed-point representation [24], [27].
However, investigating the effect on performance and accu-
racy with even lower precision representation has not been
thoroughly studied. It is important to note that stochastic
rounding cannot be implemented on ReRAM without addi-
tional circuitry. In this work, we demonstrate the accuracy
and performance tradeoffs when different bit precisions are
used in conjunction with stochastic rounding for training
GNNs.

B. Hardware for GNN Training

GNN training can be very memory intensive in the case
of large-scale graphs. Graph partitioning helps to reduce
the memory overhead associated with GNN training [28].
This “divide and conquer” approach allows for scalable
GNN training over large graphs with high speed and accu-
racy [28]. GNN accelerators using commodity processors,
field-programmable gate arrays (FPGAs), and custom ASICs
have been proposed recently for GNN inference [6], [10], [29],
[30]. However, all of these solutions focus only on GNN
inference, which is significantly simpler than training. GNN
training is considerably more challenging due to the heavy
data exchange between the forward and backward phases.
Furthermore, the architectures described in prior work focus
on relatively small graphs (with few hundred thousand nodes
only), which are less compute- and memory-intensive. In con-
trast, this article focuses on an accelerator for GNN train-
ing over large-scale graphs containing several millions of
nodes.

In this work, we design a single-chip manycore architecture,
referred to as ReMaGN, which is enabled by 3-D NoC uses
ReRAM-based PEs to accelerate GNN training by leveraging
the enhanced IMA capabilities of ReRAM. Next, we show that
it is possible to improve performance even further by using
reduced-precision variable representation. Finally, we demon-
strate the efficacy and scalability of the ReMaGN architecture
to accelerate GNN training over large-scale graphs containing
millions of nodes.

III. GNN COMPUTATION KERNEL

In this section, we introduce the salient characteristics of
a GNN and discuss the computational and inter-PE commu-
nication characteristics observed during the training process.
Fig. 1 shows different computational and communication
characteristics of a GNN. A graph consists of: 1) vertices:
each vertex V can be represented using a feature vector that
characterizes the node (as shown in Fig. 1(a), XV is the
feature vector of vertex V ) and 2) edges: represented by an
adjacency matrix indicating the vertex connectivity (A). This
node and edge information constitute the main element of the
computational kernel for training GNNs.

A GNN consists of multiple back-to-back neural layers.
Each neural layer involves two types of computations: 1) ver-
tex computation (V-layer), which is similar to MAC operations
in traditional DNNs, as shown in Fig. 1(b), and 2) edge
computation (E-layer), which resembles the message-passing
operation in graph analytics demonstrated in Fig. 1(c). The
following equations illustrate the operations involved in a
GNN (forward phase) and represent the vertex and edge
computations of GNN layer l, respectively:

GNN layer l:
{

Y l
V = Xl−1

V × W l (1)

Xl
V = A × Y l

V . (2)

A. Forward-Phase Computation

As mentioned above, vertex computation in (1) involves
a set of learnable weights W l for the lth layer (similar to
traditional DNNs). As shown in Fig. 1(b), the feature vector
of the nodes/vertices (Xl−1

V ) is multiplied with the weight
matrix (W l) to calculate the updated feature vector Y l

V . Edge
computations (representing the message-passing operation in
graph analytics [6]) require the aggregation of information
from all one-hop neighbors. This is achieved by multiplying
the updated feature vector Y l

V with the adjacency matrix (A)
as shown in (2). Note that A stores the edge information of
the input graph. Hence, multiplying Y l

V with A is equivalent
to aggregating all the information from one-hop neighbors
(message passing). This operation is illustrated in Fig. 1(c).
As we can see from (1) and (2) and Fig. 1(b) and (c),
the GNN layer forward-phase computations are essentially
MAC operations that can be implemented using ReRAMs.
Note that edge computation for GNNs is a sparse matrix-vector
multiplication (SpMV) involving A (which is a sparse matrix)
and the updated vertex feature vectors (Y l).
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B. Backward-Phase Computation

The backward-phase computations of GNN training consist
of error and gradient calculation for weight update, both of
which are also predominantly MAC operations [13], [31].
As mentioned earlier, GNN computation involves two layers,
V-layer and E-layer. Equations (3) and (4) represent the error
calculation part of the backward-phase computation in a GNN.
Note that, in forward phase, data propagate from layer l to
layer l + 1, while in backward phase, errors propagate from
layer l + 1 to layer l. As a result, the errors do not need to
be computed during the backward phase of the first layer of
the GNN. The following equations represent the vertex and
edge components during the error computation of GNN layer
l, respectively:

GNN layer l:
{

errl
V = (

W l+1)T × δ
l+1

V
· Xl+1

V (3)

δl
V = A×errl

V . (4)

Equation (3) determines the error for V-layer (errl
V ).

Here, “×” and “·” represent matrix-vector multiplications and
element-wise multiplication operations, respectively. The error,
δl+1

V , is propagated from layer l + 1 and errl
V is the result of

GNN backward-phase (V-layer) computation of neural layer l.
The final error of layer l and δl

V , is computed in the E-layer
following (4). Here, the error calculated in the V-layer (errl

V )
is accumulated over the graph edges via multiplication with
the graph adjacency matrix (A) and the overall error, δl

V ,
is calculated for every node. The final error is then used to
compute the partial derivatives of weights for every layer. The
derivative is calculated by the following equations:

GNN layer l:
{

zl
V = A × δl

V (5)

∇W l = (
Xl−1

V

)T · zl
V . (6)

Equations (5) and (6) represent the E-layer and V-layer
computations for calculating the gradient of the weights for
the lth GNN layer, respectively. Similar to other E-layer com-
putations, the errors from each node are accumulated over the
graph edges by multiplying δl

V with A (adjacency matrix) to
calculate the accumulated error (zl

V ) following (5). The partial
derivative of the weight matrix is the elementwise product of
accumulated error (zl

V ) and feature vector from the previous
layer (Xl−1

V ). As can be seen from (3)–(6), the backward-phase
computations are also simple MAC operations and can be
efficiently implemented using ReRAM-based PEs similar to
the forward phase. Hence, both forward and backward phases
of GNN training are executed using ReRAM-based PEs in the
proposed ReMaGN architecture.

C. Communication

Similar to traditional DNNs, the output of one neural layer
of computation is the input of the next layer of computation
(i.e., Xl

V from layer l is the input to layer l + 1). The edge
computation in (2) involves multiplication with the same adja-
cency matrix (A). Note that A stores the information of edges
and is fixed for a given graph. This results in some interesting
on-chip traffic patterns. First, each vertex computation has a
unique set of weights (i.e., W l �= W l+1), where W l is the
weight associated with the V-layer computation of layer l.
Hence, as an example, for a three-layer GNN, three sets of

Fig. 2. Illustration of data movement between PEs performing forward- and
backward-phase computations for a three-layer GNN.

weights—W 1, W 2, and W 3, need to be mapped/assigned to
unique sets of PEs for forward-phase computation. Similarly,
the adjacency matrix A is mapped to a separate set of PEs
than W 1, W 2, and W 3. This is necessary as DNN training on
ReRAMs follows a pipelined implementation, unlike in the
case of traditional GPUs [12]. GPUs execute DNN layers one
after another, whereas ReRAMs execute all the layers simul-
taneously on different inputs at any point of time (discussed
in more detail in Section IV). As a result, all the necessary
weights and adjacency matrices for GNN computation need
to be stored in the PEs simultaneously to enable pipelined
computation [13]. Hence, the same PE cannot be used to store
the weights and the adjacency matrices.

Storing all weights and adjacency matrices on-chip
(on ReRAM cells) also reduces off-chip communication.
To accomplish GNN training on-chip, PEs storing W 1, W 2,
and W 3 need to communicate their outputs with the same PEs
storing A and vice versa [following (1) and (2)]. This commu-
nication pattern is illustrated in Fig. 1(d). Here, V 1, V 2, and
V 3 represent the set of PEs storing W 1, W 2, and W 3. At each
PE, one V-layer computation occurs after which the result
then moves on to the PE storing A as represented by E . The
edge computation takes place at E . As evident in Fig. 1(d),
this results in a many-to-one-to-many communication pattern
as multiple PEs, i.e., V 1, V 2, and V 3, storing the different
sets of weights, communicate with the same PEs storing A
and vice versa. In the absence of a suitable interconnection
backbone, the inherent many-to-one-to-many communication
can overwhelm the training process, resulting in a performance
bottleneck.

Moreover, there is data movement between the forward
and backward phases of GNN training. This data movement
impacts the overall performance of the ReMaGN architecture.
The feature vectors Xl

V are shared between both forward and
backward phases. The output of layer l, Xl

V , is the input to
the backward-phase computation of the same layer, as shown
in (3). Furthermore, as shown in (1) and (6), the input to
layer l, Xl−1

V , is shared between both forward and backward
phases. Fig. 2 illustrates the data traffic between the forward
and backward phases for a GNN with three neural layers.
It should be noted that, each neural layer has V- and E-layer
computations which are not shown explicitly in Fig. 2 for
brevity. In Fig. 2, FLl , BLl1, and BLl2 denote the PEs storing
forward-phase weights of layer l and PEs responsible for
calculating backward-phase weight derivative and error of
layer l, respectively. The parameters Xl

V and δl
V are feature

vectors and error vectors, respectively, from layer l. All the
data computed during the backward phase of one layer (l)
need to be communicated to its preceding layer (l − 1).
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Fig. 3. Illustrative representation of (a) ReMaGN architecture and (b) ReGraphX architecture. Figures are for illustration purposes only.

It should be noted that the backward-phase computation in
GNN also exhibits many-to-one-to-many traffic as different
PEs responsible for the V-layer computation for backward
phase communicate with the same PE storing the adjacency
matrix, A, following (4) and (5). Hence, the manycore archi-
tecture needs to be supported by a suitable NoC for effective
training of GNNs.

IV. REMAGN ARCHITECTURE

In this section, we present the key attributes of the
ReMaGN architecture. First, we discuss the architecture of
each ReRAM-based tile. Next, we present the salient charac-
teristics of ReMaGN [see Fig. 3(a)] and discuss how it can be
used to train GNNs over large graphs.

A. Basics of ReRAM-Based Accelerator Design

ReRAMs enable fast and efficient in-memory MAC oper-
ations. In ReRAM-based accelerators for GNN training,
the neural weights are mapped to ReRAM cells following [12]
and [13]. Fig. 4 shows an illustration of GNN weight mapping
to the ReRAM crossbars. Here, we assume a V-layer (part of
the GNN) with a weight matrix of size M × N . Each element
of the weight is stored on the crossbars in a 16-bit fixed-
point format [12]. However, all 16-bits (216 states) are not
represented on a single ReRAM cell mainly due to the area
and noise concerns [32]. As shown in Fig. 4, the 16 bits of
each weight are distributed across multiple arrays/cells. In the
ReMaGN architecture, each ReRAM cell has 2-bit resolution.
As a result, a 16-bit fixed-point number requires eight ReRAM
cells. For 12- and 8-bit representations, six and four ReRAM
cells are needed to store each element of the weight matrix,
respectively.

Each ReRAM cell stores information in the form of con-
ductance. By applying a voltage into the word line (WLi

in Fig. 4) and sensing the resultant current along the bitline
(I j along BL j in Fig. 4), we implement the dot product of
the input voltage and the cell conductance. This dot prod-
uct functionality is used to design accelerators for machine
learning algorithms [12], [13]. A dot product is a sum of
products. The sum is obtained through the current summation
over the bitline. Each row computes a product by streaming in
the multiplicand via the word-line digital-to-analog converter
(DAC), as shown in Fig. 4. The MAC operation on ReRAMs
is based on Ohm’s and Kirchhoff’s current laws. ReRAMs can
perform N2 multiplications in O(1) time. Hence, it is fast and
also energy efficient compared with traditional GPUs.

Fig. 4. Illustration of data mapping and MAC operations on ReRAM
crossbars.

As mentioned in Section III, a GNN kernel principally
involves MAC operations. We implement MAC operation in
ReRAM crossbars in a pipelined manner [12]. Each bit of
the input data is fed to the pipeline. The pipeline consists
of seven stages: read from eDRAM (eDRAM is part of the
ReRAM tile, as shown in Fig. 3), compute on crossbar,
analog-to-digital conversion (ADC), bitwise shift-and-add (as
shown in Fig. 4), global shift-and-add, and activation func-
tion, and then finally write output to memory. Hence, the
total execution time to process a 1-bit data is seven cycles.
Following the pipelined implementation, we can process a
16-bit number (i.e., multiply with the value stored on the
ReRAM crossbars) in 22 cycles [12]. The overall execution
time can be further lowered by duplicating the computations
on multiple crossbars. Each crossbar would then process a
different input in parallel [13]. For instance, by duplicating the
weights on two crossbars, we can reduce the execution time
by approximately half and so on. The number of times the
weights can be duplicated depends on the amount of ReRAM
crossbars available on the chip. As the computations on GNNs
are primarily MAC operations (as described in Section III),
we use this execution model to determine the execution time
for each GNN layer and eventually the overall execution time
of ReMaGN.

B. ReRAM Tile Configuration for ReMaGN

Traditionally, ReRAM-based architectures for DNN training
are implemented using relatively large crossbars (e.g., 128 ×
128 as shown in [12]) because weight matrices tend to be
relatively dense. On the other hand, graph computations use
relatively small crossbars as smaller crossbars avoid/reduce the
storage of zeros (zeros are redundant in MAC operations) [15].
Graph computation generally involves sparse adjacency matri-
ces. Hence, reduction in zero storage is key to improving graph
computation on ReRAM-based architectures. This is achieved
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Fig. 5. (a) Example input graph and (b) adjacency matrix (0 means no edge
and 1 means presence of an edge).

using a nonoverlapping sliding window operation where the
adjacency matrix is decomposed into N × N segments to
map on to N × N-shaped ReRAM crossbars. This process is
illustrated in Fig. 5. Fig. 5(a) and (b) shows the input graph and
the adjacency matrix, respectively. Any N × N segment with
N2 zero entries (referred to as “invalid segment” in Fig. 5(b) in
red) is discarded [14]. The remaining segments that include at
least one edge (referred to as “valid segment” in Fig. 5(b)
in green) are stored on ReRAM cells. This methodology
reduces the number of zeros that need to be stored on-chip.
For instance, the adjacency matrix in Fig. 5(b) has 14 valid
segments and two invalid segments; the invalid segments can
be safely discarded, which reduce redundant MAC operations
involving zeros.

As elaborated in Section III, the training process of
GNNs exhibits attributes of both DNNs and graph computa-
tions. This presents a challenge while choosing the suitable
crossbar size for training GNNs. There are two possible
choices while designing ReRAM-based accelerators for GNN
training—heterogeneous and homogeneous. The heteroge-
neous architecture consists of different types of PE for DNN
(V-layer) computation and graph (E-layer) computation. Such
an architecture called ReGraphX has been proposed in [33].
In the heterogeneous ReGraphX architecture, we use 128 ×
128 size crossbar for V-layer of the GNN kernel. These PEs
are responsible for storing the DNN weights. In addition,
we use 8 × 8 size crossbar for E-layer computation and sparse
adjacency matrix storage. Note that smaller crossbars are
more efficient for storing sparse data [14]. In the ReGraphX
architecture, one planar layer of V-PEs is sandwiched between
two layers E-PEs. The overall ReGraphX architecture is shown
in Fig. 3(b).

It is also possible to design the architecture using a homo-
geneous crossbar configuration. From prior work, it is well-
known that ReRAM tile area is dominated by peripheral
circuits [12]. Hence, the ReRAM tile area and power do not
vary significantly with the crossbar size. However, storage
density (bits stored per unit area) varies significantly with
the crossbar size. A crossbar of size N × N can store up
to N2 values. Hence, to match the storage capability of one
128 × 128 crossbar, we will need up to 256 (=1282/82) 8 ×
8 crossbars [12]. This is not desirable as having more tiles (and
hence, more peripherals such as ADC, DAC, routers, etc.) can
lead to higher full-system area and power consumption. The
energy savings due to more efficient zero storage and smaller
peripheral circuits are much less compared with the increase
in power and area due to the larger number of peripherals.

To determine the suitable ReRAM crossbar configuration for
training GNNs, we consider different ReRAM crossbar sizes

varying from 8 × 8 to 256 × 256 for ReMaGN. We observe
two important trends: 1) smaller crossbars lead to many tiles
but store fewer zeros and 2) larger crossbars necessitate fewer
tiles but store more zeros. The choice of crossbar size should
be such that the overall area (and power consumption) is
minimized. Our analysis, as shown in Section V, indicates
that for all input graphs considered in this work for GNN
training, 128 × 128 sized crossbars achieve the best storage–
power–area tradeoffs. This happens because having smaller
crossbars but many tiles is more expensive (than the other
way around) in terms of both area and power. Hence, we use
128 × 128 sized crossbars for ReMaGN for storing both the
relatively dense weights and the sparse adjacency matrices.
The proposed ReMaGN architecture is comprised of multiple
planar tiers of homogeneous ReRAM crossbar-based PEs
stacked vertically on top of each other.

C. Communication Architecture for ReMaGN

In order to effectively utilize the computational benefits
provided by ReRAM-based PEs, the ReMaGN architecture
needs a high performance and efficient communication back-
bone. We leverage the benefits introduced by a 3-D NoC.
Moreover, the performance of the ReMaGN architecture is
further enhanced by reduced-precision representation.

1) High-Performance 3-D NoC: Efficient communication
between PEs during GNN training is a key aspect to achieve
high performance and energy efficiency in the ReMaGN
architecture. The communication pattern in GNN train-
ing includes multiple many-to-one-to-many communication,
as shown in Fig. 6(a). The overall communication process
starts with the PEs storing the GNN V-layer weights sending
the updated node features (Y in Fig. 1) to the PEs stor-
ing the adjacency matrix (A) for further processing. Then,
the aggregated information is moved forward to the weights
storing PE of the next neural layer. This results in the
aforementioned many-to-one-to-many patterns, where multiple
sets of PEs storing weights communicate with the same set of
PEs storing the adjacency matrix (A) and vice versa. This
results in the on-chip communication pattern illustrated in
Fig. 6(b), where it is shown that the heavy many-to-one-to-
many communication pattern can lead to a highly congested
link, which in turn becomes the bottleneck due to heavy traffic.
Moreover, training involves data sharing between the forward
and backward phases of computations of each layer; often the
backward-phase computations are implemented on separate set
of ReRAMs, as described in [12] and [13], Overall, this results
in the output of layer Li being sent to: 1) PEs responsible for
the next layer Li+1 and 2) the PEs responsible for the back-
ward phase of layer Li . As the same data are communicated
between multiple sets of PEs, there is significant amount of
multicast traffic, as shown in Fig. 6(c). Moreover, there can
be additional multicast traffic due to the mapping of GNN
layers (weights) to the ReRAM crossbars. For instance, if the
weights of one neural layer are mapped across multiple PEs,
the same data then have to be communicated to multiple
destinations resulting in additional multicast traffic.

The amount of data communicated between different PEs is
proportional to the total number of nodes present in the input
graph, which can often be very high. For example, the small-
est dataset considered for this work (PPI) has 1.6 million
entries for one (sub)graph input (more details are provided in
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Fig. 6. Simplified illustration of the communication during GNN training in
ReMaGN. (a) Communication pattern in GNN training for a 3-layer GNN,
(b) many-to-few communication pattern and resulting traffic hotspots, and
(c) multicast communication between different PEs.

Section V). When compared against datasets used to evaluate
DNNs, the amount of data is orders of magnitude larger.
As an example, one image in the popular ImageNet dataset
only has 150k entries (224 × 224 × 3). This large number
of nodes in each input graph results in a significant amount
of multicast traffic on top of the many-to-one-to-many data
exchange during GNN training. Therefore, a high performance
and efficient communication backbone are necessary to enable
accelerated GNN training in ReMaGN.

Traditional planar NoC architectures are not adequate
for such heavy communication. The large physical distance
between PEs in planar architectures imposes a significant
amount of long-range communication. This can give rise to
performance bottleneck in the presence of heavy many-to-
one-to-many and multicast traffic. In addition, a planar-mesh
NoC has a multihop nature, which leads to higher commu-
nication latencies [19]. This is not desirable for accelerating
GNN training. A 3-D NoC architecture improves the latency
compared with a planar counterpart. In a 3-D architecture,
multiple planar tiers of PEs are stacked vertically on top of one
another, resulting in lower physical distance between PEs [19].
This leads to lower latency and high-throughput communi-
cation. Moreover, a 3-D NoC architecture can support high-
performance multicast. Combining these aspects of a 3-D
NoC allows for high-performance GNN training in ReMaGN.
In this work, we use a 3-D mesh NoC as the interconnection
backbone, which also supports 3-D tree multicast. We con-
sider tree multicast in this article as an example multicast
scheme only, as any other multicast method can be used for
ReMaGN.

Overall, ReMaGN has four planar tiers stacked on top
of each other, each planar tier consisting of multiple
ReRAM-based PEs with the same crossbar configuration. The
PEs in different planar layers are connected with each other
using TSV-based vertical links, as shown in Fig. 3(a). The
3-D NoC is further improved by a communication and mul-
ticast aware mapping policy that we elaborate later. Overall,
the mapping policy complements the features of the 3-D NoC
architecture and enables high-performance GNN training on
the ReMaGN architecture. Note that, four tiers are used as
an example only to show the efficacy of 3-D architectures for
GNN training.

2) Role of Reduced Precision and Stochastic Rounding:
Typically, ReRAMs compute using 16-bit fixed point, which
has significantly less representation capability than 32-bit
floating point used by traditional GPUs. However, our experi-
mental analysis shows that a 16-bit fixed-point representation

Fig. 7. Operation of the stochastic rounding unit (based on [27]).

is sufficient for training GNNs and achieves similar accuracy
as GPUs. In this work, we propose to use even lower-precision
representations to reduce the heavy communication during
GNN training. Lower precision representation reduces the
traffic volume as the data are represented using fewer bits.
This leads to higher throughput, which enables better perfor-
mance [24]. In addition, reduced-precision representation also
lowers the ReRAM requirement, which can lead to further
speedup in computation as more weights can be duplicated
to further parallelize in computation (as discussed in [12]).
Both these characteristics are desirable for high-performance
GNN training. However, this reduction of precision (lower
than 16 bits) can often lead to unstable training or loss of
prediction accuracy for GNNs.

Stochastic rounding is a probabilistic rounding scheme
with a zero expected rounding error and is often used for
reduced-precision training of DNNs [27]. Fig. 7 shows the
operational principle of the stochastic rounding circuit used
in ReMaGN. It consists of three parts: 1) LFSR: it generates
pseudorandom 16-bit sequences; 2) Adder: it adds the 32-bit
input with the 16-bit random number generated by the LFSR;
and 3) Truncate: this truncates the result of addition to 16
bits after addressing overflow/underflow conditions. In this
work, we show that both computation and communication can
be made more efficient using lower precision computation
for GNN training with the support of the stochastic round-
ing scheme. Hence, we propose to use stochastic rounding
to improve the communication bottleneck in GNN training
without sacrificing achievable accuracy. However, ReRAMs
cannot inherently implement stochastic rounding and addi-
tional peripheral circuits are needed. We adopt the stochastic
rounding circuit from [24], which adds minimal area overheads
(less than 1% of total ReRAM PE area). Overall, the PEs con-
sidered in this work consist of ReRAM crossbars (128 × 128),
necessary peripheral circuits (ADC, DAC, buffer, etc.), and
an additional stochastic rounding unit, as shown in Fig. 3(a).
We explore 16-, 12-, and 8-bit reduced-precision GNN training
to establish the performance and accuracy tradeoffs.

D. Pipelined GNN Training

As mentioned in Section III, we employ a pipelined training
methodology in ReMaGN (shown in Fig. 8). The adoption of
a pipelined training allows for higher throughput in ReMaGN.
However, pipelined training is not possible when training
is carried out on a large monolithic graph. In addition,
training GNNs on such a graph also require large memory
footprint, which makes it impractical and inefficient. Graph
partitioning is one of the approaches used to combat this
high memory overhead. For instance, Chiang et al. implement
GNN training with reduced memory requirements by using a
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Fig. 8. Pipelined implementation of a layer deep GNN, with forward and backward phases. Each layer has two-sublayers–V-layer and E-layer.

graph partitioning tool (METIS [34]) to break a large graph
into several smaller subgraphs, which allowed them to train
GNNs over large graphs containing millions of nodes. Cluster-
ing/partitioning can be used to address this problem by intro-
ducing multiple subgraphs to be used as inputs for training.
We can implement the pipelined training strategy for GNNs
by dividing the graph into clusters. Fig. 8 shows an example
of pipelined GNN training implementation on ReRAM-based
architectures for a GNN with three neural layers. As discussed
earlier, each neural layer can be further divided into two
sublayers (E- and V-layers). Moreover, each E- and V-layers
have a corresponding backward-phase computation layer (e.g.,
BV1 represents the backward-phase computation of V 1 and so
on). Here, Vi is the V-layer computation of the i th neural layer
of the GNN. Overall, this results in a 12-stage training pipeline
with two sublayers for each of the six neural layers, as shown
in Fig. 8.

The GNN pipelined training works as follows: first, the large
graph is partitioned into multiple smaller subgraphs where
each subgraph is analogous to one input image in traditional
DNNs. The size of each subgraph is chosen based on training
time and end-to-end accuracy. At time T (Fig. 8), the first
subgraph (G1) is loaded for V 1 layer computations. At the
next timestamp 2T , G1 advances for subsequent E-layer
computation [E(G1)], while the next subgraph G2 is loaded
for V 1 layer computation and so on. Once the pipeline is filled
(at time 12T ), all the PEs (corresponding to all forward and
backward phases) are active all the time, leading to higher
throughput and hardware utilization [12], [13], as shown
in Fig. 8. The value of T (in Fig. 8) will depend on the
maximum of computation/communication times for any given
layer.

However, pipelined training also results in processing of
multiple subgraphs simultaneously. For instance, at time 12T
in Fig. 8, 12 subgraphs G1–G12 are being processed. As men-
tioned earlier in Section III [and Fig. 1(d)], processing each
subgraph results in a many-to-one-to-many traffic pattern.
Hence, processing several subgraphs at the same time will
result in multiple sets of many-to-one-to-many traffic patterns
corresponding to each of the subgraphs present in the pipeline,
resulting in high volume of data exchange which needs to be
facilitated by the NoC. It is well known that in a pipeline,
the slowest stage is the bottleneck and influences the overall
execution time. Thus, improving the pipeline stage delay is

essential in achieving high-performance GNN training in the
proposed ReMaGN architecture.

E. Optimized Mapping of Neural Layers

The overall pipeline stage delay is also influenced by com-
munication which depends on how CNN layers are mapped
to ReRAM crossbars. For an efficient implementation of
pipelined GNN training, all the neural layers need to be
executed simultaneously (Fig. 8). This requires keeping all
the neural weights and associated adjacency matrices on the
chip. Hence, we also need to allocate (map) adequate resources
(ReRAMs) to each neural layer and adjacency matrix based on
the requirements. This mapping strategy is a key component
in improving the communication stage delay in the pipeline.
In addition, the mapping strategy is complementary to the NoC
design as it influences on-chip traffic patterns. The aim of
this mapping strategy is to reduce long-range traffic (as much
as possible) while ensuring efficient multicast communication.
The mapping of weights and the adjacency matrix to the PEs
can be envisioned as a combinatorial optimization problem:
given a total of P PEs, L layers (V-layers), and Adj adjacency
matrices (E-layers), our goal is to distribute all computation
layers such that the highly communicating layers are mapped
to nearby PEs.

As mentioned earlier, the overall performance of GNN
training on ReMaGN depends on the slowest stage of the
training pipeline. It includes both the computation and com-
munication latencies. While ReRAMs can provide sufficient
resources to accelerate computation, it is necessary to have a
complementary method to improve the communication latency
as well. The mapping policy is used to ensure high-speed
and low-latency communication between the PEs. Even if
one link is overwhelmed by the large number of messages
being sent, the overall execution time suffers. Hence, it is
important to reduce the pipeline stage latency while reduc-
ing traffic hotspots. To achieve this goal, we use maximum
link utilization as a metric to evenly distribute traffic across
all the available links by mapping GNN neural layers and
adjacency matrices suitably across the available ReRAM
PEs. By lowering the maximum utilization, we avoid links
becoming hotspots and prevent potential communication bot-
tlenecks. Here, we follow the ReRAM performance models
from [12], which results in a deterministic execution of GNN
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Algorithm 1 Mapping GNN Layers on ReMaGN

training on the proposed architecture. Therefore, it is possible
to determine the on-chip traffic patterns for a given GNN
mapping. By determining the traffic pattern, it is possible
to redistribute the traffic over the chip following a simple
simulated annealing-based optimization methodology elabo-
rated in Algorithm 1 [20]. Overall, our objective is to find a
suitable mapping of GNN layers on the ReMaGN architecture
that prevents traffic hotspots to enable high-performance GNN
training.

Algorithm 1 presents the optimization strategy used to
determine the best mapping for ReMaGN. Assuming, we have
a total of P PEs, L layers (V-layers), and Adj adjacency
matrices where they are randomly mapped to the available PEs
(Line 2). Next, we Perturb the candidate mapping solution to
get a new mapping. A valid Perturb is defined as allocating
all or part of the resources (PEs) required by a randomly
chosen GNN layer or adjacency matrix to a different set of PEs
than its current location. As in, moving the weights associated
GNN layer V 1 from PE1 set of PEs to another set PE2. Then,
in order to evaluate the new mapping, we calculate the Cost
of each mapping (Line 5), which is the max link utilization.
Minimizing this cost helps in evenly distributing the traffic
across all available links as mentioned before. We decide
whether to discard/keep the new mapping in the archive based
on the annealing temperature and Cost of both current and
previous mapping solutions (Lines 6 and 7). Finally, we obtain
the best possible mapping(s) (Line 8). We repeat the entire
procedure (Algorithm 1) multiple times with different initial
solutions and annealing schedules for a thorough exploration
of the solution space of mapping policy. Note that this mapping
optimization is a one-time offline process, and it does not add
to overall run time of the system. By running the optimization
once, we determine the optimized mapping for ReMaGN,
which can then be used repeatedly. Thus, the optimization cost
(time and energy) is amortized over multiple instantiations of
ReMaGN.

Note that a similar mapping algorithm has been employed
to get the best possible mapping for ReGraphX [33]. As men-
tioned earlier, ReGraphX consists of two different types of
PEs, each designated for storing a specific layer. The V-layers
can only be mapped to the larger crossbars. On the other hand,
the adjacency matrices (E-layers) need to be mapped to the
smaller crossbar-based PEs. This in turn restricts the possible
optimized mapping scenarios. The rest of the mapping process
in ReGraphX is the same as that for ReMaGN.

TABLE I

PARAMETERS OF THE REMAGN ARCHITECTURE

V. EXPERIMENTAL RESULTS

In this section, we first present the experimental setup to
evaluate the performance of ReMaGN. We first explain our
choice of the ReRAM crossbar configuration for ReMaGN.
Next, we analyze the effect of various hyper-parameters when
the GNN is trained on the proposed architecture. Then,
we demonstrate the NoC performance and assess the per-
formance and accuracy trade-offs of reduced-precision GNN
training. Finally, we present the full-system performance eval-
uation of the proposed architecture and compare it against
conventional GPUs.

A. Experimental Setup

The specific embodiment of the ReMaGN architecture con-
sidered in this work consists of 36 ReRAM-based PEs dis-
tributed over four planar tiers connected using through silicon
via (TSV)-based vertical links. The ReRAM crossbar and tile
configurations are shown in Table I. Note that the system
size of 36 PEs was determined to provide sufficient storage
capacity for all the weights and adjacency matrices considered
in our experimental evaluation. The PEs communicate with
each other via the 3-D NoC. To evaluate the characteristics of
ReMaGN, we use the performance models from [12]. ReRAM
arrays always execute instructions in-order and the instruction
latencies are deterministic [12]. Hence, deterministic models
have been used to evaluate ReRAM execution time, on-chip
traffic, and so on [12]. The mapping of GNN layer weights
and adjacency matrices on the tiles are determined offline.
The traffic across the NoC is also statically determined to
ensure conflict-free routing. We do not discuss the ReRAM
execution models in detail for the sake of brevity and because
they have been elaborated in [12]. To evaluate the performance
of different NoCs, we use a cycle-accurate NoC simulator that
can simulate any regular or irregular 3-D architecture [35].
To implement the different NoCs considered in this work,
we followed the Garnet network structure [36]. As ReRAM
crossbar arrays always execute instructions in-order and the
instruction latencies are deterministic, we followed the deter-
ministic ReRAM model proposed in [12] to calculate the
injection rate needed for the cycle-accurate NoC simulator.
The NoC simulator is used to obtain the communication
latency for each NoC configuration. The deterministic ReRAM
model explained in Section IV-A provides the execution time.

We also compare the performance of the proposed ReMaGN
architecture with ReGraphX [33]. To the best of our knowl-
edge, ReGraphX is the only existing ReRAM-based architec-
ture for GNN training. As elaborated before, ReGraphX is a
heterogeneous ReRAM-based architecture for GNN training.
The fundamental difference between ReMaGN and ReGraphX
is the ReRAM crossbar configuration and the number of
PEs. ReGraphX includes two types of PEs, one for dense
weight storage (128 × 128 crossbar) [12] and the other for
sparse adjacency matrix storage (8 × 8 crossbars) [14]. The

Authorized licensed use limited to: Washington State University. Downloaded on May 01,2022 at 17:40:09 UTC from IEEE Xplore.  Restrictions apply. 



1752 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 29, NO. 10, OCTOBER 2021

PEs are distributed across three planar tiers connected using
TSV-based vertical links. We compare the NoC and overall
system performance of both these architectures in order to
evaluate the efficacy of the proposed ReMaGN architecture.

As a representative GNN for performance evaluation,
we use the popular graph convolutional network (GCN)
algorithm [28] (implemented in TensorFlow). However, our
findings and the proposed architecture are equally applicable to
other GNNs that rely on the recursive message-passing scheme
as all such GNNs share a similar computation and communi-
cation structures. The GCN configuration in our experiments
uses graph partitioning to reduce memory overhead and to
enable pipelined training.

Off-chip access is required for training GNNs on the
ReMaGN architecture only when a new subgraph is loaded
for processing. The time needed for this off-chip access must
be lower than the latency of each stage of the ReMaGN
pipeline to avoid execution stalls. As an example, a typical
subgraph from the Amazon2M dataset (the largest dataset
considered here) requires ∼35 MB of data. In our experimental
setup, the off-chip memory access time required to load the
data associated with each input subgraph of Amazon2M is
∼0.03 ms. This is much smaller than the pipeline stage
delay, which is around 3 ms for the Amazon2M dataset.
Similarly, for both PPI and Reddit, the off-chip access time
is also significantly smaller than the on-chip pipeline stage
delay. Hence, the execution is not bottlenecked by the off-
chip memory access time here. For the evaluation of training
GNNs on the ReMaGN architecture, we choose three popular
graph datasets–PPI, Reddit, and Amazon2M (details provided
in Table II). The GCN for each dataset consists of four neural
layers. As Table II shows, the graph datasets are diverse
in nature (in terms of size, partitioning, etc.). This allows
comprehensive performance evaluation of ReMaGN.

B. Effect of GNN Hyperparameters on Performance

In this section, we explore how various GNN hyper-
parameters affect ReMaGN performance. The GCN configura-
tion in our experiments employs the METIS graph partitioning
tool [34] to reduce memory overhead and enable pipelined
training. This allows us to evaluate GNNs for large-scale
graphs which are otherwise impossible to process with limited
memory, specifically in an on-chip environment. However,
this can lead to the loss of important information (graph
connections) that can cause unstable training due to biased
gradients. To overcome this challenge, we use a stochastic
multiclustering approach, which involves merging a random
subset of subgraphs from all the partitions (NumParts) toward
the goal of making the gradients unbiased over epochs [28].
The number of subgraphs that is merged back together to
create an intermediate input subgraph is defined as batch size
(β) in Table II. Hence, the number of effective input sub-
graphs (NumInput) for GNN training is obtained by dividing
NumParts by β. Note that the notion of β in GNNs is not the
same as in traditional DNNs. Batch size in DNNs refers to the
total number of input images that need to be processed before
DNN weights are updated.

Fig. 9 shows validation accuracy when different batch sizes
(β) are used for the Reddit dataset as an example. In Fig. 9,
we chose NumPart as 1500 (following [28]) while considering

TABLE II

GRAPH DATA STATISTICS AND GNN HYPERPARAMETERS

Fig. 9. GNN accuracy for different batch sizes for the Reddit dataset.

the values of β to be 1, 5, 10, and 20. From Fig. 9, it is
clear that the choice of batch size does not affect the overall
accuracy of the GNN significantly for the Reddit dataset.
Similar observations were made for the other two datasets
as well. However, it should be noted that smaller β affects
convergence leading to unstable GNN training [28]. As a
result, we choose a relatively larger β for stable GNN training.

However, larger β is costly in terms of hardware overhead as
it leads to relatively larger intermediate input subgraphs. These
larger subgraphs have a larger number of nodes and edges,
resulting in an overall larger adjacency matrix. More ReRAM
crossbars are needed to store larger adjacency matrices, thus
increasing the requirement of overall hardware resources.
Fig. 10 shows the effect of β on both the training time and
hardware requirements (more specifically, ReRAM crossbar
requirements) in ReMaGN. A smaller value of β results in
smaller input subgraphs, which can be stored using fewer
crossbars. However, it leads to higher NumInput (i.e., more
input subgraphs) that need to be processed one-after-another,
which causes the computational overhead for training to
increase as a higher number of smaller subgraphs need to be
processed. As shown in Fig. 10, this leads to higher training
time. On the other hand, with increase in β, NumInput reduces,
which in turn causes training time to decrease. However,
higher β creates larger graphs leading to a drastic increase
in ReRAM crossbar requirements. Interestingly, we note from
Fig. 10 that the reduction in training time is relatively
insignificant beyond β = 10, while crossbar requirements
keep increasing steadily. From both Figs. 9 and 10, we note
that larger β leads to faster and more stable training, which
is desirable. However, it also necessitates more crossbars.
Hence, we choose the maximum possible β whose crossbar
requirements can be met by ReMaGN specifications (Table I).
All the relevant parameters for GNN training on ReMaGN are
listed in Table II.

C. Crossbar Configuration

In this section, we first explain the choice of crossbar con-
figuration for the ReMaGN architecture based on the storage
efficiency, power, and area tradeoffs by varying the crossbar
sizes from 8 × 8 to 256 × 256 [12], [37]. Fig. 11 shows the
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Fig. 10. Normalized training time and NumInputs for different batch size
(β) for the Reddit dataset. All numbers have been normalized w.r.t. β = 1.

number of PEs required, area, and power needed to store one
input subgraph of the Reddit dataset. It should be noted that
similar trends were seen for other datasets as well. As shown
in Fig. 11, 8 × 8 sized crossbars require 28× times more
PEs than the 128 × 128 configuration to store the same
amount of information. This happens as smaller crossbars need
more PEs to store the same adjacency matrix, necessitating
a larger number of peripheral circuits such as ADC, DAC,
and routers. On the other hand, larger crossbars require fewer
PEs, resulting in less peripheral circuits. This results in lower
area and power overheads, in spite of the storage of more
redundant zeros, as shown in Fig. 12. However, extremely
large crossbars (beyond 128 × 128) require more area and
power. This happens as peripheral circuits for such large
crossbars are big. For instance, a 256 × 256 crossbar requires
a 9-bit ADC [12], [37], which is not only difficult to design
but is extremely area- and power-hungry, overshadowing any
benefit of the larger crossbars (note that ADC is the most
area- and power-hungry peripheral in an ReRAM tile [12]).
The ADC resolution that is necessary for different crossbar
sizes can be determined using the following equations [12]:

Res = log(R) + v + w, if v > 1 and w > 1.

Here, Res is the ADC resolution, R is the number of rows
in the ReRAM crossbar, v represents the number of bits that
is applied to the crossbar as input per cycle, and w represents
the ReRAM cell resolution. It is clear from this equation that
ADC resolution is proportional to the log of crossbar size
(R); v and w are fixed (v = 1 and w = 2 following [12])
for all crossbar settings in Fig. 9. Hence, larger crossbar sizes
will require large ADCs. Based on our analysis in Fig. 11,
a crossbar size of 128 × 128 is the effective choice in terms
of area, power, and storage efficiency.

However, larger crossbars tend to be inefficient for storing
sparse matrices that are mostly filled with zeros. Note that
MAC operation with zeros is meaningless and should be
avoided to reduce power consumption and improve perfor-
mance. As shown in Fig. 12, 256 × 256 crossbars are the
least efficient in this regard, while 8 × 8 is the best. Note
that the number of zeros stored can be found using a sliding
window operation, as shown in Fig. 5: any segment with at
least one nonzero entry (defined as valid segment in Fig. 5)
needs to be stored on ReRAM crossbars. A segment can
only be discarded if all N × N entries are zeros (defined
as invalid segment in Fig. 5), where N is the size of the
crossbar. Larger crossbars tend to be inefficient as a result.
For instance, a 256 × 256 crossbar requires consecutive
65 536 (=256 × 256) zero inputs in order to discard that
segment which is very unlikely. Hence, smaller crossbars
are preferred for storing sparse adjacency matrices. However,
smaller crossbars necessitate a significantly larger number of

Fig. 11. Storage efficiency–power–area tradeoffs for different ReRAM
crossbar configurations, normalized w.r.t. 8 × 8 crossbar configuration.

Fig. 12. Storage efficiency–power–area tradeoffs for different ReRAM
crossbar configurations, normalized w.r.t. 8 × 8 crossbar configuration.

PEs to store the same input as when compared with larger
crossbar configurations (Fig. 11).

This phenomenon presents an interesting trade-off between
area, power, and storage efficiency. From both Figs. 11 and 12,
we see that 256 × 256 sized crossbars are not only inefficient
for storing sparse matrices, but also consume more area and
power. ReGraphX uses 8 × 8 crossbars to efficiently store
the sparse adjacency matrices. However, as shown in Fig. 11,
this design necessitates many PEs, resulting in a much larger
system size. The larger system size results in higher hop count
in communication and it is also not efficient in terms of area
and power. The 128 × 128 crossbar configuration is, therefore,
the most suitable choice and is used in ReMaGN. We show
later that ReMaGN outperforms ReGraphX in terms of both
performance and power efficiency.

D. NoC Evaluation and Performance and Accuracy
Tradeoff

We design the ReRAM-based PEs of the ReMaGN archi-
tecture using the aforementioned 128 × 128 crossbar config-
uration. The PEs communicate with each other using a 3-D
NoC. Hence, we evaluate the performance of the 3-D NoC,
which serves as the communication backbone for ReMaGN.
We also explore the effect of reduced-precision representation
on the computation and communication pipeline delays of
ReMaGN. Following this, we assess the accuracy and perfor-
mance tradeoffs for training GNNs using reduced-precision
representation.

As discussed in Section IV, we implement the GNN training
on ReMaGN in a pipelined fashion. It is well known that the
slowest stage in the pipeline determines the overall achievable
performance. Here, each stage of the pipeline represents either
the vertex computation shown in (1) or edge computation
shown in (2) of a GNN neural layer. Each stage involves a set
of MAC operations and communication of subsequent outputs
to the next stage. Hence, the overall time needed to accomplish
each stage is determined by the slower of the computation
and communication tasks. As discussed earlier, GNN training
involves many-to-one-to-many and heavy multicast traffic that
can bottleneck the overall performance. Moreover, reduced-
precision training lowers NoC traffic and increases the overall
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Fig. 13. Effect of (a) 3-D NoC on computation (comp.) and communication (comm.) delay, normalized w.r.t. FP16-2D comm. delay. (b) Reduced-precision
representation on computation (comp.) and communication (comm.) delay for ReMaGN-P (P denotes the precision), normalized w.r.t. ReGraphX comm.
delay.

Fig. 14. Accuracy of GNN training with reduced-precision representation
for the Amazon2M dataset.

throughput as fewer bits need to be communicated. Recall that
the precision of the baseline ReMaGN configuration is 16-bit
fixed point (FP16), in accordance with prior works [12], [24].
Hence, FP-16 can be considered as a representative of the
existing architectures such as PipeLayer [13]and ISAAC [12].

First, we demonstrate the advantage of 3-D NoC by com-
paring the performance of a conventional multicast-enabled
2-D mesh NoC (i.e., FP16-2D) with respect to ReMaGN
with 16-bit precision (FP16-3D). Fig. 13(a) shows the worst
case computation and communication times observed among
all the GNN layers (as pipeline latency is determined by
the slowest stage) for different datasets with FP16-2D and
FP16-3D. As shown in Fig. 13(a), a conventional multicast-
enabled 2-D mesh NoC (i.e., FP16-2D) makes the communi-
cation time to dominate the computation time significantly.
It is clear that the communication remains the bottleneck.
Therefore, we design a multicast-enabled 3-D NoC as the
communication backbone for ReMaGN. Going from 2-D to
3-D, there is no change in computation time as the number of
ReRAMs remain unchanged. However, for FP16, the 3-D NoC
(FP16-3D) lowers the communication delay in ReMaGN by
up to 25%. This happens due to the fact that 3-D NoC lowers
the overall hop count by bringing the PEs physically closer
and increases the overall throughput [19]. Fig. 13(a) clearly
demonstrates the benefit of the 3-D NoC architecture; hence,
this architecture is subsequently used in conjunction with
reduced-precision training in ReMaGN. It should be noted that
the computation stage delay in both architectures is the same
as it is not affected by the NoC. It is possible to accelerate
the computation by further parallelizing the neural layers in
ReRAM [13]. However, the communication latency is higher
than the computation latency for all datasets. For instance,
the communication stage delay of the FP16-3D architecture is
1.28× larger than the computation delay for the PPI dataset.
Hence, the overall execution time will be bottlenecked by the
communication delay and any acceleration of computation will
fail to provide any benefit.

In Fig. 13(b), we compare the performance of
ReMaGN with different precision settings with respect
to ReGraphX [33]. The different configurations of ReMaGN

are presented as ReMaGN-P, where P denotes the precision
at which the GNN is trained. It should be noted that the
ReGraphX implementation does not have any reduced-
precision representation and operates with default 16-bit
precision (FP16). ReMaGN-16 can be directly compared with
ReGraphX as they both operate with 16-bit representation.
ReMaGN-16 outperforms ReGraphX by up to 33.3% in
terms of the communication delay, thus, reducing the overall
pipeline stage delay by 33.3% as well. Moreover, reducing
precision helps further improve the throughput of ReMaGN.
As shown in Fig. 13(b), the use of reduced-precision in
conjunction with the multicast-enabled 3-D mesh NoC
in ReMaGN can achieve 39% (ReMaGN-12) and 59%
(ReMaGN-8) better performance, on an average, in terms of
communication compared with ReGraphX. This improvement
in performance comes from the much lower number of hops
between PEs and improved mapping in ReMaGN. Here,
it should be noted that reduced precision does not affect
the overall data (activations and gradients) that needs to be
communicated during training. The same amount of data is
conveyed by using a fewer number of bits, thus reducing the
overall traffic. This results in improved NoC performance.

In addition, as mentioned in Section IV, reduced precision
lowers ReRAM PE requirements. For instance, only 12 bits
need to be stored in ReRAMs for ReMaGN-12 (which requires
six ReRAM cells [12]) as opposed to 16 bits (which requires
eight ReRAM cells [12]) in the default baseline setting.
Each ReRAM cell stores only 2 bits. This in turn allows us
to duplicate the weights on the unused ReRAMs, enabling
higher performance. Note that the duplication of weights is a
common strategy to accelerate computation on ReRAMs [13].
As shown in Fig. 13(b), computation time is reduced by 50%
for the ReMaGN-8 configuration for all datasets. However,
in the case of ReMaGN-12, we do not see any decrease
in computation time. This happens because the reduction in
ReRAM PE requirement in ReMaGN-12 is not sufficient to
enable duplication of all the weights of the slower GNN layers.
Note that in a pipelined implementation, the slowest stage
dominates the overall execution time. Hence, unless all the
slow GNN layers are accelerated, the worst case pipeline delay
will remain unchanged as shown in Fig. 13(b). Overall, our
results show that reduced precision in ReMaGN lowers both
computation and communication delays compared with the
ReGraphX leading to significantly better performance.

It is well known that reduced precision has lower represen-
tation capability, which can lead to accuracy loss or unstable
training. Hence, it is important to evaluate the GNN training
accuracy for various precision levels. Fig. 14 shows the GNN
accuracy with varying levels of precision. As an example,
we have chosen the Amazon2M dataset here noting that the
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Fig. 15. ReMaGN-P (P denotes the precision). (a) Execution time speedup and (b) energy savings compared with GPU and ReGraphX (normalized w.r.t.
GPU).

results are similar to other datasets. As shown in Fig. 14,
FP16 (the default ReRAM configuration) achieves GPU-level
accuracy (which uses 32-bit floating point). The accuracies of
FP12 and FP8 are less than 1% and 2%, respectively, compared
with the GPU-based counterpart. However, as shown later
in Fig. 15, FP12 and FP8 outperform the GPU-based design
by almost an order of magnitude. This shows the performance
and accuracy tradeoffs associated with reduced precision.
If an application has extremely stringent accuracy requirement,
then only FP16-based architecture should be used. However,
if 1%–2% accuracy loss can be tolerated, then FP12 and
FP8 should be the preferred design due to the huge perfor-
mance benefits. The best instantiation of ReMaGN architecture
can be decided by the user based on the specific application
requirements.

Note that training fails for both FP12 and FP8 when stochas-
tic rounding is not used. However, below FP8, the accuracy
drop was significant even with stochastic rounding. Overall,
the use of stochastic rounding in ReMaGN allows us to achieve
better performance and accuracy tradeoffs. From Figs. 13 and
14, we note that it is possible to train at lower precisions
leading to higher performance without sacrificing prediction
accuracy by the stochastic rounding approach.

E. Full System Evaluation

Next, we undertake a full system performance evaluation
and compare the overall execution time and energy con-
sumption of ReMaGN with respect to the ReGraphX and
a conventional GPU-baseline (Nvidia V100 in this case).
It should be noted that the training duration and energy
consumption depend on the actual wall-clock time and not
the epoch. As shown in Fig. 14, GPU is reaching convergence
in a smaller number of epochs compared with ReRAM-based
architectures. However, the actual time corresponding to each
epoch in ReRAM-based architectures is much smaller than that
of GPU. Fig. 15(a) and (b) shows the speedup and improve-
ment in energy consumption, respectively, in ReMaGN and
ReGraphX compared with the GPU. The different con-
figurations of the ReMaGN architecture are denoted by
ReMaGN-P, where P denotes the precision. Fig. 15(a) shows
that ReGraphX and ReMaGN-16, using FP16 representation,
outperform conventional GPU-based systems by 2.7× and
3.5×, respectively, in terms of execution time on an average
considering all the datasets. Using reduced-precision represen-
tation, ReMaGN-12 and ReMaGN-8 achieve 4.4× and 7.1×
speedup, respectively, on an average. The speedup of the
ReRAM-based architectures comes from: 1) high-throughput
PIM-based MAC operations on ReRAM PEs; 2) efficient com-
munication through 3-D multicast-enabled NoC; and 3) faster
computation and communication enabled by reduced-precision
representation. In addition, ReMaGN achieves higher perfor-
mance than ReGraphX due to the smaller number of PEs in

the overall architecture and, hence, fewer hop counts resulting
in efficient communication.

Moreover, both the ReRAM-based architectures also have
lower energy consumption than the GPU-based system due to
the energy efficiency of ReRAM-based crossbars. As shown
in Fig. 15(b), ReGraphX and ReMaGN-16 are 11× and 16.7×
more energy efficient than the GPU, respectively. Lowering
precision further improves energy efficiency. ReMaGN-12
and ReMaGN-8 are 23.2× and 33.5× more energy efficient
than the GPU baseline, respectively. This shows that the
proposed ReMaGN architecture outperforms contemporary
ReRAM-based GNN accelerators such as ReGraphX by a
considerable margin while being more energy efficient.

As shown in Section V, the 128 × 128 crossbar configura-
tion also outperforms 8 × 8 crossbars in terms of storage
efficiency–power–area tradeoffs. As 8 × 8 crossbar-based
PEs have lower storage efficiency, ReGraphX requires more
PEs to store the same information compared with ReMaGN.
As a result, the proposed ReMaGN architecture requires
lower number of PEs compared with ReGraphX. The overall
smaller system size results in lower energy consumption and
reduces the average hop count needed for inter-PE commu-
nication in ReMaGN compared with ReGraphX. The lower
hop count results in improved latency and overall higher
performance of ReMaGN. Hence, the homogeneous system
in ReMaGN has a better performance and energy efficiency
than the heterogeneous ReGraphX architecture. Fig. 13(b)
shows the improved communication latencies achieved by the
ReMaGN NoC due to lower hop counts. Moreover, as shown
in Fig. 15(a) and (b), all instantiations of ReMaGN have
higher execution time speedup and energy savings when com-
pared with the heterogeneous ReGraphX architecture. Overall,
the ReMaGN architecture is significantly faster and more
energy efficient than both GPUs and ReGraphX for training
GNNs.

VI. CONCLUSION

GNNs have found applications in various domains such as
social media, recommendation systems, and drug discovery.
In this work, we have presented a novel ReRAM-based many-
core PIM architecture: ReMaGN, specifically designed for
accelerating GNN training over large-scale graphs. ReMaGN
is supported by a multicast-enabled 3-D NoC architecture
and robust reduced-precision training with stochastic rounding.
Overall, ReMaGN outperforms conventional GPUs by up to
9.5× in terms of execution time while being up to 42×
more energy efficient. These gains are derived from efficient
MAC computation in ReRAM, high-throughput communica-
tion enabled by 3-D integration, and robust reduced-precision
training process. Moreover, ReMaGN outperforms ReGraphX,
a contemporary ReRAM-based GNN accelerator, by up to
2.8× in terms of execution time while using 3.8× less energy.
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Finally, it should be noted that ReRAMs have reliability
issues such as noise, hard faults (e.g., stuck-at-faults), and wear
out due to limited write endurance [32], [38]. Such nonideal-
ities can adversely affect the performance of ReRAM-based
architectures such as ReMaGN. Techniques such as thermal
reference cells [24] and weight clipping [39] are promising
solutions toward robust GNN training on ReRAM-based archi-
tectures. However, studying the reliability and performance
tradeoffs for GNN training is beyond the scope of this article
and is the focus of our immediate future work.
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