IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

1537

High-Throughput Training of Deep CNNs on
ReRAM-Based Heterogeneous Architectures
via Optimized Normalization Layers

Biresh Kumar Joardar™, Member, IEEE, Aryan Deshwal, Student Member, IEEE,
Janardhan Rao Doppa, Member, IEEE, Partha Pratim Pande™, Fellow, IEEE,
and Krishnendu Chakrabarty™, Fellow, IEEE

Abstract—Resistive random-access memory (ReRAM)-based
architectures can be used to accelerate convolutional neural
network (CNN) training. However, existing architectures either
do not support normalization at all or they support only a lim-
ited version of it. Moreover, it is common practice for CNNs to
add normalization layers after every convolution layer. In this
work, we show that while normalization layers are necessary to
train deep CNNs, only a few such layers are sufficient for effective
training. A large number of normalization layers do not improve
prediction accuracy; it necessitates additional hardware and gives
rise to performance bottlenecks. To address this problem, we
propose DeepTrain, a heterogeneous architecture enabled by a
Bayesian optimization (BO) methodology; together, they provide
adequate hardware and software support for normalization oper-
ations. The proposed BO methodology determines the minimum
number of normalization operations necessary for a given CNN.
Experimental evaluation indicates that the BO-enabled DeepTrain
architecture achieves up to 15x speedup compared to a con-
ventional GPU for training CNNs with no accuracy loss while
utilizing only a few normalization layers.

Index Terms—3-D, convolutional neural networks (CNNs),
GPU, normalization, resistive random-access memory (ReRAM).

I. INTRODUCTION

ONVOLUTIONAL neural networks (CNNs) are used
in a wide spectrum of domains, e.g., self-driving cars,
medical diagnosis, image recognition, etc. However, CNN
training and inference are both computationally expensive
tasks that necessitate a high-performance and energy-efficient

Manuscript received December 23, 2020; revised April 1, 2021; accepted
May 12, 2021. Date of publication May 25, 2021; date of current version
April 21, 2022. This work was supported in part by the U.S. National Science
Foundation (NSF) under Grant CNS-1955353 and Grant CNS-1955196, and in
part by the USA Army Research Office under Grant W911NF-17-1-0485. The
work of Biresh Kumar Joardar was supported by NSF through the Computing
Research Association for the CIFellows Project under Grant 2030859. This
article was recommended by Associate Editor N. K. Jha. (Corresponding
author: Partha Pratim Pande.)

Biresh Kumar Joardar and Krishnendu Chakrabarty are with the Department
of Electrical and Computer Engineering, Duke University, Durham,
NC 27708 USA (e-mail: bireshkumar.joardar@duke.edu; krish@duke.edu).

Aryan Deshwal and Partha Pratim Pande are with the School of Electrical
Engineering and Computer Science, Washington State University, Pullman,
WA 99164 USA (e-mail: aryan.deshwal@wsu.edu; pande @wsu.edu).

Janardhan Rao Doppa is with the College of Engineering and Architecture
and the School of Electrical Engineering and Computer Science, Washington
State University, Pullman, WA 99164 USA (e-mail: jana.doppa@wsu.edu).

Digital Object Identifier 10.1109/TCAD.2021.3083684

hardware support. Emerging resistive random-access memory
(ReRAM) has demonstrated great potential for efficient CNN
training and inference [1], [2]. ReRAM crossbars can effi-
ciently perform matrix—vector multiplications, which form
the backbone of most CNN computations [1]. Prior works,
such as Pipelayer [1] and AccuReD [3], have shown that
ReRAM-based architectures can outperform GPUs for training
CNNs while consuming less energy. In addition, ReRAM-
based systems are more area efficient compared to their GPU
counterparts and do not require expensive off-chip memory
access due to their “in-memory” nature of computation [2].

Despite these advantages, existing ReRAM-based architec-
tures lack one important feature that is necessary to train deep
CNNs (i.e., CNNs with many layers). Existing ReRAM-based
architectures lack batch normalization (BN) support, which is
necessary for training deep CNNs. Deep CNNs tend to suf-
fer from vanishing/exploding gradient problems, which can
be solved using a BN layer [4]. However, BN operations are
prone to data overflows and hence 32-bit floating-point rep-
resentation is recommended for implementing them [S]-[7].
ReRAM-only architectures are based on 16-bit fixed-point
representation that is not suitable for BN [3]. Without BN,
training deep CNNs on ReRAM-based architectures can result
in: 1) no meaningful training or 2) significant loss of prediction
accuracy as we show in this work.

Specialized initialization schemes, such as Xavier [8] or
Kaiming [9] initializations have been proposed to train CNNs
in the absence of BN. In some scenarios, these techniques
can enable meaningful deep CNN training using only the
low-precision ReRAMs. However, as we show later, non-BN
methods (such as the use of Xavier initialization) require care-
ful hyperparameter selection (i.e., expert domain knowledge)
and yet, are not effective all the time. In addition, repeated
experiments to tune the hyperparameters can be expensive,
particularly for deep CNNs that take longer to train. For
instance, VGG-19 takes ~2x more time to train than VGG-11
for the CIFAR-10 dataset on an Nvidia Titan Xp GPU. Hence,
repeated experiments to tune the hyperparameters for VGG-19
are expensive and should be avoided (minimized). The use
of BN reduces the hyperparameter dependencies and achieves
high accuracy in (almost) all cases (excluding extreme sce-
narios such as unrealistically high/low learning rate; same for

1937-4151 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Washington State University. Downloaded on May 01,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7668-2824
https://orcid.org/0000-0002-5930-8531
https://orcid.org/0000-0003-4475-6435

1538

other hyperparameters). Hence, hardware support for BN on
ReRAM-based architectures is necessary to efficiently train
deep CNN:E.

On the other hand, introducing BN support in existing
ReRAM-based architectures requires additional hardware with
32-bit floating-point support. The hardware cost clearly needs
to be minimized. It is a common practice for existing CNN
implementations (e.g., the CNN models from the popular
Pytorch package) to incorporate a BN layer after every
convolution (Conv) layer [10]. Our analysis in this work
demonstrates that having a large number of BN layers is not
necessary and is often counterproductive. Too many BN lay-
ers can create performance bottlenecks, consume more energy,
and limit ReRAM-based architectures from reaching their full
potential. Overall, it is essential to provide the right balance
between conflicting requirements: 1) avoid performance, hard-
ware, and energy overheads introduced by a large number
of BN layers and 2) prevent accuracy loss due to a small
number (or no) BN layers. However, determining this optimal
CNN configuration is an expensive task as CNN training is
computationally challenging and takes a considerable amount
of time. In this article, we formulate a novel sparsity-aware
Bayesian optimization (BO) problem and propose an efficient
algorithm to quickly determine the minimum number of BN
layers necessary for a given CNN to achieve high-performance
and energy-efficient training without accuracy loss.

Overall, the main contributions of this article are listed as
follows.

1) We demonstrate the importance of BN layers for training
deep CNNs. We show that BN requires less extensive
hyperparameter tuning than other well-known methods
for successful training.

2) We propose a novel sparsity-aware BO algorithm that
can quickly find the minimum number of BN layers nec-
essary and their corresponding positions in a CNN for
high-accuracy training.

3) We show that training these optimized CNNs using
a 3-D ReRAM/GPU-based architecture (referred as
DeepTrain) leads to better performance than sole GPU-
based implementations.

4) We show that the knowledge learned by BO regarding
the BN configurations from one dataset can be trans-
ferred to several other datasets as well, i.e., the BO
optimization need not be repeated for every dataset.

The remainder of this article is organized as follows. In
Section II, we present some of the relevant prior work and
highlight our key contributions. In Section III, we discuss the
challenges associated with training deep CNNs. Section IV
introduces the salient features of the proposed DeepTrain
architecture. The BO methodology for determining the most
effective BN layers in a CNN is presented in Section V. In
Section VI, we demonstrate the efficacy of the DeepTrain
architecture. Finally, Section VII concludes this article by
summarizing our key findings.

II. RELATED PRIOR WORK

In this section, we present relevant prior work related to the
training of deep CNNs and ReRAM-based architectures.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

A. Training Deep CNNs

Vanishing and exploding gradients is a major challenge
toward successful training of deep CNNs [4]. Special ini-
tialization techniques (e.g., Xavier and Kaiming initializa-
tion [8], [9]) and BN [4] can be used to address this
problem. Among them, the use of BN layers is the most
promising solution [11]. BN enables stable training with
larger and diverse learning rates, thereby leading to faster
convergence [11]. In addition, it reduces the necessity of
hyperparameter tuning to improve accuracy as we show
later. Traditionally, existing CNN implementations (e.g., the
CNN models from the popular PyTorch package) incorpo-
rate a BN layer after every convolution (Conv) layer [10].
However, all BN layers do not contribute to successful CNN
training. Having too many BN layers can adversely affect
runtime and performance on ReRAM-based architectures as
we demonstrate in this work. However, it is not trivial to
determine which BN layers are necessary for a given CNN.
In this work, we use BO over discrete space to address
this problem. BO is used for optimization problems where
the objective function is expensive [13]. However, existing
BO algorithms are inefficient when the problem requires
sparse solutions as in this work [14] (i.e., sparse in terms
of the presence/absence of a BN layer after each Conv
layer).

B. ReRAM-Based Architectures

Sole ReRAM-based architectures have been proposed for
accelerating both inference [2], [15] and training [1], [3] for
CNNs. However, these architectures do not implement BN
layers due to the lack of a full-precision computing platform
(most ReRAM-based architectures rely on 16-bit fixed-point
representation [2]). As mentioned in [5] and [6], BN should
be implemented using full precision to prevent data overflow.
REGENT [16] and 3D-ReG [17] propose 3-D architectures
consisting of ReRAM and GPUs for CNN training. However,
the full-precision GPUs in these two architectures are used
to preserve accuracy during the precision-sensitive backprop-
agation phase rather than for BN. The AccuReD architecture
supports BN operations using the GPUs [3]. However, it
uses BN after every Conv/FC layer which is wasteful and
inefficient. ReGAN [18] implements a very limited BN oper-
ation on ReRAMs that works only if the divisor is of the
form 2". However, our experiments indicate that this con-
dition is rarely met (less than 2% of cases). Hence, for all
practical purposes, ReGAN needs additional/external hard-
ware support for implementing BN. In addition, ReGAN
does not use full precision for BN and can experience
overflows.

In this work, we advance the state of the art in
ReRAM-based architectures for training deep CNNs by
proposing a sparsity-aware BO-based methodology that
can quickly determine the minimum number of BN lay-
ers necessary for a given CNN. These lightweight CNNs
obtained using BO, are faster and more energy efficient
than traditional NNs when trained using the DeepTrain
architecture.

Authorized licensed use limited to: Washington State University. Downloaded on May 01,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

JOARDAR et al.: HIGH-THROUGHPUT TRAINING OF DEEP CNNs ON ReRAM-BASED HETEROGENEOUS ARCHITECTURES

£ 100.00% No-BN All-BN
2 _ 10.00%
[

E ® 1.00%

25 0.10%

S 2 0.01%

o 0.00%

© C1C2C3C4C5C6C7C8F1F2F3

VGG-11 layers
Fig. 1. Gradients normalized with respect to weights for each layer

considering VGG-11with CIFAR-10 as an example.

III. DEEP CNN TRAINING

In this section, we first highlight the difficulty of training
deep CNNs due to the vanishing/exploding gradients problem.
Next, we discuss the shortcomings of the Xavier and Kaiming
initialization schemes as universal solutions and motivate the
need for BN operations.

A. Exploding/Vanishing Gradients

To illustrate the impact of the vanishing/exploding gradi-
ents problem, we consider two cases: 1) All-BN: BN layers
are placed after every Conv layer as is usually done in tradi-
tional CNNs [10] and 2) No-BN: BN layers are not used at all.
Fig. 1 shows the average gradient values at each layer (nor-
malized with respect to the average weight value at the same
layer) for both these variants of VGG-11 [19] when trained
using the CIFAR-10 dataset. For this experiment, we have used
the default initialization scheme in Pytorch. Note that VGG-11
is considered as a representative example. Similar behavior is
observed for the other CNN architectures considered in this
work, namely, VGG-16, VGG-19 [19], and ResNet-18 [20]. As
we can see from Fig. 1, there is a stark contrast in the gradient
behavior between All-BN and No-BN. In the case of No-BN,
we observe very small gradients (also known as vanishing gra-
dients). The gradients are only 0.02%-0.04% of the weights in
layers C1-C5. As a result, weight updates will be small, lead-
ing to poor accuracy. On the other hand, the gradients at the
initial layers (C1-C5) are roughly 30% of the corresponding
weights for All-BN (~1000x larger compared to No-BN). As
a result, the error gradients will have a larger impact during
the weight updates leading to faster training. The gradients
in No-BN can also explode (i.e., too large gradients) in some
cases leading to unstable training. Overall, this results in only
19.1% prediction accuracy after 50 epochs of training the No-
BN VGG-11 configuration on the CIFAR-10 dataset. On the
other hand, All-BN achieves 85.4% prediction accuracy under
similar circumstances, indicating a successful training. Hence,
it is important to address the exploding/vanishing gradients
problem for training deep CNNss.

B. Xavier/Kaiming Initialization

As mentioned earlier, the use of specialized initialization
schemes, such as Xavier [8] or Kaiming [9], are alternative
ways to train deep CNNs in the absence of BN. By carefully
setting the weights, these techniques can prevent explod-
ing/vanishing gradients. However, as we show in Fig. 2, these

1539

100

Accuracy (%)
o

No-BN —+}
}
No-BN —f—
}
No-BN —}—
4
No-BN —}—
+

All-BN
All-BN
All-BN
All-BN

VGG11 VGG16 VGG19 Res18

Fig. 2. Accuracy of No-BN and All-BN CNNs trained with various
hyperparameter settings.

methods require careful hyperparameter selection (i.e., expert
domain knowledge) and yet, do not work all the time. On the
contrary, the use of BN reduces the hyperparameter dependen-
cies and achieves high accuracy in all cases considered here.

To demonstrate the sensitivity of these methods to the choice
of hyperparameters, we varied five hyperparameters: 1) learn-
ing rate (LR); 2) the number of epochs; 3) LR schedule;
4) batch size; and 5) the initialization scheme (Xavier and
Kaiming only; other initialization methods resulted in signifi-
cantly low training accuracy in the absence of BN). The results
are shown in Fig. 2. Note that these hyperparameters were
chosen here as an example only. Overall, we performed CNN
training with 150 different hyperparameter settings and noted
the best accuracy achieved at the end of each training instance.
Fig. 2 shows the range of observed accuracy (represented by
the blue line, whose ends indicate the minimum and maximum
accuracy; the red line represents the average accuracy) consid-
ering all 150 experiments with VGG-11/16/19 and ResNet-18.

Fig. 2 clearly shows that it is possible to train CNNs in
the absence of BN sometimes, which is in line with previous
work [8], [9]. However, it is not reliable and fails to train most
of the time. For instance, the average accuracy of No-BN with
Xavier/Kaiming initialization considering all 150 instances of
training without BN is a mere 57.8% for VGG-19. This hap-
pens as multiple combinations of hyperparameter (among the
150 chosen here), either failed to train or resulted in unaccept-
able accuracies. This is problematic as an ML-practitioner (or
user) will have to repeatedly train a CNN to find out the valid
hyperparameter combination(s) for successful training. This
process can be time consuming, particularly for deep CNNs
and larger datasets, which require more time to train. On the
other hand, CNN training with BN is more robust to the choice
of hyperparameters and is effective in all cases considered
here. Unlike No-BN, All-BN achieves an average accuracy
(considering all 150 All-BN training instances) of 85.1% for
VGG-19 indicating that all these 150 experiments succeeded.
This demonstrates the shortcomings of Xavier/Kaiming ini-
tialization schemes as a universal solution to the problem of
exploding/vanishing gradients. As shown in Fig. 2, all the other
CNNs exhibit similar trends as well. Hence, hardware sup-
port for BN is important to train deep CNNs and should be
incorporated in ReRAM-based architectures.

IV. DEEPTRAIN ARCHITECTURE

In this section, we discuss the proposed ReRAM-based
architecture: DeepTrain, to train deep CNNs with BN support.

Authorized licensed use limited to: Washington State University. Downloaded on May 01,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

1540

M layers

GPU core
+
Cache

Memory
ontroller|

1.
1

Fig. 3.

N layers

ReRAM-based
ISAAC tile

Illustration of the DeepTrain hardware architecture.

A. Hardware Support for BN

Existing ReRAM-based designs, such as REGENT [16]
and Pipelayer [1], primarily focus on accelerating the MAC-
dominated Conv and FC layers to accelerate inference/training
of CNNs. Unlike GPUs, which support 32-bit floating-point
precision, these ReRAM-based architectures rely on 16-bit
fixed-point precision for CNN training. The lower precision
of data results in lightweight CNNs that require less computa-
tional and memory resources for successful training. However,
this approach also presents a major roadblock toward imple-
menting BN as it requires full-precision support [5], [6]
(discussed earlier). Hence, a mixed-precision training strategy
is needed, which is not possible with the existing ReRAM-
only architectures. In addition, BN involves relatively more
complex mathematical operations, such as division and square
root [4]. To the best of our knowledge, there is no ReRAM-
only architecture that can implement BN. ReGAN provides a
partial solution to this problem that works only if the divisor
is of the form 2" [18]. As mentioned earlier, this condition is
rarely satisfied (e.g., less than 2% cases in our experiments).
Hence, for all practical purposes, the BN support in ReGAN
is not sufficient.

Overall, a suitable hardware platform for BN must have
full-precision support and should be capable of easily imple-
menting more complex math operations such as division. In
this article, we propose a 3-D architecture that consists of
both ReRAMs and the full-precision computing unit to address
this problem. Fig. 3 shows the envisioned architecture. In this
work, we use GPUs as the choice of full-precision hardware
for BN support. However, any other processing unit that can
support full-precision computing (CPU, TPU, etc.) can also
be used here. As shown in Fig. 3, the proposed architecture
includes M ReRAM layers and N GPU layers, stacked ver-
tically. Here, we use 3-D integration as it enables the use of
disparate technologies [21] (GPUs and ReRAMs in this case).
Note that fabricating heterogeneous components on a single
layer of silicon is often not feasible due to manufacturing
incompatibilities. We discuss each component of the proposed
architecture in more detail in the next section.

It should be noted that the recently proposed AccuReD
architecture uses a similar concept to include BN support in
the ReRAM-based platform [3]. However, as we show later,
the AccuReD architecture is suboptimal due to the use of too
many BN layers (AccuReD uses the All-BN CNN configu-
ration). The proposed architecture addresses this problem by

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

judiciously using a limited number of BN layers, resulting in
significantly more speedup for training deep CNNs compared
to AccuReD.

B. Overall Architecture

Each planar layer consists of multiple GPU (or ReRAM)
tiles. The planar layers are connected using through-silicon
vias (TSVs). The ReRAM layers consist of ReRAM crossbars
that can be used for both storage and computation (ReRAMs
perform in-memory computation). This reduces the amount
of traffic (data movement) necessary compared to conven-
tional CPU/GPU-based manycore architectures. Note that the
ReRAM layers can be based on any existing ReRAM-only
implementations, such as ISAAC or Pipelayer, etc. In this
work, without loss of generality, we implement the ReRAM
tiles following ISAAC [2]. Each tile in ISAAC includes the
in-situ multiply—accumulate (IMA) units, which consist of
multiple ReRAM crossbars, along with other peripheral cir-
cuitry. In addition, each ReRAM tile connects to a router for
communication via the NoC.

However, unlike ISAAC [2], DeepTrain is equipped with the
additional GPU layers to implement BN necessary for training
deep CNNs. The GPU layer consists of conventional GPU tiles
(with cache) to support the precision-critical BN operations.
The GPU tiles include a GPU core, cache, and a memory
controller (MC) that can access data from the ReRAM layers.
In addition, each tile also includes a router for communication.
The GPU tiles can access the ReRAM layers using TSVs.

The GPU and ReRAM tiles are arranged in a conventional
grid fashion. As ReRAM tiles are smaller than their GPU
counterparts, four ReRAM tiles are clustered together follow-
ing [2]. The GPU tiles and ReRAM clusters are connected via
a 3-D mesh NoC where the vertical connections are established
using TSVs. Here, it should be noted that mesh NoCs are
not suited for multihop long-range communication. However,
CNN training involves data sharing between adjacent layers
only. Hence, long-range communication can be avoided by
appropriately mapping the CNN layers to different processing
tiles [3]. As a result, a simple NoC topology such as mesh
is sufficient as the communication backbone in DeepTrain. In
addition, a mesh NoC is more amenable to multicast support,
which is necessary for CNN training.

Overall, DeepTrain (Fig. 3) consists of two types of pro-
cessing elements that have contrasting properties.

1) GPUs: They are relatively slow in implementing MAC
operations but provide a full-precision computing plat-
form (32-bit floating point).

2) ReRAM:s: They can implement efficient MAC operations
but can only support low-precision computing (16-bit
fixed point).

Hence, the MAC-heavy, but less precision-sensitive, Conv and
FC layers are mapped to the ReRAMs. On the other hand,
the computationally inexpensive but precision-critical BN lay-
ers are executed on the GPUs. To ensure that communication
does not become a bottleneck, we map the CNN computa-
tions using a multicast-enabled load-balancing scheme [3]. In
a CNN, each neuron sends the same data to all its connected

Authorized licensed use limited to: Washington State University. Downloaded on May 01,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

JOARDAR et al.: HIGH-THROUGHPUT TRAINING OF DEEP CNNs ON ReRAM-BASED HETEROGENEOUS ARCHITECTURES

100% I Accuracy No. of BN 20 s
§ 75% | 158 wn
(T
§ 50% 10 ° g
S 25% 5 =8
0% L 0o <
N16 N13 N10 N4 N4-R

VGG-19 configurations

Fig. 4. Accuracy for different VGG-19 configurations with CIFAR-10.

neurons in the next layer while also saving it (on another set of
ReRAM cells) to use during the backpropagation phase. This
results in a lot of redundant traffic as the same data needs to
be transmitted to multiple destinations (ReRAM/GPU tiles).
Hence, multicast-enabled mapping is necessary to avoid send-
ing the same data repeatedly. This reduces the amount of traffic
in the NoC, eliminating the possibility of hotspot creation. The
use of mesh NoC in DeepTrain allows the incorporation of a
simple XYZ-based tree multicast [31]. The XYZ tree multicast
works as follows. Depending on the location of destination
tiles, one or more copy of the same message is first sent along
the X-dimension, followed by turns along the Y-dimension.
Finally, the message packet(s) turn along the Z-dimension to
reach all intended destinations. Overall, the mapping aims to
reduce traffic hotspots in the NoC for efficient communica-
tion support for training deep CNNs. Next, we discuss the
BO-based optimization algorithm that enables DeepTrain to
achieve further performance benefits.

V. BO-OPTIMIZED CNNSs

In this section, we first demonstrate the limitations of exist-
ing CNN architectures that use BN after every Conv/FC layer.
Next, we present the proposed sparsity-aware BO methodol-
ogy that can identify the most effective locations for BN layers
in a CNN. These BO-enabled CNNs require significantly fewer
BN layers than their traditional All-BN counterparts leading to
better performance and energy efficiency using the proposed
hardware architecture.

A. Challenges Using All-BN

From Figs. 1 and 2, we know that BN layers are impor-
tant for training deep CNNSs. Traditionally, BN layers are
added after every Conv layer (referred as All-BN in this
work) [10]. However, All-BN is suboptimal from the perspec-
tive of hardware and can adversely affect the performance of
DeepTrain (shown later). Some of the BN layers in All-BN are
redundant and do not contribute toward achieving better accu-
racy. Instead, these extra BN operations increase the required
amount of computation, which can lead to an unnecessary
performance bottleneck.

Fig. 4 shows the prediction accuracy with different VGG-
19 configurations for CIFAR-10. The parameter N; in Fig. 4
indicates i BN layers used after each of the first i Conv layers,
i.e., after C1-Ci. Note that N16 is the same as All-BN. From
Fig. 4, we note that it is possible to achieve All-BN level accu-
racy with N13. By using three fewer BN layers, N13 reduces
the number of computations that need to be performed on the

1541

Time K Convi BN1 Conv2 BN2

r

2T [Image-Z] [Image-l]

3T [Image-3} [Image-Z] [Image-l}

4T _[Image-4} [Image-3} : [Image-z}_ Image-1 !
vit Tes E Tz E Tez E Tnz E

T=max (T¢;, Tyis Tezs Trzs ---)

Fig. 5. Pipelined CNN training for ReRAM-based architectures following [1].

GPUs without significant accuracy loss. Note that N13 expe-
riences a small accuracy drop of ~1% compared to All-BN.
However, both N10 and N4 fail to achieve acceptable accuracy.
Interestingly, if we rearrange the placement of BN layers in N4
and add them after C5, C8, C11, and C16 layers of VGG-19
instead (referred as N4-R in Fig. 4), the trained model achieves
All-BN level accuracy. Using four BN layers (instead of 16 in
All-BN) introduces significant performance and energy ben-
efits (shown later). Hence, having BN after each Conv layer
(All-BN) is not necessary.

It is well known that Conv layer computations contribute to
more than 80% of the execution time on GPUs [22]. Hence,
energy and execution time savings by reducing the number of
BN layers is relatively inconsequential for GPUs. However,
ReRAM-based architectures that implement CNN training in
a pipelined fashion can benefit from this methodology. It is
well known that ReRAM crossbars can significantly speedup
the MAC-dominated Conv layers. However, the amount of
speedup will be limited if the other layers such as BN cannot
keep up with it. Note that the slowest layer in a pipeline dom-
inates the overall execution time. Fig. 5 illustrates a pipelined
CNN training implementation using four layers (2 Conv and
2 BN layers) as an example. As shown in Fig. 5, the inputs
(images belonging to the same batch) arrive sequentially and
at any point of time (after the pipeline is full), e.g., at time
4T, processing elements responsible for all the CNN layers
(ReRAMs and GPUs in this case) are active. Note that the
conventional BN layer can be modified following [23] to work
in a pipelined fashion (Fig. 5) without accuracy loss. As men-
tioned earlier, the overall performance will be dominated by
the slowest layer. Therefore, the computations of each layer
(Conv/BN) should be ideally accomplished in such a way that
the time to execute different layers are similar, i.e., Tc~ Ty;
where T¢ and Ty represent the time to execute the operations
in a Conv and BN layer, respectively. However, executing too
many BN layers (as in All-BN) on few GPUs can increase Ty
disproportionately and slow down the entire pipeline (shown
later). Hence, accelerating the Conv/FC layers on ReRAMs to
improve T¢ further will not be useful anymore. This can limit
the achievable speedup in execution time using DeepTrain.

To address such a situation, we can increase the number
of GPU tiles/layers in DeepTrain to reduce Ty and make the
pipeline more balanced. However, the total number of logic
layers that can be stacked vertically is often limited due to
thermal limitations. For instance, Joardar et al. [3] have shown
that up to four layers can be stacked before crossing 100 °C.

Authorized licensed use limited to: Washington State University. Downloaded on May 01,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

1542

As a result, the amount of ReRAM and GPU tiles that can be
incorporated in DeepTrain is limited. We cannot increase the
number of GPU layers without sacrificing some of the ReRAM
layers. As shown in [1], having more ReRAMs is beneficial as
it enables us to parallelize the slower CNN layers leading to
higher speedup. Hence, sacrificing ReRAM layers to add more
GPUs is not an attractive option as it will reduce the amount
of speedup that can be achieved by the proposed architecture.
In addition, executing redundant BN operations on GPUs will
result in needless energy consumption.

Therefore, All-BN is not optimal for high performance train-
ing on DeepTrain. Instead, we should remove some of the
redundant BN layers to reduce the computation on GPUs.
This would automatically reduce Ty (as the amount of work
per GPU tile is lower) and prevent BN layers from creating
a performance bottleneck. However, having too few BN lay-
ers can potentially lead to No-BN like behavior (i.e., poor
accuracy as shown in Fig. 2). Therefore, our goal is to find
the minimum number of BN operations necessary for a given
CNN to achieve both high performance and All-BN level of
accuracy. However, Fig. 4 clearly shows that both the number
and location of BN layers affect the accuracy of the trained
model. To the best of our knowledge, there exists no analyt-
ical model or mathematical formulation that can predict the
final accuracy as a function of these two parameters. Hence,
we need an algorithmic formulation to address this problem
(discussed in the next section). Overall, this results in a sym-
biotic relationship between the DeepTrain architecture and the
BO-based methodology. The DeepTrain architecture provides
support for BN layers to improve the accuracy of the trained
model but incurs more time and area overhead due to too
many BN operations. The BO algorithm reduces the number of
BN operations necessary for training leading to faster training,
with fewer associated hardware resources and lower energy.

Here, it should be noted that the underlying 3-D archi-
tecture with All-BN is the same as the AccuReD architec-
ture [3]. However, the major difference between DeepTrain
and AccuReD is the overall configuration enabled by BO-N.
As discussed earlier, only a finite number of planar layers
can be stacked in a 3-D configuration before the temperature
becomes unmanageable. AccuReD uses the All-BN configura-
tion, which necessitates more GPU layers. Reducing the num-
ber of GPUs in AccuReD will result in more BN operations on
fewer GPUs leading to a higher time to execute the BN layers
(and hence a higher execution time). As a result, AccuReD
cannot use systems with more ReRAM layers. On the other
hand, the DeepTrain architecture uses the BO-N configuration.
This reduces the number of operations that need to be executed
on GPUs. Hence, we can reduce some GPU layers and add
more ReRAM layers without affecting performance. As we
show later via experiments, DeepTrain achieves significantly
better performance compared to AccuReD.

B. Sparsity-Aware BO

In this section, we present the proposed sparsity-aware BO
algorithm that can quickly determine the most effective BN
layers in a given CNN.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

Problem Definition: Given a deep CNN with C Conv layers,
we can add a BN layer after any of these C layers. Therefore,
the combinatorial space for candidate placements of BN lay-
ers is of size 2 (exponential in the number of Conv layers).
Evaluating each candidate choice is computationally expen-
sive and involves training the CNN with the fixed placement
of BN layers to compute the overall accuracy. It is well known
that CNN training is time consuming. As a result, an exhaus-
tive evaluation of all the 2€ ways to add BN layers in a
CNN is not feasible, particularly for deep CNNs where C
is large. For instance, we have 2'¢ choices of using BN in
VGG-19 (C = 16). Hence, an exhaustive exploration is practi-
cally impossible. Therefore, we employ the BO framework and
adapt it as needed to solve this problem in a computationally
efficient manner, i.e., find a good solution in fewer iterations.
Overall, our goal is to find a solution from the combinatorial
space that exhibits the following properties: 1) uses the mini-
mum number of BN layers (i.e., sparse solutions in terms of
the presence/absence of a BN layer after each Conv layer) and
2) achieves similar accuracy as All-BN configuration. As we
show later, this leads to better DeepTrain performance. This
problem is an instance of the general problem of optimizing
combinatorial spaces when the objective function is expen-
sive to evaluate [28], which is relatively understudied when
compared to its counterpart for continuous spaces.

Problem Formulation: We can formulate the above problem
as sparsity-aware BO over combinatorial spaces. Let D =
{0, 1}€ denote the combinatorial space over a vector x =
(x1,x2,...,x) of C binary variables, where x; stands for the
presence or absence of a BN layer after the ith convolution
layer and C represents the number of Conv layers in the given
CNN. Let F(x) denote the evaluation score (prediction accu-
racy) of a candidate BN placement vector x. In this case, the
black box evaluation function F involves training the CNN
(with BN layers added following x) and is expensive (CNN
training is a time-consuming task). Our goal is to find x* € D
quickly (within few iterations), to reduce the number of times
the expensive evaluation function F' is invoked. The optimal
solution x* € D should maximize the evaluation score F(x)
(accuracy) and must be sparse in terms of the L; norm (|x|),
i.e., fewer BN layers should be used.

BO is an effective framework to solve black-box
optimization problems with expensive evaluation func-
tions [13]. There are three key elements in the BO framework.

1) The statistical model (SM) of the true function F(x)
that imposes a prior over the space of functions. This
model should be able to make predictions for unknown
inputs and also quantify its uncertainty. Bayesian models
are typically used due to their flexibility and uncertainty
quantification ability.

2) The acquisition function (AF) to score the utility of eval-
uating a candidate input x € D based on the SM. AF
needs to tradeoff exploitation (selecting inputs with high
prediction value) and exploration (selecting inputs with
high uncertainty) using the learned SM.

3) AF optimization (AFO) to select the best scoring candi-
date input xpex; according to AF depending on the SM.
Next, we discuss few key aspects of this algorithm.

Authorized licensed use limited to: Washington State University. Downloaded on May 01,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

JOARDAR et al.: HIGH-THROUGHPUT TRAINING OF DEEP CNNs ON ReRAM-BASED HETEROGENEOUS ARCHITECTURES

1) Second-Order Polynomial for SM: The choice of the
SM will impact the effectiveness and computational complex-
ity of the BO solution: complex models are expressive, but
will require more training data to be useful (i.e., less effective
for BO) and result in high computational complexity to solve
the AFO problem for selecting inputs for evaluation. In this
work, we employ a second-order Bayesian linear model as the
surrogate function (fp(x)) [14]. A sparsity inducing Horseshoe
prior on the parameters along with an L1 norm-based penalty
is added to the objective to capture/prioritize the condition that
we require sparse solutions (also known as fewer BNs). The
second-order model provides a good tradeoff between expres-
sivity and accuracy. The model is described below with 8 as
the learnable model parameters: (linear terms) 6; is the weight
of x; and (quadratic terms) 6;; is the weight of x;.x;, where
x; and x; are binary variables belonging to the vector x, i.e.,
x = (x1x2,...,XxC)

C c C
fo) = 60+ Oxi+ Y Y Opxixg— Al (1)
i=1

i=1 j=i

The model parameters capture the uncertainty in the model
and help in guiding the search-space exploration. Here, A is
a user-defined parameter that provides additional control over
the sparsity. A larger value of A favors sparser solutions due
to lower Linorm and is used in this work. Note that the hyper-
parameters used in Bayesian models are usually estimated by
maximizing the marginal likelihood. However, our specific
problem: sparse Bayesian linear regressor learning, is much
simpler in this regard as the sparsity parameter has a well-
defined semantics (i.e., the resulting solutions do not vary
for small changes in the value of lambda). Hence, we per-
formed a simple grid search over few coarse values of lambda
to determine the most suitable one.

2) Thompson Sampling as AF: Any AF is defined as the
expectation of a utility function under the posterior predictive
distribution P(y | x,D) = fP(y | 6) x P(O|x, D) [32], [33],
where x is the input, y is the output of evaluating objective
function at input x, and D is the training set of input—output
pairs. In this work, we use Thompson sampling as the AF.
Thompson sampling approximates this posterior by a single
sample 6* ~ P(f|x, d) which inherently enforces exploration
due to the variance of this Monte-Carlo approximation and
exploitation is the maximization with respect to the selected
sample [32]-[34]. However, approximating the posterior using
a single sample inherently enforces exploration due to the vari-
ance of this approximation. We optimize the sampled function
to select the next candidate input for the expensive function
evaluation (intractable combinatorial optimization in general).
In our approach, the surrogate model is a Bayesian linear
regressor. Hence, we sample the posterior parameters 6 and
we need to select the input that maximizes the inexpensive
objective fp (x) for the next evaluation. This problem is formu-
lated as a binary quadratic program (BQP) and solved using
semidefinite program (SDP) solvers.

Here, it should be noted that other AFs, such as expected
improvement (EI), upper confidence bound (UCB), and prob-
ability of improvement (PI), have also been used in prior

1543

CNN architecture __, ("Choose next candidate CNN Training
(e.g. VGG-19) CNN x,,,, based on AFO (Black-box Function F)
[
Inexpensive (Eqn. 2) % 5% _E kS
Surrogate Model 5% & 58
(Eqn. 1) 220 B3T
; 25% &°
m©
A

Add to Training Data
(D,,; =D, U <x, F(x)>)

Learn/Update
<«—|Surrogate Model
(Egn. 1)

Ilustration of the proposed BO algorithm.

Fig. 6.

works [13]. However, we choose Thompson sampling in this
work for the following reasons: 1) Thompson sampling is
a parameter-free AF unlike UCB, EI, and PI. In UCB, we
need to set the tradeoff between exploration (variance) and
exploitation (mean) in each BO iteration. In EI and PI, we
need to set the threshold parameter and 2) in our problem set-
ting, the input space is discrete/combinatorial, which is much
more challenging than continuous spaces studied in most of
the existing BO research. The key challenge is to find the next
binary structure for evaluation from this large combinatorial
space (24, where d is the number of binary variables). In its
general form, this is an NP-Hard combinatorial optimization
problem. With standard AFs, such as UCB, EI, and PI, we
cannot get a tractable optimization solver to address this chal-
lenge. Thompson sampling allows us to reduce this problem to
a BQP, which can be solved using state-of-the-art semidefinite
programming solvers.

3) Semidefinite Program for AFO: Efficient and accurate
AF optimization is a critical element for fast convergence of
the BO procedure. When Thompson sampling is utilized as
the AF, the AFO problem becomes a BQP as stated in

min {x'Ax+b'x} ()

xef{0,1}¢

where x’" and b’ denote the transpose of vectors x and b, respec-
tively, A denotes the matrix with all second-order parameters,
i.e., Ajj = 6;; and b denotes the vector with first-order param-
eters, i.e., bj = 0; + A where 6 is sampled from the posterior
of the SM. This allows us to use a semidefinite programming
(SDP)-based approach for solving the BQP.

Overall, Fig. 6 shows a high-level illustration of the BO
algorithm. We first initialize the SM using a few random sam-
ples, i.e., <x, F(x)> pairs where x indicates where the BN
layers are added in a CNN and F(x) represents the accuracy
achieved using this configuration. Next, in each iteration, the
BO algorithm invokes the AFO to select the next candidate
BN layer configuration xyex; following (2) (as shown in Fig. 6).
This new configuration x(= xpex¢) is then evaluated using the
expensive black box function F to compute the accuracy (F(x))
after training the CNN. Note that the BO algorithm reduces
the number of times F needs to be invoked. The <x, F(x)>
pair is then added to the training data (D;) already available
from past function evaluations (Fig. 6). The new training data
is then used to update/improve the SM for the next iteration.
At the end of MAX iterations, the algorithm returns the best
BN layer configuration x(= xpest) uncovered during the search
process.

Authorized licensed use limited to: Washington State University. Downloaded on May 01,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

1544

TABLE I
RELEVANT PARAMETERS FOR THE DEEPTRAIN ARCHITECTURE

Each GPU layer: 16-GPU tiles
GPUs Fermi architecture, 700 MHz, Private 64kB L1
Each ReRAM layer: 36-clusters, 4-tiles per cluster

ReRAM tile 128x96-DACs (1-bit), 96-crossbars, 128x128
crossbar size, 330 mW power, l0MHz [2]

Each iteration of the BO algorithm involves solving the
AFO problem (time complexity is polynomial in C) and train-
ing the CNN to get accuracy (time complexity is linear in the
number of epochs and number of parameters) and updating
the Bayesian linear regressor using each new training exam-
ple (time complexity is quadratic in C). In practice, C is a
small number (between 10 and 100) making our overall solu-
tion scalable. In our experiments, we observed that the BO
algorithm converges in less than 20 iterations always to find
near-optimal solutions from the combinatorial space of size 2€.
Here, it should be noted that the BO-based CNN optimization
is dataset-agnostic. Our experiments indicate that CNNs opti-
mized for one dataset can also be used for training using
other datasets without any significant loss of accuracy. Hence,
this optimization is a one-time process for any given CNN,
which can then be used repeatedly; thereby amortizing the
optimization cost (time and energy spent).

VI. EXPERIMENTAL RESULTS

In this section, we first discuss the experimental setup to
evaluate the performance of the DeepTrain architecture. Next,
we present a performance analysis to motivate the need for
fewer BN layers. Finally, we present a performance compar-
ison of DeepTrain with respect to a conventional GPU-based
implementation.

A. Experimental Setup

We employ GPGPU-Sim [25] to simulate the GPU lay-
ers to obtain execution time and power information for BN
layers. The GPU cores are based on the NVIDIA Fermi
architecture. Here, note that newer GPU architectures (e.g.,
Volta) can also be used. However, to the best of our knowl-
edge, detailed power models for newer architectures are not
available in GPGPU-Sim (hence, we use the Fermi archi-
tecture). The ReRAM crossbar and tile configurations/area
are based on the information available in [2]. CNN execu-
tion on ReRAM tiles exhibits deterministic behavior without
any run-time dependencies. Moreover, ReRAM arrays execute
instructions in order and instruction latencies are deterministic.
Therefore, deterministic execution models suffice to reliably
capture ReRAM performance parameters, e.g., execution time,
on-chip traffic, etc. In this work, we use the ReRAM execu-
tion models from [2]. We omit the discussion of these models
in this article for the sake of brevity. The ReRAM execu-
tion model and GPGPU-Sim are used together to simulate
the entire CNN. Some of the important parameters for the
DeepTrain architecture are listed in Table I.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

The vertical connections in DeepTrain are established using
TSVs. We assume a four-layer 3-D architecture in this work
for simplicity. However, note that the proposed methodology
is not limited to any specific 3-D technology or a particu-
lar choice of the number of planar layers. Furthermore, in this
work, we assume that GPUs and ReRAMs cannot be fabricated
on the same layer due to manufacturing incompatibilities (e.g.,
different process technology nodes for GPU and ReRAM).
Hence, to implement both Conv/FC and BN layers, we need
to have at least one ReRAM and one GPU layer in DeepTrain.
Therefore, there can be three possible DeepTrain configura-
tions: 1) 1R3G; 2) 2R2G; and 3) 3R1G. Here, MRNG denotes
M layers of ReRAM tiles and N layers of GPU tiles stacked
vertically (Fig. 3). However, our analysis indicates that a single
layer of ReRAMs in DeepTrain (1R3G) does not have enough
ReRAM crossbars to store all weights and intermediate data
on-chip, particularly for larger CNNs, e.g., VGG-19. Hence,
in this work, we explore the 2R2G and 3R1G configurations
only.

Here, it should be noted that the 2R2G configuration with
All-BN CNNs is essentially the same as the AccuReD archi-
tecture [3]. Hence, we use AccuReD as a baseline to evaluate
the efficacy of the proposed methodology. Prior solutions,
such as REGENT [16] and 3D-ReG [17], have also proposed
similar architectures that use 3-D integration to incorporate
both ReRAMs and GPUs for CNN training. However, these
architectures are fundamentally different in terms of how the
CNN layers are executed and the incorporation of BN lay-
ers. In DeepTrain, we use the ReRAMs to perform all the
MAC operations (both forward and backward phases) while
BN is implemented using the GPUs. However, REGENT
and 3D-ReG use ReRAMs for the forward phase only while
performing the backward phase computations on GPUs. As
mentioned earlier, BN layers (both forward and backward
phases) require high-precision support [5], [6]. Due to their
mapping policy, both REGENT and 3D-ReG cannot support
BN operations during the forward phase. Moreover, executing
the MAC-heavy backward phase on relatively slower GPUs
will bottleneck performance and any gains made by acceler-
ating the forward phase on ReRAMs will be reduced. Due
to these two reasons: 1) lack of BN support (during the for-
ward phase) and 2) slower pipeline due to involvement of
GPUs in the backward phase, we do not consider REGENT
and 3D-ReG as appropriate baselines in this article.

The CNNs were implemented using PyTorch (Python) and
trained on an NVIDIA Titan Xp GPU with 12 GB of memory
for 50 epochs. The BO algorithm is also implemented using
Python to easily integrate with the PyTorch-based CNN imple-
mentations. We run the BO algorithm for up to 100 iterations
for all the CNNs and found that it always converges in less
than 50 iterations.

B. Impact of All-BN on Performance

Fig. 7 shows the execution time (normalized) of the slowest
Conv/FC layer on ReRAMs and the slowest BN layer executed
on GPUs for all possible DeepTrain architectures with All-BN
CNNs. As mentioned earlier, the CNN training on ReRAMs

Authorized licensed use limited to: Washington State University. Downloaded on May 01,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

JOARDAR et al.: HIGH-THROUGHPUT TRAINING OF DEEP CNNs ON ReRAM-BASED HETEROGENEOUS ARCHITECTURES

6 Conv Norm
s® 4
Q®©
S0Z 5
mmg
EE-HQ
cao=l 4 VW 9 0 o€ Vv o
ZQ_ L) L) (o) L) L) L) L) L)
3 v v v ¥ v o v 9
O O O I3 O () o [
> > > > > >
2R2G 3R1G

Fig. 7. Worst pipeline stage latency on GPUs (BN) and ReRAMs (Conv/FC)
when All-BN CNNs are executed on different DeepTrain configurations
(normalized with respect to Conv/FC in each case).

is implemented in a pipelined manner (Fig. 5), where each
CNN layer constitutes a stage of the execution pipeline [1].
In other words, Conv/FC in Fig. 7 represents max(7¢;) while
BN represents max(7y;). Here, T¢; and Ty; represent the time
to execute the ith Conv/FC layer on ReRAMs and the jth BN
layer on GPUs, respectively (Fig. 5). The overall execution
time (the parameter 7 in Fig. 5) depends on the slowest stage,
ie., T =max{T¢;, Tnj}. As an example, for training VGG-11
on the 2R2G configuration (in Fig. 7), the BN layer execution
on GPU requires slightly more time than the Conv/FC com-
putation on ReRAMs. Hence, due to the pipeline, even if the
computations associated with the Conv/FC layers are finished
early, the ReRAMs must remain idle and wait for the GPUs
to finish the computation. Therefore, the overall runtime will
be determined by the time to execute BN in this case.

From Fig. 7, we note that the worst-case times needed to
execute Conv/FC layers on the ReRAMs and BN layers on
GPUs are relatively balanced in 2R2G. Adding more ReRAMs
(as in 3R1G) accelerates the Conv/FC layers even further. As
mentioned earlier, having more ReRAMs (as in 3R1G) is desir-
able as it enables us to accelerate the slower CNN layers by
replicating the weights on the extra ReRAMs following [1].
However, as Fig. 7 clearly shows, the time to execute the BN
layers skyrockets in this case. This happens because GPUs are
limited in 3R1G (compared to 2R2G) and the amount of com-
putation per GPU tile for All-BN CNNs is significantly higher.
Note that the total number of layers that can be stacked verti-
cally is limited due to thermal concerns [3]. As a result, due
to the pipelined implementation of CNN training, the overall
execution time will be dominated by the BN layers and any
gains made by accelerating the Conv/FC layers on ReRAMs
is not useful. This prevents DeepTrain from reaching its max-
imum achievable performance and thereby realizing its full
potential.

Overall, there is no benefit in simply adding more ReRAMs
when we use an All-BN configuration; the BN layers tend
to limit any performance benefits eventually. To address this
problem and achieve better performance, we should reduce the
number of BN operations necessary to train the CNN without
losing accuracy. As we have shown in Fig. 4, by using the
BN layers judiciously, it is possible to achieve high accuracy
with significantly fewer BN operations than an All-BN con-
figuration. For instance, if we place only four BN layers after
C5, C8, C11, and C16 layers of VGG-19 (referred as N4-R in
Fig. 4), we can achieve All-BN (16 BN layers) level accuracy.

1545

90%
88%
86%
84%
82%
80%

Accuracy

1 5 10 15 20 25 30 35 40 45 50
BO iterations

Fig. 8. Best model accuracy achieved after different BO iterations.

This reduces the amount of computation necessary, which can
lead to better performance as we show next.

C. Sparsity-Aware BO Algorithm

First, we present the efficacy of the proposed sparsity-aware
BO algorithm in quickly finding a CNN configuration with few
BN layers (referred as BO-N hereafter). Fig. 8 shows the qual-
ity of the best BO-N configuration uncovered (in terms of the
accuracy of trained models) with respect to the number of BO
iterations, for ResNet-18 using the CIFAR-10 dataset. Note
that ResNet-18 has the highest number of BN layers among
the four CNNs considered in this work. Hence, the search
space of possible solutions is the largest here. We run the BO
algorithm for 50 iterations with different random seeds and dif-
ferent initialization data for a rigorous analysis. As shown in
Fig. 8, the sparsity-aware BO algorithm found the best solution
(BO-N configuration with similar training accuracy as All-
BN) in significantly fewer iterations (15 iterations in Fig. 8).
Among all our experiments, the BO algorithm found the best
solution within at most 20 iterations. In many cases, it found
the best solution in less than ten iterations as well. Similar
behavior was observed for the other CNNs considered in this
work. Fig. 8 clearly shows that the proposed sparsity-aware
BO algorithm converges very fast in practice.

Each experiment with BO often generates more than one
valid solution. A solution is deemed valid if and only if it
has an accuracy drop of less than 1% compared to All-BN.
Hence, the output of BO is a set of such valid solutions D.
Each solution deD is part of a Pareto set and has a different
accuracy—performance—energy tradeoff. We choose the optimal
solution d*eD that results in the best performance and energy
consumption (measured using GPGPU-Sim simulations). In
this work, we prioritize performance and energy while decid-
ing d*. However, note that d*eD is a valid solution, i.e., its
accuracy is guaranteed to be within 1% of All-BN. Here, our
assumption is that less than 1% accuracy loss is insignificant
for most applications in exchange for significant performance
and energy gains compared to All-BN as we show next. Other
solutions from the Pareto set can also be chosen if accuracy
is prioritized. However, such a solution can have relatively
inferior performance and energy tradeoff compared to the d*
considered here.

D. All-BN Versus BO-N

Fig. 9(a) compares the prediction accuracy of the CNN
obtained using the BO algorithm discussed in Section V and

Authorized licensed use limited to: Washington State University. Downloaded on May 01,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

1546

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

> 100% H AlIBN BO-N @ H AlIBN BO-N - 100
S 80% 58 ! gn T FTT T+ 4
= OB 2
3 60% ¢ 3 3 30
3 2505 8 25
< 40% 2™ < 0
20% - 2 z 2 z 2 z z =z
0% 0 2o 290 20 2 9
E 2] E 2] E 2] E 2]
VGG11l VGG16 VGG19 Resl8 VGG11VGG16 VGG19 Res18
VGG11 VGG16 VGG19 Resl8
(a) (b) (©)
Fig. 9. Comparing (a) prediction accuracy, (b) number of resulting instructions executed on GPUs, for All-BN and the CNN configuration obtained using

the BO algorithm (BO-N) discussed in Section V, and (c) accuracy of All-BN and BO-N CNNs trained with various hyperparameter settings.

the All-BN configuration. From Fig. 9(a), we note that the
BO-N CNNs achieve All-BN level accuracy for all the four
CNNs considered in this work. However, the BO-N configura-
tions use only a small number of BN layers (and operations)
compared to All-BN. The BO-N configuration for VGG-11,
VGG-16, VGG-19, and ResNet-18 uses two (after C5 and
C7), four (after C5, C7, C8, and C13), four (after C5, C8,
C11, and C16), and 12 (after C3, C6, C7, C9, C10, C11, C12,
C13, Cl14, C15, Cl16, and C17) BN layers, respectively, as
opposed to 8, 13, 16, and 20 layers in All-BN (placed after
each Conv layer). For all the four CNNs, the BO methodol-
ogy identifies the layers closer to the output (softmax) layer as
the most effective locations for using BN. This is understand-
able as the prediction accuracy of trained CNNs depends on
the complex features closer to the output layer, which carry
significant information to discriminate among different class
labels (e.g., cats versus dogs) [30]. BN layers allow us to
preserve these important features during training.

However, as different BN layers operate on varying sized
inputs, the number of BN layers is not a good measure of the
efficacy of the proposed methodology. Hence, we present the
total number of instructions (including integer, floating-point,
and memory read/write instructions as obtained from GPGPU-
Sim) that were executed on the GPUs for both the All-BN and
BO-N variants in Fig. 9(b). As Fig. 9(b) shows, the number of
instructions executed by the GPUs reduced by 82% on average
for all the CNNs considered in this work for BO-N compared
to All-BN. This happens as most of the BN layers in BO-
N are concentrated closer to the last (softmax) layer where
the outputs are relatively smaller. Typically, inputs are down-
sized as it moves from input to output side. As a result, even
when the BO-N configuration uses relatively more BN layers
as in ResNet-18, the reduction of GPU workload is significant.
Overall, BO-N results in faster execution and energy savings
for CNN training using the proposed architecture.

Interestingly, BO-N also retains All-BN’s robustness to the
choice of hyperparameters despite having fewer BN layers.
Fig. 9(c) shows the accuracy observed for various hyperpa-
rameter settings. For this experiment, we use the same 150
hyperparameter combinations as in Fig. 2. From Fig. 9(c),
we can clearly see that BO-N is as robust as All-BN to the
choice of hyperparameters. The average accuracy for BO-N
exhibits less than 1% difference than that of the average accu-
racy of All-BN despite having few BN layers. Overall, from
Fig. 9, it is clear that BN layers are necessary but only a
few are sufficient. This makes the CNNs lightweight, which

a it —
© —
5 75% 4
o
Qo
< /
50%
1 5 10 15 20 25 30 35 40 45 50
Epoch
Fig. 10. Accuracy after different epochs of training ResNet-18 using the

CIFAR-10 dataset. The BO-N configuration lags All-BN in terms of model
accuracy for the first few epochs, beyond which the difference is negligible.

enables high-performance training of CNNs on DeepTrain as
we show next. Here, it should be noted that we have veri-
fied the correctness of the BO algorithm by comparing the
solution quality (prediction accuracy) with that of an exhaus-
tive exploration whenever possible. Our analysis indicates that
the BO algorithm can find near-optimal CNN configurations
(accuracy difference of ~1% compared to the best solution
found by exhaustive exploration).

Next, we compare the number of epochs required by both
All-BN and BO-N to reach convergence. Fig. 10 shows the
model accuracy after each epoch of training ResNet-18 using
the CIFAR-10 dataset as an example. Other CNNs considered
in this work exhibit similar behavior. As shown in Fig. 10, the
BO-N configuration lags the accuracy of All-BN in the first
few epochs (5-10 epochs in most cases). However, the accu-
racy difference is negligible during the latter part of the
training, i.e., both configurations converge at approximately
the same time. This shows that BO-N is not only robust to the
choice of hyperparameters [as shown in Fig. 9(c)] but is also
as fast as All-BN in terms of speed of convergence.

E. Impact of BO-N on Performance

Next, Fig. 11 compares the impact of training the BO-N
configurations on DeepTrain (similar to Fig. 7). By comparing
Fig. 11 with Fig. 7, we can clearly see that the BN layers are
no longer performance bottlenecks for either 2R2G or 3R1G.
This happens because BO-N uses only a handful of BN lay-
ers. Hence, the amount of work per GPU tile is very little
and can be handled by only a limited number of GPUs. The
optimization procedure enables us to use more ReRAM lay-
ers without BN creating a bottleneck which is not possible
otherwise.

Authorized licensed use limited to: Washington State University. Downloaded on May 01,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

JOARDAR et al.: HIGH-THROUGHPUT TRAINING OF DEEP CNNs ON ReRAM-BASED HETEROGENEOUS ARCHITECTURES

® Conv ® Norm

iy 1

- W

28 >

=2 05

mwg .

ESg m I I 1N I

om_ 0 - -

22 - ©)) - o o %)

a i i i i i i i L)
O O O ¢ 0 O v g
©o o 0o & o o o @
> > > > > >

2R2G 3R1G

Fig. 11. Worst pipeline stage latency on GPUs (BN) and ReRAMs (Conv/FC)
when BO-N CNNs are executed on different DeepTrain configurations
(normalized with respect to Conv/FC in each case).

H AIIBN m BO-N

K 07%

Es %% s 1 [l i

o

$ 5 5 5 % &8 B & B
] [[[
= = [(=
w w w w

VGG11 VGG16 VGG19 Res18

Fig. 12. Pipeline stage latency (Lat) and energy dissipated (normalized) when
All-BN and BO-N CNNs are executed on the 3R1G DeepTrain architecture.

100% = AII-BN # BO-N

3 75%
©
5 50%
o
2 25%

0%

Cifar-100/VGG-16 TinylmageNet/Res-18
Fig. 13. Prediction accuracy achieved by BO-N and All-BN configurations

with other datasets (CIFAR-100 and TinyImageNet).

Fig. 12 shows the normalized pipeline stage latency (Lat)
and the corresponding energy dissipation (Energy) for execut-
ing the All-BN and BO-N CNNs. (Note that the normalization
here is with respect to the performance parameters and it
should not be confused with BN layer of the CNN.) As we
can see from Fig. 12, the BO-N CNNs enable DeepTrain to
achieve 67.1% lower execution time while consuming 16.6%
less energy on average. This happens as too many BN layers
in All-BN create a performance bottleneck and prevent 3R1G
from achieving its full potential (as shown in Figs. 7 and 12).
In addition, All-BN involves 82% more operations that need
to be executed on GPUs [Fig. 9(b)] leading to the high energy
consumption. Overall, the CNN configurations obtained using
the BO algorithm discussed in Section V enable the DeepTrain
architecture to achieve even more speedup than the traditional
All-BN configuration for training deep CNNs without losing
accuracy.

FE. Transferability of BO-N to Other Datasets

So far, we executed the BO methodology to find the
CNN configuration with fewer BN layers using the CIFAR-10
dataset. However, the same CNNs (obtained using BO with
the CIFAR-10 dataset) can also be used with other datasets as

1547

20 H GPU/AIIBN GPU/BON 2R2G/ALLBN
g. 15 3R1G/ALLBN m3R1G/BON
T 10
2 5 I I
w 0 —-—— —— —— ——
VGG11 VGG16 VGG19 Res18
Fig. 14. Full-system execution time speedup achieved by the 3RI1G

DeepTrain architecture compared to GPU. Note that the 2R2G/AlIBN config-
uration is equivalent to the AccuReD architecture [3].

we show next. Fig. 13 shows the prediction accuracy (ZTop-1
accuracy) achieved by All-BN and BO-N models for CIFAR-
100 [26] (32x32, RGB, 100 classes, 50000 training, and
10000 testing) and TinylmageNet [27] (64x64, RGB, 200
classes, 100000 training, and 10000 testing) datasets with
VGG-16 and ResNet-18, respectively. Both CIFAR-100 and
TinyImageNet datasets are larger and more complex than the
CIFAR-10 dataset used so far. The dataset/CNN combinations
in Fig. 13 were chosen as an example only. Please note that
other datasets (such as ImageNet) and CNNs can also be used
here. However, training repeatedly on the entire ImageNet
dataset from scratch is prohibitively expensive. Hence, we
have used relatively smaller datasets in this work. From
Fig. 13, we note that with both the datasets, the BO-N con-
figurations achieve comparable accuracy less than 1% drop on
average) as their All-BN counterparts for two different CNNG.
This is similar to our previous observations with CIFAR-10 in
Fig. 9(a).

Here, it should be noted that the BO-N configurations used
in Fig. 13, are the same as those obtained using CIFAR-10,
i.e., the BO process need not be repeated for the other datasets.
This happens as CNN layers closer to the output layer carry
important information that can discriminate among different
class labels for any dataset [30]. The BO algorithm learns
this knowledge from one dataset, which can then be applied
to other datasets as well. The overall idea is similar to the
concept of domain adaptation [29] in the machine learning
literature, where knowledge learned from one domain can
be reused in other domains. Fig. 13 provides strong empir-
ical evidence that the observations from Fig. 9(a) are not
specific to one dataset only. This property can be used to
optimize deeper CNNs for larger datasets inexpensively. For
instance, the BO-N configuration of larger ResNet models can
be quickly obtained using CIFAR-10. Due to the small size of
CIFAR-10, the time necessary for repeated training involved
during BO (Fig. 6) is relatively small. The BO-optimized CNN
configuration can then be reused for other larger datasets with-
out having to repeat the optimization process again (which
can be time consuming for large datasets such as ImageNet);
thereby amortizing the optimization cost.

G. Full-System Comparison

Finally, we compare the full-system execution time speedup
achieved by DeepTrain compared to a conventional GPU-
based platform (Nvidia Titan Xp). Here, we consider both
BO-N and All-BN CNNs. Fig. 14 shows the full system exe-
cution time speedup achieved by the different configurations

Authorized licensed use limited to: Washington State University. Downloaded on May 01,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

1548

compared to the conventional GPU (referred as GPU/AIIBN
in Fig. 14). Note that 2R2G/AIIBN in Fig. 14 is the same
as the AccuReD architecture [3]. To the best of our knowl-
edge, AccuReD represents the state of the art in ReRAM-based
architectures for training deep CNNs with BN support. As
we can see from Fig. 14, all the DeepTrain configurations
achieve better execution time than a conventional GPU regard-
less of the architecture. This happens as the ReRAMs can
perform MAC operations much faster than GPUs. However,
as Fig. 14 shows, the amount of speedup that can be achieved
by All-BN is limited. For all the four CNNs, the BO-N con-
figurations with the 3R1G DeepTrain architecture achieve the
best speedup among all the configurations that we considered
here (including AccuReD, i.e., 2R2G/AIIBN). This happens as
more ReRAMs are available to accelerate the Conv/FC layers
and the few BN layers used, do not pose a performance bot-
tleneck. Overall, Fig. 14 shows that too many BN layers can
prevent DeepTrain from reaching its full potential. Hence, we
should use BO-N CNNs with the 3R1G DeepTrain architec-
ture for training deep CNNs. Therefore, a key insight that this
article provides is that “More is not always better” in the con-
text of CNN. Interestingly, note that BO-N does not improve
the training time for GPUs as shown in Fig. 14 (referred as
GPU/BON in Fig. 14). This happens as convolution layers tend
to be the most time-consuming layers when a CNN is trained
using GPUs (more than 90% of overall training time) unlike
in ReRAM-based systems. Note that ReRAMs can perform
many MAC operations in O(1) time [2]. As a result, reducing
a few BN layers using BO-N is relatively inconsequential for
GPUs.

VII. CONCLUSION

Deep CNNs suffer from the vanishing/exploding gradients
problem which often results in unsuccessful training. Non-BN
methods such as Xavier/Kaiming initializations for training
deep CNNss are not reliable and require careful hyperparameter
tuning. In this work, we have shown that while BN is impor-
tant, only a few BN layers are sufficient for high-accuracy
CNN training. We have proposed a BO algorithm that can
easily find the optimal CNN configuration. These lightweight
CNNs use few BN layers but achieve high accuracy and con-
sume 16.6% lower energy than conventional All-BN CNNs
on a 3-D ReRAM/GPU-based architecture. Overall, BO-N
achieves up to 15x speedup compared to a GPU for training
deep CNNE.

REFERENCES

[1] L. Song, X. Qian, H. Li, and Y. Chen, “PipeLayer: A pipelined ReRAM
based accelerator for deep learning,” in Proc. HPCA, 2017, pp. 541-552.

[2] A. Shafiee et al., “ISAAC: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in Proc. SIGARCH ISCA,
2016, pp. 14-26.

[3] B. K. Joardar, J. R. Doppa, P. P. Pande, H. Li, and K. Chakrabarty,
“AccuReD: High accuracy training of CNNs on ReRAM/GPU hetero-
geneous 3D architecture,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 40, no. 5, pp. 971-984, May 2021.

[4] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc. ICML,
2015, pp. 448-456.

[5]
[6]

[7]
[8]
[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

[31]

(32]

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 5, MAY 2022

P. Micikevicius et al., “Mixed precision training,” in Proc. ICLR, 2018,
pp. 1-12.

T. Na, J. H. Ko, J. Kung, and S. Mukhopadhyay, “On-chip training of
recurrent neural networks with limited numerical precision,” in Proc.
1IJCNN, 2017, pp. 3716-3723

D. Das et al., “Mixed precision training of convolutional neural networks
using integer operations,” 2018. [Online]. Available: arXiv: 1802.00930.
X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” in Proc. AISTATS, 2010, pp. 249-256.
K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on Imagenet classification,” in
Proc. ICCV, 2015, pp. 1026-1034.
PyTorch. Accessed: May 20,
https://github.com/pytorch

J. Bjorck, C. Gomes, B. Selman, and K. Q. Weinberger, “Understanding
batch normalization,” in Advances in Neural Information Processing
Systems. Red Hook, NY, USA: Curran Associates, 2018

Z. Li and S. Arora, “An exponential learning rate schedule for deep
learning,” 2019. [Online]. Available: arXiv:1910.07454.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of Bayesian optimization,”
Proc. IEEE, vol. 104, no. 1, pp. 148-175, Jan. 2016.

R. Baptista and M. Poloczek, “Bayesian optimization of combinatorial
structures,” in Proc. ICML, 2018, pp. 471-480.

A. Ankit et al., “PUMA: A programmable ultra-efficient memristor-
based accelerator for machine learning inference,” in Proc. ASPLOS,
2019, pp. 725-731.

B. K. Joardar, B. Li, J. R. Doppa, H. Li, P. P. Pande, and K. Chakrabarty,
“REGENT: A heterogeneous ReRAM/GPU-based architecture enabled
by NoC for training CNNs,” in Proc. DATE, 2019, pp. 522-527.

B. Li, J. R. Doppa, P. P. Pande, K. Chakrabarty, J. X. Qiu, and H. Li,
“3D-ReG: A 3D ReRAM-based heterogeneous architecture for training
deep neural networks,” J. Emerg. Technol. Comput. Syst., vol. 16, no. 2,
p. 20, 2020

F. Chen, L. Song, and Y. Chen, “ReGAN: A pipelined ReRAM-based
accelerator for generative adversarial networks,” in Proc. ASPDAC,
2018, pp. 178-183.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, 2015.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE CVPR, 2016, pp. 770-778.

M. M. S. Aly et al., “Energy-efficient abundant-data computing: The
N3XT 1,000x,” Computer, vol. 48, no. 12, pp. 24-33, Dec. 2015.

X. Li, G. Zhang, H. H. Huang, Z. Wang, and W. Zheng, “Performance
analysis of GPU-based convolutional neural networks,” in Proc. ICPP,
Philadelphia, PA, USA, 2016, pp. 67-76.

Q. Liao, K. Kawaguchi, and T. Poggio, “Streaming normaliza-
tion: Towards simpler and more biologically-plausible normaliza-
tions for online and recurrent learning,” 2016. [Online]. Available:
arXiv:1610.06160.

W. R. Thompson, “On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples,” Bull. Amer:
Math. Soc., vol. 25, nos. 3—4, pp. 285-294, 1933.

A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt,
“Analyzing CUDA workloads using a detailed GPU simulator,” in Proc.
IEEE ISPASS, Boston, MA, USA, 2009, pp. 163-174.

A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, Rep. TR-2009,
2009.

TinylmageNet Dataset. Accessed: May 5, 2020.
https://tiny-imagenet.herokuapp.com/

A. Deshwal, S. Belakaria, J. R. Doppa, and A. Fern, “Optimizing dis-
crete spaces via expensive evaluations: A learning to search framework,”
in Proc. AAAI, 2020, pp. 3773-3780.

W. M. Kouw and M. Loog, “An introduction to domain adaptation and
transfer learning,” 2018. [Online]. Available: arXiv:1812.11806.

M. D. Zeiler and R. Fergus, “Visualizing and understanding convolu-
tional networks,” 2013. [Online]. Available: arXiv:1311.2901.

X. Wang, M. Palesi, M. Yang, Y. Jiang, M. C. Huang, and P. Liu,
“Low latency and energy efficient multicasting schemes for 3D NoC-
based SoCs,” in Proc. IEEE/IFIP 19th Int. Conf. VLSI System-on-Chip,
Hong Kong, China, 2011, pp. 337-342.

D. Russo and B. V. Roy, “Learning to optimize via posterior sampling,”
Math. Oper. Res., vol. 39, no. 4, pp. 1221-1243, 2014.

2020. [Online]. Available:

[Online]. Available:

Authorized licensed use limited to: Washington State University. Downloaded on May 01,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

JOARDAR et al.: HIGH-THROUGHPUT TRAINING OF DEEP CNNs ON ReRAM-BASED HETEROGENEOUS ARCHITECTURES

[33] J. M. H. Lobato, J. Requeima, E. O. P. Knapp, and A. A. Guzik,
“Parallel and distributed Thompson sampling for large-scale accelerated
exploration of chemical space,” in Proc. Int. Conf. Mach. Learn., 2017,
pp. 1470-1479.

K. Kandasamy, A. Krishnamurthy, J. Schneider, and B. Pdczos,
“Parallelised Bayesian optimisation via Thompson sampling,” in Proc.
Int. Conf. Artif. Intell. Stat., 2018, pp. 133-142.

[34]

Biresh Kumar Joardar (Member, IEEE) received
the Ph.D. degree from Washington State University,
Pullman, WA, USA, in 2020.

He is currently a Postdoctoral Computing
Innovation Fellow (CI-Fellow) with the Department
of Electrical and Computer Engineering, Duke
University, Durham, NC, USA. His current research

interests include machine learning, manycore archi-
tectures, accelerators for deep learning, hardware
reliability, and security.
Dr. Joardar received the Outstanding Graduate
Student Researcher Award at Washington State University in 2019. His works
have been nominated for Best Paper Awards at prestigious conferences, such
as DATE and NOCS.

Aryan Deshwal (Student Member, IEEE) received
the B.S. degree in mathematics and computing from
Delhi Technological University, New Delhi, India, in
2017. He is currently pursuing the Ph.D. degree with
the School of Electrical Engineering and Computer
Science, Washington State University, Pullman, WA,
USA.

His current research focuses on developing fun-
damental machine learning algorithms with appli-
cations to electronic design automation and nano
porous materials design.

Mr. Deshwal’s M.S. dissertation on machine learning to optimize manycore
systems design won the Outstanding Dissertation Award from Washington
State University in 2020. He won Outstanding Reviewer Awards from ICML
2020, ICLR 2021, and ICML 2021 conferences.

SR,

Janardhan Rao Doppa (Member, IEEE) received
the Ph.D. degree in computer science from the
Oregon State University, Corvallis, OR, USA, in
2014.

He is currently a George and Joan Berry
Chair Associate Professor with Washington State
University (WSU), Pullman, WA, USA. His current
research interests are at the intersection of machine
learning and computing systems design.

Dr. Doppa received the NSF CAREER Award in
2019, the Outstanding Paper Award at the AAAI
Conference in 2013, the Google Faculty Research Award in 2015, the
Outstanding Innovation in Technology Award from Oregon State University
in 2015, the Reid-Miller Teaching Excellence Award in 2018, and the
Outstanding Junior Faculty in Research Award from the Voiland College of
Engineering and Architecture at WSU in 2020. He is among the 15 out-
standing young researchers selected to give Early Career Spotlight talk at the
International Joint Conference on Artificial Intelligence in 2021.

1549

Partha Pratim Pande (Fellow, IEEE) received the
Ph.D. degree in electrical and computer engineering
from the University of British Columbia, Vancouver,
BC, Canada, in 2005.

He is a Professor and holder of the Boeing
Centennial Chair of Computer Engineering with
the School of Electrical Engineering and Computer
Science, Washington State University, Pullman, WA,
USA, where he is currently the Director. His current
research interests are novel interconnect architec-
tures for manycore chips, on-chip wireless commu-
nication networks, and heterogeneous architectures.

Prof. Pande has won the NSF CAREER Award in 2009. He is the win-
ner of the Anjan Bose Outstanding Researcher Award from the College of
Engineering, Washington State University in 2013. He was the Technical
Program Committee Chair of IEEE/ACM Network-on-Chip Symposium 2015
and CASES 2019-2020. He also serves on the program committees of many
reputed international conferences. He currently serves as the Associate Editor-
in-Chief for IEEE DESIGN AND TEST. He is on the editorial boards of
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION SYSTEMS,
ACM Journal of Emerging Technologies in Computing Systems, and IEEE
EMBEDDED SYSTEMS LETTERS.

Krishnendu Chakrabarty (Fellow, IEEE) received
the B.Tech. degree from the Indian Institute of
Technology Kharagpur, Kharagpur, India, in 1990,
and the M.S.E. and Ph.D. degrees from the
University of Michigan at Ann Arbor, Ann Arbor,
MI, USA, in 1992 and 1995, respectively.

He is currently the John Cocke Distinguished
Professor and the Chair of the Department
of Electrical and Computer Engineering, Duke
University, Durham, NC, USA, where he is a
Professor of Computer Science. He is a Research
Ambassador with the University of Bremen, Bremen, Germany. He was a
Hans Fischer Senior Fellow with the Institute for Advanced Study, Technical
University of Munich, Munich, Germany, from 2016 to 2019. His cur-
rent research projects include: design-for-testability of integrated circuits and
systems (especially 3-D integration and system-on-chip); Al accelerators;
microfluidic biochips; hardware security; machine learning for healthcare; and
neuromorphic computing systems.

Prof. Chakrabarty is a recipient of the National Science Foundation
CAREER Award, the Office of Naval Research Young Investigator Award, the
Humboldt Research Award from the Alexander von Humboldt Foundation,
Germany, the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMS Donald O. Pederson Best Paper
Award, the IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION
SYSTEMS Prize Paper Award, the ACM Transactions on Design Automation of
Electronic Systems Best Paper Award, multiple IBM Faculty Awards and HP
Labs Open Innovation Research Awards, and over a dozen best paper awards
at major conferences. He is also a recipient of the IEEE Computer Society
Technical Achievement Award, the IEEE Circuits and Systems Society Charles
A. Desoer Technical Achievement Award, the IEEE Circuits and Systems
Society Vitold Belevitch Award, the Semiconductor Research Corporation
Technical Excellence Award, and the IEEE Test Technology Technical Council
Bob Madge Innovation Award. He is a 2018 recipient of the Japan Society
for the Promotion of Science Invitational Fellowship in the “Short Term S:
Nobel Prize Level” category. He was a Distinguished Visitor of the IEEE
Computer Society from 2005 to 2007 and from 2010 to 2012, a Distinguished
Lecturer of the IEEE Circuits and Systems Society from 2006 to 2007 and
from 2012 to 2013, and an ACM Distinguished Speaker from 2008 to 2016.
He served as the Editor-in-Chief for IEEE DESIGN & TEST OF COMPUTERS
from 2010 to 2012, ACM Journal on Emerging Technologies in Computing
Systems from 2010 to 2015, and IEEE TRANSACTIONS ON VERY LARGE
SCALE INTEGRATION SYSTEMS from 2015 to 2018. He is a Fellow of ACM
and AAAS, and a Golden Core Member of the IEEE Computer Society.

Authorized licensed use limited to: Washington State University. Downloaded on May 01,2022 at 17:40:58 UTC from IEEE Xplore. Restrictions apply.

