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Abstract—Resistive random-access memory (ReRAM)-based 

processing-in-memory (PIM) architectures have recently become 

a popular architectural choice for deep-learning applications. 

ReRAM-based architectures can accelerate inferencing and 

training of deep learning algorithms and are more energy efficient 

compared to traditional GPUs. However, these architectures have 

various limitations that affect the model accuracy and 

performance. Moreover, the choice of the deep-learning 

application also imposes new design challenges that must be 

addressed to achieve high performance. In this paper, we present 

the advantages and challenges associated with ReRAM-based PIM 

architectures by considering Convolutional Neural Networks 

(CNNs) and Graph Neural Networks (GNNs) as important 

application domains. We also outline methods that can be used to 

address these challenges. 
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I. INTRODUCTION 

Deep learning (DL) has revolutionized application domains 
such as image processing, autonomous driving, and remote 
healthcare. However, DL is both compute- and data-intensive in 
nature. As a result, a major portion of the computations (e.g., 
training for DL) have remained traditionally confined to 
datacenters. CPU and GPU-based manycore architectures are 
the most common choice of hardware for deep learning 
applications. However, general purpose CPU- and GPU-based 
systems are not customized for deep learning and often suffer 
from: (a) high area and power overheads, and (b) memory 
bottleneck. These limitations of traditional manycore systems 
have resulted in many studies aimed at developing the next 
generation of DL accelerators.  

Resistive Random-Access Memory (ReRAM)-based 
Processing-in-Memory (PIM) architecture is one of the most 
promising technologies in this direction. ReRAM crossbars can 
efficiently perform matrix-vector multiplications, which form 
the backbone of most deep learning algorithms [1]. Prior work, 
e.g., Pipelayer [1] and AccuReD [2], has shown that ReRAM- 
based architectures can outperform GPUs for training 
Convolutional Neural Networks (CNNs) while consuming 
considerably less energy. ReRAM-based PIM architectures 
have also been used to accelerate other DL models, such as 
Graph Neural Networks [3], Recurrent Neural Networks [4] and 

Generative Adversarial Networks [5]. In addition, ReRAM-
based systems are more area-efficient compared to their GPU-
based counterparts and do not require expensive off-chip 
memory access due to their “in-memory” nature of computation 
[6] [7].  

Despite the above-mentioned advantages, ReRAM-based 
PIM architectures have several shortcomings, which can lead to 
sub-optimal power-performance-accuracy trade-offs. In 
addition, the choice of deep learning algorithm also imposes 
new design challenges that must be solved. For instance, CNN 
training often involves the use of Batch Normalization (BN) and 
SoftMax layers. Both these layers are precision critical and must 
be implemented using high precision arithmetic [8] [9]. 
Moreover, the backward phase during CNN training is also 
sensitive to precision [10]. ReRAMs have limited representation 
capability (16-bit fixed point) compared to conventional GPUs 
(which use 32-bit floating-point precision). This aggressive 
reduction of precision can make the training process unstable, 
thereby compromising prediction accuracy [2]. These 
limitations present a barrier towards the widespread adoption of 
ReRAM-based architectures for CNN training. Hence, it is of 
utmost importance to address these shortcomings of current 
ReRAM-based implementations.  

Similarly, other DL techniques such as GNNs introduce new 
sets of design challenges that cannot be solved using 
conventional ReRAM-based architectures. For instance, GNNs 
involve sparse matrices and heavy data exchange due to 
message-passing operations to accumulate neighbor information 
in a recursive manner [11]. Storing sparse matrices on ReRAMs 
is challenging as they contain many zeros. Computations with 
zeros are redundant and hence, we must avoid storing zeros on 
ReRAM cells. However, the inherent crossbar structure of 
ReRAMs is not suited for storing irregular sparse matrices [12] 
[13]. Similarly, the iterative message passing in GNNs gives rise 
to significant data exchange among the ReRAM tiles, which 
limits the overall achievable performance [3]. The data 
exchange during GNN training exhibits many-to-one, and 
multicast patterns, both of which can cause performance 
bottleneck without a suitable communication backbone [14].  

Apart from the unique design requirements imposed by the 
choice of DL techniques, ReRAMs also suffer from numerous 
nonidealities. ReRAMs are susceptible to noise, “hard faults” 
such as stuck-at-faults (SAFs), process variations, and wear out 
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due to limited write endurance [15] [16]. These non-idealities 
have a deleterious impact on implementing large-scale deep 
learning algorithms on ReRAM-based accelerators [15] [17]. 
These faults arise due to the immature fabrication process and 
limited endurance of ReRAMs. Moreover, the effect of these 
faults can either be static (present at 𝑡 = 0− ) or dynamic 
(appears during use, i.e., at 𝑡 > 0) in nature. On the other hand, 
noise is random and can be introduced due to high temperature, 
write variations, etc. Existing work has confirmed that training 
and inferencing in the presence of these non-idealities lead to 
unacceptably low accuracy of the CNN models [15] [17]. 

In this paper, we first present the state-of-the-art in ReRAM-
based manycore PIM architectures. Next, we discuss the 
shortcomings of the existing architectural solutions. We 
elaborate the specific challenges introduced by different deep 
learning algorithms, such as precision sensitivity of CNNs and 
the communication intensive nature of GNNs. Finally, we 
present ReRAM-based heterogeneous manycore PIM designs as 
a solution to address these shortcomings. 

II. RERAM-BASED ACCELERATORS AND CHALLENGES 

In this section, we present the salient features of ReRAM-
based PIM architectures. Next, we demonstrate how ReRAMs 
accelerate deep learning training/inferencing using CNNs as a 
representative example. Finally, we outline the shortcomings of 
existing architectures that must be addressed. 

A. ReRAM crossbars 

ReRAMs are typically implemented with a crossbar 
architecture [18] [19]. As shown in Fig. 1, every bitline is 
connected to every word line via resistive memory cells. Each 
ReRAM cell stores data as resistance (or conductance) values. 
The crossbar operates following Ohm’s law and Kirchhoff’s 
current laws. The total current emerging from the jth bitline 𝐼𝑗, 

represents a dot product operation and can be expressed 
mathematically as: 

                                    𝐼𝑗 = ∑ 𝐺𝑖𝑗 ∗ 𝑉𝑖
𝑁
𝑖=1                                  (1)  

Here, 𝐺𝑖𝑗 is the conductance of the ReRAM cell connecting 

the word line 𝑖 and the bit line 𝑗 and 𝑉𝑖 is the input voltage to the 
word line 𝑖. The ReRAM crossbar shown in Fig. 1 can perform 
multiple multiplication and addition operations in O(1) time. An 
𝑀 ×  𝑁  crossbar array performs dot products on 𝑀 -entry 
vectors for 𝑁 different neurons in a single step.  A sample-and-
hold (S&H) circuit receives the bitline current and feeds it to a 
shared ADC unit (as shown in Fig.1). This conversion of analog 
currents to digital values is necessary before communicating the 
results to other digital units. Similarly, a DAC unit converts 
digital input values into appropriate voltage levels that are 
applied to each row. Many such crossbars form a ReRAM tile 
(core). Each tile is composed of eDRAM buffers to store input 

values, several in-situ multiply-accumulate (IMA) units, and 
output registers to aggregate results, all connected with a shared 
bus. The tile also has shift-and-add, sigmoid, and max-pool 
units. Many such tiles are connected using a network-on-chip 
(NoC), such as mesh [10] or H-tree [20], to create a ReRAM-
based manycore PIM system. 

B. Accelerating CNNs on ReRAMs 

CNN computations predominantly involve two types of 
layers: convolution (Conv) layer and fully connected (FC) layer. 
In a convolution layer, a set of kernels (also known as weights) 
are multiplied with the inputs (which are also the outputs from 
the previous layer l) to generate intermediate data (also known 
as activations) for next layer (layer l + 1). Unlike CNN 
inferencing, training involves an additional backward phase 
where the data moves backwards (i.e., from layer l+1 to layer l) 
to update weights based on the errors. The computations of the 
forward and backward phases of the Conv and FC layers can be 
summarized as follows: 

𝐹𝑜𝑟𝑤𝑎𝑟𝑑:       𝑦𝑙+1 = 𝑤𝑙 ∗ 𝑦𝑙 + 𝑏𝑙                        (2) 

𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑: {

𝜕𝑙−1 = (𝑤𝑙)𝑡 ∗ 𝜕𝑙                            (3)

∇𝑤𝑙 = 𝑦𝑙−1 ∗ (𝜕𝑙)𝑡                         (4)

∇𝑏𝑙 = 𝜕𝑙                                           (5)

 

Here, 𝑦𝑙 , 𝑤𝑙 , 𝑏𝑙 , 𝜕𝑙 , and ∇𝑤𝑙  represents the activations, 
weights, bias, error gradients and the weight gradients of layer 𝑙 
respectively. Note that, other layers such as pooling, ReLU, 
Batch Normalization and SoftMax are also present in CNN 
training and inferencing. However, Conv and FC layers 
represent the most compute intensive layers, which are 
accelerated using ReRAM-based engines. Hence, we do not 
show these other layers in Eqns. 2-5. From Eqns. 2-5, we note 
that both the forward and backward phases of Conv and FC 
layers are primarily matrix multiplications, which can be 
implemented using the ReRAM crossbars. 

Fig. 2 shows an illustration of how the CNN weights (for a 
convolution layer in forward pass) are mapped on the ReRAM 
crossbars. Here, we assume a convolution layer with 𝐾 × 𝐾 ×
𝐼𝐶 × 𝑂𝐶 weights (𝐾: dimension of filter, 𝐼𝐶: number of input 
channels, and 𝑂𝐶: number of output channels). The CNN layer 
considered in Fig. 2 operates on an 𝐼 × 𝐼 input to generate an 
output of size 𝑂 × 𝑂. The weights are stored on ReRAMs in 16-
bit fixed-point format [20]. However, all 16 bits (216 states) are 
not mapped on a single ReRAM cell mainly due to area 
(required ADC size will be astronomical [20]) and noise 
concerns [15]. As shown in Fig. 2, the 16 bits of each weight are 
distributed across multiple arrays/cells. With a 4-bit resolution 
of each ReRAM cell, a 16-bit weight would require four separate 
ReRAM cells for complete representation [1]. Similarly, if each 

 
Fig. 1: Illustration of matrix dot product in ReRAM crossbar [6] 

 
Fig. 2: Illustration of CNN computations on ReRAM crossbar [2] 
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ReRAM cell has a 2-bit resolution, we will require eight 
different ReRAM cells to represent the same 16-bit weight value 
[20]. The input to ReRAM crossbar is generated by sliding a 
window of dimension 𝐾 × 𝐾 × 𝐼𝐶 across the 𝐼 × 𝐼 input matrix, 
which is then fed to the ReRAM array in a sequential manner. 
Overall, 𝑂 × 𝑂  inputs need to be processed to complete the 
convolution layer (forward phase). Importantly, other layers, 
e.g., fully connected, as well as the backward phase of training 
also involve similar operations. Hence, they can be similarly 
mapped to ReRAM crossbars with minimal adjustments [1]. 

C. Limitations of existing ReRAM-based architectures 

Despite the advantages of an ReRAM-based accelerator for 
deep learning algorithms, there are numerous challenges that 
must be addressed. In this sub-section, we enumerate and 
explain some of these challenges. 

Lack of BN support: Exploding/Vanishing gradients is one 
of the primary challenges associated with training deep CNNs 
(i.e., CNNs with many Conv/FC layers). BN layers are 
commonly used to address this problem. However, BN layers 
are precision sensitive and involves complex math operations 
(such as division and square root); both operations are difficult 
to implement using ReRAMs. As a result, training deep CNNs 
is challenging using sole-ReRAM based architectures. 
Specialized initialization schemes such as Xavier [21] or 
Kaiming [22] are alternative ways to train deep CNNs in the 
absence of BN. By carefully setting the weights, these 
techniques can prevent exploding/vanishing gradients. 
However, these initialization schemes require careful hyper-
parameter tuning (i.e., expert domain knowledge) and yet, do not 
work all the time. To demonstrate the sensitivity of these 
methods to the choice of hyper-parameters, we consider two 
cases: (a) All-BN: BN layers are placed after every Conv layer 
as is usually done in traditional CNNs, and (b) No-BN: BN 
layers are not used at all, and varied five hyper-parameters: 
learning-rate (LR), number of epochs, LR schedule, batch size, 
and the initialization scheme (Xavier and Kaiming only; other 
initialization methods resulted in significantly low training 
accuracy in the absence of BN). The results are shown in Fig. 3. 
Overall, CNN training with 150 different hyper-parameter 
settings were performed and the best accuracy achieved at the 
end of each training instance is noted. Fig. 3 shows the range of 
observed accuracy (represented by the blue line, whose ends 
indicate the minimum and maximum accuracy; the red line 
represents the average accuracy) considering all 150 
experiments with VGG-11/16/19 and ResNet-18.  

Fig. 3 clearly shows that it is possible to train CNNs in the 
absence of BN sometimes, which is in line with previous 
findings [21] [22]. However, it is not reliable and fails to train 
most of the time. For instance, the average accuracy of No-BN 
with Xavier/Kaiming initialization considering all 150 instances 
of training is a mere 57.8% for VGG-19. This happens as 

multiple combinations of hyper-parameters (among the 150 
chosen here), either failed to train or resulted in unacceptable 
accuracies. This is problematic as an ML-practitioner (or user) 
will have to repeatedly train a CNN to find out the valid hyper-
parameter combination(s) for a successful training. This process 
can be time consuming, particularly for deep CNNs and larger 
datasets, which require more time to train. On the other hand, 
CNN training with BN is more robust to the choice of hyper-
parameters and is effective in all cases considered here. Unlike 
No-BN, All-BN achieves an average accuracy (considering all 
150 All-BN training instances) of 85.1% for VGG-19 indicating 
that all these 150 experiments succeeded. Hence, hardware 
support for BN is important to train deep CNNs and should be 
incorporated in ReRAM-based architectures. 

Low precision computations: ReRAM-based architectures 
typically utilize 16-bit fixed point precision as opposed to 32-bit 
floating point precision in GPUs. However, CNNs often fail to 
train or reach unacceptable accuracy when trained using low 
precision. This happens as the backward phase of training is 
precision sensitive. Basic rounding schemes that are used to 
convert higher precision data to lower precision representation 
often lose important information (round-off error). This results 
in erroneous gradients, which get accumulated after each weight 
update. Eventually, the training becomes unstable and reaches 
unacceptable accuracy. This problem must be addressed for 
successful training and inferencing.  

Fig. 4 shows the accuracy after 50 epochs of training for 
VGG-19. Here, we consider two different cases: 1) GPU-based 
training with 32-bit floating-point scheme (GPU); 2) ReRAM-
based training (16-bit fixed point) with the default rounding 
scheme in Pytorch. Normalization layers are used in both cases 
to rule out exploding/vanishing gradients scenario. From Fig. 4, 
we note that even with Normalization, VGG-19 fails to train 
successfully on ReRAM-based architectures. VGG-11 and 
ResNet-18 exhibit similar behavior as VGG-19 (i.e., failure to 
train meaningfully) due to low precision. However, smaller 
CNNs, such as LeNet, train successfully and only experience a 
slight drop in model accuracy despite low precision. From Fig. 
4, we can conclude that for training deep CNNs on ReRAM-
based architectures, we must address the problem of accuracy 
loss due to low precision.  

Inter-tile communication: PIM architectures reduce the 
amount of off-chip data communication that happens between 
processor and memory in a typical Von-Neumann architecture. 
Hence, it is often assumed that communication is not an issue 
for PIM-based architectures. However, inter-tile communication 
in PIM can be significant for some deep learning applications. 
For instance, GNN computation requires a neighborhood 
aggregation operation, where each node aggregates the features 
of its k-hop neighbors to learn node representations [11]. This in 
turn gives rise to repeated message passing that can lead to high 

 
Fig. 4: Accuracy of VGG19 trained with 32-bit floating point (32b Float) and 

16-bit fixed point (16b fixed) representations. [2] 
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Fig. 3: Accuracy of No-BN and All-BN CNNs trained with various 

hyperparameter settings. [27] 
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volume of data exchange. Traffic associated with GNN training 
exhibits many-to-one, multicast, and long-range characteristics 
(explained later in Section IV). This can lead to performance 
bottleneck. 

Traditional planar architectures with mesh network-on-chip 
(NoC) are not suited for such traffic patterns. The heavy many-
to-one and multicast traffic, as well as the large physical 
separation between tiles, impose a significant amount of long-
range communication requirement in planar architectures. As a 
result, the communication backbone quickly becomes a 
performance bottleneck. In addition, the inherent multi-hop 
nature of a planar mesh NoC leads to higher communication 
latency [23], which is not desirable for training GNNs. Hence, 
an appropriate NoC design is necessary for ReRAM-based PIM 
architectures, despite the “in memory” nature of computing.  

Storing sparse data: GNN computation involves adjacency 
matrices of input graph data, which are sparse and contain large 
number of zeros. Zeros are redundant in computations and must 
be omitted to reduce hardware and energy requirements. Hence, 
reduction in zero storage is key to improve GNN computation 
using ReRAM-based architectures. This is commonly achieved 
using smaller ReRAM crossbars (e.g., 4×4, 8×8 [13]); these 
crossbars can store sparse matrices more efficiently. To store 
sparse matrices, a non-overlapping sliding window operation is 
performed over the sparse adjacency matrix to generate 𝑁 × 𝑁 
segments. Each of these segments is then mapped on to distinct 
𝑁 × 𝑁 shaped ReRAM crossbars. This process is illustrated in 
Fig. 5. Fig. 5(a) and Fig. 5(b) show an input graph and its 
corresponding adjacency matrix (which is sparse), respectively. 
Any 𝑁 × 𝑁 segment with 𝑁2 zero-entries (referred as ‘invalid 
segment’ in Fig. 5(b) in red) is discarded  [12]. The remaining 
segments that include at least one graph edge (referred as ‘valid 
segment’ in Fig. 5(b) in green) are stored on ReRAM cells. This 
technique reduces the number of zeros that need to be stored on-
chip. For instance, the adjacency matrix in Fig. 5(b) has fourteen 
valid segments and two invalid segments; the invalid segments 
can be safely discarded, which reduces redundant matrix 
operations involving zeros. However, as we show later, smaller 
crossbars are inefficient in terms of the full-system area and 
power requirements. Smaller crossbars provide lower storage 
density (number of bits per unit area) while dissipating more 
power. Hence, the traditional method of using smaller crossbars 
for storing sparse matrices has high power and area overhead 
despite storing fewer zeros. A suitable GNN accelerator must 
address this problem.  

Reliability of ReRAMs: The ReRAM fabrication process is 
not as mature as conventional CMOS fabrication. As a result, 
ReRAMs are prone to many types of hardware faults and noise. 
For instance, hard faults prevent the resistance of a ReRAM cell 
from being updated, resulting in write failures. Fig. 6 shows the 

different types of hard faults that can happen in ReRAM cells. 
As shown in Fig. 6, hard faults can be further classified into 
static and dynamic faults based on when the fault appears for the 
first time. Static faults appear before use, i.e., at 𝑡 = 0− and are 
caused by manufacturing defects such as short defects, over-
forming defects or reset failure. Even if a crossbar passes 
manufacturing test, faults can appear over time as the crossbar 
is utilized (at 𝑡 > 0) [24]. These faults, referred as dynamic 
faults in Fig. 6, can be attributed to the limited write endurance 
of ReRAMs or due to the application of multiple consecutive 
write-0 (or write-1) pulses. Dynamic faults can be further sub-
divided into permanent and limited-duration faults depending on 
how long the associated fault persists.  

Moreover, ReRAM cells also suffer from different types of 
noise, such as thermal noise, shot noise, etc. Unlike hard faults, 
where the cell resistance is stuck at either zero or one, noise is 
random and is therefore difficult to address. From Fig. 1, we 
know that data is stored on ReRAM cells as resistance (or 
conductance) values [25]. However, at higher on-chip 
temperature, thermal noise causes a shift in resistance (and 
thereby the stored value). Without appropriate measures, this 
will lead to erroneous interpretation of stored data, which in turn 
affects prediction accuracy [25]. In addition, higher ReRAM 
temperature reduces noise margin. As a result, the computed 
outputs are more susceptible to errors due to thermal noise (and 
other nonidealities) [15]. This presents a significant barrier 
toward scalability in terms of both the size of CNN that can be 
trained using ReRAMs and the operating frequency.  

III. RERAM-BASED PIM FOR CNNS 

In this section, we present a heterogeneous architecture to 
address the above mentioned shortcomings of sole ReRAM-
based PIMs for CNN training. Fig. 7 shows the heterogeneous 
3D architecture that consists of both ReRAMs and GPUs [26]. 
Some of the distinguishing features of this architecture are as 
follows: (i) It can implement both CNN training and inference, 
(ii) As shown in Fig. 7(a), it consists of both ReRAM and GPU 
layers. The GPU layer(s) provide a full-precision computing 
platform necessary for Normalization support, (iii) There are 
multiple layers of both ReRAM and GPU tiles stacked vertically 
using 3D integration. Having multiple layers of ReRAMs and 
GPUs provide higher computational capability that can support 
the training of deep CNNs, (iv) The ReRAM tiles include 
additional peripheral circuits to implement stochastic rounding 
[Fig. 7(b)], which is necessary for training CNNs at low 
precision, (v) Each ReRAM tile has dedicated reference cells to 
track any change in output current due to temperature [Fig. 7(c)], 
and (vi) The ReRAM and GPU tiles are connected by an 
efficient NoC for high-performance CNN training. We discuss 
the salient features of this architecture in more detail next.  

 
Fig. 6: Taxonomy of the different faults considered in this work [31] 
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Fig. 5. (a) An example input graph, (b) The adjacency matrix (0 means no edge 
and 1 means presence of an edge) [12] 
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Addressing lack of BN: As mentioned earlier, BN layers 
require high precision computing support due to its precision 
critical nature and it also involves more complex arithmetic 
operations. As a result, BN layers are difficult to implement 
using ReRAMs only. The GPUs can be used to implement the 
BN layers. GPUs provide a full-precision computing platform 
and can perform more complex arithmetic. However, the naïve 
methodology of using BN layers after every Conv layer, leads 
to the use of too many BN layers, which overloads the GPUs. 
On further analysis, we found that we can reduce the number BN 
layers necessary for training CNNs significantly [27]; this will 
necessitate fewer GPUs. We can achieve this by using a 
Bayesian Optimization formulation which can quickly 
determine the most suitable locations for BN layers. The BO 
optimized CNNs prevent exploding/vanishing gradients in deep 
CNNs, while using significantly fewer BN layers than their 
traditional counterparts; hence, fewer GPUs are needed.  

Handling accuracy drop due to low precision: As 
mentioned earlier, ReRAMs use 16-bit fixed point precision. 
Lower precision reduces power and area requirements and leads 
to better performance. However, it can lead to accuracy drop 
during training. In the architecture shown in Fig. 7, the problem 
of accuracy loss due to low precision is solved by using 
stochastic rounding. Stochastic rounding is a probabilistic 
rounding scheme with a zero expected rounding error and is 
crucial for low-precision training [28]. The stochastic rounding 
circuit is shown in Fig. 7(b) [29]. It consists of three parts: 1) 
LFSR: generates pseudorandom 16-bit number; 2) Adder: adds 
the 32-bit ReRAM output with the 16-bit number generated by 
the LFSR; and 3) Truncate: this truncates the data to 16 bits after 
addressing over-/under-flow conditions. Stochastic rounding 
enables high accuracy CNN training under low precision.  

Addressing resistance change due to temperature and 
thermal noise: The resistance instability of ReRAMs can affect 
the reference and output currents. This would lead to misjudging 
the stored data, which can corrupt the subsequent computed 
CNN outputs. This can lead to accuracy loss for CNN training. 
Therefore, a thermal reference cell (TRC) that averages out these 
fluctuations in the architecture is necessary [as shown in Fig. 
7(c)] [30]. The inclusion of a TRC in each ReRAM tile ensures 
that any change in output current (due to change in temperature) 
will be tracked. Next, to address thermal noise, the CNN layers 
can be mapped to the tiles following a joint performance-thermal 
aware multi-objective optimization algorithm. The more 
compute intensive layers should be mapped to ReRAMs closer 
to the sinks (considering the 3D architecture). As a result, heat 
generated in these layers will be dissipated fast, which reduces 
thermal noise in ReRAMs; this leads to better training accuracy.  

Solving accuracy loss due to faults: Fig. 8 demonstrates the 
effects of faults on CNN weights. Fig. 8 shows the maximum 
and average weight values observed for Conv-2 layer in VGG-
11 during training considering both faulty and ideal hardware. 
The maximum (M) and the average (A) of all the weights in the 
chosen CNN layer (Conv-2) for the ideal training, are referred 
as M-Ideal and A-Ideal in Fig. 8. Similarly, the average and 
maximum weight values for training using faulty hardware is 
referred as A-Fault and M-Fault respectively; here we assume 
fault density of 2% as an example. Fault density is defined as the 
fraction of cells that are faulty in an ReRAM tile. Fig. 8 shows 
that on an average, weights have identical values, irrespective of 
whether they are trained with ideal or faulty ReRAMs. However, 
the maximum weight values (M-Fault and M-Ideal) show a stark 
difference. It is clear from Fig. 8 that a handful of weights 
explode (increase very fast) in the presence of faults. This 
increase at a rapid pace makes the CNN training unstable after a 
few iterations. Compared to M-Fault, M-Ideal increases 
gradually over time (number of iterations), leading to successful 
training. This suggests that this rapid explosion is an anomalous 
behavior exhibited by only a handful of weights [31].  

From the observations in Fig. 8, we conclude that ReRAM 
faults result in exploding weights, which in turn leads to unstable 
training and poor accuracy. Hence, clipping these exploding 
weights to a relatively lower value 𝜖, where 𝜖 >  0, will enable 
the CNNs to train successfully. The clipping operation can be 
mathematically expressed using the following equation: 

|𝑤| =  {
|𝑤|, if |𝑤| < 𝜖
𝜖, otherwise

                                     (6)  

Weight clipping prevents accuracy loss in the presence of 
static and dynamic faults. This happens as clipping the 
unrealistically large weights prevents the CNN training from 
becoming unstable. As a result, the backpropagation algorithm 
has a much better chance to train the remaining weights and 
compensate for the ones mapped to the faulty cells. Hence, we 
can use weight clipping as a solution for reliable CNN training 
on faulty ReRAM-based PIM architectures. The operations 
associated with weight clipping are simple and can be 
implemented using the GPUs without additional overhead.  

IV.  RERAM-BASED PIM FOR GNNS 

In this section, we present a ReRAM-based architecture for 
accelerating GNN training and inferencing. Unlike CNNs, 
GNNs present a unique set of problems for ReRAM-based 
architectures that must be addressed. For instance, GNNs are 
typically only a few layers deep. Hence, low precision and BN 
layers are not important for GNN training. However, the amount 
of data communicated during GNN training is extraordinarily 
high. The amount of traffic is proportional to the total number 

 
Fig. 8: Absolute values of weights when CNN is trained using ideal and faulty 
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of nodes, which considering all the features in the input graph, 
is often very high. For example, each image in the popular 
ImageNet dataset (often used for evaluating DNNs) consists of 
150K entries (image size: 224x224x3) which is an order of 
magnitude smaller than some of the smallest graph datasets, 
such as the PPI dataset (1.6 million entries) [32]. GNNs perform 
an iterative neighborhood aggregation operation, where each 
node aggregates features of its neighbors to compute the new 
features [11] [33]. After 𝑘  iterations, the transformed feature 
vector of a node captures the relational structure information 
within this node's k-hop neighborhood. The message passing 
operation gives rise to significant data exchange among the 
ReRAM tiles, which limits the overall achievable performance. 
The graph datasets can be even larger with millions of nodes. 
This results in significant amount of data exchange during GNN 
training. Simply accelerating the computations of GNNs using 
ReRAMs is not sufficient as the communication will create 
performance bottlenecks. The computations will be repeatedly 
stalled as the processing units has to wait for the data to arrive.  

Reducing traffic hotspots during GNN training: Fig. 9 
shows an example GNN with three neural layers. Each neural 
layer in a GNN consists of two sub-layers: (a) V-layer: this layer 
is like a FC layer in CNN (V1, V2 and V3), and (b) E-layer: this 
layer resembles message passing in graph computations (E). 
Each V-layer has a unique set of weights which need to be 
mapped/assigned to different sets of ReRAM tiles (V-tiles) for 
computation. The E-layer requires only the graph adjacency 
matrix (𝐴𝑑𝑗). The 𝐴𝑑𝑗 matrix is fixed for a given graph and is 
mapped to another set of ReRAM tiles (E-tiles). The E-tiles are 
shared by all the neural layers in a GNN. As shown in Fig. 9, the 
output of the V-layer is used as input for the next E-layer and so 
on. This results in a many-to-one communication pattern as 
multiple sets of V-tiles communicate with the same set of E-
tiles. Without a suitable interconnection backbone, the many-to-
one communications can overwhelm the training process, 
resulting in a performance bottleneck. Moreover, training 
involves data sharing between the forward- and backward-phase 
computations of each layer; often the backward-phase 
computations are implemented on separate set of ReRAMs, as 
described in [1]. Overall, this results in the output of layer 𝐿𝑖 
being sent to: (a) PEs responsible for the next layer 𝐿𝑖+1, and (b) 
the PEs responsible for the backward phase of layer 𝐿𝑖 . 
Therefore, there is a significant amount of multicast traffic on 
top of the many-to-one traffic. Similalr to CNN, in this case also 
a 3D architecture can alleviate the communication bottleneck 
problem. Fig. 10 shows a ReRAM-based 3D manycore 
architecture for training GNN. Overall, this 3D manycore 
architecture has four planar tiers stacked on top of each other, 
each planar tier consisting of multiple ReRAM-based PEs with 
the same crossbar configuration. The PEs in different planar 
layers are connected with each other using TSV-based vertical 

links as shown in Fig. 10. This 3D manycore architecture 
outperforms conventional GPU-based designs significantly.  

Efficient storage of graph structured (sparse) data: As 
discussed earlier, GNNs involve characteristics of both DNN 
and graph computations. Therefore, it is essential to efficiently 
store graph data to accelerate GNN training using ReRAM 
crossbars. This is typically achieved using smaller crossbars [12] 
[13]. However, these architectures are inefficient in terms of 
power, performance, and area overheads. To find the most 
effective solution for storing sparse data on ReRAM crossbars, 
it is important to determine the appropriate crossbar 
configuration based on the storage efficiency, power, and area 
trade-offs by varying the crossbar sizes from 8x8 to 256x256. 
Fig. 11 shows the number of PEs required, area and power 
needed to store one input sub-graph of the Reddit dataset [32]. 
Note that, similar trends were seen for other datasets as well. As 
shown in Fig. 11, 8x8 sized crossbars require 28X times more 
PEs than the 128x128 configuration to store the same amount of 
information. This happens as smaller crossbars need more PEs 
to store the same adjacency matrix, necessitating a larger 
number of peripheral circuits such as ADC, DAC, and routers. 
Larger crossbars store more redundant zeros [12]. Despite that, 
they are more efficient in terms of area and power, resulting 
from the lower PE requirements. However, extremely large 
crossbars (beyond 128x128) require more area and power. This 
happens as peripheral circuits for such large crossbars are big. 
For instance, a 256x256 crossbar requires a 9-bit ADC [20] [34], 
which is not only difficult to design but is extremely area- and 
power-hungry, overshadowing any benefit of larger crossbars. 
Thus, from Fig. 11, we see that the most suitable crossbar 
configuration in terms of power, area and storage efficiency is 
the 128x128 configuration, even though it stores more zeros 
compared to smaller crossbar configurations. Hence, 128×128 
crossbars must be used for ReRAM-based GNN accelerators. 

V. CONCLUSION  

Processing-in-memory (PIM) is an enabling technology to 
break the memory wall by processing the data in-situ (i.e., at the 
location where the data is stored). Resistive random-access 
memory (ReRAM)-based PIM architectures are popular for 
accelerating various deep learning algorithms. However, when 
multiple PIM-based computing cores are integrated to design a 
manycore architecture then we need to address various 
challenges to establish suitable power-performance-accuracy 
trade-offs. This paper highlights advantages and challenges 
associated with PIM-based manycore computing targeted 
towards CNNs and GNNs.   

     
Fig. 10. ReRAM-based manycore (many tiled) architecture for GNN training.  

 

 
Fig. 11. Storage Efficiency-Power-Area trade-offs for different ReRAM 
crossbar configurations, normalized w.r.t. 8x8 crossbar configuration 
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Fig. 9: GNN structure with three neural layers as an example; The arrows 

indicate the data communication pattern in a GNN. [3] 
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