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Abstract—Resistive random-access memory (ReRAM)-based
processing-in-memory (PIM) architectures have recently become
a popular architectural choice for deep-learning applications.
ReRAM-based architectures can accelerate inferencing and
training of deep learning algorithms and are more energy efficient
compared to traditional GPUs. However, these architectures have
various limitations that affect the model accuracy and
performance. Moreover, the choice of the deep-learning
application also imposes new design challenges that must be
addressed to achieve high performance. In this paper, we present
the advantages and challenges associated with ReRAM-based PIM
architectures by considering Convolutional Neural Networks
(CNNs) and Graph Neural Networks (GNNs) as important
application domains. We also outline methods that can be used to
address these challenges.
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I. INTRODUCTION

Deep learning (DL) has revolutionized application domains
such as image processing, autonomous driving, and remote
healthcare. However, DL is both compute- and data-intensive in
nature. As a result, a major portion of the computations (e.g.,
training for DL) have remained traditionally confined to
datacenters. CPU and GPU-based manycore architectures are
the most common choice of hardware for deep learning
applications. However, general purpose CPU- and GPU-based
systems are not customized for deep learning and often suffer
from: (a) high area and power overheads, and (b) memory
bottleneck. These limitations of traditional manycore systems
have resulted in many studies aimed at developing the next
generation of DL accelerators.

Resistive Random-Access Memory (ReRAM)-based
Processing-in-Memory (PIM) architecture is one of the most
promising technologies in this direction. ReRAM crossbars can
efficiently perform matrix-vector multiplications, which form
the backbone of most deep learning algorithms [1]. Prior work,
e.g., Pipelayer [1] and AccuReD [2], has shown that ReRAM-
based architectures can outperform GPUs for training
Convolutional Neural Networks (CNNs) while consuming
considerably less energy. ReRAM-based PIM architectures
have also been used to accelerate other DL models, such as
Graph Neural Networks [3], Recurrent Neural Networks [4] and
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Generative Adversarial Networks [5]. In addition, ReRAM-
based systems are more area-efficient compared to their GPU-
based counterparts and do not require expensive off-chip
memory access due to their “in-memory” nature of computation

(61 [7].

Despite the above-mentioned advantages, ReRAM-based
PIM architectures have several shortcomings, which can lead to
sub-optimal  power-performance-accuracy trade-offs. In
addition, the choice of deep learning algorithm also imposes
new design challenges that must be solved. For instance, CNN
training often involves the use of Batch Normalization (BN) and
SoftMax layers. Both these layers are precision critical and must
be implemented using high precision arithmetic [8] [9].
Moreover, the backward phase during CNN training is also
sensitive to precision [10]. ReRAMs have limited representation
capability (16-bit fixed point) compared to conventional GPUs
(which use 32-bit floating-point precision). This aggressive
reduction of precision can make the training process unstable,
thereby compromising prediction accuracy [2]. These
limitations present a barrier towards the widespread adoption of
ReRAM-based architectures for CNN training. Hence, it is of
utmost importance to address these shortcomings of current
ReRAM-based implementations.

Similarly, other DL techniques such as GNNs introduce new
sets of design challenges that cannot be solved using
conventional ReRAM-based architectures. For instance, GNNs
involve sparse matrices and heavy data exchange due to
message-passing operations to accumulate neighbor information
in a recursive manner [11]. Storing sparse matrices on ReRAMs
is challenging as they contain many zeros. Computations with
zeros are redundant and hence, we must avoid storing zeros on
ReRAM cells. However, the inherent crossbar structure of
ReRAMs is not suited for storing irregular sparse matrices [12]
[13]. Similarly, the iterative message passing in GNNs gives rise
to significant data exchange among the ReRAM tiles, which
limits the overall achievable performance [3]. The data
exchange during GNN training exhibits many-to-one, and
multicast patterns, both of which can cause performance
bottleneck without a suitable communication backbone [14].

Apart from the unique design requirements imposed by the
choice of DL techniques, ReRAMs also suffer from numerous
nonidealities. ReRAMs are susceptible to noise, “hard faults”
such as stuck-at-faults (SAFs), process variations, and wear out
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due to limited write endurance [15] [16]. These non-idealities
have a deleterious impact on implementing large-scale deep
learning algorithms on ReRAM-based accelerators [15] [17].
These faults arise due to the immature fabrication process and
limited endurance of ReRAMs. Moreover, the effect of these
faults can either be static (present at t = 07 ) or dynamic
(appears during use, i.e., at t > 0) in nature. On the other hand,
noise is random and can be introduced due to high temperature,
write variations, etc. Existing work has confirmed that training
and inferencing in the presence of these non-idealities lead to
unacceptably low accuracy of the CNN models [15] [17].

In this paper, we first present the state-of-the-art in ReRAM-
based manycore PIM architectures. Next, we discuss the
shortcomings of the existing architectural solutions. We
elaborate the specific challenges introduced by different deep
learning algorithms, such as precision sensitivity of CNNs and
the communication intensive nature of GNNs. Finally, we
present ReRAM-based heterogeneous manycore PIM designs as
a solution to address these shortcomings.

II. RERAM-BASED ACCELERATORS AND CHALLENGES

In this section, we present the salient features of ReRAM-
based PIM architectures. Next, we demonstrate how ReRAMs
accelerate deep learning training/inferencing using CNNs as a
representative example. Finally, we outline the shortcomings of
existing architectures that must be addressed.

A. ReRAM crossbars

ReRAMs are typically implemented with a crossbar
architecture [18] [19]. As shown in Fig. 1, every bitline is
connected to every word line via resistive memory cells. Each
ReRAM cell stores data as resistance (or conductance) values.
The crossbar operates following Ohm’s law and Kirchhoff’s
current laws. The total current emerging from the ;j” bitline I;,
represents a dot product operation and can be expressed
mathematically as:

I =X G+ Vi (1

Here, G;; is the conductance of the ReRAM cell connecting
the word line i and the bit line j and V; is the input voltage to the
word line i. The ReRAM crossbar shown in Fig. 1 can perform
multiple multiplication and addition operations in O(/) time. An
M X N crossbar array performs dot products on M -entry
vectors for N different neurons in a single step. A sample-and-
hold (S&H) circuit receives the bitline current and feeds it to a
shared ADC unit (as shown in Fig.1). This conversion of analog
currents to digital values is necessary before communicating the
results to other digital units. Similarly, a DAC unit converts
digital input values into appropriate voltage levels that are
applied to each row. Many such crossbars form a ReRAM tile
(core). Each tile is composed of eDRAM buffers to store input
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Fig. 1: Illustration of matrix dot product in ReRAM crossbar [6]

values, several in-situ multiply-accumulate (IMA) units, and
output registers to aggregate results, all connected with a shared
bus. The tile also has shift-and-add, sigmoid, and max-pool
units. Many such tiles are connected using a network-on-chip
(NoC), such as mesh [10] or H-tree [20], to create a ReRAM-
based manycore PIM system.

B. Accelerating CNNs on ReRAMs

CNN computations predominantly involve two types of
layers: convolution (Conv) layer and fully connected (FC) layer.
In a convolution layer, a set of kernels (also known as weights)
are multiplied with the inputs (which are also the outputs from
the previous layer /) to generate intermediate data (also known
as activations) for next layer (layer / + 7). Unlike CNN
inferencing, training involves an additional backward phase
where the data moves backwards (i.e., from layer /+1 to layer /)
to update weights based on the errors. The computations of the
forward and backward phases of the Conv and FC layers can be
summarized as follows:

Forward: y .1 =w;*xy, +b (2
011 = W)+ 0, ®)
Backward: { Vw, = y;_; * (8))¢ (4)
Vb, = 0, (5)

Here, y;, w;, by, 0;, and Vw; represents the activations,
weights, bias, error gradients and the weight gradients of layer [
respectively. Note that, other layers such as pooling, ReLU,
Batch Normalization and SoftMax are also present in CNN
training and inferencing. However, Conv and FC layers
represent the most compute intensive layers, which are
accelerated using ReRAM-based engines. Hence, we do not
show these other layers in Eqns. 2-5. From Eqns. 2-5, we note
that both the forward and backward phases of Conv and FC
layers are primarily matrix multiplications, which can be
implemented using the ReRAM crossbars.

Fig. 2 shows an illustration of how the CNN weights (for a
convolution layer in forward pass) are mapped on the ReRAM
crossbars. Here, we assume a convolution layer with K X K X
IC x OC weights (K: dimension of filter, /C: number of input
channels, and OC: number of output channels). The CNN layer
considered in Fig. 2 operates on an [ X [ input to generate an
output of size O X 0. The weights are stored on ReRAMs in 16-
bit fixed-point format [20]. However, all 16 bits (2!° states) are
not mapped on a single ReRAM cell mainly due to area
(required ADC size will be astronomical [20]) and noise
concerns [15]. As shown in Fig. 2, the 16 bits of each weight are
distributed across multiple arrays/cells. With a 4-bit resolution
of each ReRAM cell, a 16-bit weight would require four separate
ReRAM cells for complete representation [1]. Similarly, if each
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Fig. 2: Illustration of CNN computations on ReRAM crossbar [2]
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ReRAM cell has a 2-bit resolution, we will require eight
different ReRAM cells to represent the same 16-bit weight value
[20]. The input to ReRAM crossbar is generated by sliding a
window of dimension K X K X IC across the I X I input matrix,
which is then fed to the ReRAM array in a sequential manner.
Overall, O X O inputs need to be processed to complete the
convolution layer (forward phase). Importantly, other layers,
e.g., fully connected, as well as the backward phase of training
also involve similar operations. Hence, they can be similarly
mapped to ReRAM crossbars with minimal adjustments [1].

C. Limitations of existing ReRAM-based architectures

Despite the advantages of an ReRAM-based accelerator for
deep learning algorithms, there are numerous challenges that
must be addressed. In this sub-section, we enumerate and
explain some of these challenges.

Lack of BN support: Exploding/Vanishing gradients is one
of the primary challenges associated with training deep CNNs
(i.e., CNNs with many Conv/FC layers). BN layers are
commonly used to address this problem. However, BN layers
are precision sensitive and involves complex math operations
(such as division and square root); both operations are difficult
to implement using ReRAMs. As a result, training deep CNNs
is challenging using sole-ReRAM based architectures.
Specialized initialization schemes such as Xavier [21] or
Kaiming [22] are alternative ways to train deep CNNs in the
absence of BN. By carefully setting the weights, these
techniques can prevent exploding/vanishing gradients.
However, these initialization schemes require careful hyper-
parameter tuning (i.e., expert domain knowledge) and yet, do not
work all the time. To demonstrate the sensitivity of these
methods to the choice of hyper-parameters, we consider two
cases: (a) All-BN: BN layers are placed after every Conv layer
as is usually done in traditional CNNs, and (b) No-BN: BN
layers are not used at all, and varied five hyper-parameters:
learning-rate (LR), number of epochs, LR schedule, batch size,
and the initialization scheme (Xavier and Kaiming only; other
initialization methods resulted in significantly low training
accuracy in the absence of BN). The results are shown in Fig. 3.
Overall, CNN training with 150 different hyper-parameter
settings were performed and the best accuracy achieved at the
end of each training instance is noted. Fig. 3 shows the range of
observed accuracy (represented by the blue line, whose ends
indicate the minimum and maximum accuracy; the red line
represents the average accuracy) considering all 150
experiments with VGG-11/16/19 and ResNet-18.

Fig. 3 clearly shows that it is possible to train CNNs in the
absence of BN sometimes, which is in line with previous
findings [21] [22]. However, it is not reliable and fails to train
most of the time. For instance, the average accuracy of No-BN
with Xavier/Kaiming initialization considering all 150 instances
of training is a mere 57.8% for VGG-19. This happens as
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Fig. 3: Accuracy of No-BN and All-BN CNNs trained with various
hyperparameter settings. [27]

multiple combinations of hyper-parameters (among the 150
chosen here), either failed to train or resulted in unacceptable
accuracies. This is problematic as an ML-practitioner (or user)
will have to repeatedly train a CNN to find out the valid hyper-
parameter combination(s) for a successful training. This process
can be time consuming, particularly for deep CNNs and larger
datasets, which require more time to train. On the other hand,
CNN training with BN is more robust to the choice of hyper-
parameters and is effective in all cases considered here. Unlike
No-BN, All-BN achieves an average accuracy (considering all
150 All-BN training instances) of 85.1% for VGG-19 indicating
that all these 150 experiments succeeded. Hence, hardware
support for BN is important to train deep CNNs and should be
incorporated in ReRAM-based architectures.

Low precision computations: ReRAM-based architectures
typically utilize 16-bit fixed point precision as opposed to 32-bit
floating point precision in GPUs. However, CNNs often fail to
train or reach unacceptable accuracy when trained using low
precision. This happens as the backward phase of training is
precision sensitive. Basic rounding schemes that are used to
convert higher precision data to lower precision representation
often lose important information (round-off error). This results
in erroneous gradients, which get accumulated after each weight
update. Eventually, the training becomes unstable and reaches
unacceptable accuracy. This problem must be addressed for
successful training and inferencing.

Fig. 4 shows the accuracy after 50 epochs of training for
VGG-19. Here, we consider two different cases: 1) GPU-based
training with 32-bit floating-point scheme (GPU); 2) ReRAM-
based training (16-bit fixed point) with the default rounding
scheme in Pytorch. Normalization layers are used in both cases
to rule out exploding/vanishing gradients scenario. From Fig. 4,
we note that even with Normalization, VGG-19 fails to train
successfully on ReRAM-based architectures. VGG-11 and
ResNet-18 exhibit similar behavior as VGG-19 (i.e., failure to
train meaningfully) due to low precision. However, smaller
CNNs, such as LeNet, train successfully and only experience a
slight drop in model accuracy despite low precision. From Fig.
4, we can conclude that for training deep CNNs on ReRAM-
based architectures, we must address the problem of accuracy
loss due to low precision.

Inter-tile communication: PIM architectures reduce the
amount of off-chip data communication that happens between
processor and memory in a typical Von-Neumann architecture.
Hence, it is often assumed that communication is not an issue
for PIM-based architectures. However, inter-tile communication
in PIM can be significant for some deep learning applications.
For instance, GNN computation requires a neighborhood
aggregation operation, where each node aggregates the features
of'its k-hop neighbors to learn node representations [11]. This in
turn gives rise to repeated message passing that can lead to high
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Fig. 4: Accuracy of VGG19 trained with 32-bit floating point (32b Float) and
16-bit fixed point (16b fixed) representations. [2]
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volume of data exchange. Traffic associated with GNN training
exhibits many-to-one, multicast, and long-range characteristics
(explained later in Section I1V). This can lead to performance
bottleneck.

Traditional planar architectures with mesh network-on-chip
(NoC) are not suited for such traffic patterns. The heavy many-
to-one and multicast traffic, as well as the large physical
separation between tiles, impose a significant amount of long-
range communication requirement in planar architectures. As a
result, the communication backbone quickly becomes a
performance bottleneck. In addition, the inherent multi-hop
nature of a planar mesh NoC leads to higher communication
latency [23], which is not desirable for training GNNs. Hence,
an appropriate NoC design is necessary for ReRAM-based PIM
architectures, despite the “in memory” nature of computing.

Storing sparse data: GNN computation involves adjacency
matrices of input graph data, which are sparse and contain large
number of zeros. Zeros are redundant in computations and must
be omitted to reduce hardware and energy requirements. Hence,
reduction in zero storage is key to improve GNN computation
using ReRAM-based architectures. This is commonly achieved
using smaller ReRAM crossbars (e.g., 4x4, 8x8 [13]); these
crossbars can store sparse matrices more efficiently. To store
sparse matrices, a non-overlapping sliding window operation is
performed over the sparse adjacency matrix to generate N X N
segments. Each of these segments is then mapped on to distinct
N X N shaped ReRAM crossbars. This process is illustrated in
Fig. 5. Fig. 5(a) and Fig. 5(b) show an input graph and its
corresponding adjacency matrix (which is sparse), respectively.
Any N x N segment with N2 zero-entries (referred as ‘invalid
segment’ in Fig. 5(b) in red) is discarded [12]. The remaining
segments that include at least one graph edge (referred as ‘valid
segment’ in Fig. 5(b) in green) are stored on ReRAM cells. This
technique reduces the number of zeros that need to be stored on-
chip. For instance, the adjacency matrix in Fig. 5(b) has fourteen
valid segments and two invalid segments; the invalid segments
can be safely discarded, which reduces redundant matrix
operations involving zeros. However, as we show later, smaller
crossbars are inefficient in terms of the full-system area and
power requirements. Smaller crossbars provide lower storage
density (number of bits per unit area) while dissipating more
power. Hence, the traditional method of using smaller crossbars
for storing sparse matrices has high power and area overhead
despite storing fewer zeros. A suitable GNN accelerator must
address this problem.

Reliability of ReRAMs: The ReRAM fabrication process is
not as mature as conventional CMOS fabrication. As a result,
ReRAMs are prone to many types of hardware faults and noise.
For instance, hard faults prevent the resistance of a ReRAM cell
from being updated, resulting in write failures. Fig. 6 shows the
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Fig. 5. (a) An example input graph, (b) The adjacency matrix (0 means no edge
and 1 means presence of an edge) [12]

different types of hard faults that can happen in ReRAM cells.
As shown in Fig. 6, hard faults can be further classified into
static and dynamic faults based on when the fault appears for the
first time. Static faults appear before use, i.e., att = 0~ and are
caused by manufacturing defects such as short defects, over-
forming defects or reset failure. Even if a crossbar passes
manufacturing test, faults can appear over time as the crossbar
is utilized (at t > 0) [24]. These faults, referred as dynamic
faults in Fig. 6, can be attributed to the limited write endurance
of ReRAMs or due to the application of multiple consecutive
write-0 (or write-1) pulses. Dynamic faults can be further sub-
divided into permanent and limited-duration faults depending on
how long the associated fault persists.

Moreover, ReRAM cells also suffer from different types of
noise, such as thermal noise, shot noise, etc. Unlike hard faults,
where the cell resistance is stuck at either zero or one, noise is
random and is therefore difficult to address. From Fig. 1, we
know that data is stored on ReRAM cells as resistance (or
conductance) values [25]. However, at higher on-chip
temperature, thermal noise causes a shift in resistance (and
thereby the stored value). Without appropriate measures, this
will lead to erroneous interpretation of stored data, which in turn
affects prediction accuracy [25]. In addition, higher ReRAM
temperature reduces noise margin. As a result, the computed
outputs are more susceptible to errors due to thermal noise (and
other nonidealities) [15]. This presents a significant barrier
toward scalability in terms of both the size of CNN that can be
trained using ReRAMs and the operating frequency.

III. RERAM-BASED PIM FOR CNNS

In this section, we present a heterogeneous architecture to
address the above mentioned shortcomings of sole ReRAM-
based PIMs for CNN training. Fig. 7 shows the heterogeneous
3D architecture that consists of both ReRAMs and GPUs [26].
Some of the distinguishing features of this architecture are as
follows: (i) It can implement both CNN training and inference,
(i1) As shown in Fig. 7(a), it consists of both ReRAM and GPU
layers. The GPU layer(s) provide a full-precision computing
platform necessary for Normalization support, (iii) There are
multiple layers of both ReRAM and GPU tiles stacked vertically
using 3D integration. Having multiple layers of ReRAMs and
GPUs provide higher computational capability that can support
the training of deep CNNs, (iv) The ReRAM tiles include
additional peripheral circuits to implement stochastic rounding
[Fig. 7(b)], which is necessary for training CNNs at low
precision, (v) Each ReRAM tile has dedicated reference cells to
track any change in output current due to temperature [Fig. 7(c)],
and (vi) The ReRAM and GPU tiles are connected by an
efficient NoC for high-performance CNN training. We discuss
the salient features of this architecture in more detail next.

Permanent Faults

I’ (Faults that remain forever)
Cause: Wearout due to limited

endurance of ReRAM cells

Static Faults
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(Faults where the
resistance of a ReRAM
cell cannot be changed)

Finite-duration Faults
(Faults that exist from t=T , to
t=Tyth)

Cause: Repeated write-0 (or
write-1) pulses to a ReRAM cell
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Fig. 6: Taxonomy of the different faults considered in this work [31]
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Addressing lack of BN: As mentioned earlier, BN layers
require high precision computing support due to its precision
critical nature and it also involves more complex arithmetic
operations. As a result, BN layers are difficult to implement
using ReRAMs only. The GPUs can be used to implement the
BN layers. GPUs provide a full-precision computing platform
and can perform more complex arithmetic. However, the naive
methodology of using BN layers after every Conv layer, leads
to the use of too many BN layers, which overloads the GPUs.
On further analysis, we found that we can reduce the number BN
layers necessary for training CNNs significantly [27]; this will
necessitate fewer GPUs. We can achieve this by using a
Bayesian Optimization formulation which can quickly
determine the most suitable locations for BN layers. The BO
optimized CNNs prevent exploding/vanishing gradients in deep
CNNs, while using significantly fewer BN layers than their
traditional counterparts; hence, fewer GPUs are needed.

Handling accuracy drop due to low precision: As
mentioned earlier, ReRAMSs use 16-bit fixed point precision.
Lower precision reduces power and area requirements and leads
to better performance. However, it can lead to accuracy drop
during training. In the architecture shown in Fig. 7, the problem
of accuracy loss due to low precision is solved by using
stochastic rounding. Stochastic rounding is a probabilistic
rounding scheme with a zero expected rounding error and is
crucial for low-precision training [28]. The stochastic rounding
circuit is shown in Fig. 7(b) [29]. It consists of three parts: 1)
LFSR: generates pseudorandom 16-bit number; 2) Adder: adds
the 32-bit ReRAM output with the 16-bit number generated by
the LFSR; and 3) Truncate: this truncates the data to 16 bits after
addressing over-/under-flow conditions. Stochastic rounding
enables high accuracy CNN training under low precision.

Addressing resistance change due to temperature and
thermal noise: The resistance instability of ReRAMs can affect
the reference and output currents. This would lead to misjudging
the stored data, which can corrupt the subsequent computed
CNN outputs. This can lead to accuracy loss for CNN training.
Therefore, a thermal reference cell (TRC) that averages out these
fluctuations in the architecture is necessary [as shown in Fig.
7(c)] [30]. The inclusion of a TRC in each ReRAM tile ensures
that any change in output current (due to change in temperature)
will be tracked. Next, to address thermal noise, the CNN layers
can be mapped to the tiles following a joint performance-thermal
aware multi-objective optimization algorithm. The more
compute intensive layers should be mapped to ReRAMs closer
to the sinks (considering the 3D architecture). As a result, heat
generated in these layers will be dissipated fast, which reduces
thermal noise in ReRAMs; this leads to better training accuracy.

Solving accuracy loss due to faults: Fig. 8§ demonstrates the
effects of faults on CNN weights. Fig. 8 shows the maximum
and average weight values observed for Conv-2 layer in VGG-
11 during training considering both faulty and ideal hardware.
The maximum (M) and the average (A) of all the weights in the
chosen CNN layer (Conv-2) for the ideal training, are referred
as M-Ideal and A-Ideal in Fig. 8. Similarly, the average and
maximum weight values for training using faulty hardware is
referred as A-Fault and M-Fault respectively; here we assume
fault density of 2% as an example. Fault density is defined as the
fraction of cells that are faulty in an ReRAM tile. Fig. 8 shows
that on an average, weights have identical values, irrespective of
whether they are trained with ideal or faulty ReRAMs. However,
the maximum weight values (M-Fault and M-Ideal) show a stark
difference. It is clear from Fig. 8 that a handful of weights
explode (increase very fast) in the presence of faults. This
increase at a rapid pace makes the CNN training unstable after a
few iterations. Compared to M-Fault, M-Ideal increases
gradually over time (number of iterations), leading to successful
training. This suggests that this rapid explosion is an anomalous
behavior exhibited by only a handful of weights [31].

From the observations in Fig. 8, we conclude that ReRAM
faults result in exploding weights, which in turn leads to unstable
training and poor accuracy. Hence, clipping these exploding
weights to a relatively lower value €, where € > 0, will enable
the CNNS to train successfully. The clipping operation can be
mathematically expressed using the following equation:

wi = {

lwl,if lw| < €
€, otherwise

(6)

Weight clipping prevents accuracy loss in the presence of
static and dynamic faults. This happens as clipping the
unrealistically large weights prevents the CNN training from
becoming unstable. As a result, the backpropagation algorithm
has a much better chance to train the remaining weights and
compensate for the ones mapped to the faulty cells. Hence, we
can use weight clipping as a solution for reliable CNN training
on faulty ReRAM-based PIM architectures. The operations
associated with weight clipping are simple and can be
implemented using the GPUs without additional overhead.

IV. RERAM-BASED PIM FOR GNNs

In this section, we present a ReRAM-based architecture for
accelerating GNN training and inferencing. Unlike CNNs,
GNNs present a unique set of problems for ReRAM-based
architectures that must be addressed. For instance, GNNSs are
typically only a few layers deep. Hence, low precision and BN
layers are not important for GNN training. However, the amount
of data communicated during GNN training is extraordinarily
high. The amount of traffic is proportional to the total number
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of nodes, which considering all the features in the input graph,
is often very high. For example, each image in the popular
ImageNet dataset (often used for evaluating DNN5s) consists of
150K entries (image size: 224x224x3) which is an order of
magnitude smaller than some of the smallest graph datasets,
such as the PPI dataset (1.6 million entries) [32]. GNNs perform
an iterative neighborhood aggregation operation, where each
node aggregates features of its neighbors to compute the new
features [11] [33]. After k iterations, the transformed feature
vector of a node captures the relational structure information
within this node's k-hop neighborhood. The message passing
operation gives rise to significant data exchange among the
ReRAM tiles, which limits the overall achievable performance.
The graph datasets can be even larger with millions of nodes.
This results in significant amount of data exchange during GNN
training. Simply accelerating the computations of GNNs using
ReRAMs is not sufficient as the communication will create
performance bottlenecks. The computations will be repeatedly
stalled as the processing units has to wait for the data to arrive.

Reducing traffic hotspots during GNN training: Fig. 9
shows an example GNN with three neural layers. Each neural
layer in a GNN consists of two sub-layers: (a) V-layer: this layer
is like a FC layer in CNN (V1, V2 and V3), and (b) E-layer: this
layer resembles message passing in graph computations (E).
Each V-layer has a unique set of weights which need to be
mapped/assigned to different sets of ReRAM tiles (V-tiles) for
computation. The E-layer requires only the graph adjacency
matrix (Adj). The Adj matrix is fixed for a given graph and is
mapped to another set of ReRAM tiles (E-tiles). The E-tiles are
shared by all the neural layers in a GNN. As shown in Fig. 9, the
output of the V-layer is used as input for the next E-layer and so
on. This results in a many-to-one communication pattern as
multiple sets of V-tiles communicate with the same set of E-
tiles. Without a suitable interconnection backbone, the many-to-
one communications can overwhelm the training process,
resulting in a performance bottleneck. Moreover, training
involves data sharing between the forward- and backward-phase
computations of each layer; often the backward-phase
computations are implemented on separate set of ReRAMs, as
described in [1]. Overall, this results in the output of layer L;
being sent to: (a) PEs responsible for the next layer L;, ¢, and (b)
the PEs responsible for the backward phase of layer L; .
Therefore, there is a significant amount of multicast traffic on
top of the many-to-one traffic. Similalr to CNN, in this case also
a 3D architecture can alleviate the communication bottleneck
problem. Fig. 10 shows a ReRAM-based 3D manycore
architecture for training GNN. Overall, this 3D manycore
architecture has four planar tiers stacked on top of each other,
each planar tier consisting of multiple ReRAM-based PEs with
the same crossbar configuration. The PEs in different planar
layers are connected with each other using TSV-based vertical

2 Tile | Tile
) | 28
= = 93
ERIES-IEE Tile | Tile
aX|g %2
==,
|2 |25
8|2 8 88
[7) x| 50
3 & 2 Vertical Links

Planar Links
fiouter

Fig. 10. ReRAM-based manycore (many tiled) architecture for GNN training.
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Fig. 9: GNN structure with three neural layers as an example; The arrows
indicate the data communication pattern in a GNN. [3]

links as shown in Fig. 10. This 3D manycore architecture
outperforms conventional GPU-based designs significantly.

Input
i
Output

Efficient storage of graph structured (sparse) data: As
discussed earlier, GNNs involve characteristics of both DNN
and graph computations. Therefore, it is essential to efficiently
store graph data to accelerate GNN training using ReRAM
crossbars. This is typically achieved using smaller crossbars [12]
[13]. However, these architectures are inefficient in terms of
power, performance, and area overheads. To find the most
effective solution for storing sparse data on ReRAM crossbars,
it is important to determine the appropriate crossbar
configuration based on the storage efficiency, power, and area
trade-offs by varying the crossbar sizes from 8x8 to 256x256.
Fig. 11 shows the number of PEs required, area and power
needed to store one input sub-graph of the Reddit dataset [32].
Note that, similar trends were seen for other datasets as well. As
shown in Fig. 11, 8x8 sized crossbars require 28X times more
PEs than the 128x128 configuration to store the same amount of
information. This happens as smaller crossbars need more PEs
to store the same adjacency matrix, necessitating a larger
number of peripheral circuits such as ADC, DAC, and routers.
Larger crossbars store more redundant zeros [12]. Despite that,
they are more efficient in terms of area and power, resulting
from the lower PE requirements. However, extremely large
crossbars (beyond 128x128) require more area and power. This
happens as peripheral circuits for such large crossbars are big.
For instance, a 256x256 crossbar requires a 9-bit ADC [20] [34],
which is not only difficult to design but is extremely area- and
power-hungry, overshadowing any benefit of larger crossbars.
Thus, from Fig. 11, we see that the most suitable crossbar
configuration in terms of power, area and storage efficiency is
the 128x128 configuration, even though it stores more zeros
compared to smaller crossbar configurations. Hence, 128x128
crossbars must be used for ReRAM-based GNN accelerators.

V. CONCLUSION

Processing-in-memory (PIM) is an enabling technology to
break the memory wall by processing the data in-situ (i.e., at the
location where the data is stored). Resistive random-access
memory (ReRAM)-based PIM architectures are popular for
accelerating various deep learning algorithms. However, when
multiple PIM-based computing cores are integrated to design a
manycore architecture then we need to address various
challenges to establish suitable power-performance-accuracy
trade-offs. This paper highlights advantages and challenges
associated with PIM-based manycore computing targeted
towards CNNs and GNNGs.
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Fig. 11. Storage Efficiency-Power-Area trade-offs for different ReRAM

crossbar configurations, normalized w.r.t. 8x8 crossbar configuration
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