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Abstract—Resistive random-access memory (ReRAM) is a promising
technology for designing hardware accelerators for deep neural network
(DNN) inferencing. However, stochastic noise in ReRAM crossbars can
degrade the DNN inferencing accuracy. We propose the design and
optimization of a high-performance, area-and energy-efficient ReRAM-
based hardware accelerator to achieve robust DNN inferencing in the
presence of stochastic noise. We make two key technical contributions.
First, we propose a stochastic-noise-aware training method, referred to
as ReSNA, to improve the accuracy of DNN inferencing on ReRAM
crossbars with stochastic noise. Second, we propose an information-
theoretic algorithm, referred to as CF-MESMO, to identify the Pareto
set of solutions to trade-off multiple objectives, including inferencing
accuracy, area overhead, execution time, and energy consumption. The
main challenge in this context is that executing the ReSNA method to
evaluate each candidate ReRAM design is prohibitive. To address this
challenge, we utilize the continuous-fidelity evaluation of ReRAM designs
associated with prohibitive high computation cost by varying the number
of training epochs to trade-off accuracy and cost. CF-MESMO iteratively
selects the candidate ReRAM design and fidelity pair that maximizes the
information gained per unit computation cost about the optimal Pareto
front. Our experiments on benchmark DNNs show that the proposed algo-
rithms efficiently uncover high-quality Pareto fronts. On average, ReSNA
achieves 2.57% inferencing accuracy improvement for ResNet20 on the
CIFAR-10 dataset with respect to the baseline configuration. Moreover,
CF-MESMO algorithm achieves 90.91% reduction in computation cost
compared to the popular multi-objective optimization algorithm NSGA-II
to reach the best solution from NSGA-II.

Index Terms—ReRAM crossbar, stochastic noise, DNN inferencing,
efficient hardware, multi-objective optimization.

I. INTRODUCTION

Resistive random access memory (ReRAM) has emerged as a
promising nonvolatile memory technology due to its multi-level cell,
small cell size, and low access time and energy consumption. Prior
work has shown that the crossbar structure of ReRAM arrays can effi-
ciently execute matrix-vector multiplication [1], [2], the predominant
computational kernel associated with deep neural networks (DNNs).
ReRAM-based accelerators for fast and efficient DNN training and
inferencing have been extensively studied [3]–[8].

However, a key challenge in executing DNN inferencing [9]–
[11] on ReRAM-based architecture arises due to nonidealities of
ReRAM devices, which can degrade the accuracy of inferencing.
Since DNN inferencing involves a sequence of forward computations
over DNN layers, errors due to device nonidealities can propagate and
accumulate, resulting in incorrect predictions. The nonidealities of
ReRAM crossbars can be classified into two broad categories. The
first category includes device defects (e.g., stuck-at-high or stuck-
at-low resistance [12]) and device reliability issues (e.g., retention
failure [13] and resistance drift [14]) that are mostly deterministic
in nature and have been addressed in prior work [15]–[20]. The
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second category includes stochastic noise in ReRAM devices that
includes thermal noise [21], shot noise [22], random telegraph noise
(RTN) [23], and programming noise [24]. These nonidealities have
not been studied for DNN inferencing in prior work.

This paper studies the impact of stochastic noise on DNN inferenc-
ing and shows that there is a significant degradation in inferencing ac-
curacy due to the high amplitude of noise and reduced noise margin of
high-resolution ReRAM cells. Prior algorithmic solutions [25], [26]
mitigate the accuracy degradation due to programming variations,
but they are not effective in the presence of stochastic noise [27]. To
overcome this challenge, we propose a ReRAM-based Stochastic-
Noise-Aware DNN training method (ReSNA) that considers both
hardware design configurations and stochastic noise.

For DNN inferencing on ReRAM using ReSNA, key efficiency
metrics include hardware area, execution time (latency), and energy
consumption. Therefore, we need to solve a complex multi-objective
optimization (MOO) problem to achieve robust DNN inferencing on
ReRAM crossbars. The input space consists of different ReRAM
crossbar configurations, e.g., ReRAM cell resolution, crossbar size,
temperature, and operational frequency. The output space consists of
the accuracy of DNN inferencing and hardware efficiency metrics,
e.g., hardware area, execution time, and energy consumption. The
main challenge in solving this optimization problem is that the
input space over ReRAM configurations contains a large number (up
to 107) of available data points, and evaluation of each candidate
ReRAM configuration involves executing the ReSNA method, which
is computationally prohibitive (e.g., it takes nearly 30 GPU days to
run the training on the crossbar simulator [27] for 100 configurations).
Our goal is to efficiently uncover the Pareto optimal set of solutions
representing the best possible trade-offs among multiple objectives.

To solve this challenging MOO problem, we propose an
information-theoretic algorithm referred to as Continuous-Fidelity
Max-value Entropy Search for Multi-Objective Optimization (CF-
MESMO). We formulate the continuous-fidelity evaluation by varying
the number of training epochs for ReSNA to establish an appropriate
trade-off between computation cost and accuracy. In each MOO iter-
ation, the candidate ReRAM design and fidelity (number of iterations
of ReSNA training) pair is selected based on the maximization of the
information gained per unit computation cost about the optimal Pareto
front. We perform comprehensive experiments on benchmark DNNs
and datasets to evaluate the proposed algorithms. Our results show
that ReSNA can significantly increase DNN inferencing accuracy
in the presence of stochastic noise on ReRAM crossbars, and CF-
MESMO can achieve faster convergence and efficiently uncover high-
quality Pareto fronts when compared to prior methods, including
NSGA-II [28] and a state-of-the-art single-fidelity multi-objective
optimization method called MESMO [29].

The main contributions of this paper are as follows.
• Study of the impact of stochastic noise on DNN inferencing

executed on ReRAM crossbars.
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• A hardware-aware training method, referred to as ReSNA,
to overcome stochastic noise and improve DNN inferencing
accuracy.

• An efficient multi-objective optimization algorithm, referred to
as CF-MESMO, to approximate optimal Pareto fronts in terms
of inferencing accuracy and hardware efficiency.

• Experimental results on a diverse set of benchmark DNNs and
datasets to demonstrate the effectiveness of ReSNA and CF-
MESMO and their superiority over state-of-the-art methods.

The remainder of this paper is organized as follows. Section II
discusses related prior work. Section III explains the problem setup,
and Section IV highlights the impact of stochastic noise. Section V
presents the ReSNA approach, and Section VI presents the CF-
MESMO algorithm. Section VII presents the experimental results.
Section VIII concludes this paper.

II. RELATED PRIOR WORK

We review related prior work on two key aspects of this paper—
mitigating device stochastic noise for DNN inferencing and multi-
objective optimization for hardware design.

There is limited prior work on mitigating the DNN inferencing
accuracy loss due to stochastic noise. Yan et al. [30] proposed a
closed-loop circuit that utilizes the inferencing results to stabilize the
DNN weights, but the effectiveness of this method was demonstrated
only on small DNNs. Long et al. [25] injected Gaussian noise during
training to mimic programming noise, and Joshi et al. [26] incorpo-
rated device programming variation extracted from experiments dur-
ing training. However, these methods only considered programming
noise while neglecting the other types of noise. Importantly, all these
prior methods overlooked the impact of hardware configurations,
such as the crossbar size and the resolution of the digital-to-analog
converter (DAC) and the analog-to-digital converter (ADC).

He et al. [27] investigated the integration of stochastic noise during
the training process, but their method failed to reach the desired DNN
inferencing accuracy. Consequently, they suggested lowering the
operational frequency such that the noise amplitude is low. In contrast
to prior work, we consider all the four types of stochastic noise and
propose a ReRAM hardware-aware training method to increase the
inferencing accuracy even under high operational frequencies.

Considering both inferencing accuracy and hardware efficiency,
we have a complex MOO problem for ReRAM-based hardware
design. Candidate MOO algorithms for ReRAM design optimization
can be classified into two broad categories. The first category of
MOO algorithms has objective functions that are cheap to evaluate.
AMOSA [31] and NSGA-II [28] are two popular evolutionary algo-
rithms that belong to this category. NSGA-II evaluates the objective
functions for various combinations of input variables and organizes
the candidate inputs into a hierarchy of subgroups based on the
ordering of Pareto dominance. This method takes advantage of
the similarity between members of each subgroup and the Pareto
dominance and moves towards the promising area of the input space.
Unfortunately, NSGA-II requires the evaluation of a large number of
candidate inputs and is not suitable for our problem setting, where
objectives are expensive.

Second, for expensive objective functions, Bayesian optimization
(BO) [32] is an effective framework. The key idea is to build a
cheap statistical model from past function evaluations and use it
to intelligently explore the input space for finding (near-)optimal
solutions. Much of the prior work on BO is for single-objective
optimization. There is limited work on multi-objective BO [33]–[35],
and MESMO [29] is the state-of-the-art algorithm. In contrast to

Fig. 1: DNN inferencing process on ReRAM crossbars.

TABLE I: Parameters for inferencing on ReRAM crossbars.
Notation Meaning
W DNN weight matrix
A Activations

Bitquan Bit number for quantization
Ron, Roff Low resistance and high resistance
Rescell ReRAM cell resolution

ResDAC , ResADC DAC and ADC resolution
Vr ReRAM read voltage
T Temperature

Freq Operational frequency
σprog Programming noise standard deviation

Xbarsize Crossbar size

prior work, we exploit the continuous approximations of the objective
functions (hardware-aware DNN training on ReRAM designs with
varying the number of epochs) to minimize the computation cost to
uncover high-quality Pareto front for hardware design.

III. BACKGROUND AND PROBLEM SETUP

In this section, we first explain how a trained DNN model is
deployed on the ReRAM crossbars to perform inferencing. Subse-
quently, we describe the MOO problem to perform robust DNN
inferencing using ReSNA.

A. DNN Inferencing on ReRAM Crossbars

Fig. 1 illustrates the overall flow of deploying a trained DNN model
on ReRAM crossbars for inferencing. There are four main steps, as
explained below. Table I summarizes the notation associated with the
relevant parameters.
¬ Software training. For a given DNN architecture and training
dataset, we first perform the training in software. The quantization-
aware training technique [36]–[38] can be used to quantize the
activations and weights.
 Deterministic mapping. The objective of this step is to map
the weight matrix of DNN W and the set of activations A to
the conductance of the ReRAM cells Gquan and crossbar input
voltages Vquan, according to the resolutions of ReRAM devices and
DACs, respectively. When the ReRAM cell resolution is less than
the number of bits used in quantization, i.e., Rescell < Bitquan,
dBitquan/Rescelle cells are used to represent one weight. A kernel
in a convolutional (Conv) layer needs to be first unrolled and mapped
to a matrix. As kernels are reused many times during convolution,
the kernel in a Conv layer is typically duplicated and deployed
on multiple crossbars. Therefore, multiple inputs can be processed
simultaneously, increasing parallelism and improving throughput [5].
For a fully-connected (FC) layer, each weight is associated with only
one input neuron. Hence, duplication is not necessary.
® Stochastic noise injection. This step mimics the influence of
stochastic noise on the conductance values. The noise is modeled
using probability distributions [22], [27]. Here Gnoisy denotes the



cell conductance in the presence of thermal noise, shot noise, RTN,
and programming noise together. Section IV-A provides more details.
¯ ReRAM-based computation. This process accumulates the results
obtained from ReRAM crossbars and employs ADCs to generate
outputs. Here Ynoisy denotes the final output of DNN inferencing.
Note that the last three steps together emulate the deployment of
DNN inferencing on ReRAM-based hardware. The deterministic
mapping needs to be carried out only once. Typically, we need to
perform the third and fourth steps multiple times (e.g., ten times)
to mimic multiple independent ReRAM deployments on the same
device. Based on the multiple runs, we obtain an estimate of DNN
inferencing accuracy.

B. MOO problem for ReRAM-based Designs

Our goal is to find ReRAM-based designs with suitable DNN
weights to optimize multiple objectives, including inferencing ac-
curacy, hardware area, execution time, and energy consumption.
ReRAM design space. The ReRAM design configuration in-
fluences the output objectives. For example, the parameters
Bitquan, ResDAC , ResADC listed in Table I influence the data
precision and overall inferencing accuracy. For area overhead,
dBitquan/Rescelle is proportional to the number of cells used in
the ReRAM-based design to represent the weights, and Xbarsize
determines the subarray unit size. For execution time, note that Freq
is inversely proportional to the clock cycle. The read voltage Vr
and the ReRAM cell resistance range [Ron,Roff ] affect the ReRAM
crossbar energy consumption.
MOO formulation. We formulate the MOO problem for robust
inferencing on hardware-efficient ReRAM crossbars with stochastic
noise as follows. Our input space consists of two parts: the ReRAM
design space and the DNN weights. Let X ⊆ Rd be the ReRAM
design configuration space, which includes the design variables as
explained above and also shown in Fig. 1. Each design variable
can take values from a bounded candidate set. We need a candidate
pair consisting of ReRAM design configuration(x ∈ X ) and DNN
weights to be able to evaluate all the output objectives. Without
loss of generality, we consider maximizing four objective functions:
DNN inferencing accuracy, hardware area, execution time, and energy
consumption denoted by f1(x), f2(x), f3(x), f4(x), respectively. For
each candidate ReRAM design, we execute ReSNA to obtain the
DNN weights that give rise to maximum accuracy. Subsequently, we
evaluate the objective functions f1(x), f2(x), f3(x), f4(x).

A design configuration x is determined to Pareto dominate another
design x′ if fi(x) ≥ fi(x′) ∀i and there exists some j ∈ {1, 2, 3, 4}
such that fj(x) > fj(x

′). An optimal solution of a MOO problem
is a set of designs X ∗ such that no design x′ ∈ X \ X ∗ pareto-
dominates a design x ∈ X ∗. The solution set X ∗ is called the Pareto
set, and the corresponding set of objective function values is called
the Pareto front. Our goal is to achieve a high-quality Pareto front
for hardware design while minimizing the total computation cost of
function evaluations.

IV. UNDERSTANDING THE IMPACT OF STOCHASTIC NOISE

In this section, we first discuss the modeling of ReRAM stochastic
noise. Next, we demonstrate the impact of stochastic noise on DNN
inferencing for specific ReRAM design configurations. Finally, we
show that the naïve approach of adding random Gaussian noise
cannot improve the robustness of DNN inferencing in the presence
of stochastic noise.

Fig. 2: The distributions of stochastic noise for 8-bit ReRAM cells
under Freq = 500 MHz and T = 350 K: (a) in a relative scale, (b)
with absolute values, (c) zoomed-in version for relative noise, (d) an
example of nonzero weight distribution.
A. Modeling of ReRAM Stochastic Noise

Thermal noise is generated due to the thermal agitation of the
charged carriers inside the conductor [39]. Shot noise is an electronic
noise that originates from the discrete electrons in the current flow.
The thermal and shot noise directly affect the current through a
device. We convert the change in current to the equivalent conduc-
tance change and model these two noise sources using Gaussian
distributions [22]: ∆Gthermal = N (0,

√
4G · Freq ·KB · T/V )

and ∆Gshot = N (0,
√

2G · Freq · q · V /V ), where G and V
denote the conductance and terminal voltage respectively. As shown
in Table I, Freq denotes the operational frequency, and T denotes
the temperature. KB denotes the Boltzmann constant, and q denotes
the electron charge.

Random telegraph noise (RTN) is generated in semiconductors and
ultra-thin oxide films. It can be modeled as a Poisson process [23],
with the parameters for RTN amplitude (∆Grtn) reported in [27].

Programming noise is introduced by the programming variation
when values are written to a ReRAM device. The programming
noise can be estimated using a Gaussian distribution with ∆Gprog =
N (0, σprogG) with standard deviation σprog = 0.0658, according to
the experimental study reported in [40].

B. Impact of ReRAM Stochastic Noise

Fig. 2 (a)-(b) show the relative and absolute distributions of four
kinds of stochastic noise for 8-bit ReRAM cells with Freq =
500 MHz and T = 350 K. Besides, Fig. 2(c) presents the relative
noise for the first 16 levels among the 256 conductance levels.
Relative noise (∆G/G) measures the noise amplitude divided by the
absolute conductance. Thermal and shot noise have similar patterns:
the relative noise is the largest at the smallest conductance level; it
then decreases steadily as G increases. The relative RTN presents a
sharp peak at the first conductance level, while other conductance
levels have much smaller relative RTN. The programming noise
increases with the conductance level in the absolute value.

We observe from Fig. 2(c) that the overall amplitude is much higher
than each individual case, especially when G is small. Moreover, it
is well known that the trained weights of DNNs are concentrated at
small values [41]. Fig. 2(d) shows an example distribution of nonzero
weights, which is extracted from the 19th layer of ResNet20 with 8-
bit quantization. A large number of the weights in this layer are zero;
these are not included in the figure. Note that at small values of G, the
first three types of stochastic noise dominate. Specifically, the thermal
and shot noise are sensitive to the operational frequency. Hence,
it is challenging to incorporate high-frequency noise into training.
Lowering the operational frequency and reducing noise amplitude



Fig. 3: Results for DNN inferencing on ReRAM crossbars with
stochastic noise under different training methods: Baseline, RGN,
PROG, and ReSNA training. Freq = 500 MHz, T = 350 K,
128×128 crossbars. (a) ResNet20, (b) VGG13.

could be an option, as suggested in previous work [27]. However,
such an approach will seriously constrain the use and potential of
ReRAM-based hardware due to the exclusion of high operational
frequency and short execution time for DNN inferencing.

Utilizing high-resolution cells is another challenge. For example,
increasing the cell resolution from 2 to 8 bits can reduce the number
of crossbar arrays by 75% (assuming all other settings are the
same), leading to a smaller area and lower latency. However, the
noise margin drops by 64× as the cell noise margin is inversely
proportional to the number of conductance levels (i.e., 2Rescell ).

C. Performance of Existing Training Approaches

We next evaluate the DNN inferencing accuracy of several pre-
viously proposed ReRAM hardware-aware training methods with
ResNet20 and VGG13 and show the results in Fig. 3. Weights and
activations are quantized to 8 bits. We consider two different ReRAM
cell resolutions, 2 bits and 8 bits. Models are tested by including
the stochastic noise in ReRAM-based hardware. The baseline con-
figuration considers training with no noise. RGN denotes a naïve
noise-aware approach, which injects random Gaussian noise into the
system during training. The noise standard deviation is related to
the maximum absolute weight value, more specifically, ∆GRGN =
N (0, 0.01 ·max(G)). PROG considers only the programming noise
∆Gprog with σprog = 0.0658 [40] for training.

We make the following observations from the results shown in
Fig. 3. 1) The baseline system suffers from stochastic noise, resulting
in poor inferencing accuracy. 2) Previous training methods, such as
RGN and PROG, cannot guarantee the mitigation of DNN inferencing
accuracy degradation due to stochastic noise. This result is mainly
due to the mismatch between Gaussian noise and the actual device
stochastic noise, as shown in Fig. 2(a). 3) Increasing the cell resolu-
tion from 2 to 8 bits exacerbates the degradation in DNN inferencing
accuracy due to the reduced noise margin of the ReRAM devices.

V. RESNA: HARDWARE-AWARE TRAINING APPROACH

In this section, we describe the proposed ReRAM-based stochastic-
noise-aware (ReSNA) training method that incorporates stochastic
noise to improve DNN inferencing accuracy.

We start with a pre-trained model to initialize noise-aware training.
Batch normalization layers are included after each Conv layer [42],
[43]. The computation during the training process considers the
hardware configurations. In each iteration, a new set of emulated
device noise is applied in the stochastic noise injection step. Thus,
the loss calculated at the end of the forward pass reflects the influence
of stochastic noise. During the backpropagation, gradients of trainable
DNN weights are calculated with respect to the loss. We keep a copy
of the noise-free weight values and perform the gradient updates on
this copy.

The quality of training degrades due to the distortion of the
loss function induced by the variation of weight parameters [44].
When the variation is large enough, the gradient update during the

TABLE II: DNN inferencing accuracy comparison under vari-
ous training configurations with ReSNA for the following setting:
ResNet20, Freq = 500 MHz, T = 350 K, 8-bit cell resolution,
128×128 crossbars.

Training Configuration Inferencing Accuracy
w/o Voting w/ Voting

Convideal + FCideal 69.61% 73.69%
Conv500MHz,350K + FCideal 79.95% 82.61%

Conv500MHz,350K + FC100MHz,300K 84.05% 85.06%
Conv500MHz,350K + FC100MHz,350K 81.65% 83.79%
Conv500MHz,350K + FC500MHz,350K 10% 10%

backpropagation step can be derived from the expected convergence
path. The error due to stochastic noise can propagate and accumulate
through the forward path, and similarly, the error in the gradient
can propagate and accumulate through the backward path. Thus, the
convergence of the loss function can be affected by the accumulation
of the gradient error.

Moreover, our experiments show that Conv layers are less sen-
sitive to device stochastic noise than FC layers. Let δc denote the
ReRAM cell’s stochastic noise. We assume that one cell is used
to represent one weight for simplicity. During the ReRAM-based
FC layer computation involving one weight for a total of n times,
the accumulation of the cell’s stochastic noise can be approximated
as n2δc (assuming a Gaussian distribution). As mentioned above,
Conv kernels are typically duplicated to improve the throughput of
the ReRAM-based hardware. These copies have identical weights,
but the noise can be approximated to have independent statistical
distributions. As the computation involving one weight for n times
will be distributed to multiple copies, the accumulation of these cells’
stochastic noise can be reduced to n2δc/k. The value of k is related
to the number of duplicate copies as well as the correlations between
the stochastic noise of these devices. Thus, the device stochastic noise
affects FC layers more significantly than Conv layers due to the
duplication of Conv kernels. To overcome this challenge, we propose
two techniques to improve the stability of DNN inferencing accuracy.
Applying smaller noise to FC layers. Since computing the loss
function is critical for the backpropagation step and FC layers are
more sensitive to the stochastic noise, we propose to lower the
noise level on FC layers for improving the stability of inferencing.
Table II compares the performance of ReSNA under different noise
configurations. We consider the ResNet20 model with an 8-bit weight
and activation quantization, along with a crossbar size of 128×128 in
this experiment. The temperature is set to 350 K, and the operational
frequency is set to 500 MHz.

Table II shows that without including any noise in train-
ing (Convideal + FCideal), the DNN inferencing accuracy on this
ReRAM design in the presence of stochastic noise is only
69.61%. Including a high-amplitude noise to the entire net-
work (Conv500MHz,350K + FC500MHz,350K) makes the training un-
stable. Applying the device stochastic noise to Conv layers
while appropriately reducing the noise level on FC layers (e.g.,
Conv500MHz,350K + FC100MHz,300K) helps in maintaining the sta-
bility of training and improving the DNN inferencing accuracy.
Majority vote in the classification layer. Alternatively, FC layers
can be duplicated and deployed on different crossbar arrays. The
stochastic noise of a single weight parameter across these copies
is not independent but is less correlated than the variations due to
accessing the same device multiple times. We can feed the same
input to these duplication layers and take the majority vote (Voting)
to determine the predicted output to compensate for the FC layers’
impact on the DNN inferencing accuracy. To minimize the area
overhead, we apply Voting to only the classification layer (i.e., the
last FC layer) with a small number of copies (e.g., 3). The results



in Table II demonstrate that this technique can further improve DNN
inferencing accuracy, even under the combination of high-amplitude
noise and high-resolution cells.

In summary, ReSNA incorporates stochastic noise and enhances
stability, leading to better inferencing accuracy than the baseline and
previous work, as shown in Fig. 3.

VI. CF-MESMO: EFFICIENT MOO ALGORITHM

Evaluating DNN inferencing accuracy and hardware efficiency
requires execution of the ReSNA training for each ReRAM design
configuration; this step is, however, computationally expensive (e.g.,
taking over seven hours to execute 100 training epochs for one
ReRAM design configuration for ResNet20 with CIFAR10 data). To
address this challenge, we propose an efficient information-theoretic
MOO algorithm referred to as Continuous-Fidelity Max-value En-
tropy Search for Multi-objective Optimization (CF-MESMO). Two
key innovations here are: first, we formulate continuous-fidelity
evaluation of objective functions by varying the number of training
epochs of ReSNA. Second, we propose a principled approach to
intelligently select the ReRAM configurations and fidelity of ReSNA
for evaluation guided by learned statistical models.

A. MOO Formulation with Continuous-Fidelity Evaluations

For each candidate ReRAM design x ∈ X , we need to execute
the ReSNA method to obtain the DNN weights. Subsequently,
we evaluate the objective functions f1(x) (inferencing accuracy),
f2(x) (hardware area), f3(x) (execution time), f4(x) (energy con-
sumption). The cost of evaluation of each ReRAM design config-
uration can be reduced by making an approximation of the objective
function(s). We propose to vary the number of training epochs in
ReSNA to trade-off computation cost and accuracy of objective
function evaluations (i.e., continuous-fidelity evaluation): small train-
ing epochs correspond to lower-fidelity evaluation and vice versa.
Therefore, we formulate this problem as a continuous-fidelity MOO
problem where we have access to an alternative function gj(x, zj)
for all j ∈ {1, 2, 3, 4}. Function gj(x, zj) can make cheaper
approximations of fj(x) by varying the fidelity variable zj ∈ Z .
Without loss of generality, let Z = [0, 1] be the fidelity space.
Fidelities for each function vary in the amount of computational
resources consumed and the accuracy of evaluation, where zj = 0
and z∗j = 1 refer to the lowest and highest fidelity, respectively.
At the highest fidelity z∗j , gj(x, z∗j ) = fj(x). Let Cj(x, zj) be the
cost of evaluating gj(x, zj), i.e., runtime to perform training using
ReSNA for the selected number of training epochs. Evaluation of
each ReRAM design configuration x ∈ X with fidelity vector z =
[z1, z2, z3, z4] generates the evaluation vector y ≡ [y1, y2, y3, y4],
where yj = gj(x, zj), and the normalized cost of evaluation is
C(x, z) =

∑4
j=1

(
Cj(x, zj)/Cj(x, z∗j )

)
. Our goal is to approximate

the Pareto set X ∗ by minimizing the overall cost of evaluating
candidate ReRAM designs.

B. Overview of CF-MESMO

CF-MESMO learns a surrogate model using data obtained from
past ReRAM design evaluations and then intelligently selects the next
candidate ReRAM design and the fidelity of ReSNA pair for evalua-
tion by trading-off exploration with exploitation to quickly direct the
search towards Pareto-optimal solutions. We perform the following
steps in each iteration of CF-MESMO as shown in Algorithm 1: 1)
Select the ReRAM design and fidelity of ReSNA for evaluation that
maximizes the information gain per unit cost about the optimal Pareto
front based on the current surrogate model. 2) Execute the hardware-
aware training approach ReSNA to evaluate objective functions with

the selected ReRAM design and fidelity pair. 3) Employ the new
training example in the form of ReRAM design configurations (i.e.,
input) and four objective function evaluations (i.e., output) to update
the surrogate model. After convergence is achieved (i.e., Pareto front
solution doesn’t change in several consecutive iterations), we compute
the Pareto front from the aggregate set of objective evaluations
and obtain the ReRAM design configurations and DNN weights
corresponding to the Pareto front as the resulting solution.

Algorithm 1 CF-MESMO Algorithm
Input: ReRAM design space X ; DNN π; four objective functions fj and their
continuous approximations gj using ReSNA training; total cost budget Ctotal.

1: Initialize GP models GP1, · · · ,GP4 via ReRAM design evaluations D
2: While Ct ≤ Ctotal and not converged do
3: for each sample s ∈ 1, · · · , S:
4: Sample highest-fidelity functions f̃j ∼ GPj(., z

∗
j )

5: F∗s ← Solve cheap MOO over (f̃1, · · · , f̃K)
6: Select ReRAM design and fidelity pair:

(xt, zt)← argmaxx∈X ,z∈Z αt(x, z,F∗) Equation (9)
7: Perform ReSNA training of DNN π with ReRAM design and fidelity pair (xt, zt)

8: Evaluate objectives f1, f2, f3, f4 for trained DNN on ReRAM design xt

9: Update the total cost: Ct ← Ct + C(xt, zt)
10: Aggregate training data: D ← D ∪ {(xt,yt, zt)}
11: Update surrogate statistical models GP1, · · · ,GP4

12: t← t+ 1
13: end
14: return Pareto set and Pareto front of objective functions f1(x), · · · , f4(x)

Surrogate models for continuous-fidelity. Surrogate models guide
the selection of candidate ReRAM designs to quickly uncover high-
quality Pareto fronts. Our training data D for surrogate models after
t iterations consists of t training examples of input-output pairs. We
employ Gaussian processes (GPs) [45] as our choice of the statistical
model due to their superior uncertainty quantification ability. We learn
four surrogate statistical models GP1, · · · ,GP4 from D, where each
model GPj corresponds to the jth function gj . Continuous-fidelity
GPs (CF-GPs) are capable of modeling functions with continuous
fidelities within a single model. Hence, we employ CF-GPs to build
surrogate statistical models for each function [46]. A CF-GP is a
random process defined over the input space and the fidelity space,
characterized by a mean function µ : X × Z → R and a covariance
or kernel function κ : (X × Z)2 → R. We denote the posterior
mean and standard deviation of gj by µgj (x, zj) and σgj (x, zj).
We denote the posterior mean and standard deviation of the highest
fidelity functions fj(x) = gj(x, z

∗
j ) by µfj (x) = µgj (x, z∗j ) and

σfj (x) = σgj (x, z∗j ), respectively.

C. Selecting ReRAM Design to Evaluate via Information Gain

The effectiveness of CF-MESMO critically depends on the reason-
ing mechanism to select the candidate ReRAM design and fidelity of
ReSNA pair for evaluation in each iteration. Therefore, we propose an
information-theoretic approach to perform this selection. The key idea
is to find the ReRAM design and fidelity pair {xt, zt} that maximizes
the information gain (I) per unit cost about the Pareto front of
the highest fidelities (denoted by F∗), where {xt, zt} represents a
candidate ReRAM design configuration xt evaluated at fidelities zt
at iteration t. CF-MESMO performs the joint search over the input
space X and the fidelity space Z:

(xt, zt)← arg max
x∈X ,z∈Z

αt(x, z), (1)

where αt(x, z) = I({x,y, z},F∗|D)/C(x, z). (2)
In this joint search, the computation cost C(x, z) is considered in

Equation (2). The information gain in Equation (2) is the expected
reduction in entropy H(.) of the posterior distribution P (F∗|D)
due to the evaluation of the ReRAM design x at fidelity vector z.



According to the symmetric property, the information gain can be
rewritten as follows:
I({x,y, z},F∗|D) = H(y|D,x, z)− EF∗ [H(y|D,x, z,F∗)].

(3)
The first term in Equation (3) is the entropy of a four-dimensional
Gaussian distribution that can be computed as follows:

H(y|D,x, z) =

4∑
j=1

ln(
√

2πe σgj (x, zj)). (4)

The second term in Equation (3) is an expectation over F∗ and can
be approximated using Monte-Carlo sampling:

EF∗ [H(y|D,x, z,F∗)] ' 1

S

S∑
s=1

[H(y|D,x, z,F∗s )], (5)

where S denotes the number of samples, and F∗s denotes a sample
Pareto front achieved over the highest fidelity functions sampled from
the surrogate models. To solve Equation (5), we provide solutions to
construct Pareto front samples F∗s and to compute the entropy of a
given Pareto front sample F∗s .

Computation of Pareto front samples: We sample the highest
fidelity functions f̃1, · · · , f̃4 from the posterior CF-GP models. Then,
we solve a cheap MOO problem over the sampled functions with the
NSGA-II algorithm [28] and compute the sample Pareto front F∗s .

Entropy computation for a given Pareto front sample: Let F∗s =
{v1, · · · ,vl} be the sample Pareto front, where l denotes the size of
the Pareto front and each element vi = {vi1, · · · , vi4} is evaluated at
the sampled highest-fidelity function. The following inequality holds
for each component yj of y in the entropy term H(y|D,x, z,F∗s ):

yj ≤ f j∗s ∀j ∈ {1, · · · , 4}, (6)
where f j∗s = max{v1j , · · · vlj}. Essentially, this inequality means that
the jth component of y is upper-bounded by the maximum of jth

components of sample Pareto front F∗s .
The proof of Equation (6) falls in two cases1: a) If yj is evaluated

at the highest fidelity (i.e, zj = z∗j and yj = fj), we prove by
contradiction. Suppose there exists some component fj of f such
that fj > f j∗s . However, by definition, since no point dominates
f in the jth dimension, f is a non-dominated point. This results in
f ∈ F∗s , which is a contradiction. Thus, Equation (6) holds. b) If yj is
evaluated at one of the lower fidelities (i.e, zj 6= z∗j ), we refer to the
assumption that the value of an objective evaluated at lower fidelity is
smaller than that evaluated at higher fidelity, i.e., yj ≤ fj ≤ f j∗s . This
assumption is true in our problem setting, where the DNN inferencing
accuracy improves with more training epochs of ReSNA.

Following Equation (6) and the independence of CF-GP models,
we further decompose the entropy of a set of independent variables
according to the entropy measure property [47]:

H(y|D,x, z,F∗s ) '
4∑
j=1

H(yj |D,x, zj , f j∗s ). (7)

Equation (7) requires the entropy computation of p(yj |D,x, zj , f j∗s ).
This conditional distribution can be expressed as H(yj |D,x, zj , yj ≤
f j∗s ). As Equation (6) states that yj ≤ f j∗s holds under all fidelities,
the entropy of p(yj |D,x, zj , f j∗s ) can be approximated by the
entropy of a truncated Gaussian distribution as:

H(yj |D,x, zj , yj ≤ f j∗s ) = ln(
√

2πe σgj ) + ln Φ(γ
(gj)
s )

− γ
(gj)
s φ(γ

(gj)
s )

2Φ(γ
(gj)
s )

, (8)

1For ease of notation, we drop the dependency on x and z. We use fj to
denote fj(x) = gj(x, z

∗
j ) the evaluation of the highest fidelity z∗j and yj to

denote gj(x, zj) the evaluation of gj at a lower fidelity zj 6= z∗j .

where γ
(gj)
s =

fj∗s −µgj

σgj
. Functions φ and Φ are the probability

density and cumulative distribution function of the standard normal
distribution, respectively. From Equations (4), (5), and (8), we get
the expression as shown below:

αt(x, z,F∗) =
1

C(x, z)S

4∑
j=1

S∑
s=1

γ
(gj)
s φ(γ

(gj)
s )

2Φ(γ
(gj)
s )

− ln(Φ(γ
(gj)
s )).

(9)
Therefore, in Algorithm 1, we select the next ReRAM design and
the fidelity of ReSNA pair that maximizes the information gain per
unit cost about the optimal Pareto front based on Equation (9).

VII. EXPERIMENTS AND RESULTS

In this section, we first explain the details of the experimental
setup. Next, we evaluate the effectiveness of ReSNA in improving the
inferencing accuracy. Finally, we show that CF-MESMO can achieve
high-quality Pareto fronts for DNN inferencing on ReRAM crossbars
and analyze the Pareto sets for different DNN models.

A. Experimental Setup

We evaluate ReSNA with five different DNNs—ResNet20,
ResNet32, ResNet44 [48], VGG11, and VGG13 [49] on the CIFAR-
10 dataset [50]. The CIFAR-10 dataset contains 50, 000 training
images and 10, 000 testing images, which belong to 10 classes.
Furthermore, to validate the scalability of our method, we also
evaluate the performance of ResNet18 [48] using the CIFAR-100
dataset [50]. The number of training and testing images in CIFAR-
100 is the same as in CIFAR-10, but these images belong to 100
classes. The image size is 28 × 28 × 3, and the training and
testing batch size is 64. Table III(a) summarizes deep neural network
configurations, including the numbers of channels in Conv layers, the
inferencing accuracy with unquantized weights and activations, and
the inferencing accuracy for 8-bit weights and activations. Note that
testing on diverse DNNs is more important to test the effectiveness of
our approach. Hence, due to space constraints, we provide results on
limited datasets noting that our methodology and findings are general.

TABLE III: Experiments setup details.
(a) Network configurations.

Network # of channels in Conv layers Unquantized
Accuracy

Quantized
Accuracy

ResNet20 16, [16,16]×3, [32, 32]×3,
[64, 64]×3 91.65% 89.61%

ResNet32 16, [16,16]×5, [32, 32]×5,
[64, 64]×5 92.81% 90.06%

ResNet44 16, [16,16]×7, [32, 32]×7,
[64, 64]×7 93.24% 91.54%

VGG11 64, 128, 256, 256, 512, 512,
512, 512 92.18% 88.07%

VGG13 64, 64, 128, 128, 256, 256,
512, 512, 512, 512 93.64% 91.14%

ResNet18
for CIFAR-100

64, [64, 64]×2, [128,128]×2,
[256,256]×2, [512,512]×2 74.57% 71.92%

(b) ReRAM parameters in ReSNA.
Parameter Value
Bitquan 8 bit
Ron, Roff 3.03 kΩ, 3.03 MΩ

ResDAC , ResADC 8 bits, 8 bits
Vr 1.65V

σprog 0.0658

(c) Design space configurations.
Parameter Candidate values
Rescell 8/4/3/2/1-bit
Freq 10 MHz-1000 MHz
T 300 K-400 K

Xbarsize 32× 32, 64× 64, 128× 128



Fig. 4: ReRAM inferencing accuracy under various temperature and
frequency settings. 8-bit cell resolution, 64×64 crossbars. ResNet20
on the CIFAR-10 dataset.

We implement the ReSNA method on ReRAM crossbars with
stochastic noise using the PytorX simulator [27]. ReSNA uses
stochastic gradient descent with a learning rate of 0.001 and a
momentum of 0.9. The maximum number of training epochs is 100.
For ResNet18, we decay the learning rate by 0.2 for every 20 epochs.
Each inferencing test consists of 10 independent runs with stochastic
noise, and we report the average inferencing accuracy. All the training
and inferencing are conducted on NVIDIA Titan RTX GPU with a
memory of 24 GB and a memory bandwidth of 672 GB/s.

Table III(b) summarizes the ReRAM device parameters. The cell
resolution, operational frequency, temperature, and crossbar size are
inputs to the MOO framework. Table III(c) shows the allowable
input configurations. We use NeruoSim [51] along with the 32 nm
technology node parameters to evaluate the hardware area, execution
time, and energy consumption. The ReRAM crossbar and peripheral
configurations are adopted from [52]. For ReSNA with Voting,
we duplicate the kernels of the classification layer. For the MOO
problem, we run CF-MESMO for a maximum of 100 iterations
with 10 available fidelity selections. The baselines for evaluating the
efficiency of CF-MESMO are the random search and NSGA-II. We
utilize the NSGA-II implementation from Platypus python library.

B. ReSNA Results

Inferencing accuracy. We show representative results for ReSNA in-
ferencing accuracy with multiple temperature and frequency settings
with respect to the baseline. Recall that the baseline configuration
considers training with no noise and performs inferencing in the
presence of stochastic noise. Fig. 4(a)-(c) show the inferencing accu-
racy for ResNet20 with 8-bit cell resolution and 64×64 crossbars.
On average, ReSNA without Voting outperforms the baseline by
1.62% over all the test conditions. ReSNA with Voting increases
the overall inferencing accuracy by 2.57%. Considering the extreme
design configuration, i.e., at 1000 MHz and 400 K, ReSNA with
Voting outperforms the baseline by 5.47%. Note that this extreme
case assumes that in the future, ReRAM-based hardware will run at
this high frequency. We also validate the performance of the ReSNA
method with the ResNet18 on the CIFAR-100. With a frequency
of 500 MHz and a temperature of 350 K, ReSNA achieves 70.80%
inferencing accuracy compared with the baseline inferencing accu-
racy of 69.37%. With a frequency of 1000 MHz and a temperature
of 350 K, ReSNA achieves 68.23% inferencing accuracy compared
with the baseline inferencing accuracy of 64.45%.

In summary, ReSNA can achieve considerable inferencing accuracy
improvement under stochastic noise with different ReRAM design
configurations, DNNs, and datasets.
Design trade-offs considering different objectives. We further
explore the design trade-offs considering the inferencing accuracy,
hardware area, execution time, and energy consumption. As we have
explored the effects of frequency and temperature on inferencing
accuracy in the previous analysis, we focus on cell resolution and
crossbar size in this discussion. Fig. 5 shows the impact of cell
resolution and the crossbar size on ResNet20 at 500 MHz and 350 K.

Fig. 5: ReRAM-based design trade-offs under different cell resolution
and crossbar size settings. ResNet20, Freq = 500 MHz, T = 350 K.
(a) inferencing accuracy, (b) hardware area, (c) latency, (d) energy
consumption.

Fig. 5(a) shows that inferencing accuracy using the ReSNA
method. When other settings remain the same, the inferencing ac-
curacy steadily increases as the cell resolution reduces due to the
improved noise margin. As discussed in Section III, the ReRAM
crossbar array outputs are accumulated across the columns, and hence
the crossbar size affects the noise accumulation. Therefore, a large
crossbar with high cell resolution is not an optimal design choice
with this setting from the inferencing accuracy perspective.

From the area perspective, the 32×32 crossbar with 8-bit cell
resolution is the best, while 64×64 crossbar has the least area
when the cell resolution is 4-bit. The area evaluation reveals a high
correlation between the cell resolution and crossbar size. Fig. 5(c)
shows that the minimum latency is achieved by the 64×64 crossbar
with the cell resolution of 2-bit, though this particular configuration
incurs a relatively larger area overhead than the configuration with 4-
bit cell resolution. Fig. 5(d) shows that the energy consumption with
large cell resolution and small crossbar size is relatively modest.

C. Results on Using CF-MESMO to Optimize ReRAM Crossbars

Fig. 5 also indicates that different objectives have different optimal
design configurations, and a global optimal design configuration is
not achievable. Note that the operational frequency and temperature
considered above are discrete data points selected for initial per-
formance evaluation. However, the temperature can take any value
from 300 K to 400 K. Assuming the temperature resolution to be
0.1 K, we can get 1, 000 data points. Similarly, by considering other
inputs, we can estimate the number of all design configurations to
be 1.485 × 107. While any MOO framework can search over this
enormous space to achieve the Pareto front to establish the suitable
design trade-offs, the computation cost associated with this search
is prohibitively high (e.g., it takes nearly 30 GPU days to run the
ReSNA training on the PytorX simulator [27] for 100 configurations).
In contrast, the proposed CF-MESMO framework does not traverse
through all the data points but can achieve a high-quality Pareto front
with significantly reduced computation cost. We use the hypervolume,
which measures the volume between the Pareto front and a reference
point [53], to indicate the quality of the Pareto front.
CF-MESMO vs. NSGA-II and random search. Fig. 6(a) illustrates
the hypervolume result of CF-MESMO compared with NSGA-II and
random search under the same computation cost. The unit cost is
defined as the runtime for executing 10 training epochs of the ReSNA
method (e.g., 42.5 minutes based on our setting for ResNet20). We
observe that 1) CF-MESMO can achieve a higher-quality Pareto
optimal set for the same total computation cost for ReRAM design
evaluation; 2) CF-MESMO can produce higher quality Pareto front
using significantly lower cost compared to NSGA-II and random
search; 3) CF-MESMO achieves 90.91% and 91.21% reduction in
computation cost to reach the same quality Pareto front as NSGA-II
and random search, respectively.



Fig. 6: CF-MESMO framework results for ResNet20: (a) CF-
MESMO hypervolume result compared with NSGA-II and random
search, (b) CF-MESMO and MESMO hypervolume results, (c)
fidelity index over the CF-MESMO iterations.

Fig. 7: CF-MESMO framework Pareto front and Pareto set for
ResNet20 in a 3-dimensional plot with colorbar, the iteration number
is labeled next to each data point: (a) output space, (b) input space.

Continuous fidelity vs. single maximum fidelity. We utilize a
continuous fidelity setting in CF-MESMO. As a comparison, we run
our optimization method with the single maximum fidelity setting
(100 training epochs of ReSNA to evaluate each ReRAM design),
denoted as MESMO. Fig. 6(b) compares the hypervolume of these
two methods considering the computational cost. The continuous-
fidelity setting in CF-MESMO can guarantee higher quality Pareto
front with lower computation cost when compared to the single
maximum fidelity algorithm MESMO. Specifically, CF-MESMO
lowers the computation cost by 78.18% to reach the same quality
Pareto front as MESMO. Note that both CF-MESMO and MESMO
can outperform NSGA-II and random search, as we observe from
Fig. 6(a)-(b). These results validate the effectiveness of the proposed
CF-MESMO algorithm for ReRAM based MOO optimization.

Fig. 6(c) shows the fidelity index (small index means ReRAM
design evaluation using ReSNA with a small number of training
iterations) selection over iterations in CF-MESMO. The optimization
starts with a large fidelity index, e.g., 7 and 9 at the 1st and 2nd

iterations in the initialization. During the 3rd to 25th iterations,
a small fidelity index is preferred to get a fast approximation of
the Pareto front by identifying the promising areas of the ReRAM
design space. After that, a larger fidelity index is selected to approach
the optimal Pareto front by evaluating candidates from this set of
promising ReRAM designs. By using this continuous-fidelity setting,
we can exclude the non-promising configurations in an early stage.
As shown in Equation (2), high fidelity is only utilized when the
predicted information gain per unit cost is large.
Optimization results for different DNNs. We use the proposed
CF-MESMO framework to achieve robust DNN inferencing with
an efficient ReRAM-based hardware platform. For the ResNet20
network, CF-MESMO obtains 11 Pareto optimal designs over 100
iterations. Fig. 7(a) represents these designs in the output space,
including the inferencing accuracy, latency, energy consumption, and
area overhead. Each data point is labeled with the corresponding
iteration number. Although all the 11 design instances appear at
the Pareto front, some of them can be excluded due to efficiency

Fig. 8: CF-MESMO framework Pareto front result for ResNets and
VGGs in a 3-dimensional plot: (a) ResNets, (b) VGGs.

constraints. For instance, designs ‘56’ and ‘58’ consume 113.3%
and 105.2% more energy compared to the average of the other
designs, while design ‘72’ requires 57.4% more execution time
compared to the average of the other designs. We mark the high-
energy design points with red and the high-latency design point with
magenta in Fig. 7. According to the input space shown in Fig. 7(b),
a relatively low temperature (300K-350K) and small and medium
crossbar sizes (32×32 and 64×64) are recommended for ResNet20.

Fig. 8 shows the Pareto fronts for ResNets and VGGs. Note
that the area evaluation dimension is not included in the plot for
ease of illustration, and latency is normalized under the same area
constraint. It should be noted that ResNet32 and VGG13 achieve
the best inferencing accuracy for each network class. Comparing
Fig. 8(a) with Fig. 8(b), we see that the Pareto fronts for ResNet
and VGG have different distributions, while there is a large overlap
among the various clusters within the same network class. e.g., the
three clusters in Fig. 8(a). These results imply that the network
structure is not the only factor to determine hardware efficiency.
In designing ReRAM-based accelerators, we should first set the
expected inferencing accuracy and hardware efficiency target and then
choose the network using the Pareto front.

Based on the Pareto set results from all the evaluations, we make
the following observations: 1) Designs with high temperature can
appear in the Pareto front, but the number of those cases is low.
2) For small DNN models, the channel number is relatively small.
Large-sized crossbar results in a low utilization rate and thus is not
an optimal choice. As the model size increases, a large-sized crossbar
becomes a preferred choice. 3) As ReSNA improves the inferencing
accuracy, high ReRAM cell resolution and high frequency become
the preferred candidates for robust DNN inferencing.

VIII. CONCLUSIONS

We have presented a ReRAM-based accelerator design and opti-
mization framework to achieve robust DNN inferencing in the pres-
ence of stochastic noise. The efficiency of this framework depends on
uncovering the Pareto-optimal ReRAM designs to establish a suitable
trade-off considering inferencing accuracy, area overhead, execution
time, and energy consumption. We have solved this challenging multi-
objective optimization (MOO) problem by introducing a Continuous-
Fidelity Max-value Entropy Search-based MOO framework, called
CF-MESMO. CF-MESMO is aided by a hardware-aware training
method to handle stochastic noise, called ReSNA. The CF-MESMO
framework provides a high-quality Pareto front for robust DNN
inferencing on hardware-efficient ReRAM crossbars with stochastic
noise. On average, ReSNA achieves 2.57% inferencing accuracy
improvement for ResNet20 on the CIFAR-10 dataset with respect
to the baseline configuration. Moreover, the CF-MESMO framework
achieves 90.91% reduction in computation cost compared with the
popular MOO framework NSGA-II to reach the same quality Pareto
front as NSGA-II.
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