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Abstract: Microbial associations are characterized by both direct

and indirect interactions between the constituent taxa in a microbial

community, and play an important role in determining the structure,

organization, and function of the community. Microbial associa-

tions can be represented using a weighted graph (microbial network)

whose nodes represent taxa and edges represent pairwise associa-

tions. A microbial network is typically inferred from a sample-taxa
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matrix that is obtained by sequencing multiple biological samples

and identifying the taxa counts in each sample. However, it is known

that microbial associations are impacted by environmental and/or

host factors. Thus, a sample-taxa matrix generated in a microbiome

study involving a wide range of values for the environmental and/or

clinical metadata variables may in fact be associated with more than

one microbial network. Here we consider the problem of inferring

multiple microbial networks from a given sample-taxa count ma-

trix. Each sample is a count vector assumed to be generated by a

mixture model consisting of component distributions that are Mul-

tivariate Poisson Log-Normal. We present a variational Expectation

Maximization algorithm for the model selection problem to infer

the correct number of components of this mixture model. Our ap-

proach involves reframing the mixture model as a latent variable

model, treating only the mixing coefficients as parameters, and sub-

sequently approximating the marginal likelihood using an evidence

lower bound framework. Our algorithm is evaluated on a large sim-

ulated dataset generated using a collection of different graph struc-

tures (band, hub, cluster, random, and scale-free).

1 INTRODUCTION

The structure of a microbial community and the organization of its constituent

members (taxa) are determined by a combination of their mutual interactions

and other factors such as the availability of carbon sources, energy, and nutri-

ents, and the characteristics of the surrounding environment (Falkowski et al.,

2008; Hibbing et al., 2010; Williamson and Yooseph, 2012). These variables

determine whether the community contains only a handful of taxa with very
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little strain variation (such as in limiting environments like acid mine drainage

(Tyson et al., 2004)) or whether they contain a moderate to high number of taxa

with a large number of variants (such as in the human environment (Methe et al.,

2012), oligotrophic open oceans (Rusch et al., 2007), and nutrient rich soils

(Vogel et al., 2009)).

Microbial community composition can be obtained by sequencing the DNA

extracted from a biological sample collected from the environment of interest.

Microbiome sequence data are generated either using a targeted approach, in-

volving the sequencing of a taxonomic marker gene (for instance, the 16S ri-

bosomal RNA gene, which is found in all bacteria (Woese and Fox, 1977)) or

using a whole-genome shotgun sequencing approach (Venter et al., 2004); the

later approach can be used to deduce both the taxonomic composition and the

functional potential of the community.

Here, we study the computational problem of inferring microbial associations

from microbiome data. We use the term microbial association to capture both

influences and interactions between microbial taxa. In a microbial community,

the presence and abundance of one taxonomic group may either directly or in-

directly influence the abundance of another taxonomic group (Hibbing et al.,

2010). For instance, two microbial taxa may directly influence each other

through interactions involving exchange of metabolites or other products, or

by competing for the same resources. Alternately, two microbial taxa may not

directly communicate or compete for the same resources, but instead one taxon

could interact with other members of the community, and these interactions

could indirectly influence resource availability for the other taxon. Information

about associations between taxa can provide important insights into the ecology

of the microbial community.

Microbial associations can be represented using a weighted graph (micro-
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bial network) whose nodes represent taxa and undirected edges between nodes

represent associations. Edge weights capture the strength of the associations,

and the edge weight sign reflects whether the association is positive or negative

(Layeghifard et al., 2017). This graph representation can be used to model a va-

riety of microbial interactions, including competition and co-operation (Loftus et al.,

2021). Microbial associations can be inferred from the underlying covariance

structure of the community which can be calculated using taxa abundances.

The covariance matrix is estimated from a sample-taxa count matrix; this count

matrix is generated by sequencing biological samples collected from the envi-

ronment of interest and identifying the counts of taxa in each sample.

Typically, the study of a microbial community in a particular environment

assumes a single covariance structure, and computational methods have been

developed to address this estimation problem (Layeghifard et al., 2017), includ-

ing approaches based on probabilistic graphical models (Biswas et al., 2016;

Kurtz et al., 2015; Loftus et al., 2021) and on latent variable models (Fang et al.,

2015; Friedman and Alm, 2012). However, with the use of high-throughput

next-generation DNA sequencing technologies (Quail et al., 2012) that allow

for cost-effectively obtaining data from biological samples, microbiome studies

now routinely collect, and generate data from, a large number of samples. In

these situations, a microbiome study involving a large cohort or including a

wide range of metadata variables (environmental and/or clinical) may in fact

be sampling from a community where the microbial associations between taxa

are not the same across all intervals of the metadata values. In other words,

the microbiome samples in the study may be associated with more than one

underlying covariance structure (and thus, more than one microbial network).

Motivated by this scenario, we recently developed an extension to the single

network inference problem. In this extension, we treat the inference problem in
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a mixture model framework based on generative models (Tavakoli and Yooseph,

2019) and solve the following computational problem: given a sample-taxa count

matrix generated by a mixture model with K component distributions, estimate

the mixing coefficients and the parameters of the K component distributions.

The component distributions model taxa count data, and each component is

associated with one precision matrix (and thus, one microbial network). In our

framework, referred to as MixMPLN (Tavakoli and Yooseph, 2019), we assume

that the taxa counts are generated by Multivariate Poisson Log-Normal (MPLN)

distributions (Aitchison and Ho, 1989; Inouye et al., 2017). We estimate the

parameters of the MixMPLN model in a maximum likelihood setting using

an optimization technique based on the minorization-maximization principle

(Lange, 2016). We note that the MPLN distribution has been used previously

for the single network inference problem (Biswas et al., 2016; Chiquet et al.,

2019). While distributions like the multinomial or the Dirichlet-Multinomial

have been popular choices for modeling microbial count data in certain sit-

uations (Holmes et al., 2012; La Rosa et al., 2012), these distributions cannot

capture both positive and negative associations between taxa. On the other

hand, the MPLN distribution can be used to model multivariate count data

and its covariance matrix can capture both types of microbial associations.

While a mixture model framework can be used to study the multiple net-

work scenario, in practice however, we do not have a priori knowledge of the

value of K, the number of component distributions. In this paper, we propose

a variational approximation algorithm to determine the correct value of K for

the MixMPLN framework, and solve the model selection problem in a statisti-

cally principled manner. As part of our approach, we reformulate the mixture

model as a latent variable model (Corduneanu and Bishop, 2001), and treat

only the mixing coefficients as parameters, while treating all other variables,
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including the means and precision matrices of the component distributions, as

latent variables. We use suitable factor distributions involving the latent vari-

ables and provide a variational Expectation Maximization (EM) algorithm to

compute the parameters of these factor distributions in order to approximate

the true marginal likelihood. We evaluate our approach using simulated sample-

taxa count matrices generated using different classes of microbial network graph

structures.

2 METHODS

Notation: Given a matrix X, we use X:i to denote its ith column, Xj: to denote

its jth row, and xji to denote its entry in row j and column i. We use n to

denote the number of samples, d to denote the number of taxa, and K to denote

the number of mixture components. Unless otherwise specified, all vectors are

assumed to be column vectors. In the equations below, we associate the variables

i, j, and l with samples, taxa, and mixture components respectively.

2.1 The Multivariate Poisson Log-Normal (MPLN) dis-

tribution

The MPLN distribution can be used to model count data (Aitchison and Ho,

1989). It has parameters µ and Ω, where µ is the d-dimensional mean vector

and Ωd×d is the precision matrix of the distribution. A sample A = (a1, ..., ad)
T

generated by this distribution is a d-dimensional count vector with the following

property:

aj |λj ∼ P(eλj )

(λ1, ..., λd)
T ∼ Nd(µ,Ω)

(1)
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where P(c) denotes a Poisson distribution with mean c, and Nd(µ,Ω) denotes

a d-dimensional multivariate Gaussian distribution with mean µ and precision

matrix Ω. That is, an MPLN distribution has two layers, with the observed

count vector (i.e. sample) being generated by a mixture of independent Poisson

distributions whose means are latent (or hidden), and such that the logarithm

of the Poisson means follows a multivariate Gaussian distribution. We use λ =

(λ1, λ2, ..λd)
T to denote the latent variable vector representing the logarithm of

the Poisson means that is associated with the sample A.

The probability density function p(A|µ,Ω) of the MPLN distribution with

parameters µ and Ω can be written as (Aitchison and Ho, 1989):

p(A|µ,Ω) =

∫

Rd

p(A, λ|µ,Ω) dλ (2)

where,

p(A, λ|µ,Ω) =

[ d
∏

j=1

e−eλj
eλjaj

aj !

]

(2π)−d/2|Ω|1/2e−
1
2 [λ−µ]TΩ[λ−µ] (3)

and |Ω| denotes the determinant of Ω. No simplification of the integral in

Equation (2) is known.

2.2 Mixture of MPLN distributions

The probability of a sample A = (a1, ..., ad)
T generated by a mixture model

with K MPLN component distributions and a mixing coefficient vector φ =

(φ1, φ2, .., φK) can be written as
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p(A|φ, µ(1),Ω(1), .., µ(K),Ω(K)) =

K
∑

l=1

φlp(A|µ(l),Ω(l))

=

K
∑

l=1

φl

[
∫

p(A, λ(l) | µ(l),Ω(l)) dλ(l)

]

(4)

where
∑K

l=1 φl = 1. In Equation (4), the variables µ(l) and Ω(l) denote the mean

vector and precision matrix respectively, of the lth component distribution, and

λ(l) denotes the latent variable vector of sample A that is associated with the

lth component.

Now, let Xd×n denote a sample-taxa count matrix with d taxa and n samples

that is generated by mixture of K MPLN distributions. Also, let Λ(l) denote

the d × n matrix of latent variable vectors of the n samples that is associated

with the lth component. That is, column vector Λ(l):i is associated with sample

X:i. We also use λlji to denote the jth entry in column vector Λ(l):i. Then, the

probability of the observed sample-taxa count matrix X, given the parameters

of the mixture model, can be written as

p(X|φ, µ(1),Ω(1), .., µ(K),Ω(K)) =

n
∏

i=1

K
∑

l=1

φlp(X:i|µ(l),Ω(l))

=

n
∏

i=1

K
∑

l=1

φl

[
∫

p(X:i,Λ(l):i | µ(l),Ω(l)) dΛ(l):i

]

(5)

where

p(X:i,Λ(l):i|Θ(l)) =

[ d
∏

j=1

e−eλlji
eλljixji

xji!

]

(2π)−d/2|Ω(l)|
1/2e−

1
2 [Λ(l):i − µ(l)]

TΩ(l)[Λ(l):i − µ(l)]

(6)

This mixture model is associated with K microbial networks, where the lth
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network (1 ≤ l ≤ K) has adjacency matrix equal to the precision matrix Ω(l).

2.3 The Latent Variable Model

We reformulate the mixture model given in Equation (5) as a latent variable

model (Bishop, 2006), in which we treat only the mixing coefficients φl’s as

parameters while all other variables, including Λ(l), µ(l), and Ω(l), where 1 ≤

l ≤ K, are treated as latent variables.

Let Θ = L ∪M∪ T ∪ S denote the set of all latent variables in our model,

where L = {Λ(l)|1 ≤ l ≤ K}, M = {µ(l)|1 ≤ l ≤ K}, T = {Ω(l)|1 ≤ l ≤ K},

and S = {Si|1 ≤ i ≤ n}. The set S denotes component membership information

for samples, where Si = (si1, ..., siK)T is a K-dimensional binary vector, also

called a 1-of-K binary vector (Bishop, 2006), that is associated with sample X:i.

This vector has the property that if X:i was generated by component r then

sir = 1, and that sil = 0, for all l 6= r.

We now describe the different parts of the generative model. Each Si is

drawn from a multinomial distribution; that is, Si ∼ Multinomial(1, φ). We

have that

p(S|φ) =
n
∏

i=1

p(Si|φ) =
n
∏

i=1

K
∏

l=1

φsil
l

Conditional on S, each sample is assumed to be independently drawn from an

MPLN distribution with parameters µ(l) and Ω(l). Upon selection of component

l, both sample X:i and its associated latent variable vector Λ(l):i are generated.

Thus,

p(X,L|M, T ,S) =
n
∏

i=1

K
∏

l=1

p(X:i,Λ(l):i|µ(l),Ω(l))
sil

Marginalizing the function p(X,L|M, T ,S)×p(S|φ) over S and L results in

Equation (5). We also introduce conjugate priors over each µ(l) and Ω(l). We
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assume that µ(l) ∼ Nd(0, βI) where I is the d × d identity matrix, and β is

a fixed parameter. We also assume that Ωl ∼ W(ν, V ), where W(ν, V ) is the

Wishart distribution (Wishart, 1928) with fixed degrees of distribution ν and

fixed scale matrix V . The density function for the Wishart distribution is given

as

W(Ω|v, V ) =
|V |v/2 |Ω|(v−d−1)/2

2vd/2 πd(d−1)/4
∏d

j=1 Γ
(

v+1−j
2

)
exp

(

−
1

2
Tr(V Ω)

)

where Tr(.) and Γ(.) denote the matrix trace function and Gamma function

respectively.

Finally, we set p(M) =
∏K

l=1 p(µ(l)) and p(T ) =
∏K

l=1 p(Ω(l)). Taken to-

gether, these specifications allow us to describe the joint distribution of X and

all latent variables, conditioned on the mixing coefficients, as

p(X,Θ | φ) = p(X,L,M, T ,S | φ)

= p(X,L | M, T ,S)× p(S | φ)× p(M)× p(T )

(7)

2.4 The Evidence Lower Bound function

The marginal likelihood function p(X|φ) can be obtained by integrating Equa-

tion (7) over all latent variables in Θ. However, the function defined in this

manner is not analytically tractable. Instead, we employ a variational approxi-

mation method involving a lower bound on the marginal log-likelihood function.

This lower bound, called the Evidence Lower Bound (ELBO) function (Bishop,

2006; Tzikas et al., 2008), will then be maximized with respect to the mixing

coefficients. The ELBO function Q(Θ) is defined as

ELBO(Q) =

∫

Q(Θ) log

[

p(X,Θ|φ)

Q(Θ)

]

dΘ

= 〈log p(X,Θ|φ)〉Θ − 〈logQ(Θ)〉Θ

(8)
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where 〈.〉Θ denotes the expectation over the distribution Q(Θ). For any function

Q(Θ), the following identity holds (Bishop, 2006):

ELBO(Q) ≤ log

(
∫

p(X,Θ|φ) dΘ

)

= log p(X|φ)

Our goal is to maximize ELBO(Q) using some choice of Q(Θ). The differ-

ence between ELBO(Q) and log p(X|φ) can be shown to be the Kullback-Leibler

distance (KL) between Q(Θ) and the posterior distribution p(Θ|X,φ). Thus,

ELBO(Q) is maximum when Q(Θ) is equal to the posterior (Bishop, 2006). Let

Θ = L ∪M ∪ T ∪ S = {θi}. We assume that Q(Θ) =
∏

t q(θt), that is, Q(Θ)

is the product of independent factor distributions q(θt). With this assumption

(Parisi, 1988), the form of the optimal factor distributions that minimize the KL

distance can be computed (Bishop, 2006). For each t, the optimal distribution

q(θt) can be shown to have the form

q(θt) =
exp(〈log p(X,Θ|φ)〉θv 6=θt)

∫

exp(〈log p(X,Θ|φ)〉θv 6=θt) dθt
(9)

As will be shown, the optimal distributions q(.) for the latent variables Si,

µ(l), and Ω(l) have the same functional forms as their respective priors p(Si|φ),

p(µ(l)), and p(Ω(l)). Specifically,

q(Si) = Multinomial(1, αi), with parameter αi = (αi1, αi2, .., αiK) where
∑K

l=1 αil =

1,

q(µ(l)) = Nd(m(l), T(l)), a multivariate Gaussian with d-dimensional mean vec-

tor m(l) and d× d precision matrix T(l),

q(Ω(l)) = W(η(l), C(l)), a Wishart distribution with degrees of freedom η(l) and

d× d scale matrix C(l).

For the Λ(l):i latent variable vectors, the optimal form of q(Λ(l):i) is quite

unwieldy to work with; thus, instead, we define each q(Λ(l):i) to be a multivariate
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Gaussian distribution with a diagonal precision matrix. Specifically,

q(Λ(l):i) = Nd(δ(l)i, D(l)i) =

d
∏

j=1

q(λlji) =

d
∏

j=1

N

(

alji,
1

blji

)

with d-dimensional mean vector δ(l)i and d× d precision matrix D(l)i.

Since D(l)i is a diagonal matrix, the multivariate distribution q(Λ(l):i) can be

written as a product of d independent univariate Gaussian distributions q(λlji),

1 ≤ j ≤ d, where δ(l)i = (al1i, al2i, .., aldi)
T and diag(D(l)i) =

(

1
bl1i

, 1
bl2i

, .., 1
bldi

)

.

That is, alji and blji denote the mean and variance respectively, of the random

variable λlji.

We use Equations (8) and (9) to derive update equations for the param-

eters of the factor distributions. These update equations are linked, in the

sense that the update equation for a variational parameter is a function of

other variational parameters. Given these equations, our proposed variational

EM algorithm involves maximizing the ELBO function using an iterative pro-

cedure. In each iteration, we cycle through the set of update equations to

update the values of the variational parameters. While the variational param-

eters αi,m(l), T(l), η(l), and C(l) have closed forms for their update equations

(in terms of other parameters), the update values for variational parameters

alji and blji are not closed form but are obtained using the Newton-Raphson

method (Press et al., 1992). Finally, the mixing coefficients are re-estimated

to improve the approximation to the marginal log-likelihood. Convergence of

this iterative procedure is guaranteed since the ELBO function increases with

each update, unless it is already at a (local) maximum value (Bishop, 2006;

Boyd and Vandenberghe, 2004). The algorithm is run on the input sample-taxa

matrix using a reasonably large value of K, and after convergence, the num-

ber of mixing coefficients that are above a preset threshold value denotes the

optimal number of components in the model.
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2.5 Parameter update formulas and marginal log-likelihood

lower bound using ELBO function

The update equations for the factor distribution parameters αi,m(l), T(l), η(l), and C(l)

are given in Table 1. The derivations of the update equations are provided in

the Appendix. The estimates of the parameters for each q(Λ(l):i) are obtained

by maximizing the ELBO function restricted to each Λ(l):i.

The ELBO function given in Equation (8) when restricted to Λ(l):i has the

form

∫

q(Λ(l):i) log p(X:i,Λ(l):i|〈µ(l)〉, 〈Ω(l)〉)
〈sil〉 dΛ(l):i −

∫

q(Λ(l):i) log q(Λ(l):i) dΛ(l):i + constant

The above integral can be rewritten as

〈sil〉

∫ d
∏

j=1

N(λlji|alji, 1/blji)
[

d
∑

j=1

[

− eλlji + λljixji

]

−
1

2
ΛT
(l):i 〈Ω(l)〉 Λ(l):i + ΛT

(l):i 〈Ω(l)〉 〈µ(l)〉
]

dλl1idλl2i..dλlji

+

d
∑

j=1

log blji + constant

Let ωlrt denote the entry in row r and column t of matrix 〈Ω(l)〉, and hlt

denote the tth entry in vector 〈µ(l)〉. Since λlji has a univariate Gaussian distri-

bution, it follows that 〈λlji〉 = alji, 〈λ
2
lji〉 = a2lji + blji, and 〈eλlji〉 = ealji+

1
2 blji .

We use these observations to simplify the above expression to produce a function

F (al1i, bl1i, al2i, bl2i, .., aldi, bldi) of 2d variables. We identify the values of the

variables al1i, bl1i, al2i, bl2i, .., aldi, bldi that maximize F (.). This is accomplished

by cycling through each of the 2d variables and maximizing the corresponding

univariate function on that variable.

Restricted to variables alji and blji (and excluding constants), the function
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F (.) reduces to

G(alij , blij) = 〈sil〉
[

d
∑

j=1

[−ealji+
1
2 blji + xjialji]−

1

2

d
∑

j=1

ωljj [a
2
lji + blji]

−
[

d
∑

t=1
t 6=j

ωljtalti
]

alji +
[

d
∑

t=1

ωljtht

]

alji
]

+
1

2

d
∑

j=1

log blji

As part of maximizing F (.), we first compute the derivatives of G(.) with

respect to alji and blji separately, and set the two resulting derivatives to 0.

The roots of these two equations are then computed using the Newton-Raphson

method. The corresponding equations for alji and blji are respectively

H1(alji) = −e(alji+
1
2 blji) − ωljjalji + xji +

d
∑

t=1

ωljthlt −

d
∑

t=1
t 6=j

ωljtalti = 0

H2(blji) = e(
1
2 blji+alji) −

1

〈sil〉blji
+ ωljj = 0

Once we have estimates for the variational parameters, we can compute the

ELBO function using an expansion of Equation (8) as

ELBO(Q) =〈log p(X,L | S,M, T )〉+ 〈log p(S | φ)〉+ 〈log p(M)〉+ 〈log p(T )〉

− 〈log q(S)〉 − 〈log q(M)〉 − 〈log q(T )〉 − 〈log q(L)〉

(10)

The formulas for the expected values in Equation (10) are given in Table 2.

Since the ELBO function approximates the true marginal log-likelihood function

log p(X|φ), after we have cycled through and estimated the variational param-

eters, we can then maximize the resulting ELBO with respect to the mixing
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coefficients. This can be done by taking the derivatives of Equation (10) with

respect to the φl’s and using a Lagrange multiplier to enforce the constraint that

∑K
l=1 φl = 1. It can be shown that φl =

1
n

∑n
i=1 αil, for 1 ≤ l ≤ K (Bishop,

2006).

2.6 Variational EM algorithm (MS MixMPLN)

Input: Sample-taxa matrix Xd×n, number of components K, the prior param-

eters β, ν, and V .

Output: Values of the mixing coefficients and the variational parameters that

maximize the ELBO function, and the maximum ELBO function value.

Initialization: Initialize the mixing coefficient vector φ = (φ1, φ2, .., φK) and

the variational parameters αi, m(l), T(l), η(l), C(l), δ(l)i, and D(l)i, for 1 ≤ i ≤

n, 1 ≤ l ≤ K.

Repeat until convergence (that is, the ELBO function does not increase any

further):

E-step:

Cycle through the variational parameters and update their estimates.

M-step:

Set φl =
1
n

∑n
i=1 αil, for 1 ≤ l ≤ K.

We implemented MS MixMPLN in the R programming language (R Development Core Team,

2013). The program is available at https://github.com/syooseph/YoosephLab/tree/master/

MixtureMicrobialNetworks/MS MixMPLN.

3 RESULTS

The performance of the model selection algorithm MS MixMPLN was evaluated

using a collection of synthetic sample-taxa count matrices with d taxa and n
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samples. The samples (count vectors) in each sample-taxa matrix were gen-

erated from a mixture model consisting of K MPLN component distributions

and with mixing coefficient vector φ. The precision matrices of the component

distributions were generated from an underlying graph structure. Five differ-

ent types of graph structures were considered and these were band, cluster, hub,

random, and scale-free. The R huge package (Zhao et al., 2012) was used to gen-

erate the precision matrices associated with each graph structure. Sample-taxa

matrices were generated with number of taxa d = 50, number of components

K = 2, 3, 4, and number of samples n = sK, where s is the number of samples

per component (s = 200, 1000). The mixing coefficient vectors for K = 2, 3

and 4 were φ =

(

1
2 ,

1
2

)

, φ =

(

1
3 ,

1
3 ,

1
3

)

, and φ =

(

1
4 ,

1
4 ,

1
4 ,

1
4

)

respectively. For

each graph type and combination of parameter values, twenty replicates were

generated. Thus, 600 synthetic sample-taxa matrices were generated in total.

For each input sample-taxa matrix, MS MixMPLN was run with a larger

value for the number of components (5, 6, and 7 respectively for ground-truth

K = 2, 3, and 4). The values for the priors were as follows: β = 10−6, ν = 50,

and V set to a diagonal matrix with all entries equal to 51. MS MixMPLN

was run using 26 different starting points on each input, where 25 starting

points were generated using random partitions of the samples in the sample-

taxa matrix and one starting point was generated using the K-means algorithm

(MacQueen, 1967) to partition the samples. Each partition was used to initialize

the estimates for the mixing coefficients and the variational parameters. For

each starting point, the algorithm was allowed to run for 30 iterations (or less,

if it reached convergence). The output with the maximum ELBO value was

selected.

The predicted number of components was determined by applying a thresh-

old τ to the mixing coefficient values; that is, any component with mixing
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coefficient value < τ was not counted towards the predicted number of compo-

nents. Table 3 shows the accuracy of MS MixMPLN on the simulated datasets

at different values for the threshold τ . Here, accuracy for a particular τ value

is measured as the proportion of times the predicted number of components at

that threshold is equal to the ground-truth K.

We see from Table 3 that, for each combination of n, K, and τ values,

MS MixMPLN shows fairly similar accuracy levels for all graph structures.

While the accuracy is highest for K = 2, in the region of 0.75 to 0.95 (at

τ = 0.01), it decreases for K = 3 and 4, to smaller values in the region of 0.05

to 0.25 (at τ = 0.01). The accuracy also generally increases with an increase in

the number of samples per component (from 200 to 1000). At a higher threshold

value (τ = 0.06), even for K = 4, the accuracy estimates are moderately high

(in the region of 0.5 to 0.75) for the sample sizes explored.

As an alternate strategy, we evaluated the AIC, BIC, and EBIC criteria

(Epskamp and Fried, 2018; Zhu and Cribben, 2018) for model selection. As

part of this assessment, we ran the MixMPLN algorithm (Tavakoli and Yooseph,

2019) with different values forK (from 1 through 6) on each sample-taxa matrix,

and used the minimum values of AIC, BIC, and EBIC (see Appendix) to predict

the number of components. We observed that none of the three criteria returned

the correct answer on any of the input datasets.

4 DISCUSSION

Here we presented a variational EM algorithm for selecting the number of com-

ponent distributions for the MixMPLN framework. The proposed algorithm was

evaluated using a large simulated dataset. For the sample sizes evaluated, the

prediction accuracy decreased as the number of components increased. Future

work will explore further the relationship between the number of components
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and the number of samples in the context of improving approximation of the

marginal log-likelihood estimate and the accuracy of the algorithm. It will also

include a more comprehensive examination of the parameter space and their

effect on model selection accuracy. This will include exploring additional values

for the prior parameters and the mixing coefficients. Finally, we will explore the

ELBO function landscape further, including the use of local maxima solutions

to inform the model selection process. We will also evaluate the proximity of the

variational approximation to the true posterior distribution (Yao et al., 2018;

Huggins et al., 2020).
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TABLES

Parameter αi for q(Si):

αil =
fil∑

K
r=1 fir

, where

fil = exp

{

log φl −
d

2
log(2π) +

1

2
〈log |Ω(l)|〉+

d
∑

j=1

[

−〈eλlji〉 − log(xji!) + 〈λlji〉xji

]

−
1

2
Tr

(

〈Ω(l)〉
[

〈Λ(l):iΛ
T
(l) i〉 − 〈µ(l)〉〈Λ(l):i〉

T − 〈Λ(l):i〉〈µ(l)〉
T + 〈µ(l)µ

T
(l)〉

])

}

Parameters m(l) and T(l) for q(µ(l)):

T(l) = βI + 〈Ω(l)〉

n
∑

i=1

〈sil〉, m(l) = T−1
(l) 〈Ω(l)〉

n
∑

i=1

〈Λ(l):i〉〈sil〉

Parameters η(l) and C(l) for q(Ω(l)):

η(l) = ν +

n
∑

i=1

〈sil〉

C(l) = V +
n
∑

i=1

〈Λ(l):iΛ
T
(l):i〉 −

n
∑

i=1

〈Λ(l):i〉〈sil〉〈µ(l)〉
T − 〈µ(l)〉

n
∑

i=1

〈Λ(l):i〉
T 〈sil〉+ 〈µ(l)µ

T
(l)〉

n
∑

i=1

〈sil〉

Expected values used in the above updates:
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〈sil〉 = αil 〈Λ(l):iΛ
T
(l):i〉 = D−1

(l) + δ(l)iδ
T
(l)i

〈µ(l)〉 = m(l) 〈µ(l)µ
T
(l)〉 = T−1

(l) +m(l)m
T
(l)

〈λlji〉 = alji 〈Ω(l)〉 = η(l)C
−1
(l)

〈eλlji〉 = ealji+
1
2 blji 〈log |Ω(l)|〉 = d log 2− log |C(l)|+

d
∑

j=1

ψ
(η(l) + 1− j

2

)

〈Λ(l):i〉 = δ(l)i

Table 1: The update formulas for the parameters

αi,m(l), T(l), η(l), and C(l). Notation: Tr(.) and ψ(.) denote

the matrix trace function and the di-gamma function respectively;

〈F (θt)〉 denotes the expectation of function F (θt) over the factor

distribution q(θt).
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〈log p(X,L | S,M, T )〉 =

K
∑

l=1

n
∑

i=1

〈sil〉

[

−
d

2
log(2π) +

1

2
〈log |Ω(l)|〉+

d
∑

j=1

[

−〈eλlji〉 − log(xji!) + 〈λlji〉xji

]

−
1

2
Tr

(

〈Ω(l)〉
[

〈Λ(l):iΛ
T
(l):i〉 − 〈µ(l)〉〈Λ(l):i〉

T − 〈Λ(l):i〉〈µ(l)〉
T + 〈µ(l)µ

T
(l)〉

])

]

〈log p(S|φ)〉 =
∑K

l=1

∑n
i=1〈sil〉 log φl

〈log p(M)〉 = Kd
2 log( β

2π )−
β
2

∑K
l=1 Tr

(

〈µ(l)µ
T
(l)〉

)

〈log p(T )〉 =K
[

−
νd

2
log 2−

d[d− 1]

4
log π −

d
∑

j=1

log Γ
(ν + 1− j

2

)

+
ν

2
log |V |

]

+
ν − d− 1

2

[

K
∑

l=1

〈log |Ω(l)|〉
]

−
1

2
Tr

(

V

K
∑

l=1

〈Ω(l)〉
)

〈log q(S)〉 =
∑n

i=1

∑K
l=1〈sil〉 log〈sil〉

〈log q(M)〉 =
∑K

l=1〈log q(µ(l))〉 =
∑K

l=1

[

− d
2 [1 + log 2π] + 1

2 log |T(l)|
]

〈log q(T )〉 =

K
∑

l=1

〈log q(Ω(l))〉 =

K
∑

l=1

[

−
dη(l)

2
log 2−

d[d− 1]

4
log π −

d
∑

j=1

log Γ
(η(l) + 1− j

2

)

+
η(l)

2
log |C(l)|+

η(l) − d− 1

2
〈log |Ω(l)|〉 −

1

2
Tr

(

C(l)〈Ω(l)〉
)

]

〈log q(L)〉 =
∑n

i=1

∑K
l=1〈log q(Λ(l):i)〉 =

∑n
i=1

∑K
l=1

[

1
2

[
∑d

j=1 log blji
]

− d
2 [1 + log 2π]

]

Table 2: The equations to compute the expected values of the dif-

ferent constituents of the ELBO function. Notation: Γ(.) denotes

the gamma function.
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Graph

type

Number

of com-

ponents

Number

of sam-

ples per

compo-

nent

Threshold

τ = 0.01

Threshold

τ = 0.02

Threshold

τ = 0.03

Threshold

τ = 0.04

Threshold

τ = 0.05

Threshold

τ = 0.06

K=2 200 0.95 0.95 0.95 0.95 0.95 0.95

1000 0.65 0.75 0.75 0.75 0.75 0.8

Band K=3 200 0.15 0.3 0.4 0.45 0.5 0.55

1000 0.2 0.25 0.3 0.5 0.55 0.6

K=4 200 0.05 0.2 0.35 0.45 0.55 0.6

1000 0.05 0.05 0.3 0.5 0.5 0.55

K=2 200 0.8 0.9 0.9 0.95 0.95 0.95

1000 0.85 0.9 0.95 0.95 1 1

Cluster K=3 200 0.4 0.5 0.5 0.55 0.65 0.7

1000 0.35 0.45 0.55 0.6 0.7 0.7

K=4 200 0.2 0.25 0.25 0.25 0.35 0.4

1000 0.05 0.05 0.15 0.25 0.4 0.6

K=2 200 0.8 0.9 0.9 0.9 0.9 0.85

1000 0.75 0.9 0.95 0.95 0.95 0.95

Hub K=3 200 0.55 0.5 0.55 0.6 0.6 0.65

1000 0.45 0.6 0.65 0.7 0.7 0.75

K=4 200 0.3 0.25 0.25 0.35 0.35 0.45

1000 0.4 0.45 0.45 0.6 0.75 0.75

K=2 200 0.85 0.9 0.9 0.9 0.9 0.95

1000 0.65 0.65 0.7 0.75 0.75 0.8

Random K=3 200 0.25 0.25 0.35 0.4 0.5 0.5

1000 0.25 0.4 0.45 0.5 0.6 0.6
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K=4 200 0.15 0.15 0.2 0.2 0.3 0.4

1000 0.15 0.2 0.35 0.4 0.4 0.5

K=2 200 0.75 0.75 0.75 0.75 0.85 0.85

1000 0.65 0.8 0.8 0.85 0.85 0.9

Scale-

free

K=3 200 0.3 0.35 0.4 0.45 0.55 0.6

1000 0.4 0.45 0.5 0.5 0.5 0.6

K=4 200 0.05 0.15 0.3 0.4 0.45 0.5

1000 0.15 0.25 0.4 0.45 0.55 0.6

Table 3: Accuracy of MS MixMPLN on the simulated dataset for

different values of threshold τ .
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APPENDIX

Update equations for the variational parameters

1. For q(Si):

The optimal form for q(Si) =
exp(〈log p(X,Θ|φ)〉θ 6=Si

)
∑

Si
exp(〈log p(X,Θ|φ)〉θ 6=Si

) , where θ ∈ Θ and the

summation in the denominator is over all possible 1-of-K binary vectors.

This quantity can be shown to be equal to

exp
(
∑K

l=1 log(fil)
sil
)

∑

Si
exp

(
∑K

l=1 log(fil)
sil
)
=

∏K
l=1[fil]

sil

∑K
r=1 fir

=

K
∏

l=1

αsil
il

where αil =
fil∑

K
r=1 fir

, and

fil = exp

{

log φl −
d

2
log(2π) +

1

2
〈log |Ω(l)|〉+

d
∑

j=1

[

−〈eλlji〉 − log(xji!) + 〈λlji〉xji

]

−
1

2
Tr

(

〈Ω(l)〉
[

〈Λ(l):iΛ
T
(l):i〉 − 〈µ(l)〉〈Λ(l):i〉

T − 〈Λ(l):i〉〈µ(l)〉
T + 〈µ(l)µ

T
(l)〉

])

}

2. For q(µl):

We first observe that for a multivariate Gaussian distribution N(y|m,P ), where

m and P are the mean vector and precision matrix respectively,

log(N(y|m,P )) = −
1

2
yTPy + yTPm+ constant (11)

where the constant is independent of y.

The form of the optimal distribution for q(µ(l)) =
exp(〈log p(X,Θ|φ)〉θ 6=µ(l)

)
∫
exp(〈log p(X,Θ|φ)〉θ 6=µ(l)

) dµ(l)
.

The above equation can be expanded and the numerator can be shown to

be equal to

−
1

2

[

µT
(l)〈Ω(l)〉

n
∑

i=1

〈sil〉µ(l) + µT
(l)βIµ(l)

]

+ µT
(l)

n
∑

i=1

〈Λ(l):i〉〈sil〉+ constant
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where the constant term is independent of µ(l).

Comparing this quantity to Equation (11), we can deduce that the opti-

mal q(µ(l)) is a multivariate Gaussian distribution with mean vector m(l) and

precision matrix T(l) such that

m(l) = T−1
(l) 〈Ω(l)〉

n
∑

i=1

〈Λ(l):i〉〈sil〉

T(l) = βI + 〈Ω(l)〉

n
∑

i=1

〈sil〉

Thus, 〈µ(l)〉 = m(l). Also, since q(µl) is a multivariate Gaussian distribution,

we have that 〈µ(l)µ
T
(l)〉 = T−1

(l) +m(l)m
T
(l).

3. For q(Ω(l)):

A similar approach can be used to show that q(Ω(l)) is a Wishart distribution.

We note that for a Wishart distribution W(Yd×d|v, Vd×d)

log(W(Y |v, V )) =
v − d− 1

2
log |Y | −

1

2
Tr(V Y ) + constant

where the constant term is independent of matrix Y .

The numerator of the optimal form for q(Ω(l)) is exp(〈log p(X,Θ|φ)〉θ 6=Ω(l)
)

and this can be shown to be equal to

exp(〈log p(X,Θ|φ)〉θ 6=Ω(l)
) =

1

2

n
∑

i=1

〈sil〉 log |Ω(l)| −
1

2
Tr

([ n
∑

i=1

〈Λ(l):iΛ
T
(l):i〉 −

n
∑

i=1

〈Λ(l):i〉〈sil〉〈µ(l)〉
T

− 〈µ(l)〉
n
∑

i=1

〈Λ(l):i〉
T 〈sil〉+ 〈µ(l)µ

T
(l)〉

n
∑

i=1

〈sil〉

]

Ω(l)

)

+
v − d− 1

2
log |Ω(l)| −

1

2
Tr(V Ω(l)) + constant
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where the constant is independent of Ω(l).

From the above equation, we can deduce that q(Ω(l)) is a Wishart distribu-

tion with degrees of freedom η(l) and scale matrix C(l) defined as

η(l) = ν +
n
∑

i=1

〈sil〉

C(l) = V +

n
∑

i=1

〈Λ(l):iΛ
T
(l):i〉 −

n
∑

i=1

〈Λ(l):i〉〈sil〉〈µ(l)〉
T − 〈µ(l)〉

n
∑

i=1

〈Λ(l):i〉
T 〈sil〉+ 〈µ(l)µ

T
(l)〉

n
∑

i=1

〈sil〉

Thus, 〈Ω(l)〉 = η(l)C
−1
(l) . Also, 〈log |Ω(l)|〉 = d log 2−log |C(l)|+

∑d
j=1 ψ

(η(l)+1−j

2

)

.

Model selection using BIC, AIC, and EBIC

MixMPLN was run with different values of K. The K value with minimum

BIC, AIC, or EBIC score (Epskamp and Fried, 2018; Zhu and Cribben, 2018)

was selected as the predicted number of components. Here,

AIC = 2k − 2 logL

BIC = k logN − 2 logL

EBIC = k logN − 2 logL+ 4γk log(Kd)

where logL is the log-likelihood score, K is the number of components, k is the

total number of non-zero elements in the precision matrices of the K compo-

nents, d is the number of taxa, and γ is a constant (set to 0.5).
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