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GROWTH OF QUANTUM 6j-SYMBOLS AND
APPLICATIONS TO THE VOLUME CONJECTURE
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& Tian Yang

Abstract

We prove the Turaev–Viro invariants volume conjecture for a
“universal” class of cusped hyperbolic 3-manifolds that produces
all 3-manifolds with empty or toroidal boundary by Dehn filling.
This leads to two-sided bounds on the volume of any hyperbolic 3-
manifold with empty or toroidal boundary in terms of the growth
rate of the Turaev–Viro invariants of the complement of an appro-
priate link contained in the manifold. We also provide evidence
for a conjecture of Andersen, Masbaum and Ueno (AMU conjec-
ture) about certain quantum representations of surface mapping
class groups.

A key step in our proofs is finding a sharp upper bound on the

growth rate of the quantum 6j-symbol evaluated at q = e
2πi
r .

1. Introduction

The Turaev–Viro invariants TVr(M, q) of a compact 3-manifold M
[30] are real numbers depending on an integer r > 3, called level, and
a 2r-th root of unity q. It has been long known that when one chooses

q = e
πi
r , the invariants TVr(M, q) grow at most polynomially in r. In

contrast to that, in [7], Chen and Yang’s extensive computation of the

case q = e
2πi
r suggests that for hyperbolic manifolds the growth is in-

stead exponential and determines the volume. They stated the follow-
ing.

Conjecture 1. Let M be a hyperbolic 3-manifold, either closed, with
cusps, or compact with totally geodesic boundary. Then as r varies along
the odd natural numbers,

lim
r→∞

2π

r
log

∣∣∣∣TV (M, e
2πi
r

)∣∣∣∣ = Vol(M).

The main result in this article is to verify Conjecture 1 for comple-
ments of fundamental shadow links. These links, first considered by
Costantino and D. Thurston [10], are an infinite family of hyperbolic
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links in connected sums #c+1(S1×S2), for any c > 0, with the following
properties.

1) The volume of any fundamental shadow link in #c+1(S1 × S2) is
equal to 2cv8, where v8 ∼= 3.66 is the volume of the regular ideal
hyperbolic octahedron.

2) The Reshetikhin–Turaev invariants on any fundamental shadow
link have simple formulae (see Lemma 5.2).

3) The links form a universal class, in the sense that any orientable
3-manifold with empty or toroidal boundary is obtained from a
complement of a fundamental shadow by Dehn filling.

The main result of this article is the following.

Theorem 1.1. For any c > 0, Conjecture 1 holds for the complement
of any fundamental shadow link L in #c+1(S1 × S2).

Detcherry, Kalfagianni and Yang [15] verified Conjecture 1 for the
complements of the Borromean ring and of the figure eight knot, and
Ohtsuki [22] verified it for all hyperbolic 3-manifolds obtained by in-
tegral Dehn surgeries on the figure eight knot. In [32] Wong verified
Conjecture 1 for certain octahedral links in S3 called Whitehead chains
and Belletti [3] proved it for complements of families of octahedral links
in connected sums copies of S1×S2 that are not treated by Theorem 1.

Furthermore, Conjecture 1 has been generalized to assert that the
Turaev–Viro invariants determine the Gromov norm of any compact
orientable 3-manifold [12]. The generalized conjecture was proven for
all Gromov norm zero links in 3-manifolds that are connected sums of S3

with copies of S1×S2 by Detcherry and Kalfagianni [12]. An alternative
proof for the case of Gromov norm zero knots in S3 was given in [15].
The conjecture was also shown to be closed under certain link cabling
and satellite operations [11, 12, 33].

In [9] Costantino proved an extension of Kashaev’s original volume
conjecture [19] for fundamental shadow links. His approach was to
consider a version of the colored Jones polynomials of links in manifolds
of the form #c+1(S1 × S2), and for fundamental shadow links relate its
asymptotics to the volume of their complement.

The basic building block in the definition of the Turaev–Viro invari-
ants is the quantum 6j-symbol. We will recall the definitions and basic
properties of quantum 6j-symbols in Section 2. A key ingredient in our
proof of Theorem 1.1 is the next theorem that provides an upper bound
on the growth of the quantum 6j-symbol. As we will see in Lemma 3.13
this upper bound is sharp.
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Theorem 1.2. For any integer r ≥ 3 and any r-admissible 6-tuple
(n1, n2, n3, n4, n5, n6), we have

2π

r
log

∣∣∣∣∣∣
∣∣∣∣∣n1 n2 n3
n4 n5 n6

∣∣∣∣∣
q=e

2πi
r

∣∣∣∣∣∣ 6 v8 +O

(
log(r)

r

)
.

Theorem 1.2 should be compared with Costantino’s result (Theo-
rem A.1) that under certain constraints, the exponential growth rate of
a sequence of quantum 6j-symbols coincides with the volume of a hy-
perbolic truncated tetrahedron whose dihedral angles are determined by
the sequence of 6-tuples. The inequality of Theorem 1.2 is sharp in the
sense that for some sequences the limit as r →∞ is v8 (Lemma 3.13).

Combining Theorem 1.1 with a result of Futer, Kalfagianni and Pur-
cell [17], we show that the volume of any hyperbolic 3-manifold M , with
empty or toroidal boundary, is estimated in terms of the Turaev–Viro
invariants of an appropriate link contained in M and that the estimate
is asymptotically sharp.

To state our result, given a hyperbolic 3-manifold N containing k
embedded horocusps choose a slope si on the boundary torus of each of
them, and let lmin denote the shortest length of any of the si. We write
M = N(s1, . . . , sk) for the 3-manifold obtained by Dehn filling N along
these k slopes. Also as r varies along the odd natural numbers let

lTV (N) = lim inf
r→∞

2π

r
log

∣∣∣∣TV (M, e
2πi
r

)∣∣∣∣
and

LTV (N) = lim sup
r→∞

2π

r
log

∣∣∣∣TV (M, e
2πi
r

)∣∣∣∣ .
Theorem 1.3. Let M be a hyperbolic 3-manifold possibly with cusps.

There exists a cusped hyperbolic 3-manifold N with M = N(s1, . . . , sk),
for some k > 1, and such that lTV (N) = LTV (N) = vol(N), and

α(`min) lTV (N) 6 vol(M) < lTV (N).

Here 0 6 α(`min) 6 1 is an explicit function and α(`min) approaches 1
as `min →∞.

Theorem 1.1 also has application to a conjecture of Andersen, Mas-
baum and Ueno about the quantum representations of surface mapping
class groups (AMU conjecture) [1]. For a compact orientable surface
of genus g and n boundary components Σg,n, let Mod(Σg,n) denote its
mapping class group. The AMU conjecture asserts that the SU(2) and
SO(3) quantum representations of Mod(Σg,n) send mapping classes with
non-trivial pseudo-Anosov pieces to elements of infinite order (for large
enough level). The reader is referred to Section 6.2 for more details.
Mapping classes are realized as monodromies of fibered 3-manifolds
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and, in particular, mapping classes of surfaces with boundary are re-
alized as monodromies of complements of fibered links in 3-manifolds.
It has been long known that fibered links, and in particular hyperbolic
fibered links, exist in all orientable 3-manifolds with empty or toroidal
boundary. Here we prove the following.

Theorem 1.4. Let M be the complement of a fundamental shadow
link or the double of such a manifold. Given any link L in M there is
an additional knot K ⊂M such that the complement M \ (K ∪L) fibers
over S1 with fiber a surface. Moreover, any monodromy of a fibration
of M \ (K ∪ L) satisfies the AMU conjecture.

Theorem 1.4 uses a result of Detcherry and Kalfagianni [12, 14]
which shows that monodromies of a fibered 3-manifold M satisfy the
AMU conjecture provided that lTV (M) > 0; that is, provided that the
Turaev–Viro invariants grow exponentially with respect to r. In [14] the
authors used the handful of examples of link complements in S3 with
lTV (S3 \L) > 0 known at the time, to construct the first infinite fami-
lies of examples that satisfy the AMU conjecture in surfaces Σg,n with
g > 2 and n > 2. Since the class of fundamental shadow links is uni-
versal, Theorem 1.4 provides an abundance of fibered 3-manifolds with
monodromies satisfying the AMU conjecture. Explicit constructions of
such manifolds are given in [13].

The paper is organized as follows: We recall the quantum 6j-symbols
and preliminaries about Turaev–Viro invariants in Section 2. In Sec-
tion 3 we prove the upper bound given in Theorem 1.2; the proofs of the
technical lemmas used are postponed to Section 4. In Section 5 we in-
troduce fundamental shadow links and prove Theorem 1.1. Applications
of the main result on the AMU conjecture and the volume comparison
are included in section 6. We also include a proof of Costantino’s result,

originally proved for the root of unity q = e
πi
r in [8], at a different root

of unity q = e
2πi
r in the Appendix.

All the 3-manifolds we will consider in this paper will be orientable
with empty or toroidal boundary.
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2. The quantum 6j-symbols

In this section we give the basic definitions relating Turaev–Viro in-
variants and quantum 6j-symbols. Throughout the rest of the paper

r > 3 is an odd integer and q = e
2πi
r . The quantum integer {n} is

defined as qn − q−n, and the quantum factorial {n}! is
∏n
i=1{i}. Fur-

thermore, we denote with Ir the set {0, 1, . . . , r − 2}.
Remark 2.1. In the remainder of the paper, we deal with the SU(2)

version of the Turaev–Viro invariants; however, everything remains true
for the SO(3) version, with small modifications.

Definition 2.2. We say that a triple (a, b, c) of non-negative integers
is r-admissible if

• a, b, c 6 r − 2;
• a+ b+ c is even and 6 2r − 4;
• a 6 b+ c, b 6 a+ c and c 6 a+ b.

We say that a 6-tuple (n1, n2, n3, n4, n5, n6) is r-admissible if the 4 triples
(n1, n2, n3), (n1, n5, n6), (n2, n4, n6) and (n3, n4, n5) are r-admissible.

Notice that, while in part of the literature, e.g. [30] or [7], the colors
are half integers, we take them to be integers. Our notation will be very
similar to that of [30], except for the integer colors, and the use of {n}
instead of [n] := {n}

{1} . This will account for an extra {1} factor in some

of our formulas. We follow closely the notation of [12].
For an r-admissible triple (a, b, c) we can define

∆(a, b, c) =

(
√
−1ζr

{a+b−c2 }!{a−b+c2 }!{−a+b+c2 }!
{a+b+c2 + 1}!

) 1
2

,

where ζr = 2 sin
(
2π
r

)
= −
√
−1{1}|q=exp(2π

√
−1/r). Notice that the num-

ber inside the square root is real: each {n} is a purely imaginary number,
and all the

√
−1 simplify. By convention we take the positive square

root of a positive number, and the square root with positive imaginary
part of a negative number.

Moreover, for an r-admissible 6-tuple (n1, n2, n3, n4, n5, n6) we can
define its quantum 6j-symbol as∣∣∣∣n1 n2 n3

n4 n5 n6

∣∣∣∣ =(1)

= ζ−1r

(√
−1
)λ 4∏

i=1

∆(vi)

min(Qj)∑
z=max(Ti)

(−1)z{z + 1}!∏4
i=1{z − Ti}!

∏3
j=1{Qj − z}!

,
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n1

n3 n2

n5

n4

n6

Figure 1. An admissible coloring for a tetrahedron.

where we have the following:

• λ =
∑6

i=1 ni;
• v1 = (n1, n2, n3), v2 = (n1, n5, n6), v3 = (n2, n4, n6) and v4 =

(n3, n4, n5);
• T1 = n1+n2+n3

2 , T2 = n1+n5+n6
2 , T3 = n2+n4+n6

2 and T4 = n3+n4+n5
2 ;

• Q1 = n1+n2+n4+n5
2 , Q2 = n1+n3+n4+n6

2 and Q3 = n2+n3+n5+n6
2 .

Remark 2.3. Notice that if z > r − 1, then the summand in (1)
corresponding to z is equal to 0.

Definition 2.4. An r-admissible coloring for a tetrahedron T is an
assignment of an r-admissible 6-tuple (n1, n2, n3, n4, n5, n6) to the set
of edges of T , as shown in Figure 1. Similarly, we define an r-admissible
coloring of a triangulation of a 3-manifold, as an assignment of elements
of Ir to each of its edges, in such a way that the 6-tuple assigned to the
edges of each tetrahedron is an r-admissible coloring.

Let M be an orientable compact 3-manifold with a partially ideal
triangulation τ . By this we mean that some vertices of the triangulation
are truncated, and the truncated faces are a triangulation for ∂M .

Denote with Ar(τ) the set of r-admissible colorings of τ , with V the
set of interior vertices of τ and with E the set of interior edges (by which
we mean edges that are not contained in the boundary). If col ∈ Ar(τ)
and T ∈ τ we denote with |T |col the quantum 6j-symbol corresponding
to the 6-tuple that col assigns to the edges of T . Similarly, if e ∈ E we
define

|e|col = (−1)col(e)
{col(e) + 1}
{1}

.

Define the Turaev–Viro invariant of M at level r in the root q as

TVr(M, τ, q) :=


√

2 sin
(
2π
r

)
√
r


2|V | ∑

col∈Ar(τ)

∏
e∈E
|e|col

∏
T∈τ
|T |col.
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By [30] if τ and τ ′ are two partially ideal triangulations of M , then
TVr(M, τ, q) = TVr(M, τ ′, q). Hence we have a topological invariant of
M , denoted by TVr(M, q), depending on r and q.

3. The upper bound of the quantum 6j-symbol

In this section and the next section we complete the proof of The-
orem 1.2. In this section we give the proof assuming three technical
lemmas the proofs of which occupy Section 4.

Denote with Λ(x) the Lobachevski function, defined as

Λ(x) := −
∫ x

0
log|2 sin(t)|dt.

It is π-periodic, odd, and real analytic outside of {kπ, k ∈ Z}.
The tool used to estimate the quantum 6j-symbol is the following

lemma, first appeared in [18, Proposition 8.2] for q = e
iπ
r , and then in

the other roots of unity in [12, Proposition 4.1].

Lemma 3.1. For any integer 0 < n < r and at q = e
2πi
r ,

log
∣∣{n}!∣∣ = − r

2π
Λ

(
2nπ

r

)
+O

(
log(r)

)
,

where the term O(log(r)) is such that there exist constants C, r0 inde-
pendent of n and r such that O(log(r)) 6 C log(r) whenever r > r0.

Remark 3.2. If 0 < n < r− 1, we can equally well use the estimate

log
∣∣{n+ 1}!

∣∣ = − r

2π
Λ

(
2nπ

r

)
+O(log(r)),

since by applying a Taylor expansion to Λ we find

Λ

(
2nπ

r
+

2π

r

)
− Λ

(
2nπ

r

)
=

=
2π

r
Λ′
(

2nπ

r

)
+ o

(
1

r

)
=

=− 2π

r
log

∣∣∣∣2 sin
2nπ

r

∣∣∣∣+ o

(
1

r

)
= O

(
log (r)

r

)
,

since

∣∣∣∣sin(2πn
r

)∣∣∣∣ > π
r (because 2n 6= r). Hence we get

−2π

r
log(|2 sin

2nπ

r
|) 6 log(r)

r
,

since log(ax) 6 a log(x). Notice again that the constants involved in

the O
(
log(r)
r

)
are independent of n and r.

We need the following lemma.
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Lemma 3.3 ([15], Lemma A.3). For i ∈ {0, . . . , r − 2}, let i′ =
r − 2 − i. Then for any admissible 6-tuple (n1, n2, n3, n4, n5, n6), the
6-tuples (n1, n2, n3, n

′
4, n
′
5, n
′
6) and (n′1, n

′
2, n3, n

′
4, n
′
5, n6) are admissible

and at q = e
2πi
r ,∣∣∣∣n1 n2 n3
n4 n5 n6

∣∣∣∣ =

∣∣∣∣n1 n2 n3
n′4 n′5 n′6

∣∣∣∣ =

∣∣∣∣n′1 n′2 n3
n′4 n′5 n6

∣∣∣∣ .
We are now ready to begin the proof of Theorem 1.2 stated in the

Introduction. The proof of the theorem will be completed in Section 4.

Theorem 1.2. For any r, and any admissible 6-tuple (n1, n2, n3, n4,
n5, n6), then

2π

r
log

∣∣∣∣∣∣
∣∣∣∣∣n1 n2 n3
n4 n5 n6

∣∣∣∣∣
q=e

2πi
r

∣∣∣∣∣∣ 6 v8 +O

(
log(r)

r

)
,

where v8 ∼= 3.66 is the volume of the regular ideal hyperbolic octahedron.

Proof. Applying Lemma 3.1 (together with the subsequent remark)
to the formula for the quantum 6j-symbol (1) we obtain the estimate

2π

r
log

∣∣∣∣∣∣
∣∣∣∣∣n1 n2 n3
n4 n5 n6

∣∣∣∣∣
q=e

2πi
r

∣∣∣∣∣∣ 6(2)

6 V (θ1, θ2, θ3, θ4, θ5, θ6) +O

(
log(r)

r

)
.

Here, V (θ1, θ2, θ3, θ4, θ5, θ6) is defined by

V (θ1, θ2, θ3, θ4, θ5, θ6) := max
max(Ui)6Z6min(Vj ,2π)

F (Z, θ1, θ2, θ3, θ4, θ5, θ6)+

+ ν(θ1, θ5, θ6) + ν(θ2, θ4, θ6) + ν(θ1, θ2, θ3) + +ν(θ3, θ4, θ5),

where we have

• θi = 2πni
r and Z = 2πz

r ;

• Ui = 2πTi
r and similarly Vj =

2πQj
r ;

• ν(α, β, γ) = 1
2(Λ(α+β+γ2 )− Λ(α+β−γ2 )− Λ(α−β+γ2 )− Λ(−α+β+γ2 ));

•
F (Z, θ1, θ2, θ3, θ4, θ5, θ6) :=

4∑
i=1

Λ(Z − Ui) +

3∑
j=1

Λ(Vj − Z)− Λ(Z).

The admissibility conditions imply that all the variables involved in
above formulae take values between 0 and 2π. Notice that the variables
θi satisfy similar triangular inequalities and admissibility conditions as
the variables ni. In particular θ1 + θ2 + θ3 6 4π, θ1 + θ5 + θ6 6 4π,
θ2 + θ4 + θ6 6 4π and θ3 + θ4 + θ5 6 4π.
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Next we want to maximize V subject to the admissibility conditions
of the variables θi. The argument relies on the three technical lem-
mas, whose proofs will occupy Section 4. The first two lemmas are the
following.

Lemma 3.4. If 0 6 α, β, γ 6 π, then ν(α, β, γ) 6 0.

Lemma 3.5. Suppose that we have 0 6 θ1, θ2, θ3, θ4, θ5, θ6 6 2π and
that max(Ti) 6 Z 6 min(Qj , 2π). Then,

F (Z, θ1, θ2, θ3, θ4, θ5, θ6) + 2ν(θ1, θ2, θ3) 6 8Λ

(
π

4

)
= v8.

We obtain the following corollary.

Corollary 3.6. We have

max
max(Ui)6Z6min(Vj ,2π)

F (Z, θ1, θ2, θ3, θ4, θ5, θ6)+

+ ν(θ1, θ2, θ3) + ν(θ1, θ5, θ6) 6 v8.

Proof. Follows immediately by using Lemmas 3.4 and 3.5 and taking
averages. q.e.d.

Consider now an admissible 6-tuple (θ1, θ2, θ3, θ4, θ5, θ6). Using
Lemma 3.3, we have that either all the variables θi are greater than
π or at most one of them is greater than π. The third technical lemma
we need for the proof of Theorem 1.2 is the following. It implies that
the case where all the θi’s are larger than π can also be reduced to the
case where all of them are less than or equal to π.

Lemma 3.7. If θi > π for i = 1, . . . , 6 and αi = θi − π, then

V (θ1, . . . , θ6) = V (α1, . . . , α6) .

Now, assuming Lemma 3.7, we conclude the proof of Theorem 1.2.
In the case where at most one θi > π, we can assume by symmetry

that θi 6 π for all i > 1. Then Lemmas 3.4, 3.5 and Corollary 3.6 imply
that

V (θ1, θ2, θ3, θ4, θ5, θ6) 6

≤ max
max(Ui)6Z6min(Vj ,2π)

F (Z, θ1, θ2, θ3, θ4, θ5, θ6)+

+ ν(θ1, θ2, θ3) + ν(θ1, θ5, θ6) 6 v8.

In conclusion, we obtain

2π

r
log

∣∣∣∣∣∣
∣∣∣∣∣n1 n2 n3
n4 n5 n6

∣∣∣∣∣
q=e

2πi
r

∣∣∣∣∣∣ 6 v8 +O

(
log(r)

r

)
.

q.e.d.
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Remark 3.8. In [12] a less sharp upper bound on the growth rate of
the quantum 6j-symbol was given, to prove that if a compact 3-manifold
M admits a triangulation with t tetrahedra, then

lTV (M) 6 LTV (M) 6 2.08v8t.

The improvement of the upper bound allows us to state a better esti-
mate. We have the following.

Corollary 3.9. If M is a compact manifold that admits a triangula-
tion with t tetrahedra, then

lTV (M) 6 LTV (M) 6 v8t.

Remark 3.10. There is a concept of complexity of a manifold that
is related to quantum invariants, the so called shadow complexity. For
an overview of shadows and shadow complexity, see for example [29,
Part 2] or [10]. Shadow complexity easily gives a bound on the growth
of the Turaev–Viro invariants.

Corollary 3.11. If M has shadow complexity c, then

lTV (M) 6 LTV (M) 6 2cv8.

Furthermore we have equalities for fundamental shadow links.

Proof. The inequality is an immediate consequence of Theorem 1.2
and the shadow formula for the Reshetikhin–Turaev invariants [29, The-
orem X.3.3]. By [10], for fundamental shadow links in #c+1(S2 × S1)
the shadow complexity is c. Hence sharpness follows from Theorem 1.1,
which we prove in Section 5. q.e.d.

Moreover, shadow complexity also gives an upper bound on the sim-
plicial volume.

Theorem ([10], Theorem 3.37). Let M be a manifold with (possibly
empty) toroidal boundary, simplicial volume Vol(M) and shadow com-
plexity c; then, Vol(M) 6 2cv8. Furthermore this bound is sharp for
complements of fundamental shadow links.

Remark 3.12. The bound in Corollary 3.9 is likely not sharp. How-
ever in [12] it is used to show that for 3-manifolds M with toroidal or
empty boundary LTV (M) is bounded above linearly by the Gromov
norm of M . On the other hand, the Gromov norm upper bound of the
shadow complexity obtained in [10] is quadratic.

Before we move on to prove the volume conjecture for fundamental
shadow links, we need to show that the bound of Theorem 1.2 is sharp.

Lemma 3.13. If the sign is chosen such that r±1
2 is even, then

lim
r→∞

2π

r
log

∣∣∣∣∣∣
∣∣∣∣∣ r±12 r±1

2
r±1
2

r±1
2

r±1
2

r±1
2

∣∣∣∣∣
q=e

2πi
r

∣∣∣∣∣∣ = v8.
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Proof. Because of the color choice, then maxTi >
r
2 , hence in the sum

defining the quantum 6j-symbol r
2 < z < r, and {z} = 2i sin

(
2πz/r

)
is

an imaginary number with negative sign. Moreover, 0 6 z−Ti < r
2 and

0 6 Qj − z < r
2 for all i, j. Therefore,

(−1)z{z + 1}!∏4
i=1{z − Ti}!

∏3
j=1{Qj − z}!

is an imaginary number, and passing from z to z + 1 in the sum does
not change its sign, since all terms in the denominator do not change
sign, and there is a change of sign due to {z + 2} that gets corrected
by (−1)z+1. Since there is no change in sign among the summands, the
estimate given by (2) is actually an equality. We have ∆ (π, π, π) = 0,
and

F

(
7π

4
, π, π, π, π, π, π

)
= 8Λ

(
π

4

)
= v8.

Thus, using Theorem 1.2,

2π

r
log

∣∣∣∣∣∣
∣∣∣∣∣ r±12 r±1

2
r±1
2

r±1
2

r±1
2

r±1
2

∣∣∣∣∣
q=e

2πi
r

∣∣∣∣∣∣ = v8 +O

(
log(r)

r

)
,

which concludes the proof. q.e.d.

4. Proofs of the technical lemmas

We now turn to the proofs of Lemmas 3.4, 3.5 and 3.7 that will
complete the proof of Theorem 1.2.

Lemma 3.4. If 0 6 α, β, γ 6 π, then ν(α, β, γ) 6 0.

Proof. Put x = α+β−γ
2 , y = α−β+γ

2 , z = −α+β+γ
2 .

Then we need to maximize the function

ν(α, β, γ) = ϑ(x, y, z) =
1

2
(Λ(x+ y + z)− Λ(x)− Λ(y)− Λ(z)),

with the constraints 0 6 x+ y 6 π, 0 6 x+ z 6 π and 0 6 y + z 6 π.
To do this, we check first its stationary points in the interior of the

domain, then we explore the boundary, and finally the points where ϑ
is not smooth.

∂ϑ(x, y, z)

∂x
= −1

2
(log(2| sin(x+ y + z)|)− log(2| sin(x)|)),(3)

∂ϑ(x, y, z)

∂y
= −1

2
(log(2| sin(x+ y + z)|)− log(2| sin(y)|)),(4)

∂ϑ(x, y, z)

∂z
= −1

2
(log(2| sin(x+ y + z)|)− log(2| sin(z)|)).(5)
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So by putting them all equal to 0, we first see that sin(x) = ± sin(y) =
± sin(z), so either x = y = z modulo π or one of x + y, y + z or x + z
is equal kπ for some k ∈ Z. Suppose x+ y = kπ. Then

ϑ(x, y, z) = Λ(kπ + z)− Λ(kπ − y)− Λ(y)− Λ(z) = 0,

because Λ is odd and π-periodic; y + z = kπ and x + z = kπ are the
same by symmetry.

If instead x = y = z modulo π, substituting x = y = z in (3), we
get sin(3x) = ± sin(x). This means that x = y = z = kπ

4 modulo π.
In the interior of the domain this implies x = y = z = π

4 . All other
possibilities lie outside the domain or on its boundary. In this point
ϑ = −2Λ

(
π
4

) ∼= −1.83 < 0.
The boundary cases x + y = kπ and permutations were already

checked, finding ϑ = 0.
Finally we check the points where ϑ is not smooth. This happens

when one of the following holds:

• x = kπ, or y = kπ, or z = kπ; or
• x+ y + z = kπ.

Remark 4.1. If P is a point and γ is a direction such that the deriv-
ative of ϑ in that direction is +∞, then P cannot be a local maximum
of ϑ.

If x = kπ, then ∂ϑ(x,y,z)
∂x = +∞ unless x + y + z = hπ, and (x, y, z)

cannot be a maximum. If instead x = kπ and x+ y + z = hπ, we have
y + z = (h− k)π and we are in a case we already checked. y = kπ and
z = kπ are symmetric.

If instead x + y + z = kπ, we find once again an infinite derivative
unless x = hπ, and we reason as before. So in conclusion ϑ is equal
to 0 on the boundary of the set {0 6 x + y 6 π, 0 6 x + z 6 π, 0 6
y + z 6 π}, cannot have a maximum in a non-smooth point and has
a unique stationary point in the interior, where it is negative. This
concludes the proof. q.e.d.

We will need the following lemma.

Lemma 4.2. If 0 6 a, b and a+ b 6 2π, then

−v3 6 Λ(a+ b)− Λ(a)− Λ(b) 6 v3,

where v3 = Λ
(
π
3

) ∼= 1.01 is the volume of the regular ideal tetrahedron.

Proof. First notice that if a + b = kπ, then because Λ is odd and
π-periodic, we have Γ(a, b) = Λ(a + b) − Λ(a) − Λ(b) = 0. Similarly if
a = 0 or b = 0 then Γ(a, b) = 0. By calculating the derivatives of Γ and
putting them to 0 we obtain, reasoning as before, a = ±b modulo π. If
a = −b modulo π then we have seen that Γ = 0. Then a = b implies
sin(2a) = ± sin(a), and either a = kπ (in which case Γ = 0) or 3a = kπ.
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If a = π
3 we obtain Γ

(
π
3 ,

π
3

)
= −3Λ(π3 ) = −v3, while a = 2π

3 implies

Γ
(
2π
3 ,

2π
3

)
= 3Λ(π3 ) = v3. q.e.d.

We are now ready to prove Lemma 3.5.

Lemma 3.5. Suppose that we have 0 6 θ1, θ2, θ3, θ4, θ5, θ6 6 2π and
that max(Ti) 6 Z 6 min(Qj , 2π). Then,

F (Z, θ1, θ2, θ3, θ4, θ5, θ6) + 2ν(θ1, θ2, θ3) 6 8Λ

(
π

4

)
= v8.

Proof. Put ai = Z − Ui, and bj = Vj − Z. The inverse of this change
of variable is as follows.

• θ1 = a3 + a4 + b1 + b2;
• θ2 = a2 + a4 + b1 + b3;
• θ3 = a2 + a3 + b2 + b3;
• θ4 = a1 + a2 + b1 + b2;
• θ5 = a1 + a3 + b1 + b3;
• θ6 = a1 + a4 + b2 + b3, and
• Z = a1 + a2 + a3 + a4 + b1 + b2 + b3.

In these new variables we have,

F (Z, θ1, θ2, θ3, θ4, θ5, θ6) = F̃ (a1, a2, a3, a4, b1, b2, b3) =

= −Λ

 4∑
i=1

ai +

3∑
j=1

bj

+

4∑
i=1

Λ(ai) +

3∑
j=1

Λ(bj),

while

2ν(θ1, θ2, θ3) = 2ν̃(a1, a2, a3, a4, b1, b2, b3) =

=

Λ

 3∑
i=1

(ai + bi)

− 3∑
i=1

Λ(ai + bi)

 .

Let L = 2ν̃ + F̃ , and notice that ν̃ is independent of a4, and that L
is symmetric under the exchange of ai with bi for any i 6= 4, and under

(a1, a2, a3, a4, b1, b2, b3)→ (aσ1 , aσ2 , aσ3 , a4, bσ1 , bσ2 , bσ3),

where σ is any permutation of 3 elements. Also notice that L is periodic
of period π in each variable, hence we can assume 0 6 ai 6 π and
0 6 bi 6 π. Moreover, because of the constraints on the θi’s and on Z,
we have that 0 6

∑
ai +

∑
bj 6 2π. Denote with Ω the region of R7

defined by all these inequalities.
We now proceed by first dealing with the points in the boundary

of Ω, then with the points where the function L is not differentiable,
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and finally by finding the stationary points in the interior of Ω. Start
by calculating the partial derivatives of L.

∂L

∂a4
= log

∣∣∣∣sin(a1 + a2 + a3 + a4 + b1 + b2 + b3)

sin(a4)

∣∣∣∣ ,(6)

∂L

∂a1
= log

∣∣∣∣sin(a1 + a2 + a3 + a4 + b1 + b2 + b3) sin(a1 + b1)

sin(a1) sin(a1 + a2 + a3 + b1 + b2 + b3)

∣∣∣∣ ,(7)

∂L

∂a2
= log

∣∣∣∣sin(a1 + a2 + a3 + a4 + b1 + b2 + b3) sin(a2 + b2)

sin(a2) sin(a1 + a2 + a3 + b1 + b2 + b3)

∣∣∣∣ ,(8)

∂L

∂a3
= log

∣∣∣∣sin(a1 + a2 + a3 + a4 + b1 + b2 + b3) sin(a3 + b3)

sin(a3) sin(a1 + a2 + a3 + b1 + b2 + b3)

∣∣∣∣ ,(9)

∂L

∂b1
= log

∣∣∣∣sin(a1 + a2 + a3 + a4 + b1 + b2 + b3) sin(a1 + b1)

sin(b1) sin(a1 + a2 + a3 + b1 + b2 + b3)

∣∣∣∣ ,(10)

∂L

∂b2
= log

∣∣∣∣sin(a1 + a2 + a3 + a4 + b1 + b2 + b3) sin(a2 + b2)

sin(b2) sin(a1 + a2 + a3 + b1 + b2 + b3)

∣∣∣∣ ,(11)

∂L

∂b3
= log

∣∣∣∣sin(a1 + a2 + a3 + a4 + b1 + b2 + b3) sin(a3 + b3)

sin(b3) sin(a1 + a2 + a3 + b1 + b2 + b3)

∣∣∣∣ .(12)

The remaining of the proof is broken into three steps.
Step 1: the boundary points
Suppose we have a maximum for L in a point P in the boundary of Ω.

If a1 = π, then by periodicity we would have a maximum with a1 = 0, so
we study this case instead. The derivative of L (7) with respect to a1 is
+∞ if a1+b1 6= kπ and a1+a2+a3+a4+b1+b2+b3 6= kπ, and we would
not get a maximum. Hence, either a1 + a2 + a3 + a4 + b1 + b2 + b3 = kπ
or b1 = kπ. In the first case, we have that

L = Λ(a2) + Λ(b2)− Λ(a2 + b2) + Λ(a3) + Λ(b3)− Λ(a3 + b3).

Then, using Lemma 4.2 we find L 6 2v3.
In the second case,

L =Λ(a2) + Λ(b2)− Λ(a2 + b2) + Λ(a3) + Λ(b3)− Λ(a3 + b3)+

+ Λ(b2 + b3 + a2 + a3) + Λ(a4)− Λ(b2 + b3 + a4 + a2 + a3),

and again Lemma 4.2 implies L 6 3v3. If a4 = 0, the same reasoning
implies that P cannot be a maximum unless

a1 + a2 + a3 + a4 + b1 + b2 + b3 = kπ,

and in this case

L =Λ(a1) + Λ(b1)− Λ(a1 + b1) + Λ(a2) + Λ(b2)−
− Λ(a2 + b2) + Λ(a3) + Λ(b3)− Λ(a3 + b3) 6 3v3.

If a1 + a2 + a3 + a4 + b1 + b2 + b3 = kπ, once again we would have
∂L

∂(−a4) = +∞ unless a4 = 0 and we would be in the same case as before.

The remaining cases are dealt by symmetry.
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Step 2: the non-smooth points
First off, notice that L is differentiable at P = (a1, a2, a3, a4, b1, b2, b3)

unless one (or more) of the following equalities (considered modulo π)
holds:

1) ai = 0 for some i;
2) bj = 0 for some j;
3) ai + bi = 0 for some i;
4) a1 + a2 + a3 + a4 + b1 + b2 + b3 = 0;
5) a1 + a2 + a3 + b1 + b2 + b3 = 0.

These cases are dealt in a similar fashion as the boundary cases.
Suppose we have a maximum for L in a point P such that a1 + a2 +

a3 + b1 + b2 + b3 = kπ. Then, unless a1 + b1 = kπ or a1 + a2 + a3 + a4 +
b1 + b2 + b3 = kπ the derivative of L with respect to a1 is +∞, hence P
could not be a maximum. Using Lemma 4.2 we obtain that in the first
case,

L = Λ(a2) + Λ(b2)− Λ(a2 + b2) + Λ(a3) + Λ(b3)− Λ(a3 + b3) 6 2v3,

and in the second

L =Λ(a2) + Λ(b2)− Λ(a2 + b2) + Λ(a3) + Λ(b3)− Λ(a3 + b3)+

+ Λ(b2 + b3 + a2 + a3) + Λ(a4)− Λ(b2 + b3 + a4 + a2 + a3) 6 3v3.

The cases ai = kπ, bj = kπ, or a1 +a2 +a3 +a4 + b1 + b2 + b3 = kπ were
already addressed before. If a1 + b1 = 0, then a1 = b1 = 0 and it was
already addressed. If a1 + b1 = kπ > 0, then the derivative of L in the
direction −a1 is +∞ unless a1 = 0 or a1 + a2 + a3 + b1 + b2 + b3 = kπ,
which are both cases we have dealt with already. The remaining cases
are done by the symmetries of L.

Step 3: the interior smooth points
Now we turn to the smooth points in the interior of Ω. By equat-

ing (7) and (10) to 0, we find sin(a1) = ± sin(b1). Similarly sin(ai) =
± sin(bi) for i = 2, 3 by equating (8) to (11) and (9) to (12) respectively.
Because of the boundary and smoothness conditions, we have that in
the interior of the domain this implies ai = bi for i = 1, 2, 3. By putting
equations (7) and (8) to 0, we find

sin(2a1)

sin a1
= ±sin(2a2)

sin a2
.

The last equation implies that cos(a1) = ± cos(a2) and either a1 = a2
or a1 + a2 = π. However, if a1 + a2 = π, we would have

a1 + a2 + a3 + a4 + b1 + b2 + b3 = 2a1 + 2a2 + 2a3 + a4 > 2π,

hence, this is not possible in the interior of Ω. Hence, a1 = a2. Similarly,
a1 = a3 follows from Equations (7) and (9).

Now by putting equation (6) equal to 0 we obtain

sin (6a1 + a4) = ± sin(a4).
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This implies either 6a1 = kπ or 6a1 + 2a4 = kπ, but in the first case
we would not be in a smooth point (case 5 of the previous step). By
plugging everything we obtained in equation (7) we finally find

sin(a4) sin(2a1)

sin(a1) sin(2a4)
= ±1.

Hence a4 = a1 or a4 = π − a1. Both cases imply that the stationary

points of L must be of the form
(
kπ
8 ,

kπ
8 ,

kπ
8 ,

kπ
8 ,

kπ
8 ,

kπ
8 ,

kπ
8

)
, for k = 1, 2.

In the first case L ∼= 3.01 < v8, while in the second L = 8Λ
(
π
4

)
= v8.
q.e.d.

We conclude the section with the proof of Lemma 3.7.

Lemma 3.7. If θi > π for i = 1, . . . , 6 and αi = θi − π, then

V (θ1, . . . , θ6) = V (α1, . . . , α6) .

Proof. The value of V (α1, . . . , α6) is equal, by the Murakami–Yano–
Ushijima formula [21, Theorems 1 and 2], [31, Theorem 1.1], to the
volume of the hyperbolic truncated tetrahedron with external dihedral
angles α1, . . . , α6. Thus we need to show that this formula is symmet-
ric under the change (θ1, . . . , θ6) ↔ (α1, . . . , α6). We now pass to the
internal dihedral angles (ξ1, . . . , ξ6) with ξi = π − αi, as these are more
natural for the Murakami–Yano–Ushijima formula. In these variables,
the formula reads

V (a1, . . . , a6) :=
1

2
Im
(
U(z1,~a)− U(z2,~a)

)
,

where we have

• a=e
√
−1ξi ;

•

U(z,~a) =
1

2
(Li2(z) + Li2(za1a2a4a5) + Li2(za1a3a4a6)+(13)

+ Li2(za2a3a5a6)− Li2(−za1a2a3)− Li2(−za1a5a6)−
− Li2(−za2a4a6)− Li2(−za3a4a5)),

where Li2 is the dilogarithm function defined for z ∈ C \ [1,∞) by

Li2(z) = −
∫ z

0

log(1− u)

u
du;

• z1 and z2 are the solutions of the equation α + βz + γz2 = 0,
labeled in such a way as to obtain a positive value for V ;
•

α =1 + a1a2a4a5 + a1a3a4a6 + a2a3a5a6 + a1a2a3 + a1a5a6+(14)

+ a2a4a6 + a3a4a5;
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•

β =− a1a2a3a4a5a6
(
(a1 − a−11 )(a4 − a−14 )+(15)

+ (a2 − a−12 )(a5 − a−15 ) + (a3 + a−13 )(a6 − a−16 )
)
;

•

γ =a1a2a3a4a5a6(a1a2a3a4a5a6 + a1a4 + a2a5 + a3a6+(16)

+ a1a2a6 + a1a3a5 + a2a3a4 + a4a5a6).

In these variables, the symmetry we need to explore is

(a1, a2, a3, a4, a5, a6)↔ (a−11 , a−12 , a−13 , a−14 , a−15 , a−16 ).

Call α, β, and γ as in formulas (14)–(16), and α′, β′, γ′ the same
formulas with ai → a−1i for all i. Let z1 and z2 be solutions of α+ βz+
γz2 = 0. Now it is immediate to check that

α′ =
γ

a21a
2
2a

2
3a

2
4a

2
5a

2
6

, β′ =
β

a21a
2
2a

2
3a

2
4a

2
5a

2
6

, and γ′ =
α

a21a
2
2a

2
3a

2
4a

2
5a

2
6

.

Hence, we need to solve the equation

α′ + β′z + γ′z2 =
1

a21a
2
2a

2
3a

2
4a

2
5a

2
6

(
γ + βz + αz2

)
= 0;

call the solutions ẑ1 and ẑ2. Since it was shown in [21, Page 384] that
z1 and z2 must be complex numbers with absolute value 1, ẑ1 = z1 and
ẑ2 = z2. Now we can compute

U(ẑ1, a
−1
1 , a−12 , a−13 , a−14 , a−15 , a−16 ) =

1

2
(Li2(z1) + Li2(z1a1a2a4a5)+

+ Li2(z1a1a3a4a6) + Li2(z1a2a3a5a6)− Li2(−z1a1a2a3)−
− Li2(−z1a1a5a6)−−Li2(−z1a2a4a6)− Li2(−z1a3a4a5)).

Because Li2(a) = Li2(a), we see that

U(ẑ1, a
−1
1 , a−12 , a−13 , a−14 , a−15 , a−16 ) = U(z1, a1, a2, a3, a4, a5, a6),

and

U(ẑ2, a
−1
1 , a2, a3, a

−1
4 , a5, a6) = U(z2, a1, a2, a3, a4, a5, a6).

Since we have to switch the labels as to obtain a positive value of V, we
obtain

V (a−11 , a−12 , a−13 , a−14 , a−15 , a−16 ) = V (a1, a2, a3, a4, a5, a6),

concluding the proof of the lemma. q.e.d.
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Figure 2. The building block.

Figure 3. The link in the boundary of the handlebody.

5. The volume conjecture for fundamental shadow links

In this section we define the family of fundamental shadow links and
prove the volume conjecture for them. The building block for these links
is a 3-ball with 4 disks on its boundary, and 6 arcs connecting them,
as in Figure 2. If we take c building blocks B1, . . . , Bc and glue them
together along the disks, in such a way that each endpoint of each arc
is glued to some other endpoint (possibly of the same arc), we obtain
a (possibly non-orientable) handlebody of genus c+ 1 with a link in its
boundary, such as in Figure 3. By taking the orientable double of this
handlebody (the orientable double cover whose boundary is quotiented
by the deck involution), we obtain a link inside Mc := #c+1(S1 × S2).
We call a link obtained this way a fundamental shadow link.

The most important features of these links are that their geometry
and quantum invariants are well understood.

Lemma 5.1 ([10, Proposition 3.33]). If L ⊆ Mc is a fundamen-
tal shadow link, then Mc \ L is hyperbolic of volume 2cv8 and shadow
complexity c.

The next lemma follows from the shadow reformulation of the SO(3)
version of the Reshetikhin–Turaev invariants [28, 29]. The proof is
given in [8, Proposition 4.1] following [9].

Lemma 5.2. Let Jr = {0, 2, . . . , r− 3}. If L = L1 t · · · tLk ⊆Mc is
a fundamental shadow link and col ∈ Jkr is a coloring of its components
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with even numbers, then

RTr (Mc, L, col) =

2 sin
(
2π
r

)
√
r


−c

c∏
i=1

∣∣∣∣col(i1) col(i2) col(i3)
col(i4) col(i5) col(i6)

∣∣∣∣ ,
where ij is the component of the link L passing through the j-th strand
of block i.

Finally, we recall that any compact oriented 3-manifold with toroidal
or empty boundary is obtained as a Dehn filling of some of the boundary
components of the complement of some fundamental shadow link [10,
Proposition 3.36].

To relate the Turaev–Viro invariant of Mc \ L to the Reshetikhin–
Turaev invariant of (Mc, L) of Lemma 5.2 we use the following propo-
sition. It first appeared in [15] in a slightly weaker version; we give
essentially the same proof, slightly modified when needed.

Proposition 5.3. For any link L = L1t· · ·tLk in a closed oriented
3-manifold M ,

TVr(M \ L) = 2b2(M\L)
∑
col∈Jkr

∣∣RTr (M,L, col)
∣∣2 ,

where b2
(
M \ L

)
denotes the rank of H2

(
M \ L, Z2

)
.

Proof. For a compact, oriented 3-manifold X with toroidal boundary
let DX denote the double of X along ∂X and let b2 (X) denote the

rank of H2 (X, Z2). By [4, Theorems 2.9 and 3.2] for the case q = e
πi
r ,

adapted to other roots of unity in [15, Theorems 2.9 and 3.1], we have

TVr(X) = 2b2(M)RTr(DX).

Now let X = M \L. Because of the axioms of the TQFT associated to
the Reshetikhin–Turaev invariants, we have

RTr(DX) = 〈Zr(X), Zr(X)〉,

where Zr(X) is the vector in the SO(3) Reshetikhin–Turaev TQFT
hermitian vector space Vr(∂X).

The boundary of X is a union of connected toroidal components
T1 t · · · t Tk, and Vr(∂X) = Vr(T1) ⊗ · · · ⊗ Vr(Tk). An orthogonal
basis for the vector space Vr(Ti) is (ej)j∈Jr where ej is the solid torus
with boundary Ti and whose core is colored with color j. Therefore,
an orthogonal basis for Vr(∂X) is (ej1 ⊗ · · · ⊗ ejk)j∈Jkr . Written in this
basis, by the definition of the Reshetikhin–Turaev invariants, we have

Zr(X) =
∑
col∈Jkr

RTr(M,L, col)ecol1 ⊗ · · · ⊗ ecolk .
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Hence, we obtain

〈Zr(X), Zr(X)〉 =
∑
col∈Jkr

∣∣RTr(M,L, col)
∣∣2 ,

which gives the desired result. q.e.d.

We are ready to prove Conjecture 1 for the complements of these
links.

Theorem 1.1. For any fundamental shadow link L = L1 t · · · t Lk
built from c blocks,

lim
r→∞

2π

r
log
∣∣TVr(Mc \ L)

∣∣ = Vol(Mc \ L) = 2cv8.

Proof. If L = L1 t · · · t Lk we have by Proposition 5.3,

TVr(Mc \ L) = 2b2(Mc\L)
∑
col∈Jkr

∣∣RTr (Mc, L, col)
∣∣2 .

Because the number of possible colorings is polynomial in r,

2π

r
log
∣∣∣TVr (Mc \ L

)∣∣∣ 6
6 max

col∈Jkr

2π

r
log
(∣∣RTr (Mc, L, col)

∣∣)2 +O

(
log(r)

r

)
.

By Lemma 5.2, we have that RTr(Mc, L, col), up to a factor that
grows polynomially in r, is equal to

c∏
i=1

∣∣∣∣col(i1) col(i2) col(i3)
col(i4) col(i5) col(i6)

∣∣∣∣ ,
where ij is the component of the link L passing through the j-th strand
of block i. Hence, because of Theorem 1.2,

lim
r→∞

2π

r
log
∣∣∣TVr (Mc \ L

)∣∣∣ 6 2cv8.

On the other hand, if we take col =
(
r±1
2 , . . . , r±12

)
to be even colors,

we have

lim
r→∞

2π

r
log
∣∣∣TVr (Mc \ L

)∣∣∣ >
> lim

r→∞

2π

r
log

∣∣∣∣∣∣
∣∣∣∣∣ r±12 r±1

2
r±1
2

r±1
2

r±1
2

r±1
2

∣∣∣∣∣
q=e

2πi
r

∣∣∣∣∣∣
2c

= 2cv8,

by Lemma 3.13. q.e.d.
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6. Applications

In the previous sections we showed that the Turaev–Viro invariants
volume conjecture is true for the fundamental shadow links. As re-
called in the Introduction, those links are universal in the sense every
orientable compact 3-manifold, with empty or toroidal boundary, is ob-
tained by a Dehn surgery along these links. On the other hand, the
behavior of Turaev–Viro invariants under Dehn filling was studied in
[12]. Here we combine these results with results about estimates of
hyperbolic volume change under Dehn filling to derive some interesting
applications.

6.1. Dehn filling, volume and Turaev–Viro invariants. Let N
be a compact 3-manifold with toroidal boundary whose interior is hy-
perbolic, and let T1, . . . , Tk be some components of ∂N . On each Ti,
choose a slope si, such that the shortest length of any of the si is de-
noted `min. If `min > 2π, then by the Geometrization Theorem, the
manifold M = N(s1, . . . , sk) obtained by Dehn filling along s1, . . . , sk is
hyperbolic. Moreover, there is a correlation between its volume and the
volume of N . In the theorem below, the upper inequality is by Thurston
[26, Theorem 6.5.6] and the lower inequality is by the following result
proved in [17].

Theorem 6.1 ([17, Theorem 1.1]). Let N be a cusped hyperbolic 3-
manifold, containing embedded horocusps C1, . . . , Ck (plus possibly oth-
ers). On each torus Ti = ∂Ci, choose a slope si, such that the short-
est length of any of the si is `min > 2π. Then the manifold M =
N(s1, . . . , sk) obtained by Dehn filling along s1, . . . , sk is hyperbolic, and
its volume satisfies(

1−
(

2π

`min

)2
)3/2

vol(N) 6 vol(M) < vol(N).

To continue recall that for a compact oriented 3-manifold M , we set

lTV (N) = lim inf
r→∞

2π

r
log

∣∣∣∣TV (M, e
2πi
r

)∣∣∣∣
and

LTV (N) = lim sup
r→∞

2π

r
log

∣∣∣∣TV (M, e
2πi
r

)∣∣∣∣ ,
where r runs over all odd integers.

Our results in the previous sections give the following.

Theorem 6.2. Let M be an orientable, compact 3-manifold with
empty or toroidal boundary. There is a hyperbolic link L1 ⊂ M such
that

lTV (M \ L1) = LTV (M \ L1) = vol(M \ L1) = 2cv8,

where is c > 0 is a constant depending on L1.
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Furthermore, if we set N = M \L1 then for any link L in N we have

lTV (N \ L) > 2cv8 > 0.

Proof. By [10, Proposition 3.36], there is c = c(M) > 0 and a funda-
mental shadow link L′1 ⊂Mc = #c+1(S1 × S2) such that

(i) The complement of L′1 is hyperbolic with volume 2cv8; and
(ii) M is obtained by Dehn filling in Mc along L′1.

Thus there is L1 ⊂ M such that M \ L1 is homeomorphic to the
complement L′1 in Mc. Now the first part of the theorem follows since
Mc \ L′1 satisfy the Turaev–Viro invariants volume conjecture.

To see the second part of the claim note that if L ⊂ N is any link in
N = M \ L1 then N is obtained from N \ L by Dehn filling. Thus by
[12, Theorem 5.3] we have lTV (N \ L) > lTV (N) and the conclusion
follows. q.e.d.

Definition 6.3. We will refer to N = M \ L1 in the statement of
Theorem 6.2 as a complement of a fundamental shadow link in M .

Combining Theorem 6.2 and Theorem 6.1 gives the following which
gives Theorem 1.3 stated in the Introduction.

Theorem 6.4. Let M be a compact 3-manifold with empty or toroidal
boundary. Then there is a hyperbolic link complement N = M \L1 such
that M is obtained by Dehn filling on N and we have

α(`min) lTV (N) 6 vol(M) < lTV (N).

Here α(x) =

(
1−

(
2π
x

)2)3/2

if x > 2π, and α(x) = 0 if x < 2π.

Proof. Let M be an orientable, compact 3-manifold with empty or
toroidal boundary and such that the interior of M admits a complete
hyperbolic structure. By Theorem 6.2 there is a hyperbolic link com-
plement N ⊂ M such that lTV (N) = LTV (N) = vol(N) and M is
obtained by Dehn filling along some or all the cusps of N , i.e. M =
N(s1, . . . , sk). The conclusion follows by Theorem 6.1. q.e.d.

Note that α(`min) > 0, unless `min < 2π and that α(`min) approaches
1 as `min → ∞. The theorem says that the volume of M is approxi-
mated by the Turaev–Viro invariants of a certain sub-manifold of M .
It is known [26] that as `min → ∞ we have vol(M) → vol(N), and by
Theorem 6.4 as `min → ∞ we also have vol(M) → lTV (N), which is
consistent with Conjecture 1. In fact, by Conjecture 1 one should ex-
pect a 2-sided inequality using the Turaev–Viro invariants of M itself
rather than these of a submanifold N . In this direction, we have an one
sided inequality given by the following.
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Corollary 6.5. Let M = N(s1, . . . , sk) a 3-manifold obtained by
Dehn filing on a fundamental shadow link complement N . If `min > 2π,
then M is hyperbolic and we have

LTV (M) 6 B(`min) vol(M),

where B(`min) is a function that approaches 1 as `min →∞.

Proof. By Theorem 1.1, we have lTV (N) = LTV (N) = vol(N).
Since `min > 2π, Theorem 6.1 applies to give(

1−
(

2π

`min

)2
)3/2

vol(N) 6 vol(M).

By [12, Corollary 5.3], we have

LTV (M) 6 LTV (N) = vol(N) 6

(
1−

(
2π

`min

)2
)−3/2

vol(M).

Setting B(`min) =

(
1−

(
2π
`min

)2)−3/2
we have the desired result. q.e.d.

6.2. Application to the AMU conjecture. Theorem 6.2 says that
if N is the complement of a fundamental shadow link in M , then for
every link L ⊂ N the invariants TVr(N \ L) grow exponentially with
respect to r. As shown in [14] the exponential growth property has
applications to the AMU conjecture [1]. To give details, for a compact
orientable surface of genus g and n boundary components, say Σg,n, let
Mod(Σg,n) denote its mapping class group.

Definition 6.6. For a mapping class f ∈ Mod(Σg,n), letM(f) denote
the mapping torus of f . We say that f has a non-trivial pseudo-Anosov
part if the toroidal decomposition of M(f) contains hyperbolic pieces;
or equivalently if the Gromov norm of M(f) is non-zero.

Recall that Ir is the set {0, 1, . . . , r − 2}. Given a coloring col of the
components of ∂Σg,n by elements of Ir, by [5], there is a finite dimen-
sional C-vector space Vr(Σg,, col) as well as a projective representation

ρr,col : Mod(Σg,n)→ PAut(Vr(Σg,n, col)).

The following statement is known as the AMU conjecture.

Conjecture 2 ([1]). Let f ∈ Mod(Σg,n) be a mapping class. If f
contains a pseudo-Anosov part, then for any big enough r there is a
choice of colors col of the components of ∂Σ such that ρr,col(φ) has
infinite order.

In [1] Andersen, Masbaum and Ueno verified the conjecture for Σ0,4.
Later, Santharoubane proved it for Σ1,1 [23] and Egsgaard and Jor-
gensen [16] and Santharoubane [24] gave partial results for pseudo-
Anosov maps on Σ0,2n. For g > 2, the first examples of mappings
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classes that satisfy the AMU conjecture, were given by Marché and
Santharoubane in [20] and the first construction that leads to infinitely
many (independent) examples in each genus was given by Detcherry and
Kalfagianni [14].

Let M be a closed orientable 3-manifold with empty or toroidal
boundary. Recall that a link J in M is called fibered if the comple-
ment M \ J is homeomorphic to the mapping torus of a mapping class
f ∈ Mod(Σg,n), for some n, g > 0. The mapping class f is called the
monodromy of the fibration. We note that if the first Betti number of
M \ J is bigger than one then it can fiber over S1 in infinitely many
different ways; that is we have infinitely many non-conjugate mapping
classes realized as monodromies of some fibration M \J −→ S1 [27, §3].

In [14] the authors show that if we have lTV (M(f)) > 0 for the
mapping torus of a class f ∈ Mod(Σg,n), then f satisfies the AMU
conjecture. On the other hand lTV (M(f)) > 0 implies, by [12], that
M(f) has non-zero Gromov norm and thus f contains a pseudo-Anosov
part. In [14] the authors give explicit constructions of mapping classes
that satisfy these conditions. The examples constructed in [14] are all
realized as monodromies of fibered links in S3. Theorem 6.2 provides
infinite families of manifolds with toroidal boundary and with Turaev–
Viro invariants having exponential growth. By passing to the doubles
DN we obtain closed 3-manifolds with lTV (DN) > 0. Any mapping
class that is realized as a monodromy of a fibered link in some N or
DN satisfies the AMU conjecture.

Let M denote the set of all 3-manifolds N that are complements of
fundamental shadow links in a orientable 3-manifolds with empty or
toroidal boundary and their doubles DN . We have the following.

Theorem 1.4. Given M ∈ M and a (possibly empty) link L ⊂ M ,
there is a knot K ⊂ M such that the link K ∪ L is fibered in M . Fur-
thermore, the monodromy of any fibration of M \ (K ∪L) is a mapping
class that satisfies the AMU conjecture.

Proof. Let M and L be as above and let L′ a link in S3 so that M
is obtained by integral Dehn surgery on all or some of the components
of L′. Note, in particular, that if M is a fundamental shadow link com-
plement then L′ will contain the link corresponding to the fundamental
shadow link L1 in S3. Slightly abusing the notation we will also use L
to denote the link in L in S3 corresponding to L.

By Stallings [25, Theorem 2], we can find a knot K ⊂ S3 so that
J = K ∪ L ∪ L′ is a fibered link in S3. Furthermore, we have the
following.

1) The knot K can be chosen so that the linking numbers of K with
the components of L∪L′ are arbitrary; that is matching any pre-
chosen collection of integers.
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2) The link J is represented as a closed braid (a homogeneous braid
in fact) and the fiber, say FK , of S3\J is the natural Seifert surface
associated to the closed braid projection. The reader is referred
to [14] for a refinement of Stallings construction that produces
hyperbolic fibered links and for pictures of the fiber surface.

The components of L′ are equipped with the framings needed to re-
cover M from S3 \ J by Dehn filling. On the other hand, the Seifert
surface FK also defines a natural framing on J : defined by the link-
ing number of J with a push-off of it on FK in the direction of the
inward normal vector. The surface framing changes as we change the
linking numbers of K with the components of J . Since we are allowed
to choose these numbers to be arbitrary, by re-choosing K, we can pick
K so the framings defined on the components of L′ by the fiber FK
agree with the framings of the surgery needed to recover M . Then, the
surgery caps off some components of K with disks and also produces a
fibered manifold. That is M \ (K ∪ L) will fiber over S1 with fiber the
surface obtained by FK by capping the components of ∂FK correspond-
ing to L′. By the discussion in the paragraph before the statement of
the theorem, the monodromy of such a fibration gives a mapping class
that contains non-trivial pseudo-Anosov pieces and satisfies the AMU
conjecture. q.e.d.

Theorem 1.4 can be used to construct an abundance of mapping
classes that satisfy the AMU conjecture. In particular, working with
fibered knots in the closed manifolds of M we can construct classes in
Mod(Σg,1). This approach is developed in [13] where Detcherry and
Kalfagianni show that for every closed oriented 3-manifold M , and g a
sufficiently large integer, Mod(Σg,1) contains a coset of an abelian sub-
group of rank bg2c, consisting of pseudo-Anosov monodromies of fibered
knots in M . Furthermore, they prove a similar result for rank two free
cosets of Mod(Σg,1).

Note that all the manifolds in M have Gromov norm at least 4v8,
but there exist fibered links of smaller Gromov norm. It follows that
there are mapping classes in Mod(Σg,n), n 6= 0, that do not appear
as monodromies of fibered links in any manifold in M. We finish the
subsection with the following.

Question 1. Which mapping classes are realized by Theorem 1.4?

Appendix A.

The following theorem was originally proved by Costantino in [8] for

quantum 6j-symbols evaluated at the root of unity q = e
πi
r , which is

different from the one q = e
2πi
r we considered in this paper. The main

difference between the two cases is the following: For certain argument
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to work, some technical constrains have to be put on the sequence of 6-

tuples. It turns out that at q = e
πi
r as considered in [8] the 6-tuples satis-

fying these technical constrains never satisfy the admissibility conditions
and, as a consequence, the “evaluation” of the quantum 6j-symbols has

to be modified; but at q = e
2πi
r the set of 6-tuples satisfying both the

technical constrains and the admissibility conditions is non-empty, and
those 6-tuples are exactly the ones that give dihedral angles of ideal or
hyperideal truncated tetrahedra. In this Appendix, we include a proof

of the result at the root q = e
2πi
r for the interested readers. A similar

result can also be found in [6].

Theorem A.1 ([8]). Let {(n(r)1 , . . . , n
(r)
6 )} be a sequence of 6-tuples

such that

(1) 0 6 Qj − Ti 6 r−2
2 for i = 1, . . . , 4 and j = 1, 2, 3, and

(2) r−2
2 6 Ti 6 r − 2 for i = 1, . . . , 4.

Let θi = limr→∞
2πn

(r)
i
r and let αi = |π − θi|. Then

(1) α1, . . . , α6 are the dihedral angles of an ideal or a hyperideal hyper-
bolic tetrahedron ∆, and

(2) as r runs over all the odd integers

lim
r→∞

2π

r
log

∣∣∣∣∣
∣∣∣∣ n(r)1 n

(r)
2 n

(r)
3

n
(r)
4 n

(r)
5 n

(r)
6

∣∣∣∣
q=e

2πi
r

∣∣∣∣∣ = V ol(∆).

Proof. (1). By Bao and Bonahon [2], six positive numbers α1, . . . , α6

are the dihedral angles of an ideal or a hyperideal tetrahedron if and
only if around each vertex, αi + αj + αk 6 π. The given conditions
imply that around each vertex, 2π 6 θi + θj + θk 6 4π and 0 6 θi +
θj − θk 6 2π. Depending on whether θi lies in [0, π] or [π, 2π], these
conditions correspond exactly to the Bao–Bonahon conditions.

(2). By Lemma 3.1, we have

lim
r→∞

2π

r
log
∣∣∆(ni, nj , nk)

∣∣ =

=− 1

2
Λ
(θ1 + θ2 − θ3

2

)
− 1

2
Λ
(θ2 + θ3 − θ1

2

)
−

− 1

2
Λ
(θ3 + θ1 − θ2

2

)
+

1

2
Λ
(θ1 + θ2 + θ3

2

)
.

Next, we study the asymptotics of

min(Qj)∑
z=max(Ti)

(−1)z[z + 1]!∏4
i=1[z − Ti]!

∏3
j=1[Qj − z]!

.

Let

Sz =
(−1)z[z + 1]!∏4

i=1[z − Ti]!
∏3
j=1[Qj − z]!

.



GROWTH OF QUANTUM 6J-SYMBOLS AND VOLUME CONJECTURE 225

If limr→∞
2πz
r = Z, then by Lemma 3.1 we have

lim
r→∞

2π

r
log |Sz| =

4∑
i=1

Λ(Z − Ui) +
3∑
j=1

Λ(Vj − Z)− Λ(Z).

The strategy is to show that all Sz’s for z in between max(Ti) and
min(Qj) have the same sign so the growth rate of the sum is determined
by that of the largest term.

Since Ti 6 z and z 6 Qj , and by the assumption that Qj −Ti 6 r−2
2 ,

we have 0 6 z − Ti 6 r−2
2 and 6 Qj − z 6 r−2

2 for all i = 1, . . . , 4 and
j = 1, 2, 3. Hence

0 6
2π(z − Ti)

r
6 π and 0 6

2π(Qj − z)
r

6 π.

Also, by the assumption that Ti 6 r−2
2 , z > Ti, we have r−2

2 6 z. Since
[z + 1]! = 0 when z > r − 2, we can assume that z 6 r − 2. Hence

π 6
2πz

r
6 2π.

As a consequence, we have

Sz
Sz−1

= −
sin 2π(z+1)

r sin 2π(Q1−z+1)
r sin 2π(Q2−z+1)

r sin 2π(Q3−z+1)
r

sin 2π(z−T1)
r sin 2π(z−T2)

r sin 2π(z−T3)
r sin 2π(z−T4)

r

> 0,

and hence all the Sz’s have the same sign.
Next we show that the function F : (max(Ui),min(Vj , 2π)) → R

defined by

F (Z) =

4∑
i=1

Λ(Z − Ui) +

3∑
j=1

Λ(Vj − Z)− Λ(Z)

has a unique maximum point Z0. Indeed, by a direct computation, one
has

F ′(Z) = log

(
sin(2π − Z) sin(V1 − Z) sin(V2 − Z) sin(V3 − Z)

sin(Z − U1) sin(Z − U2) sin(Z − U3) sin(Z − U4)

)
,

and

F ′′(Z) = −
4∑
i=1

cot(Z − Ui)−
3∑
j=1

cot(Vj − Z)− cot(2π − Z).

Here we recall the fact that if α and β are two real numbers in (0, π) with
α+ β < π, then cot(α) + cot(β) > 0. Now since (2π −Z) + (Z −U4) =
2π−U4 ∈ (0, π) and (Vi−Z)+(Z−Ui) = Vi−Ui ∈ (0, π) for i = 1, 2, 3,
we have F ′′(Z) < 0, and hence F ′(Z) is strictly decreasing and F (Z) is
strictly concave down. Together with

lim
Z→max(Ui)

F ′(Z) = +∞ and lim
Z→min(Vj ,2π)

F ′(V ) = −∞,
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we conclude that there is a unique Z0 ∈ (max(Ui),min(Vj , 2π)) such
that F ′(Z0) = 0. By the concavity of F , Z0 is the unique maximum
point of F .

Now for each sequence z(r) with limr→∞
2πz(r)

r = Z, by Lemma 3.1
one has

|Sz(r) | = exp
{ r

2π
F (Z) +O(log(r))

}
6 exp

{ r

2π
F (Z0) + C log(r)

}
.

Since all the Sz’s have the same sign, we have∣∣∣∣ min(Qj)∑
z=max(Ti)

Sz

∣∣∣∣ 6 (min(Qj , r− 2)−max(Ti)
)

exp
( r

2π
F (Z0) +C log(r)

)
,

and hence

lim sup
r→∞

1

r
log

∣∣∣∣ min(Qj)∑
z=max(Ti)

Sz

∣∣∣∣ 6
6 lim
r→∞

1

r
log

{(
min(Qj , r − 2)−max(Ti)

)
exp
( r

2π
F (Z0) + C log(r)

)}
=

=
F (Z0)

2π
.

On the other hand, let z(r) be a sequence such that

lim
r→∞

2πz(r)

r
= Z0.

Then by Lemma 3.1

lim
r→∞

2π

r
log |Sz(r) | = F (Z0).

Again since all the Sz’s have the same sign, we have∣∣∣∣ min(Qj)∑
z=max(Ti)

Sz

∣∣∣∣ > Sz(r) ,

and hence

lim inf
r→∞

2π

r
log

∣∣∣∣ min(Qj)∑
z=max(Ti)

Sk

∣∣∣∣ > lim
r→∞

2π

r
log |Sz(r) | = F (Z0).

Therefore, we have

lim
r→∞

2π

r
log

∣∣∣∣ min(Qj)∑
z=max(Ti)

Sz

∣∣∣∣ = F (Z0),
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and

lim
r→∞

2π

r
log

∣∣∣∣∣
∣∣∣∣ n(r)1 n

(r)
2 n

(r)
3

n
(r)
4 n

(r)
5 n

(r)
6

∣∣∣∣
q=e

2πi
r

∣∣∣∣∣ =

=− 1

2

∑
i,j

Λ(Vj − Ui) +
1

2

∑
i

Λ(Ui) + F (Z0).

Then as argued in [8], by the Murakami, Yano and Ushijima for-
mula [21, Theorems 1 and 2], [31, Theorem 1.1] and their symmetry,
if α1, . . . , α6 are the dihedral angles of a hyperideal tetrahedron ∆ and
θi = π ± αi, then the right hand side is exactly the volume of ∆. q.e.d.
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