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ABSTRACT

This paper introduces a method to estimate the direction of arrival of an acoustic signal based on finding maximum
power in iteratively reduced regions of a spherical surface. A plane wave decomposition beamformer is used
to produce power estimates at sparsely distributed points on the sphere. Iterating beam orientation based on
the orientation of maximum energy produces accurate localization results. The method is tested using varying
reverberation times, source-receiver distances, and angular separation of multiple sources and compared against a
pseudo-intensity vector estimator. Results demonstrate that this method is suitable for integration into real-time
telematic frameworks, especially in reverberant conditions.

1 Introduction and broadcast system. It must also be accurate despite
reverberation or noise, since spaces like classrooms and
multi-purpose spaces have large volumes, highly vari-
able reverberation times [3, 4], and multiple, dynamic
sources.

This paper introduces the sparse iterative search (SIS),
which is a steered-beam power discrimination process,
to address source localization for distant sources in
reverberant spaces. Section 2 contains a brief back-
ground of SMA operation. Section 3 introduces the
SIS. Finally, Section 4 provides an evaluation of the
performance of SIS as compared to the pseudointen-

Direction of Arrival (DOA) estimation is a vital element
in myriad acoustic array processing applications, such
as source localization, acoustic mapping, and speech
enhancement. Spherical microphone arrays (SMAs)
are excellent platforms for DOA estimation, since their
compact footprint and directional independence confer
a great deal of flexibility in application compared to
linear or planar geometries [1, 2]. Several methods
have been developed in the past few decades to local-
ize sound sources using SMA data, but few have been

tailored to address the constraints of telematic applica-
tions in reverberant spaces.

Telematic systems ideally produce low-latency streams
of location data for real-time use. A localization
method must be computationally efficient, since it may
contribute to the overall complexity of a larger tracking

sity vector (PIV) method [5] across a variety of tests.
Although other methods for localization, including ex-
tensions to the PIV method itself, are more sophisti-
cated and produce accurate results, the original PIV
method was chosen in particular for its computational
efficiency and simplicity of technique, which makes it
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a suitable baseline for comparison
2 Technical Background

2.1 Spherical Harmonics

The localization methods discussed in this paper are
dependent on efficient manipulation of the soundfield
in spherical space. The following is a brief review of
the theory of spherical harmonic decomposition. A
thorough introduction to SMA theory and operation
may be found in [6, 7].

A point in space is given in spherical coordinates
(r,¢,0), where r is the radius, ¢ is azimuth, and 6
is elevation. A pressure field is measured at this point,
p(k,r,0,0¢), with wave number k. The spherical har-
monic representation of the sound pressure at this point
may be obtained by the spherical Fourier transform

2r bd
pim(k,r) = /0 /O p(k.r,0,0)Y"(8,0)" sin 0d0d0,
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where (-)* is the complex conjugate. ¥;" are the spheri-
cal harmonics of degree / and order m, given by:
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where Pl is the associated Legendre function, and
i =+/—1. A plane wave may be described incident
upon the surface of a sphere with radius r, using this
spherical harmonic representation:
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where A is the amplitude and b; is the modal gain, or
mode strength. For a rigid spherical array, this modal
gain term is described by
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Ji is the spherical Bessel function, and h;z) is the spher-
ical Hankel function of the second kind. Compensating
for this term in the array output and incorporating a
steering vector produces a plane-wave decomposition

(PWD) beamformer, which spatially filters the array
data to exclude soundfield information except in the
direction of interest:

2w Pmkr)
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where (0,4, ¢) is the orientation of interest. For a mi-
crophone array with Q discrete elements with locations
given by (4, ¢4, 8,), the spherical Fourier transform is
an approximate sum over the pressure values from each
element over the surface of the sphere:

Mo

le(k»”q) ~ P(karqaeqaﬁbq)ylm(emﬁbq)*- (6)

g=1

This approximation limits the order of harmonic de-
composition, constraining the directivity pattern of the
PWD beamformer:

L 1

m k’r m
y(k, ¢q7wq) = l;)m_zlp;l((kr))Yl (9d7¢d)- @)

2.2 Steered Response Power Mapping

The steered response power (SRP) method for localiza-
tion produces spatial maps of sound power by means
of a grid search using a steered beamforming array. Al-
though evaluation of the SRP method is not included,
the methodology is given here for completeness. The
map is generated with the output of the PWD beam-
former and a set of all spherical grid points to be
searched, Qg, in terms of azimuth and elevation:

M(Qs) =Y Iy(k, Q). (8)
k

A single source may be localized by finding the maxi-
mum value in the map,

Qax = arg max M(Qs), ©)
S

whereas a peak detection algorithm may negotiate
multiple-source discrimination for particular condi-
tions.
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The SRP method is accurate even under reverberant
conditions [8], since its operation is dependent on a grid
of steered beams. Because these beams are spatial fil-
ters, the response from room reflections and directional
noise is greatly reduced except in the beams oriented
along their directions of arrival. Ideally, an infinite-
order beam would produce a response along only its
oriented direction. However, for order-limited beam-
formers, the response from each beam corresponds
to an angular arc surrounding the orientation of inter-
est. This reduces the overall accuracy of SRP localiza-
tion, but provides the basis of functionality for the SIS
method.

3 Sparse lterative Search

e @
@ o

Fig. 1: A visual representation of the SIS method for 4
beam steering vectors and 4 iterations. Steering
vector orientations are denoted by black lines,
and search sectors are the light grey regions
over the sphere in dark grey. Initially, beam
orientations are evenly distributed around the
sphere (a). On subsequent iterations (b—d) the
beam orientation vectors are chosen via uni-
form sampling from the best of several search
sectors corresponding to each beam.

SIS takes advantage of three major characteristics of
speech energy distribution and spatial filtering to pro-
duce accurate DOA estimation. First, the energy distri-
bution of a single frame of speech data is most likely
to be convex upwards. Only a small percentage of
frames of audio data, as would be generated for the
Short-Time Fourier Transform, contain salient speech

feature. This condition holds even for audio containing
multiple simultaneous speakers, a principle known as
Window-Disjoint Orthogonality [9].

Second, despite a beampattern’s sensitivity to a re-
gion of space rather than a single orientation, only
slight changes in orientation are capable of affecting
the recorded energy. This feature is what allows the
SRP method to generate more accurate results with
increased grid density.

The final characteristic is the PWD beamformer itself.
Although an ideal beam is a delta function, finite-series
spherical harmonics produce hypercardioid beampat-
terns. The output of the beamformer corresponds to
a spatial area rather than a single direction. This al-
lows sufficient sensitivity to energy distribution over
the sphere with a small number of generated beampat-
terns.

This final feature is what distinguishes SIS from exist-
ing region-contraction methods [10, 11]. Rather than
contract a search region around volumes containing
large energy values, each beam is used to define its
own search region, and subsequent iterations reject
spatial regions while progressively converging on the
orientation of maximum energy.

For a single time frame of speech data, the initial steer-
ing vectors for each beam are chosen such that the
beams are evenly distributed over the sphere and max-
imally distant in orientation from each other. For a
circular distribution around the equator, the angular arc
between all beam steering vectors is 27/N, where N
is the number of beams used per iteration. For spheri-
cal distributions, orientations derived from the Platonic
solids or nearly-uniform spacing distributions [12] may
be used.

The orientation that returns the maximum power from
the PWD beamformer is obtained using

Qmax = arg nglzax M(Qs), (10)
S

where M is the beamformer output over the set of ori-
entations. Conceptually, up to this point, the process
is very similar to the SRP mapping method. However,
the set of beam orientations are not a dense grid, but an
extremely sparse set of points over the sphere. When
the orientation of maximum power is found, a new set
of steering vectors are selected via uniform random
sampling from within the spherical section centered on
Q with conical angle ¢ = 27 /N. Subsequent iterations
repeat this random selection operation, generating a set
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of orientations from successively smaller search sectors
corresponding to the beam which produces maximum
power according to ¢ = 27t /kN, where k is the current
iteration count. As the energy distribution is assumed
convex, this approach converges to the global maxi-
mum of the energy distribution for a single time frame,
which, ideally, corresponds to the source orientation
relative to the array. A visualization of this method for
four beams and four iterations is shown in Figure 1.

4 Evaluation

A variety of metrics were used to characterize the per-
formance of this method. Experiments were performed
on both simulated and recorded array data with varying
reverberation time (RT), source-receiver distance, and
angular separation for multiple sources.

4.1 Simulated Data

For each simulation, room impulse responses
(IRs) were generated using SMIRGen [13], in a
16 x 14 x 10m?® room with a virtual 16-channel array
with 2.5 cm radius located at the center. Two-second
segments of anechoic speech recordings from the
Archimedes Project [14] were convolved with the
generated IRs to produce virtual microphone audio
data. Average Direct-to-Reverberant Ratio (DRR)
values for the IRs with a source-receiver distance of
4m are shown in Table 1. DRR values for varying
source-receiver distance with an RT of 0.4 s are shown
in Table 2

T60 (s) 04 06 08 10 15 20
DRR (dB) 11.72 6.69 4.27 291 1.02 0.02

Table 1: Direct-to-reverberant ratios for the selected
reverberation times used in this study

S-R (m) 3 4 5 6 7
DRR (@B) 1072 858 6.85 578 4.4

Table 2: Direct-to-reverberant ratios for the selected
source-receiver distances used in this study
foraT60 of 0.4s

For all simulated trials, a sampling rate of 8kHz, a
frame length of 32 samples, and 50% overlap between
frames were used. White Gaussian noise was added

to the audio data to produce a signal-to-noise ratio of
25 dB. One hundred trials were generated for each test
condition. To evaluate localization error, the SIS algo-
rithm is performed with 3 iterations per frame of audio
data, and 12 beam orientations generated per iteration.
The PIV method uses only Oth- and 1st-order eigen-
beams, while the SIS algorithm was further evaluated
for 1st-, 2nd-, and 3rd-order beams.

Error values were generated by comparing the true
source orientation in Cartesian coordinates relative to
the array, u to the estimated orientation generated by
each method @ using

g =cos '(uld). (11)

For scenarios with multiple sources present, the relative
error between each source orientation and the estimate
was computed, and the minimum value was chosen.
This method of evaluating error was chosen to achieve
parity with other error estimation techniques seen in
the literature [5, 15].

Experiment 1 evaluates SIS against the PIV method for
RTs varying from 0.4 s to 2 s. The source-receiver dis-
tance is fixed at 4 m, and source separation for multiple
sources is 45°. For each test condition, a control trial
was produced using randomly generated orientation
data. Figure 2 shows the error distribution, where the
black dot denotes median, the boxes show upper and
lower quartiles, and the whiskers extend to the 5th and
95th percentile range. The localization error range for
the SIS algorithm is less than half the error obtained by
the PIV method for T60 values over 0.8 s for a single
source condition. The control trial error is approxi-
mately 90° for a single source, 70° for two sources,
and 53° for three sources.

Experiment 2 fixes the RT to 0.4 s and varies the source-
receiver distance from 3 m to 7 m, while maintaining
angular separation between sources at 45°. Results
are shown in Figure 3. A control trial of random data
was generated for this experiment as well, but is not
displayed in the plot for clarity. Error values for the
control trial are comparable to those in Experiment 1.
For distances greater than 5 m, SIS produces a reduc-
tion in error of 15° relative to PIV.

In experiment 3, RT values of 0.4 s and 2 s were used,
and the source-receiver distance is 4 m while the angu-
lar separation varies from 15° to 180°. Figure 4 shows
the number of sources estimated by counting the num-
ber of peaks in the spatial spectrum of DOA estimates.
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Fig. 2: Comparison of localization error between SIS and the PIV method for T60 varying between 0.4 s and 2 s
(color online). Simulated trials were carried out for 1-3 simultaneously active sources. Source-receiver
distance was 4 m. The marked grey line denotes average error from randomly generated data to demonstrate
stochastic influence on the representation of accuracy due to an increase in ground truth data.
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Fig. 3: Comparison of localization error for source-
receiver distances varying from 3 m to 7 m un-
der a T60 of 0.4 s (color online). To preserve
axis limits for clarity, the line denoting angular
error generated by random data is omitted. For
a single source, the random trials averaged 90°
error for a single source, and 70° error for two
sources.

For this scenario, SIS shows no significant improve-
ment in performance over PIV for low RT. However,
in the 2 s RT case, PIV fails to produce distinct peaks,
leading to zero sources counted, whereas SIS accuracy
remains similar to the 0.4 s case.

4.2 Real-World Data

Evaluation in real-world conditions took place in a
large multi-purpose room with dimensions 16.1 x
13.7 x 5.6m> and broadband RT of 0.89s. Two
anechoic speech recordings were used from the
Archimedes project. Both audio files source were
broadcast simultaneously from a semi-rectangular
speaker array with dimensions 12 x 10 m? positioned
at the height of 1.7m. A 16-channel SMA was located
in the center of the room, positioned at the same height
as the speaker array. Source 1 maintained a stationary
position at the 0° azimuth point relative to the micro-
phone at a distance of 5 m. Source 2 traveled in a 180°
arc relative to the microphone at a velocity of approxi-
mately 0.9 m-s~!, varying radial distance from 5m at
the closest point to the array to 7.1 m at its most distant.
A diagram of the experimental setup is shown in Figure
5. Playback of the audio files over the speaker array
and recording of microphone array data was performed
using standard studio-grade audio hardware operating
at a sampling frequency of 48 kHz, and frame size of
128 samples, or 2.6 ms.
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Fig. 4: Comparison of SIS against PIV for varying angular separation between multiple simultaneous sources (color
online). The markers denote average number of sources detected over 100 trials for each test condition. The
solid error bars show the interquartile range, while the dashed bars show the range of sources detected. The
correct number of sources is shown by the horizontal dashed line. T601is 0.4 s for the top row of figures,
and 2.0 s for the bottom row. Source-receiver distance is 4 m.

To demonstrate the potential utilization of clustering al-
gorithms with the SIS method, the Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN)
algorithm was used, with a neighborhood radius of 5°
and minimum point density of 30. Figure 6 shows the
azimuthal localization performed by the SIS algorithm
with source identification via DBSCAN over time.

4.3 Computational Complexity

The PIV localization method requires the fewest opera-
tions to localize a sound source, since only one zeroth-
order and three first-order eigenbeams are required to
generate the vector. The SIS algorithm is variable in
terms of complexity — the number of beams chosen
and the number of iterations performed per time frame
dictate the number of operations performed. Modern
computing hardware and practices allow for a large
variation in efficiency in executing operations; there-
fore a relative evaluation of processing time per frame
of data is used to evaluate the cost of these methods.
The results in Figure 7 show the ratio of processing
time of SIS to PIV for varying iterations with 12 beams

of selected harmonic orders processed per iteration.
The average of 100 trials for each SIS test condition
was compared against a 100-trial average of PIV. Pro-
cessing time for the SIS method is within a single order
of magnitude of PIV performance for most cases. The
minimum value obtained is a ratio of 7.3 for the 1st-
order case and 2 iterations, and a ratio of 130.9 for the
3rd-order case and 15 iterations. Figures 8 and 9 show
heat maps of the average angular error and relative
latency, respectively, given the number of beams and
iterations used, with an RT of 0.4 s and source-receiver
distance of 4 m. Relatively few beams and iterations are
required for localization to converge with the minimum
angular error as dictated by array geometry, which al-
lows us to select parameters that preserve accuracy and
minimize latency. The values presented in these figures
were produced by evaluating the computation time us-
ing MATLAB R2020b on a 2013 Apple MacBook Pro
with an Intel Core 17 processor with a clock speed of
2.3 GHz. The algorithm will have significantly lower
latency values when operating within a proper real-time
processing framework.
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Fig. 5: Visual representation of the test environment
(color online). Experimentation was performed
at the CRAIVE-Lab at Rensselaer Polytech-
nic Institute in Troy, NY. The arrow labeled
"Source 1" marks the position of the station-
ary sound source, while the dashed line labeled
"Source 2" shows the direction of motion of the
moving sound source around the speaker. array.
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Fig. 6: SIS localization of speech in a real environment
(color online). Results are displayed here as a
map of azimuth over time. The raw localization
data was processed using the DBSCAN algo-
rithm to produce rudimentary point clustering
and source counting. The black lines denote
ground truth trajectory of each source. Gaps
in the lines denote periods of voice inactivity.
The ’x’ and ’0’ markers are the clustered lo-
calization estimates. These two markers are
used to distinguish where multiple clusters are
identified concurrently.
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Fig. 7: Ratio of SIS computing time to PIV for varying
number of iterations in a single time frame. To
compute SIS performance, N iterations were
used, and 12 beam patterns of 1st-, 2nd-, or
3rd-order were evaluated during each iteration.
Each data point indicated is an average of 100
simulations.

5 Discussion

In the context of the presented research, it is impor-
tant to understand how the different methods, SIS, PIV,
and SRP, compare in terms of accuracy, robustness and
computational efficiency. The results show that the
SIS method trades computational speed for more ac-
curate performance under high reverberation. In this
sense, it may be viewed as a balance between SRP-
and PIV-based methods. Comparison in other literature
[5, 15, 16] of SRP mapping against other DOA estima-
tion techniques has revealed its favorable performance
under reverberant conditions, but also its dependence
on grid density for accuracy and considerable computa-
tional load. Although it is more complex than the PIV
method in terms of operations required, the computa-
tional latency incurred by SIS iteration is no greater
than an order of magnitude of PIV computational speed
for most cases, as seen in Figure 7.

Despite the efficiency of the PIV method, it is inher-
ently susceptible to room reflections, significantly de-
creasing accuracy under even moderate reverberation,
as seen in Figure 2. Room reflections produce stochas-
tic variation in the direction of flow. The influence of
this stochastic behavior is apparent in the localization
results under varying reverberation when comparing the
PIV method with the random control trial. Although
derivatives of this method address this shortcoming
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[17], the additional processing significantly increases
the computational load and reduces the quantity of esti-
mates generated over time.

The latency produced by SIS in MATLAB analysis is
below 1 millisecond per frame for certain conditions,
enabling continuous real-time operation. The low-
latency localization data stream produced is suitable
for further processing, such as incorporation within
clustering algorithms, such as K-Means or DBSCAN,
as seen in Figure 6.

Time-Frequency analysis, such as the coherence test
[18] or the Direct Path Dominance test [19], to further
improve multiple-source discrimination is also easily
applicable, as it is for the PIV method.

Average Error (deg)

N lterations

2 4 6 8 10 12 14
N Beams

Fig. 8: Average error for varying number of steered
beams generated and number of iterations
(color online). Lighter regions denote lower
error values, while darker regions correspond
with high error. Selected trials have numerical
values represented in degrees.

6 Conclusions

In this study, it was shown that the SIS algorithm is less
sensitive to reverberation when compared to the PIV
method. Accurate estimation may be achieved using a
small number of beam orientations and iterations. The
increased computational load for such cases relative to
PIV is significant, but marginal given the additional pro-
cessing required to improve PIV performance. SIS also
maintains source identification performance in rever-
berant conditions. Incorporation of more sophisticated
clustering and source counting methods may further
improve identification accuracy.

Average Latency (ms)

N Iterations

N Beams

Fig. 9: Average latency for varying number of steered
beams generated and number of iterations
(color online). Lighter regions denote lower
latency values, while darker regions correspond
with high latency. Selected trials have numeri-
cal values represented in milliseconds. Numer-
ical values displayed were generated in MAT-
LAB and are expected to be significantly lower
when using the algorithm within a real-time
framework.
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