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ABSTRACT

This paper introduces a method to estimate the direction of arrival of an acoustic signal based on finding maximum

power in iteratively reduced regions of a spherical surface. A plane wave decomposition beamformer is used

to produce power estimates at sparsely distributed points on the sphere. Iterating beam orientation based on

the orientation of maximum energy produces accurate localization results. The method is tested using varying

reverberation times, source-receiver distances, and angular separation of multiple sources and compared against a

pseudo-intensity vector estimator. Results demonstrate that this method is suitable for integration into real-time

telematic frameworks, especially in reverberant conditions.

1 Introduction

Direction of Arrival (DOA) estimation is a vital element

in myriad acoustic array processing applications, such

as source localization, acoustic mapping, and speech

enhancement. Spherical microphone arrays (SMAs)

are excellent platforms for DOA estimation, since their

compact footprint and directional independence confer

a great deal of flexibility in application compared to

linear or planar geometries [1, 2]. Several methods

have been developed in the past few decades to local-

ize sound sources using SMA data, but few have been

tailored to address the constraints of telematic applica-

tions in reverberant spaces.

Telematic systems ideally produce low-latency streams

of location data for real-time use. A localization

method must be computationally efficient, since it may

contribute to the overall complexity of a larger tracking

and broadcast system. It must also be accurate despite

reverberation or noise, since spaces like classrooms and

multi-purpose spaces have large volumes, highly vari-

able reverberation times [3, 4], and multiple, dynamic

sources.

This paper introduces the sparse iterative search (SIS),

which is a steered-beam power discrimination process,

to address source localization for distant sources in

reverberant spaces. Section 2 contains a brief back-

ground of SMA operation. Section 3 introduces the

SIS. Finally, Section 4 provides an evaluation of the

performance of SIS as compared to the pseudointen-

sity vector (PIV) method [5] across a variety of tests.

Although other methods for localization, including ex-

tensions to the PIV method itself, are more sophisti-

cated and produce accurate results, the original PIV

method was chosen in particular for its computational

efficiency and simplicity of technique, which makes it
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a suitable baseline for comparison

2 Technical Background

2.1 Spherical Harmonics

The localization methods discussed in this paper are

dependent on efficient manipulation of the soundfield

in spherical space. The following is a brief review of

the theory of spherical harmonic decomposition. A

thorough introduction to SMA theory and operation

may be found in [6, 7].

A point in space is given in spherical coordinates

(r,φ ,θ), where r is the radius, φ is azimuth, and θ

is elevation. A pressure field is measured at this point,

p(k,r,θ ,φ), with wave number k. The spherical har-

monic representation of the sound pressure at this point

may be obtained by the spherical Fourier transform

plm(k,r) =
∫ 2π

0

∫ π

0
p(k,r,θ ,φ)Y m

l (θ ,φ)∗ sinθdθdφ ,

(1)

where (·)∗ is the complex conjugate. Y m
l are the spheri-

cal harmonics of degree l and order m, given by:

Y m
l =

√

2l +1

4π

(l −m)!

(l +m)!
Pl

m(cos(θ))eimφ , (2)

where Pl
m is the associated Legendre function, and

i =
√
−1. A plane wave may be described incident

upon the surface of a sphere with radius rq using this

spherical harmonic representation:

plm(k,r) = A(k)bl(krq)Y
m
l (θ ,φ), (3)

where A is the amplitude and bl is the modal gain, or

mode strength. For a rigid spherical array, this modal

gain term is described by

bl(kr) = 4πi
(

jl(kr)− j′l(kr)

h
(2)
l (kr)

h
(2)
l (kr)

)

. (4)

jl is the spherical Bessel function, and h
(2)
l is the spher-

ical Hankel function of the second kind. Compensating

for this term in the array output and incorporating a

steering vector produces a plane-wave decomposition

(PWD) beamformer, which spatially filters the array

data to exclude soundfield information except in the

direction of interest:

y(k) =
∞

∑
l=0

l

∑
m=−l

plm(k,r)

bl(kr)
Y m

l (θd ,φd), (5)

where (θd ,φd) is the orientation of interest. For a mi-

crophone array with Q discrete elements with locations

given by (rq,φq,θq), the spherical Fourier transform is

an approximate sum over the pressure values from each

element over the surface of the sphere:

plm(k,rq)≈
Q

∑
q=1

p(k,rq,θq,φq)Y
m
l (θq,φq)

∗. (6)

This approximation limits the order of harmonic de-

composition, constraining the directivity pattern of the

PWD beamformer:

y(k,φq,ωq) =
L

∑
l=0

l

∑
m=−l

plm(k,r)

bl(kr)
Y m

l (θd ,φd). (7)

2.2 Steered Response Power Mapping

The steered response power (SRP) method for localiza-

tion produces spatial maps of sound power by means

of a grid search using a steered beamforming array. Al-

though evaluation of the SRP method is not included,

the methodology is given here for completeness. The

map is generated with the output of the PWD beam-

former and a set of all spherical grid points to be

searched, ΩS, in terms of azimuth and elevation:

M(ΩS) = ∑
k

|y(k,ΩS)|2 . (8)

A single source may be localized by finding the maxi-

mum value in the map,

Ωmax = argmax
ΩS

M(ΩS), (9)

whereas a peak detection algorithm may negotiate

multiple-source discrimination for particular condi-

tions.
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The SRP method is accurate even under reverberant

conditions [8], since its operation is dependent on a grid

of steered beams. Because these beams are spatial fil-

ters, the response from room reflections and directional

noise is greatly reduced except in the beams oriented

along their directions of arrival. Ideally, an infinite-

order beam would produce a response along only its

oriented direction. However, for order-limited beam-

formers, the response from each beam corresponds

to an angular arc surrounding the orientation of inter-

est. This reduces the overall accuracy of SRP localiza-

tion, but provides the basis of functionality for the SIS

method.

3 Sparse Iterative Search

Fig. 1: A visual representation of the SIS method for 4

beam steering vectors and 4 iterations. Steering

vector orientations are denoted by black lines,

and search sectors are the light grey regions

over the sphere in dark grey. Initially, beam

orientations are evenly distributed around the

sphere (a). On subsequent iterations (b–d) the

beam orientation vectors are chosen via uni-

form sampling from the best of several search

sectors corresponding to each beam.

SIS takes advantage of three major characteristics of

speech energy distribution and spatial filtering to pro-

duce accurate DOA estimation. First, the energy distri-

bution of a single frame of speech data is most likely

to be convex upwards. Only a small percentage of

frames of audio data, as would be generated for the

Short-Time Fourier Transform, contain salient speech

feature. This condition holds even for audio containing

multiple simultaneous speakers, a principle known as

Window-Disjoint Orthogonality [9].

Second, despite a beampattern’s sensitivity to a re-

gion of space rather than a single orientation, only

slight changes in orientation are capable of affecting

the recorded energy. This feature is what allows the

SRP method to generate more accurate results with

increased grid density.

The final characteristic is the PWD beamformer itself.

Although an ideal beam is a delta function, finite-series

spherical harmonics produce hypercardioid beampat-

terns. The output of the beamformer corresponds to

a spatial area rather than a single direction. This al-

lows sufficient sensitivity to energy distribution over

the sphere with a small number of generated beampat-

terns.

This final feature is what distinguishes SIS from exist-

ing region-contraction methods [10, 11]. Rather than

contract a search region around volumes containing

large energy values, each beam is used to define its

own search region, and subsequent iterations reject

spatial regions while progressively converging on the

orientation of maximum energy.

For a single time frame of speech data, the initial steer-

ing vectors for each beam are chosen such that the

beams are evenly distributed over the sphere and max-

imally distant in orientation from each other. For a

circular distribution around the equator, the angular arc

between all beam steering vectors is 2π/N, where N

is the number of beams used per iteration. For spheri-

cal distributions, orientations derived from the Platonic

solids or nearly-uniform spacing distributions [12] may

be used.

The orientation that returns the maximum power from

the PWD beamformer is obtained using

Ωmax = argmax
ΩS

M(ΩS), (10)

where M is the beamformer output over the set of ori-

entations. Conceptually, up to this point, the process

is very similar to the SRP mapping method. However,

the set of beam orientations are not a dense grid, but an

extremely sparse set of points over the sphere. When

the orientation of maximum power is found, a new set

of steering vectors are selected via uniform random

sampling from within the spherical section centered on

Ωs with conical angle c = 2π/N. Subsequent iterations

repeat this random selection operation, generating a set
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of orientations from successively smaller search sectors

corresponding to the beam which produces maximum

power according to c = 2π/kN, where k is the current

iteration count. As the energy distribution is assumed

convex, this approach converges to the global maxi-

mum of the energy distribution for a single time frame,

which, ideally, corresponds to the source orientation

relative to the array. A visualization of this method for

four beams and four iterations is shown in Figure 1.

4 Evaluation

A variety of metrics were used to characterize the per-

formance of this method. Experiments were performed

on both simulated and recorded array data with varying

reverberation time (RT), source-receiver distance, and

angular separation for multiple sources.

4.1 Simulated Data

For each simulation, room impulse responses

(IRs) were generated using SMIRGen [13], in a

16×14×10 m3 room with a virtual 16-channel array

with 2.5 cm radius located at the center. Two-second

segments of anechoic speech recordings from the

Archimedes Project [14] were convolved with the

generated IRs to produce virtual microphone audio

data. Average Direct-to-Reverberant Ratio (DRR)

values for the IRs with a source-receiver distance of

4 m are shown in Table 1. DRR values for varying

source-receiver distance with an RT of 0.4 s are shown

in Table 2

T60 (s) 0.4 0.6 0.8 1.0 1.5 2.0

DRR (dB) 11.72 6.69 4.27 2.91 1.02 0.02

Table 1: Direct-to-reverberant ratios for the selected

reverberation times used in this study

S-R (m) 3 4 5 6 7

DRR (dB) 10.72 8.58 6.85 5.78 4.4

Table 2: Direct-to-reverberant ratios for the selected

source-receiver distances used in this study

for a T60 of 0.4 s

For all simulated trials, a sampling rate of 8 kHz, a

frame length of 32 samples, and 50% overlap between

frames were used. White Gaussian noise was added

to the audio data to produce a signal-to-noise ratio of

25 dB. One hundred trials were generated for each test

condition. To evaluate localization error, the SIS algo-

rithm is performed with 3 iterations per frame of audio

data, and 12 beam orientations generated per iteration.

The PIV method uses only 0th- and 1st-order eigen-

beams, while the SIS algorithm was further evaluated

for 1st-, 2nd-, and 3rd-order beams.

Error values were generated by comparing the true

source orientation in Cartesian coordinates relative to

the array, u to the estimated orientation generated by

each method û using

ε = cos−1(uT û). (11)

For scenarios with multiple sources present, the relative

error between each source orientation and the estimate

was computed, and the minimum value was chosen.

This method of evaluating error was chosen to achieve

parity with other error estimation techniques seen in

the literature [5, 15].

Experiment 1 evaluates SIS against the PIV method for

RTs varying from 0.4 s to 2 s. The source-receiver dis-

tance is fixed at 4 m, and source separation for multiple

sources is 45◦. For each test condition, a control trial

was produced using randomly generated orientation

data. Figure 2 shows the error distribution, where the

black dot denotes median, the boxes show upper and

lower quartiles, and the whiskers extend to the 5th and

95th percentile range. The localization error range for

the SIS algorithm is less than half the error obtained by

the PIV method for T60 values over 0.8 s for a single

source condition. The control trial error is approxi-

mately 90◦ for a single source, 70◦ for two sources,

and 53◦ for three sources.

Experiment 2 fixes the RT to 0.4 s and varies the source-

receiver distance from 3 m to 7 m, while maintaining

angular separation between sources at 45◦. Results

are shown in Figure 3. A control trial of random data

was generated for this experiment as well, but is not

displayed in the plot for clarity. Error values for the

control trial are comparable to those in Experiment 1.

For distances greater than 5 m, SIS produces a reduc-

tion in error of 15◦ relative to PIV.

In experiment 3, RT values of 0.4 s and 2 s were used,

and the source-receiver distance is 4 m while the angu-

lar separation varies from 15◦ to 180◦. Figure 4 shows

the number of sources estimated by counting the num-

ber of peaks in the spatial spectrum of DOA estimates.
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Fig. 2: Comparison of localization error between SIS and the PIV method for T60 varying between 0.4 s and 2 s

(color online). Simulated trials were carried out for 1-3 simultaneously active sources. Source-receiver

distance was 4 m. The marked grey line denotes average error from randomly generated data to demonstrate

stochastic influence on the representation of accuracy due to an increase in ground truth data.

Fig. 3: Comparison of localization error for source-

receiver distances varying from 3 m to 7 m un-

der a T60 of 0.4 s (color online). To preserve

axis limits for clarity, the line denoting angular

error generated by random data is omitted. For

a single source, the random trials averaged 90◦

error for a single source, and 70◦ error for two

sources.

For this scenario, SIS shows no significant improve-

ment in performance over PIV for low RT. However,

in the 2 s RT case, PIV fails to produce distinct peaks,

leading to zero sources counted, whereas SIS accuracy

remains similar to the 0.4 s case.

4.2 Real-World Data

Evaluation in real-world conditions took place in a

large multi-purpose room with dimensions 16.1 ×
13.7 × 5.6 m3 and broadband RT of 0.89 s. Two

anechoic speech recordings were used from the

Archimedes project. Both audio files source were

broadcast simultaneously from a semi-rectangular

speaker array with dimensions 12×10 m2 positioned

at the height of 1.7 m. A 16-channel SMA was located

in the center of the room, positioned at the same height

as the speaker array. Source 1 maintained a stationary

position at the 0◦ azimuth point relative to the micro-

phone at a distance of 5 m. Source 2 traveled in a 180◦

arc relative to the microphone at a velocity of approxi-

mately 0.9 m·s−1, varying radial distance from 5 m at

the closest point to the array to 7.1 m at its most distant.

A diagram of the experimental setup is shown in Figure

5. Playback of the audio files over the speaker array

and recording of microphone array data was performed

using standard studio-grade audio hardware operating

at a sampling frequency of 48 kHz, and frame size of

128 samples, or 2.6 ms.
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Fig. 4: Comparison of SIS against PIV for varying angular separation between multiple simultaneous sources (color

online). The markers denote average number of sources detected over 100 trials for each test condition. The

solid error bars show the interquartile range, while the dashed bars show the range of sources detected. The

correct number of sources is shown by the horizontal dashed line. T60 is 0.4 s for the top row of figures,

and 2.0 s for the bottom row. Source-receiver distance is 4 m.

To demonstrate the potential utilization of clustering al-

gorithms with the SIS method, the Density-Based Spa-

tial Clustering of Applications with Noise (DBSCAN)

algorithm was used, with a neighborhood radius of 5◦

and minimum point density of 30. Figure 6 shows the

azimuthal localization performed by the SIS algorithm

with source identification via DBSCAN over time.

4.3 Computational Complexity

The PIV localization method requires the fewest opera-

tions to localize a sound source, since only one zeroth-

order and three first-order eigenbeams are required to

generate the vector. The SIS algorithm is variable in

terms of complexity – the number of beams chosen

and the number of iterations performed per time frame

dictate the number of operations performed. Modern

computing hardware and practices allow for a large

variation in efficiency in executing operations; there-

fore a relative evaluation of processing time per frame

of data is used to evaluate the cost of these methods.

The results in Figure 7 show the ratio of processing

time of SIS to PIV for varying iterations with 12 beams

of selected harmonic orders processed per iteration.

The average of 100 trials for each SIS test condition

was compared against a 100-trial average of PIV. Pro-

cessing time for the SIS method is within a single order

of magnitude of PIV performance for most cases. The

minimum value obtained is a ratio of 7.3 for the 1st-

order case and 2 iterations, and a ratio of 130.9 for the

3rd-order case and 15 iterations. Figures 8 and 9 show

heat maps of the average angular error and relative

latency, respectively, given the number of beams and

iterations used, with an RT of 0.4 s and source-receiver

distance of 4 m. Relatively few beams and iterations are

required for localization to converge with the minimum

angular error as dictated by array geometry, which al-

lows us to select parameters that preserve accuracy and

minimize latency. The values presented in these figures

were produced by evaluating the computation time us-

ing MATLAB R2020b on a 2013 Apple MacBook Pro

with an Intel Core i7 processor with a clock speed of

2.3 GHz. The algorithm will have significantly lower

latency values when operating within a proper real-time

processing framework.
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Fig. 5: Visual representation of the test environment

(color online). Experimentation was performed

at the CRAIVE-Lab at Rensselaer Polytech-

nic Institute in Troy, NY. The arrow labeled

"Source 1" marks the position of the station-

ary sound source, while the dashed line labeled

"Source 2" shows the direction of motion of the

moving sound source around the speaker. array.
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Fig. 6: SIS localization of speech in a real environment

(color online). Results are displayed here as a

map of azimuth over time. The raw localization

data was processed using the DBSCAN algo-

rithm to produce rudimentary point clustering

and source counting. The black lines denote

ground truth trajectory of each source. Gaps

in the lines denote periods of voice inactivity.

The ’x’ and ’o’ markers are the clustered lo-

calization estimates. These two markers are

used to distinguish where multiple clusters are

identified concurrently.
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Fig. 7: Ratio of SIS computing time to PIV for varying

number of iterations in a single time frame. To

compute SIS performance, N iterations were

used, and 12 beam patterns of 1st-, 2nd-, or

3rd-order were evaluated during each iteration.

Each data point indicated is an average of 100

simulations.

5 Discussion

In the context of the presented research, it is impor-

tant to understand how the different methods, SIS, PIV,

and SRP, compare in terms of accuracy, robustness and

computational efficiency. The results show that the

SIS method trades computational speed for more ac-

curate performance under high reverberation. In this

sense, it may be viewed as a balance between SRP-

and PIV-based methods. Comparison in other literature

[5, 15, 16] of SRP mapping against other DOA estima-

tion techniques has revealed its favorable performance

under reverberant conditions, but also its dependence

on grid density for accuracy and considerable computa-

tional load. Although it is more complex than the PIV

method in terms of operations required, the computa-

tional latency incurred by SIS iteration is no greater

than an order of magnitude of PIV computational speed

for most cases, as seen in Figure 7.

Despite the efficiency of the PIV method, it is inher-

ently susceptible to room reflections, significantly de-

creasing accuracy under even moderate reverberation,

as seen in Figure 2. Room reflections produce stochas-

tic variation in the direction of flow. The influence of

this stochastic behavior is apparent in the localization

results under varying reverberation when comparing the

PIV method with the random control trial. Although

derivatives of this method address this shortcoming

AES 150th Convention, Online, 2021 May 25–28

Page 7 of 9



Mathews, Braasch Iterative Search for Acoustic Localization

[17], the additional processing significantly increases

the computational load and reduces the quantity of esti-

mates generated over time.

The latency produced by SIS in MATLAB analysis is

below 1 millisecond per frame for certain conditions,

enabling continuous real-time operation. The low-

latency localization data stream produced is suitable

for further processing, such as incorporation within

clustering algorithms, such as K-Means or DBSCAN,

as seen in Figure 6.

Time-Frequency analysis, such as the coherence test

[18] or the Direct Path Dominance test [19], to further

improve multiple-source discrimination is also easily

applicable, as it is for the PIV method.
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Fig. 8: Average error for varying number of steered

beams generated and number of iterations

(color online). Lighter regions denote lower

error values, while darker regions correspond

with high error. Selected trials have numerical

values represented in degrees.

6 Conclusions

In this study, it was shown that the SIS algorithm is less

sensitive to reverberation when compared to the PIV

method. Accurate estimation may be achieved using a

small number of beam orientations and iterations. The

increased computational load for such cases relative to

PIV is significant, but marginal given the additional pro-

cessing required to improve PIV performance. SIS also

maintains source identification performance in rever-

berant conditions. Incorporation of more sophisticated

clustering and source counting methods may further

improve identification accuracy.
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Fig. 9: Average latency for varying number of steered

beams generated and number of iterations

(color online). Lighter regions denote lower

latency values, while darker regions correspond

with high latency. Selected trials have numeri-

cal values represented in milliseconds. Numer-

ical values displayed were generated in MAT-

LAB and are expected to be significantly lower

when using the algorithm within a real-time

framework.
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